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Abstract—Thickening of intima-media complex in the common
carotid artery is a biomarker of atherosclerosis. To automatically
measure this thickness, we propose a region-based segmen-
tation method, involving a supervised deep-learning approach
based on the dilated U-net architecture, named caroSegDeep.
It was trained and evaluated using 5-fold cross-validation on
two open-access databases containing a total of 2676 anno-
tated images. Compared with the methods already evaluated on
these databases, caroSegDeep established a new benchmark and
achieved a mean absolute error twice smaller than the inter-
observer variability.

Index Terms—Atherosclerosis, carotid artery, segmentation, ul-
trasound, deep learning.

I. INTRODUCTION

World Health Organization reports the cardiovascular diseases,
particularly atherosclerosis, as the leading cause of death
worldwide [2]. Their prevention [4] requires screening by
means of a non-ionising and inexpensive imaging modality.
Ultrasound (US) imaging has these characteristics and is rou-
tinely used to explore the common carotid artery (CCA), which
is often considered as the sentinel of atherosclerosis [15]. An
early sign of this disease onset is arterial wall thickening. To
measure the thickness of interest, the contours of the intima-
media complex (IMC), namely, lumen-intima (LI) and media-
adventitia (MA) interfaces, need to be identified (Fig. 1).

This task is most frequently addressed by contour-based ap-
proaches [1], [3], [11], [16], which exploit intensity changes
caused by the echoes at acoustic interfaces. Region-based seg-
mentation methods based on texture, adaptive thresholding [9],
[14] or clustering have also been proposed. Recently, deep-
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Fig. 1. Example longitudinal B-mode US image of a CCA. a) Far wall
encompassed by a rectangle. b) Enlarged region detailing the IMC with its
interfaces segmented by caroSegDeep: LI (red) and MA (blue).

learning (DL) has been successfully used in vascular US-
image segmentation to enhance the structures of interest prior

to the actual delineation by more conventional contour-based
methods [7], [10], [13]. The drawback of these approaches is
the necessity to combine a learnable pre-processing operation
with an analytic segmentation task.

The main contribution of this work is a region-based seg-
mentation method using supervised deep learning—dubbed
“caroSegDeep”— designed to extract the IMC in B-mode
US images. Using a collection of overlapping patches,
caroSegDeep successfully segments the entire exploitable part
of the IMC with a simple network architecture. All training
and evaluation processes were carried out on the open-access
multi-center databases CUBS 1 [6]1 and CUBS 2 [5]2. Each
image was annotated by at least two experts (A1 and A2) and
one of them performed a second annotation round (A1’) to
assess inter- and intra-expert variability.

II. METHOD

The proposed solution builds on the U-net [12] architecture,
with dilated convolutions on the bottleneck to increase the
receptive field [8]. It works in two steps and uses two identical
networks with different weights (Fig. 2). First, the user’s two
mouse clicks define the region of interest (ROI) to be seg-
mented. Next the far wall is detected. Eventually the IMC seg-
mentation is done in the vicinity of the detected location. The
code is available at https://github.com/nl3769/caroSegDeep.

A. Detection of the far wall

Similarly to many state-of-the-art methods [7], [10], [14], [16],
the far wall is first detected to drive the subsequent actual IMC
segmentation. The corresponding U-net, referred to as ΘF W ,
uses patches of full image height and 128-pixel width. The
next paragraph describes the data preparation for the training
phase of ΘF W , while the subsequent one specifies how the
patch-wise predictions inferred using ΘF W are post-processed
to obtain the curve approximately localizing the far wall on
the entire ROI.
Pre-processing and training: Each image was resampled to
a 512-pixel height. For training, the IMC median axis was
defined as the line halfway between LI and MA annotations,
extending across the entire width of the ROI. Pixels below the
median axis were set to 1 and the others to 0, to generate a

1http://dx.doi.org/10.17632/fpv535fss7.1
2http://dx.doi.org/10.17632/m7ndn58sv6.1
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Fig. 2. Outline of the proposed method. a) Input image. b) Interactive delimitation of the left and right borders of the ROI (two mouse clicks). c) Far wall
detection: median axis (magenta) deduced from overlapping masks predicted within full image-height patches. d) IMC segmentation: LI (cyan) and MA (green)
interfaces deduced from predicted overlapping masks within high-resolution patches distributed along the median axis.

reference mask (MROI ). Image ROI and MROI were identi-
cally cut into patches with a 100-pixel overlap aiming at data
augmentation. These gray-level and binary patches (Fig. 3)
were the inputs of the training process.
Inference and post-processing: The same resampling and
cutting of the ROI into overlapping 128 × 512-pixel patches
is performed to prepare each image for inference. Then, each
patch is segmented using ΘF W . Two maps are created:

• overlay map: containing, for each pixel, the number of
overlapping patches covering this pixel,

• prediction map: containing, for each pixel, the sum of
values predicted by ΘF W within these patches.

Subsequently, an average value in the range [0, 1] is calculated
for each pixel by dividing the prediction map by the overlay
map. The averaged prediction map is binarized using a thresh-
old of 0.5 and then cleaned by retaining the largest connected
component. The median axis we seek is the upper boundary
of the region thus obtained.

