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CONSTRUCTION OF CONSTANT MEAN CURVATURE n-NOIDS USING THE
DPW METHOD

MARTIN TRAIZET

Abstract: we construct constant mean curvature surfaces in euclidean space with genus zero and n ends
asymptotic to Delaunay surfaces using the DPW method.

1. Introduction

In [3], Dorfmeister, Pedit and Wu have shown that harmonic maps from a Riemann surface to a
symmetric space admit a Weierstrass-type representation, which means that they can be represented in
terms of holomorphic data. In particular, surfaces with constant mean curvature one (CMC-1 for short) in
euclidean space admit such a representation, owing to the fact that the Gauss map of a CMC-1 surface is
a harmonic map to the 2-sphere. This representation is now called the DPW method and has been widely
used to construct CMC-1 surfaces in R3 and also constant mean curvature surfaces in homogeneous spaces
such as the sphere S3 or hyperbolic space H3: see for example [2, 4, 10, 11, 12, 13, 15, 16, 20, 21]. Also
the DPW method has been implemented by N. Schmitt to make computer images of CMC-1 surfaces.

The main limitation to the construction of examples is the Monodromy Problem, so either the topology
of the constructed examples is limited or symmetries are imposed to the construction, in order to reduce
the number of equations to be solved.

In constract, Kapouleas [14] has constructed embedded CMC-1 surfaces with no limitation on the genus
or number of ends by gluing round spheres and pieces of Delaunay surfaces, using Partial Differential
Equations techniques. An interesting question is wether similar results can be achieved with the DPW
method. In this paper, we make a first step in this direction by constructing n-noids: genus zero CMC-1
surfaces with n ends.

Theorem 1. Given n ≥ 3 distinct unit vectors u1, · · · , un in R3 and n non-zero real weights τ1, · · · , τn
satisfying the balancing condition

n∑
i=1

τiui = 0

there exists a smooth 1-parameter family of CMC-1 surfaces (Mt)0<t<ε with genus zero, n Delaunay ends
and the following properties:

(1) If we denote wi,t the weight of the i-th Delaunay end and ∆i,t its axis, then

lim
t→0

wi,t
t

= 8πτi

and ∆i,t converges to the half-line through the origin directed by ui.
(2) If all weights τi are positive, then Mt is Alexandrov-embedded.
(3) If moreover the angle between ui and uj is greater than π

3 for all j 6= i, then Mt is embedded.

These examples can be described heuristically as the unit sphere with n half Delaunay surfaces with
small necksizes attached at the points u1, · · · , un (see Figure 1). They are a particular case of the
construction of Kapouleas [14]. Here are some related results:
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Figure 1. A symmetric 4-noid. Image by N. Schmitt

(1) The full family of trinoids is constructed in [4, 21] using the DPW method. Their construction is
more general than ours in the case n = 3, since we only construct trinoids whose ends have small
necksizes.

(2) Highly symmetric n-noids with n ≥ 4 have been constructed using the DPW method in [16, 20].
(3) DPW potentials of general n-noids are investigated in [4, 7], but the Monodromy Problem is

not solved when n ≥ 4. Quoting [7]: Outside of experimental examples, the construction of k-
noids for k ≥ 4, even under the additional assumption of coplanarity, remains elusive from the
integrable systems perspective.

(4) Alexandrov-embedded trinoids have been classified in [8], and Alexandrov-embedded n-noids with
coplanar ends have been classified in [9] (with methods unrelated to DPW).

(5) The balancing condition of Theorem 1 is necessary by the general balancing formula for CMC-1
surfaces (Theorem 3.4 in [18]).

Our goal in this paper is to prove Theorem 1 with the DPW method, using a rather simple and natural
DPW potential, inspired from the one used in [21] for trinoids. Our main motivation is to make progress
in the DPW method. In this regard, here is what is achieved in this paper:

(1) We are able to solve the Monodromy Problem on an n-punctured sphere, whose fundamental
group has n − 1 generators, without any symmetry assumption. The Monodromy Problem is
solved by an Implicit Function argument in a suitable functional space (see [10] for a similar use
of the Implicit Function Theorem).

(2) We are able to prove embeddedness. I believe this is the first time that a non-trivial example is
proven to be embedded using the DPW method. The proof relies on the study of Delaunay ends
in [17] and [19].

(3) The DPW potential that we use has the property that its poles depend on the spectral parameter
λ. This problem is answered by Theorem 3 in Section 3, a general result which allows λ-dependent
changes of variable in the DPW method. Theorem 3 adds some flexibility to the choice of the
DPW potential.

I would like to thank the referee for several interesting suggestions (see Remark 4 and Section 10).

2. Background

In this section, we recall standard notations and results used in the DPW method. We work in the
“untwisted” setting. For a comprehensive introduction to the DPW method, we suggest [6].

2.1. Loop groups. A loop is a smooth map from the unit circle S1 = {λ ∈ C : |λ| = 1} to a matrix
group. The circle variable is denoted λ and called the spectral parameter. For ρ > 0, we denote
Dρ = {λ ∈ C : |λ| < ρ}, D∗ρ = Dρ \ {0} and D = D1.
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• If G is a matrix Lie group (or Lie algebra), ΛG denotes the group (or algebra) of smooth maps
Φ : S1 → G.
• Λ+SL(2,C) ⊂ ΛSL(2,C) is the subgroup of maps B which extend holomorphically to D with
B(0) upper triangular.

• ΛR
+SL(2,C) ⊂ Λ+SL(2,C) is the subgroup of maps B such that B(0) has positive entries on the

diagonal.

Theorem 2 (Iwasawa decomposition). The multiplication ΛSU(2) × ΛR
+SL(2,C) → ΛSL(2,C) is a

diffeomorphism. The unique splitting of an element Φ ∈ ΛSL(2,C) as Φ = FB with F ∈ ΛSU(2) and
B ∈ ΛR

+SL(2,C) is called Iwasawa decomposition. F is called the unitary factor of Φ and denoted Uni(Φ).
B is called the positive factor and denoted Pos(Φ).

2.2. The matrix model of R3. In the DPW method, one identifies R3 with the Lie algebra su(2) by

x = (x1, x2, x3) ∈ R3 ←→ X = −i

(
−x3 x1 + ix2

x1 − ix2 x3

)
∈ su(2).

(This is essentially the same as identifying R3 with imaginary quaternions and using a matrix model
for quaternions.) We have det(X) = ||x||2. The group SU(2) acts as linear isometries on su(2) by
H ·X = HXH−1.

2.3. The DPW method. The input data for the DPW method is a quadruple (Σ, ξ, z0, φ0) where:
• Σ is a Riemann surface.
• ξ = ξ(z, λ) is a Λsl(2,C)-valued holomorphic 1-form on Σ called the DPW potential. More

precisely,

ξ =

(
α λ−1β
γ −α

)
(1)

where α(z, λ), β(z, λ), γ(z, λ) are holomorphic 1-forms on Σ with respect to the z variable, and
are holomorphic with respect to λ in the disk Dρ for some ρ > 1.

• z0 ∈ Σ is a base point.
• φ0 ∈ ΛSL(2,C) is an initial condition.

Given this data, the DPW method is the following procedure. Let rΣ be the universal cover of Σ and
rz0 ∈ rΣ be an arbitrary element in the fiber of z0.

(1) Solve the Cauchy Problem on rΣ:

dzΦ(z, λ) = Φ(z, λ)ξ(z, λ)

with initial condition
Φ(rz0, λ) = φ0(λ)

to obtain a solution Φ : rΣ → ΛSL(2,C). (The notation dz means that we are considering the
differential with respect to the z-variable. The lift of ξ to rΣ is still denoted ξ.)

(2) Compute, for z ∈ rΣ, the unitary part F (z, ·) = Uni(Φ(z, ·)) in the Iwasawa decomposition of
Φ(z, ·). It is known that F (z, λ) depends real-analytically on z.

(3) Define f : rΣ→ su(2) ∼ R3 by the Sym-Bobenko formula:

f(z) = 2i
∂F

∂λ
(z, 1)F (z, 1)−1 =: Sym(F (z, ·)).

Then f is a CMC-1 (branched) conformal immersion. Its Gauss map is given by

N(z) = −iF (z, 1)

(
1 0
0 −1

)
F (z, 1)−1 =: Nor(F (z, ·)).

Moreover, f is regular at z (meaning unbranched) if and only if β(z, 0) 6= 0.
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Observe that we require the potential ξ to be holomorphic on Σ. In many examples, Σ is a compact
Riemann surface Σ minus a finite number of points, and ξ extends meromorphically at the punctures.

2.4. The Monodromy Problem. Assume that Σ is not simply connected so its universal cover rΣ is
not trivial. Let Deck(rΣ/Σ) be the group of fiber-preserving diffeomorphisms of rΣ. For γ ∈ Deck(rΣ/Σ),
let

Mγ(Φ)(λ) = Φ(γ(z), λ)Φ(z, λ)−1

be the monodromy of Φ with respect to γ (which is independent of z ∈ rΣ). The standard condition
which ensures that the immersion f descends to a well defined immersion on Σ is the following system
of equations, called the Monodromy Problem.

∀γ ∈ Deck(rΣ/Σ)


Mγ(Φ) ∈ ΛSU(2) (i)
Mγ(Φ)(1) = ±I2 (ii)
∂Mγ(Φ)

∂λ (1) = 0 (iii)

(2)

Indeed, Condition (i) implies that F has a monodromy, equal to the monodromy of Φ, and provided this
is true, Conditions (ii) and (iii) are equivalent to the fact that f is well defined on Σ.

One can identify Deck(rΣ/Σ) with the fundamental group π1(Σ, z0) (see for example Theorem 5.6 in [5]),
so we will in general see γ as an element of π1(Σ, z0). This identification, however, is not canonical, as it
depends on the choice of rz0. Under this identification, the monodromy of Φ with respect to γ ∈ π1(Σ, z0)
is given by

Mγ(Φ)(λ) = Φ(rγ(1), λ)Φ(rγ(0), λ)−1

where rγ : [0, 1]→ rΣ is the lift of γ such that rγ(0) = rz0.

2.5. Basic examples.
(1) A round sphere is obtained with the data

Σ = C, ξ(z, λ) =

(
0 λ−1

0 0

)
dz, z0 = 0, φ0 = I2.

The solution of the Cauchy Problem is

Φ(z, λ) =

(
1 λ−1z
0 1

)
.

Its Iwasawa decomposition is

F (z, λ) =
1√

1 + |z|2

(
1 λ−1z
−λz 1

)
, B(z, λ) =

1√
1 + |z|2

(
1 0
λz 1 + |z|2

)
. (3)

The Sym-Bobenko formula gives

f(z) =
1

1 + |z|2
(
2 Re(z), 2 Im(z),−2|z|2

)
= (0, 0,−1) + π−1(z)

where

π−1(z) =

(
2 Re(z)

1 + |z|2
,

2 Im(z)

1 + |z|2
,

1− |z|2

1 + |z|2

)
(4)

is the inverse stereographic projection from the south pole. The immersion f extends smoothly
at ∞ and gives a conformal parametrisation of the unit sphere centered at (0, 0,−1).

(2) Delaunay surfaces are obtained with the data

Σ = C \ {0}, ξ(z, λ) =

(
0 rλ−1 + s

rλ+ s 0

)
dz

z
, z0 = 1, φ0 = I2

where r, s are non-zero real numbers such that r + s = 1
2 .
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2.6. Gauging.

Definition 1. A gauge on Σ is a map G : Σ → Λ+SL(2,C) such that G(z, λ) depends holomorphically
on z ∈ Σ and λ ∈ Dρ for some ρ > 1.

Let Φ be a solution of dzΦ = Φξ and G be a gauge. Let pΦ = Φ ×G. Then pΦ and Φ define the same
immersion f . This is called “gauging”. The gauged potential is

pξ = pΦ−1dzpΦ = G−1ξG+G−1dzG

and will be denoted ξ ·G, the dot denoting the action of the gauge group on the potential.

3. Change of variable depending on λ

The following theorem allows us to use λ-dependent changes of variable in the DPW method. We will
use this theorem in Section 9 with ψλ a translation depending on λ.

Let U and V be Riemann surfaces, ρ > 1 and ψ : U × Dρ → V be a holomorphic map. For (z, λ) ∈
U × Dρ, we write ψλ(z) = ψ(z, λ). Let ξ(z, λ) be a DPW potential on V .