B. Segmentation of the IMC

The actual segmentation of the IMC uses the same network
architecture (the dilated U-net used here is referred to as
ΘIMC) and several concepts from Section II-A: overlapping
128 × 512-pixel patches, overlay and prediction maps, as

well as a similar post-processing except that two contours are
extracted (the LI and MA interfaces). The following paragraphs
focus on the specific choices made for this step.
Pre-processing and training: Here, the height of the patches
just needs to encompass the IMC, which is 0.8 -millimeter
thick, on average. Therefore, each image is vertically resam-
pled to 5µm/pixel, so that the 512-pixel patch height roughly
corresponds to 2.6 mm. The ground truth for training was
deduced from the images thus interpolated (Fig. 4): pixels
located between the annotated LI and MA interfaces were set
to 1, and the others to 0. The patches were picked along the
median axis: at each abscissa xi, three patches were extracted,
centered at yi and yi ± 128, where yi is the mean ordinate
of the median axis on the patch width. This choice aimed
at data augmentation coping with possibly inaccurate far-wall
approximation, as well as with tilted arteries.
Inference and post-processing: The patches are also ex-
tracted along the far-wall approximation, which results here
from the first step (Section II-A), and the number of vertically
overlapping patches extracted at each abscissa xi may be
three or more, depending on the tilt of the median axis. After
combining the predictions made by ΘIMC in all patches into
a prediction map, the segmentation map is derived thereof,
as described before. The LI and MA interfaces are eventually
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Fig. 3. Schematic representation of image patches and corresponding masks
used during the training phase of the far-wall detection network.
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Fig. 4. Schematic representation (differing from the actual patch size) of
data used during the training phase of the IMC-segmentation network. Image
patches with associated masks located at (xi, yi), and (xi, yi ± 128).

deduced as the respective upper and lower boundaries of the
region thus segmented.

III. RESULTS

To assess each network on data not seen during its training,
a 5-fold cross-validation was performed: the database was
divided into five subsets of equal size, and five pairs of ΘF W

and ΘIMC networks were trained and tested independently
using in turn three subsets for training (60%), one subset for

validation (20%) and one subset for testing (20%). The results
obtained on the test subsets of these five pairs were merged to
assess the performance of the method on the entire database.

The second step (actual IMC segmentation) of the proposed
cascade approach assumes that the median axis resulting from
the first step (far wall detection) is approximately correct: if the
far wall is wrongly detected, the ICM segmentation is likely to
fail. Therefore, we first quantified the success rate of the first
step alone, then incorrect median axes were manually redrawn
using a home-made graphical interface before assessing the
accuracy of the second step.
Robustness of the far wall detection: Images where the
distance between the predicted and reference median axes
was greater than 0.8 mm were selected for visual inspection,
which confirmed that 36 of them (1.3% of the database) were
failures, i.e. curves unusable to initialize the IMC segmentation
step. Hence, the success rate was of 98.7%. In the 36 images
with failures, the median axis was interactively reinitialized,
in preparation for the subsequent segmentation step.
Accuracy of the IMC segmentation: The IMC segmentation
inaccuracies were calculated with respect to the annotations
performed by the expert A1. We assessed the median absolute
difference (MAD) on IMT, which is the target measure, as
well as the Hausdorff distance on the LI and MA contours.
These errors were compared with the inter- and intra-observer
variabilities, A2 vs. A1 and A1’ vs. A1, respectively. Table I
summarizes the segmentation errors separately calculated for
images from the CUBS 1 and CUBS 2 databases, which allows
a comparison with other methods evaluated on these databases
in previous studies [5], [6]. Thus, the previous benchmark
on the CUBS 1 database was a MAD value on IMT equal
to 114 ± 117µm, while on the CUBS 2 database the best
conventional method achieved 139 ± 119µm and another U-
net-based method obtained 178 ± 120µm.

TABLE I
SEGMENTATION INACCURACIES (MEAN ± STD) FOR CUBS 1 AND

CUBS 2 DATASETS: MEAN ABSOLUTE DIFFERENCE (MAD) FOR
THICKNESS QUANTIFICATION (IMT) AND HAUSDORFF DISTANCE (HD)

FOR CONTOUR LOCATIONS (LI AND MA). THE ERRORS OF THE PROPOSED
CAROSEGDEEP METHOD WITH RESPECT TO REFERENCE ANNOTATIONS
ARE COMPARED TO THE INTER- AND INTRA-OBSERVER VARIABILITIES.

Measure Compare
Dataset CUBS 1 CUBS 2

IMT: MAD (µm)
caroSegDeep vs. A1 99± 89 106± 89

A2 vs. A1 206± 168 192± 166
A1’ vs. A1 144± 123 160± 140

LI: HD (µm)
caroSegDeep vs. A1 320± 193 305± 197

A2 vs. A1 380± 207 327± 138
A1’ vs. A1 357± 204 352± 140

MA: HD (µm)
caroSegDeep vs. A1 287± 153 289± 147

A2 vs. A1 351± 161 338± 184
A1’ vs. A1 319± 155 346± 185

IV. DISCUSSION

We proposed and fairly evaluated on open-access databases
an almost-automatic (two user mouse-clicks) deep-learning
method devised to extract the contours of the intima-media



complex in longitudinal B-mode ultrasound images of the
carotid artery. The proposed approach is patch-based, which
allows for segmenting variable-width ROIs of without resizing
the images.

The far-wall localization step was successful in all but 1.3% of
the images. This robustness is a prerequisite for overall correct
segmentation. The latter achieved errors smaller than the inter-
observer variability, both in terms of estimated thickness and
contour location. Compared to the methods already evaluated
on the same data [5], [6], caroSegDeep established a new
benchmark. As the proposed method is based on supervised
learning, it has the potential to increase its performance by
using larger and more diverse data for training.

In particular, the largest errors occurred in the presence of
calcified plaques, which were present in few images. This
work was oriented towards asymptomatic plaque-free subjects,
images with plaques were not expected. Nevertheless, we
expect that results might be improved by re-training the
networks on a database enriched with such images. This
avenue deserves investigation. Another direction might exploit
multiple annotations available for each image to increase the
robustness by learning how to account for such uncertainties.
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