Theorem 3. Assume that V is simply connected. Let Φ(z, λ) be a solution of dzΦ = Φξ, holomorphic
on V × D∗ρ and f : V → R3 be the immersion defined by f = Sym(Uni(Φ)). Define:

pΦ(z, λ) = Φ(ψλ(z), λ) for (z, λ) ∈ U × D∗ρ.

Let pf : U → R3 be the (branched) immersion defined by pf = Sym(Uni(pΦ)). Then pf = f ◦ ψ0 in U .

Remark 1. (1) We relax the hypothesis that V is simply connected in Corollary 1.
(2) pΦ solves dpΦ = pΦpξ in U where pξ(·, λ) = ψ∗λξ(·, λ).
(3) Let (F,B) be the Iwasawa decomposition of Φ. Then of course

pΦ(z, λ) = F (ψλ(z), λ)×B(ψλ(z), λ)

but this is in general not the Iwasawa decomposition of pΦ(z, λ). It is true that F (ψλ(z), λ) ∈
ΛSU(2). But in general, B(z, λ) does not depend holomorphically on z, so there is no reason that
B(ψλ(z), λ) should extend holomorphically to λ ∈ D. For example, in the case of the spherical
potential (see Section 2.5), if B(ψλ(z), λ) is holomorphic with respect to λ, Equation (3) gives
that |ψλ(z)| is holomorphic, hence ψλ(z) is constant with respect to λ.

Proof of Theorem 3: define for z ∈ U and λ ∈ D∗ρ:

rΦ(z, λ) = Φ(ψ0(z), λ).

Then
rΦ(z, λ) = F (ψ0(z), λ)×B(ψ0(z), λ)

is the Iwasawa decomposition of rΦ(z, λ). (The difference with Point 3 of Remark 1 is that ψ0(z) does not
depend on λ.) Let rf = Sym(Uni(rΦ)). By the Sym-Bobenko formula, we obtain for z ∈ U

rf(z) = f(ψ0(z)).

Define for z ∈ U and λ ∈ D∗ρ:

G(z, λ) = rΦ(z, λ)−1 × pΦ(z, λ) = Φ(ψ0(z), λ)−1 × Φ(ψλ(z), λ).

The following two claims prove that G is a gauge. Hence rΦ and pΦ are gauge-equivalent, so rf = pf in U .
This proves Theorem 3. 2

Claim 1. G(z, λ) extends holomorphically at λ = 0.
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Proof: we use Grönwall inequality to estimate G(z, λ). Fix z ∈ U and λ ∈ D∗. Consider the path
γ : [0, 1]→ V defined by γ(s) = ψsλ(z). Then for s ∈ [0, 1]

d

ds
Φ(γ(s), λ) = dzΦ(γ(s), λ) γ′(s) = Φ(γ(s), λ) ξ(γ(s), λ) γ′(s).

Hence for t ∈ [0, 1]

Φ(γ(t), λ) = Φ(γ(0), λ) +

∫ t

0

Φ(γ(s), λ) ξ(γ(s), λ) γ′(s) ds.

Multiplying by Φ(γ(0), λ)−1 on the left and taking norms, we obtain

||Φ(γ(0), λ)−1 Φ(γ(t), λ)|| ≤ 1 +

∫ t

0

||Φ(γ(0), λ)−1 Φ(γ(s), λ)|| · ||ξ(γ(s), λ)γ′(s)|| ds.

By Grönwall inequality, we obtain

||G(z, λ)|| = ||Φ(γ(0), λ)−1 Φ(γ(1), λ)|| ≤ exp

∫ 1

0

||ξ(γ(s), λ)γ′(s)|| ds. (5)

Now
γ′(s) = λ

∂ψ

∂λ
(z, sλ).

Hence

||ξ(γ(s), λ)γ′(s)|| = ||λξ(ψsλ(z), λ)|| ·
∣∣∣∣∂ψ∂λ (z, sλ)

∣∣∣∣ ≤ c
for some constant c independent of λ ∈ D∗, because ξ has a simple pole at λ = 0 and using continuity.
Hence G(z, λ) is bounded for λ ∈ D∗. By Riemann extension theorem, G(z, λ) extends holomorphically
at λ = 0. 2

Claim 2. G(z, 0) is upper triangular.

Proof: Define

K(λ) =

(
1√
λ

0

0
√
λ

)
and let qΦ = ΦK. Then qΦ solves dzqΦ = qΦqξ where

qξ = ξ ·K = K−1ξK.

Of course, K is not an admissible gauge and qξ is not a DPW potential (which does not matter here).
But if we write ξ as in Equation (1), we have

qξ =

(
α β

λ−1γ −α

)
so qξ has (at most) a simple pole at λ = 0. Define

qG(z, λ) = qΦ(ψ0(z), λ)−1 × qΦ(ψλ(z), λ).

By the proof of Claim 1, since qξ has a simple pole at λ = 0, qG(z, λ) extends holomorphically at λ = 0.
Now G and qG are related by

G(z, λ) = K(λ) qG(z, λ)K(λ)−1.

This gives G21(z, λ) = λ qG21(z, λ), so G21(z, 0) = 0. 2

Let us illustrate the proof of Theorem 3 in a case where one can compute explicitely the gauge G.
Consider a DPW potential of the form

ξ(z, λ) = A(λ)ω(z).
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Then any solution Φ has the following form:

Φ(z, λ) = Φ(z0, λ) exp

[
A(λ)

∫ z

z0

ω

]
.

The gauge G is given by

G(z, λ) = exp

[
A(λ)

∫ ψλ(z)

ψ0(z)

ω

]
and it is straightforward to check that G extends holomorphically at λ = 0 with upper triangular value.

We now relax the hypothesis that V is simply connected. Let p : rU → U and q : rV → V be the
universal covers of U and V . Since rU × Dρ is simply connected, the holomorphic map ψ : U × Dρ → V

lifts to a holomorphic map rψ : rU × Dρ → rV .

Corollary 1. Let Φ(z, λ) be a solution of dzΦ = Φξ on rV ×D∗ρ. Let rf : rV → R3 be the immersion defined
by rf = Sym(Uni(Φ)). Assume that Φ solves the Monodromy Problem, so rf descends to f : V → R3.
Define

pΦ(z, λ) = Φ( rψλ(z), λ) for (z, λ) ∈ rU × D∗ρ.

Let pf : rU → R3 be the (branched) immersion defined by pf = Sym(Uni(pΦ)). Then pf = f ◦ ψ0 ◦ p in rU . In
other words, pf descends to f ◦ ψ0 in U .

Proof: by Theorem 3, we have pf = rf ◦ rψ0 in rU . The conclusion follows from the following commutative
diagram:

rU

p

��

rψ0 // rV

q

��

rf

��

U
ψ0 // V

f
// R3

2

4. Functional spaces

In the next section, we propose a DPW potential for n-noids. The parameters in the definition of this
potential are functions of λ. Since we plan to use the Implicit Function Theorem, we need to introduce
suitable functional spaces. We decompose a function f : S1 → C in Fourier series

f(λ) =
∑
i∈Z

fiλ
i

Fix some ρ > 1 and define
||f || =

∑
i∈Z
|fi|ρ|i|

Let Wρ be the space of functions f with finite norm. This is a Banach algebra (classically called the
Wiener algebra when ρ = 1). Functions in Wρ extend holomorphically to the annulus 1

ρ < |λ| < ρ.

We define W≥0
ρ , W>0

ρ , W≤0
ρ and W<0

ρ as the subspaces of functions f such that fi = 0 for i < 0,
i ≤ 0, i > 0 and i ≥ 0, respectively. Functions in W≥0

ρ extend holomorphically to the disk Dρ and
satisfy |f(λ)| ≤ ||f || for all λ ∈ Dρ. We write W0

ρ ∼ C for the subspace of constant functions, so we have
a direct sum Wρ = W<0

ρ ⊕ W0
ρ ⊕ W>0

ρ . A function f will be decomposed as f = f− + f0 + f+ with
(f−, f0, f+) ∈ W<0

ρ ×W0
ρ ×W>0

ρ .
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We define the star operator by

f∗(λ) = f

(
1

λ

)
=
∑
i∈Z

f−iλ
i

The involution f 7→ f∗ exchanges W≥0
ρ and W≤0

ρ . We have λ∗ = λ−1 and c∗ = c if c is a constant. A
function f is real on the unit circle if and only if f = f∗.

5. The DPW potential

We now start the proof of Theorem 1. Without loss of generality, we assume (by a rotation) that all
vectors ui are non vertical. Let π : S2 → C ∪ {∞} be the stereographic projection from the south pole.
For i ∈ [1, n], we define πi = π(ui) ∈ C∗ and we introduce three λ-dependent parameters ai, bi and pi
in the space W≥0

ρ . The collection of these parameters is denoted x = (ai, bi, pi)1≤i≤n ∈ (W≥0
ρ )3n. The

parameter x is in a neighborhood of a (constant) central value which we denote x0: the central value of
pi is πi, the central value of ai is τi, and we will compute the central value of bi in Section 7. We define
a meromorphic 1-form ωx on the Riemann sphere C ∪ {∞}, depending on λ and the parameter x, by

ωx(z, λ) =

n∑
i=1

(
ai(λ)

(z − pi(λ))2
+

bi(λ)

z − pi(λ)

)
dz. (6)

For t in a neighborhood of 0 in R, we define the meromorphic DPW potential ξt,x by

ξt,x(z, λ) =

(
0 λ−1dz

t(λ− 1)2ωx(z, λ) 0

)
(7)

and take the initial condition z0 = 0, φ0 = I2. Since the parameters ai, bi and pi are holomorphic
functions of λ in the disk Dρ, ξt,x is an admissible DPW potential. Here are some of its properties:

(1) If t = 0, we get the standard DPW data for the sphere (see Section 2.5). Therefore, for small
t 6= 0, we are constructing, away from the poles, a perturbation of the unit sphere centered at
(0, 0,−1). We could of course have chosen the initial condition φ0 so that the sphere is centered
at the origin: it suffices to take

φ0(λ) =

(
e
λ2−1
4λ 0

0 e
1−λ2
4λ

)
∈ ΛSU(2)

but it is simpler to take φ0 = I2 and translate afterwards the immersion by (0, 0, 1).
(2) Thanks to the factor (λ − 1)2 in front of ωx in the definition of ξt,x, Equations (ii) and (iii) of

the Monodromy Problem (2) are automatically solved.
(3) We will see in Section 9 that in a neighborhood of pi, the potential ξt,x is gauge-equivalent to

a potential with a simple pole, yielding a fuchsian system of differential equations. Moreover,
provided the Monodromy Problem is solved, the residue of the gauged potential is a standard
Delaunay residue. Therefore, the immersion will have Delaunay ends by the work of Kilian,
Rossman and Schmitt in [17].

Remark 2. A potential of the form (7) has been introduced for trinoids in [21]. The main difference is
that in that paper, ω is fixed: the parameter used to solve the Monodromy Problem is the initial condition
φ0 ∈ ΛSL(2,C), but this works only for n = 3.
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6. The equations

6.1. Regularity at ∞. The potential ξt,x has a double pole at ∞. We want our immersion to extend
smoothly at ∞, so we require the potential to be gauge-equivalent to a regular potential at ∞. Consider
the gauge

G∞(z, λ) =

(
z 0
−λ z−1

)
.

The gauged potential is

ξt,x ·G∞ =

(
0 λ−1 dz

z2

t(λ− 1)2z2ωx 0

)
.

It is regular at∞ if and only if ωx has a double zero at∞. Using the coordinate w = 1/z in a neighborhood
of ∞, we obtain

ωx = −
n∑
i=1

(
biw
−1 + (ai + bipi)w

0 + (2aipi + bip
2
i )w +O(w2)

)
dw.

We define the following functions:

H1(x) =

n∑
i=1

bi

H2(x) =

n∑
i=1

ai + bipi

H3(x) =

n∑
i=1

2aipi + bip
2
i .

We need to solve the equations H1(x) = H2(x) = H3(x) = 0 so that ωx has a double zero at ∞.

6.2. The Monodromy Problem. Our potential has poles at p1, · · · , pn which are functions of λ. Be-
cause the DPW method requires a fixed Riemann surface, we introduce the following domain:

Ω = {z ∈ C : ∀i ∈ [1, n], |z − πi| > ε} (8)

where ε > 0 is a fixed, small enough number such that the disks D(πi, 8ε) for 1 ≤ i ≤ n are disjoint and
do not contain 0. We use the following standard notations for domains in the z-plane:

D(p, r) = {z ∈ C : |z − p| < r} and D∗(p, r) = D(p, r) \ {p}.

For x close enough to x0, ξt,x is holomorphic in Ω×D∗ρ. Our first goal is to construct a family of immersion
ft on Ω. Then we extend ft to an n-punctured Riemann sphere in Section 9, using Corollary 1.

Let rΩ be the universal cover of Ω and Φt,x(z, λ) be the solution of the Cauchy Problem dzΦt,x = Φt,xξt,x
on rΩ with initial condition Φt,x(r0, λ) = I2. For i ∈ [1, n], we denote γ1, · · · , γn a set of generators of the
fundamental group π1(Ω, 0), with γi encircling the point πi (in other words, freely homotopic in Ω to the
circle C(πi, 2ε)). Let

Mi(t,x) =Mγi(Φt,x)

be the monodromy of Φt,x with respect to γi. Provided the Regularity Problem at ∞ is solved, Φt,x has
no monodromy around ∞, so we need to solve the following Monodromy Problem

Mi(t,x) ∈ ΛSU(2) for 1 ≤ i ≤ n− 1. (9)

At t = 0, we have Mi(0,x) = I2. Recall that the matrix exponential is a local diffeomorphism from a
neighborhood of 0 in the Lie algebra sl(2,C) (respectively su(2)) to a neighborhood of I2 in SL(2,C)
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(respectively SU(2)). The inverse diffeomorphism is denoted log. For t 6= 0 small enough and λ ∈ Dρ\{1},
we define:

ĂMi(t,x)(λ) :=
λ

t(λ− 1)2
logMi(t,x)(λ).

Observe that λ ∈ S1 ⇒ (λ−1)2

λ ∈ R. So for t 6= 0 and λ 6= 1, Problem (9) is equivalent to the following
Rescaled Monodromy Problem:

ĂMi(t,x) ∈ Λsu(2) for 1 ≤ i ≤ n− 1. (10)

The entries of the matrix ĂMi are denoted ĂMi;k` for 1 ≤ k, ` ≤ 2.

Proposition 1. ĂMi(t,x)(λ) extends smoothly at t = 0 and λ = 1, and for 1 ≤ k, ` ≤ 2, ĂMi;k` is a smooth
map from a neighborhood of (0,x0) in R× (W≥0

ρ )3 to Wρ. Moreover, at t = 0, we have

ĂMi(0,x) = 2πi

(
ai + bipi −λ−1(2aipi + bip

2
i )

λbi −ai − bipi

)
.

Proof: we first consider the case where the parameter x = (ai, bi, pi)1≤i≤n is constant with respect to
λ, so x ∈ C3n. Fix R > ρ and let AR be the annulus 1

R < |z| < R in C. For (µ,x) in a neighborhood of
(0,x0) in C× C3n and λ ∈ AR, we define

ξµ,x,λ(z) =

(
0 λ−1dz

µωx(z) 0

)
where ωx is defined as in Equation (6) except that ai, bi, pi are constant complex numbers. Let Φµ,x,λ(z)

be the solution of dΦµ,x,λ = Φµ,x,λξµ,x,λ in rΩ with initial condition Φµ,x,λ(r0) = I2. Let Ni(µ,x, λ) =
Mγi(Φµ,ξ,λ). By standard O.D.E. theory, each entry Ni;k` of Ni is a holomorphic function of µ, x and
λ. At µ = 0, we have

Φ0,x,λ(z) =

(
1 λ−1z
0 1

)
so Ni(0,x, λ) = I2. Hence

rNi(µ,x, λ) :=
λ

µ
logNi(µ,x, λ)

extends holomorphically at µ = 0 with value rNi(0,x, λ) = λ∂Ni∂µ (0,x, λ), and is holomorphic with respect
to (µ,x) in a neighborhood of (0,x0) and λ ∈ AR (as a function of several complex variables). By
Proposition 8 in Appendix A:

∂Ni
∂µ

(0,x, λ) =

∫
γi

Φ0,x,λ
∂ξµ,x,λ
∂µ

|µ=0 Φ−1
0,x,λ.

By the Residue Theorem, we obtain

rNi(0,x, λ) = 2πiλRespi

(
1 λ−1z
0 1

)(
0 0
ωx 0

)(
1 −λ−1z
0 1

)
= 2πi Respi

(
z −λ−1z2

λ −z

)(
ai

(z − pi)2
+

bi
z − pi

)
= 2πi

(
ai + bipi −λ−1(2aipi + bip

2
i )

λbi −ai − bipi

)
.

In the last equation, we have used the following elementary residue computation:

Resp
zk

(z − p)2
= kpk−1.
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For x ∈ (W≥0
ρ )3n, we have

ξt,x(z, λ) = ξt(λ−1)2,x(λ),λ(z)

ĂMi(t,x)(λ) = rNi(t(λ− 1)2,x(λ), λ).

Since the linear map (t,x) 7→ (t(λ − 1)2,x) from R × (W≥0
ρ )3n to W3n+1

ρ is bounded, Proposition 9 in
Appendix B gives that for 1 ≤ k, ` ≤ 2, the map (t,x) 7→ ĂMi;k`(t,x) is smooth from a neighborhood of
(0,x0) in R× (W≥0

ρ )3n to Wρ. 2

Remark 3. Proposition 1 implies in particular that Mi(t,x)(1) = I2 and ∂Mi(t,x)
∂λ (1) = 0 as claimed in

Point 2 of Section 5.

We define the following functions (the ∗ operator is defined in Section 4):

Fi(t,x) = ĂMi,11(t,x) + ĂMi,11(t,x)∗

Gi(t,x) = λ
(

ĂMi,12(t,x) + ĂMi,21(t,x)∗
)
.

The Regularity and Rescaled Monodromy Problems are equivalent to the following problem: Fi(t,x) = 0 for 1 ≤ i ≤ n− 1
Gi(t,x) = 0 for 1 ≤ i ≤ n− 1
Hi(x) = 0 for 1 ≤ i ≤ 3.

(11)

7. Solving the equations at t = 0

Proposition 2. When t = 0, Problem (11) is equivalent to the following conditions, for 1 ≤ i ≤ n:
(1) ai ∈ R is constant (with respect to λ).
(2) pi is constant.

(3) bi =
−2aipi

1 + |pi|2
.

(4)
n∑
i=1

aiπ
−1(pi) = 0 where π−1 is the inverse stereographic projection from the south pole given by

Equation (4).

Proof: Using Proposition 1, we obtain:

Fi(0,x) = 2πi ((ai + bipi)− (ai + bipi)
∗) (12)

Gi(0,x) = −2πi(2aipi + bip
2
i + b∗i ) (13)

n∑
i=1

Fi(0,x) = 2πi(H2(x)−H2(x)∗) (14)

n∑
i=1

Gi(0,x) = −2πi(H3(x) +H1(x)∗). (15)

Assume that t = 0 and let x = (ai, bi, pi)1≤i≤n be a solution of Problem (11). From Equations (14)
and (15) we infer that Fn(0,x) = Gn(0,x) = 0. Let i ∈ [1, n]. From Equation (13), we see that
bi ∈ W≤0

ρ ∩W≥0
ρ =W0

ρ hence bi is constant. From Equation (12), we obtain by the same argument

ai + bipi = ci (16)

where ci is a real constant. Eliminating ai from Equations (13) and (16), we obtain

−bip2
i + 2cipi + bi = 0.
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If bi 6= 0 then pi can take only two values. Being a holomorphic function of λ, pi must be constant. By
Equation (16), ai is constant. (If bi = 0, then ai = ci and since ai 6= 0, Equation (13) implies that pi = 0
is constant.) Multipliying (13) by pi we obtain

(2ai + bipi)|pi|2 + bipi = 0. (17)

Taking the imaginary part and using Im(bipi) = −Im(ai), we obtain

Im(ai)(|pi|2 + 1) = 0.

Hence ai ∈ R and so bipi ∈ R. Equation (17) gives

bi =
−2aipi

1 + |pi|2
.

With this value for bi we obtain

H1 =

n∑
i=1

−2ai pi
1 + |pi|2

(18)

H2 =

n∑
i=1

ai(1− |pi|2)

1 + |pi|2
(19)

H3 =

n∑
i=1

2ai pi
1 + |pi|2

. (20)

so the equations H2 = 0 and H3 = 0 give Point (iv).

Conversely, assume that ai, bi and pi satisfy Points (i) to (iv) of Proposition 2. Proposition 1 gives

ĂMi(0,x) = 2πi
ai

(1 + |pi|2)

(
1− |pi|2 −2λ−1pi
−2λpi |pi|2 − 1

)
∈ Λsu(2).

Equations (18), (19) and (20) imply that H1 = H2 = H3 = 0. 2

8. Solving the equations using the Implicit Function Theorem

We shall apply the Implicit Function Theorem at the point (t,x) = (0,x0) where x0 denotes the
following value of the parameters:

ai = τi, bi =
−2aiπi

1 + |πi|2
and pi = πi for i ∈ [1, n]. (21)

According to Proposition 2 and by the balancing condition of Theorem 1, Problem (11) is solved at
(0,x0).

Proposition 3. For t in a neighborhood of 0, there exists a unique smooth map t 7→ x(t) = (ai,t, bi,t, pi,t)1≤i≤n
with value in (W≥0

ρ )3n such that x(0) = x0, Problem (11) is solved at (t,x(t)) and the following normal-
isation holds:

∀i ∈ [1, n− 1], Re(a0
i,t) = τi and p0

i,t = πi. (22)

Proof: We compute the partial differential of Equations (12) and (13) with respect to x:

dxFi(0,x0) = 2πi (dai + pidbi + bidpi)− 2πi (dai + pidbi + bidpi)
∗

dxGi(0,x0) = −2πi
(
2pidai + p2

i dbi + 2(ai + bipi)dpi + db∗i
)
.

Here, ai, bi, pi are given by Equation (21) so are constant with respect to λ. Projecting on W>0
ρ , W0

ρ

and W<0
ρ we obtain:

dxFi(0,x0)+ = 2πi
(
da+
i + pidb

+
i + bidp

+
i

)
dxFi(0,x0)0 = −4π Im(da0

i + pidb
0
i + bidp

0
i )
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dxGi(0,x0)+ = −2πi
(
2pida

+
i + p2

i db
+
i + 2(ai + bipi)dp

+
i

)
dxGi(0,x0)0 = −2πi

(
2pida

0
i + p2

i db
0
i + 2(ai + bipi)dp

0
i + db0i

)
dxGi(0,x0)− = −2πi(db+i )∗

(dxGi(0,x0)−)∗ = 2πidb+i .

By definition, we have Fi(t,x) = Fi(t,x)∗ for all (t,x), so F0
i (t,x) ∈ R and F−i (t,x) = 0⇔ F+

i (t,x) = 0.
We restrict the parameter x to the subspace defined by Equation (22).

Claim 3. (1) For 1 ≤ i ≤ n−1, the partial differential of (F+
i ,G

+
i , (G

−
i )∗) with respect to (a+

i , b
+
i , p

+
i )

is an automorphism of (W>0
ρ )3.

(2) For 1 ≤ i ≤ n− 1, the partial differential of (F0
i ,G0

i ) with respect to (Im(a0
i ), b

0
i ) is an automor-

phism of R× C.
(3) The partial differential of (H1,H2,H3) with respect to (an, bn, pn) is an automorphism of (W≥0

ρ )3.

Proof:
(1) We can write in matrix form dxF+

i

dxG+
i

(dxG−i )∗

 = 2πi

 1 pi bi
−2pi −p2

i −2(ai + bipi)
0 1 0

 da+
i

db+i
dp+
i

 .

This constant matrix has determinant 2ai so is invertible. (Observe that this operator admits a
matrix with respect to a decomposition of the space as a finite product of Banach spaces. It is
clear that if the matrix is invertible, the operator is an automorphism.)

(2) At t = 0 and for fixed value of Re(ai) and pi, (Fi(0,x)0,Gi(0,x)0) is an affine function of
(Im(a0

i ), b
0
i ). The proof of Proposition 2 shows that this function is injective, so its linear part is

an automorphism of R× C.
(3) The partial differential of (H1,H2,H3) with respect to y = (an, bn, pn) can be written in matrix

form as  dyH1

dyH2

dyH3

 =

 0 1 0
1 pn bn

2pn p2
n 2(an + bnpn)

 dan
dbn
dpn

 .

This matrix has determinant −2an 6= 0. 2

Returning to the proof of Proposition 3, the partial differential of[
(F+

i ,G
+
i , (G

−
i )∗,F0

i ,G0
i )1≤i≤n−1,H1,H2,H3

]
with respect to [

(a+
i , b

+
i , p

+
i , Im(a0

i ), b
0
i )1≤i≤n−1, an, bn, pn

]
has lower triangular block form, with automorphisms on the diagonal so is an automorphism. (Here I
am not talking about a matrix block decomposition but about the decomposition of an operator with
respect to a product of Banach spaces.) Proposition 3 follows from the Implicit Function Theorem. 2

9. Delaunay ends

From now on, we assume that the parameter x = x(t) is given as a function of t by Proposition 3. We
denote ωt = ωx(t), ξt = ξt,x(t), Φt = Φt,x(t) and ft = Sym(Uni(Φt)) the immersion obtained by the DPW
method on rΩ. Since the Monodromy Problem is solved, ft descends to a well defined immersion in Ω,
still denoted the same. In this section we prove:

Proposition 4. For t 6= 0 small enough:
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(1) ft extends analytically to

Σt := C ∪ {∞} \ {p1,t(0), · · · , pn,t(0)}. (23)

(2) For i ∈ [1, n], ai,t is a real constant (with respect to λ).
(3) For i ∈ [1, n], ft has a Delaunay end of weight 8πtai,t at pi,t(0).

Proof:
(1) Since the Regularity Problem is solved, the immersion ft extends analytically at ∞. With the

notations of Theorem 3, we consider the change of variable

z = ψi,t,λ(w) = pi,t(λ) + w

and the following domains:

U = {w ∈ C : 2ε < |w| < 4ε}

Vi = {z ∈ C : ε < |z − πi| < 8ε} ⊂ Ω

For t small enough, we have ψi,t,λ(U) ⊂ Vi for all λ ∈ Dρ. Let rU and rVi be the universal covers
of U and Vi. (For rVi, we may take an arbitrary component of rΩ∩ p−1(Vi) where p : rΩ→ Ω is the
universal cover.) Lift ψi,t,λ to rψi,t,λ : rU → rVi and define for w ∈ rU :

pΦi,t(w, λ) = Φt( rψi,t,λ(w), λ).

By Corollary 1, pfi,t = Sym(Uni(pΦi,t)) descends to a well defined immersion on U and

∀w ∈ U, pfi,t(w) = ft(ψi,t,0(w)) = ft(pi,t(0) + w). (24)

Now pΦi,t solves dpΦi,t = pΦi,tpξi,t with

pξi,t = ψ∗i,t,λξt =

(
0 λ−1dw

t(λ− 1)2
pωi,t 0

)
and pωi,t = ψ∗i,t,λωt.

Since the only pole of pωi,t in D(0, 4ε) is at w = 0, the DPW method shows that pfi,t extends
analytically to D∗(0, 4ε). We may extend ft analytically by requesting that Equation (24) holds
true in D∗(0, 4ε). Doing this for i ∈ [1, n], we have extended ft analytically to Σt.

(2) Next we gauge pξi,t so that it has a simple pole at 0, yielding a fuchsian system of differential
equations. Consider the gauge

G(w, λ) =

( √
w
k 0

− λ
2k
√
w

k√
w

)
.

Here we can take k = 1, but in the next point we will take another value of k so we do the
computation for general values of k 6= 0. The gauged potential is

qξi,t := pξi,t ·G =

(
0 λ−1k2 dw

w
t(λ−1)2

k2 w pωi,t + λ
4k2

dw
w 0

)
.

It has a simple pole at 0 with residue

Ai,t(λ) :=

(
0 λ−1k2

t(λ−1)2

k2 ai,t(λ) + λ
4k2 0

)
. (25)

The eigenvalues of Ai,t(λ) are ±Λi,t(λ) with

Λi,t(λ)2 = tλ−1(λ− 1)2ai,t(λ) +
1

4
.
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Fix λ ∈ S1 \ {1}. If t 6= 0 is small enough, then Λi,t(λ) 6∈ Z/2 so the corresponding fuchsian
system is non-resonant. Hence qΦi,t := pΦi,tG has the following standard zAP form in the universal
cover of D(0, ε)∗ (see Proposition 11.2 in [22])

qΦi,t(w, λ) = V (λ) exp(Ai,t(λ) logw)P (w, λ)

where V ∈ ΛSL(2,C) and P (w, λ) descends to a well defined holomorphic function of w in D(0, ε)
with P (0, λ) = I2. Hence

MC(0,ε)(qΦi,t)(λ) = V (λ) exp(2πiAi,t(λ))V (λ)−1

so the eigenvalues of Mγi(Φt) are exp(±2πiΛi,t(λ)). Since the Monodromy Problem is solved,
the eigenvalues are unitary complex numbers, so Λi,t(λ) ∈ R which implies ai,t(λ) ∈ R. Since ai,t
is holomorphic in Dρ and ai,t is real on S1 \ {1}, it is constant.

(3) It remains to choose k in the definition of G such that Ai,t(λ) is a standard Delaunay residue.
Fix a small t 6= 0 and let (r, s) ∈ R2 be the solution of the system rs = tai,t

r + s = 1
2

r > s
(26)

For small t, (r, s) is close to ( 1
2 , 0) so

√
r + sλ is well defined and does not vanish in Dρ. We take

k =
√
r + sλ

in the definition of G. Using r + s = 1
2 , we have

(r + sλ)(rλ+ s) = rs(λ− 1)2 +
λ

4
= tai,t(λ− 1)2 +

λ

4
. (27)

Hence by Equation (25),

Ai,t(λ) =

(
0 rλ−1 + s

rλ+ s 0

)
(28)

which is the residue of the standard Delaunay potential (see Section 2.5). Since the Monodromy
Problem is solved, the immersion pfi,t has a Delaunay end at w = 0 of weight 8πrs = 8πtai,t by
Theorem 3.5 in [17]. 2

Remark 4. The referee suggested another way to see that the immersion ft extends analytically to Σt:
instead of using Iwasawa decomposition, one can use r-Iwasawa decomposition for r < 1 (see [17]).
There exists a uniform constant c such that for all i ∈ [1, n], t in a neighborhood of 0 and λ ∈ D,
|pi,t(λ)−pi,t(0)| ≤ c|λ|. Let Ωt,r = {z ∈ C : ∀i ∈ [1, n], |z−pi,t(0)| > cr}. If λ ∈ Dr, then pi,t(λ) 6∈ Ωt,r so
ωt(·, λ) is holomorphic in Ωt,r. Using r-Iwasawa decomposition, the DPW method produces an immersion
ft,r : Ωt,r → R3 which coincides with ft in Ω. Since the domains Ωt,r exhaust Σt as r → 0, ft extends
analytically to Σt.

10. The case of trinoids

In this section, we prove that in the case n = 3 the potential that we constructed is equivalent (by a
change of variable and a gauge) to the potential used in [21] to construct trinoids. This was suggested
by the referee. The potential in [21] has the form (Definition 10.1)

ξ =

(
0 λ−1dz

(λ− 1)2 Q
dz 0

)
(29)
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where Q is a meromorphic quadratic differential on the Riemann sphere with three double poles at 0, 1
and ∞, and is independent of λ. Let ψt,λ be the unique Möbius transformation of the Riemann sphere
which maps 0, 1 and ∞ to p1,t(λ), p2,t(λ) and p3,t(λ), respectively. Consider the gauge

Gt(z, λ) =

(
(ψ′t,λ)1/2 0
−λψ′′t,λ

2(ψ′t,λ)3/2
(ψ′t,λ)−1/2

)
.

A computation gives

(ψ∗t,λξt) ·Gt =

(
0 λ−1dz

t(λ− 1)2(ψ∗t,λωt)ψ
′
t,λ − λ

2S(ψt,λ) 0

)
where S(f) denotes the Schwarzian derivative of f :

S(f) =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

.

Since ψt,λ is a Möbius transformation, its Schwarzian derivative is zero. Hence (ψ∗t,λξt) ·Gt has the form
(29) with

Q = t(ψ∗t,λωt)ψ
′
t,λ dz = ψ∗t,λ(t ωt dz).

Hence Q has three double poles at 0, 1 and ∞, with quadratic residues ta1,t, ta2,t and ta3,t respectively.
This determines the quadratic differential Q:

Q =
t(a3,tz

2 + (a2,t − a1,t − a3,t)z + a1,t)

z2(z − 1)2
dz2.

This is precisely the definition of Q in [21], up to notational changes. In particular, Q is independent of
λ.

11. Geometry of the immersion

Theorem 3.5 of [17] tells us that for each t 6= 0, there exists a Delaunay immersion fDi,t : C∗ → R3 such
that

lim
w→0
|| pfi,t(w)− fDi,t(w)|| = 0.

In that paper, t is fixed. The problem is that the limit w → 0 is not uniform with respect to t. Indeed,
the fuchsian system is resonant at t = 0 so the constants in their estimates are uncontroled as t → 0.
Thomas Raujouan has improved this result in [19] and was able to obtain a uniform limit under additional
assumptions:

Theorem 4. [19] Let ξt(z, λ) be a C2 family of DPW potentials depending on the parameter t in a
neighborhood of 0 and defined for z in a punctured neighborhood of 0. Let Φt(z, λ) be a continuous family
of solutions of dzΦt = Φtξt and ft(z) = Sym(Uni(Φt)). Assume that:

(1) ξt = At
dz
z + O(t, z0) where At is the standard Delaunay residue given by Equation (28) and

(r, s) ∈ R2 is the solution of  rs = t
r + s = 1

2
r > s

(2) The monodromy of Φt around the origin is in ΛSU(2).
(3) Φ0(1, λ) =

(
a λ−1b
λc d

)
where a, b, c, d are (constant) complex numbers.

Then:
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(1) For all 0 < α < 1, there exists uniform positive numbers ε, c, T and a family of Delaunay
immersions fDt : C∗ → R3 with weight 8πt such that for all 0 < |t| < T and 0 < |z| < ε,

||ft(z)− fDt (z)|| ≤ c |t| |z|α.

(2) Let

H(λ) =
1√
2

(
1 −λ−1

λ 1

)
Q = Uni(Φ0(1, ·)H).

The axis of fDt (oriented from the end at ∞ to the end at 0) converges as t → 0 to the line
through the point Sym(Q) spanned by the vector −Nor(Q) (notations as in Section 2.3).

(3) There exists T ′ < T such that the restriction of ft to D∗(0, ε) is an embedding for all positive
t < T ′. More precisely, ft(D∗(0, ε)) is included in an embedded tubular neighborhood of the
Delaunay surface fDt (C∗) and the projection on the Delaunay surface is a diffeomorphism from
ft(D

∗(0, ε)) onto its image.

Observe that Hypothesis 1 implies that ξ0 = A0
dz
z so Φ0 is actually defined for z ∈ C∗, which is why

Hypothesis 3 makes sense.

11.1. Axes of the ends. We first use Theorem 4 to compute the limit axes of the ends.

Proposition 5. The axis of the Delaunay end of ft at pi,t(0) converges as t→ 0 to the half-line through
(0, 0,−1) spanned by the vector ui.

Proof: we continue with the notations of the proof of Proposition 4. We want to apply Theorem 4 to
qΦi,t = pΦi,tG. First of all, t 7→ tai,t is a smooth diffeomorphism in a neighborhood of 0 so we may use
tai,t as the time parameter in our application of Theorem 4. We have

pΦi,0(w, λ) = Φ0(πi + w, λ) =

(
1 λ−1(πi + w)
0 1

)
.

At t = 0, the solution of (26) is (r, s) = ( 1
2 , 0) so k = 1√

2
. This gives

qΦi,0(1, λ) = pΦi,0(1, λ)G(1, λ)

=

(
1 λ−1(πi + 1)
0 1

)( √
2 0

− λ√
2

1√
2

)

=
1√
2

(
1− πi λ−1(πi + 1)
−λ 1

)
. (30)

Fix some α ∈ (0, 1). By Theorem 4, there exists uniform positive numbers ε, c, T and a family of
Delaunay immersions fDi,t such that for 0 < |t| < T and 0 < |w| < ε

|| pfi,t(w)− fDi,t(w)|| ≤ c |t| |w|α.

Using Equation (30), the matrix Q in Point 2 of Theorem 4 is given by

Q(λ) = Uni

(
1 λ−1πi
0 1

)
.

By the results in Section 2.5 for the standard sphere, the limit axis of fDi,t is the line through the point
(0, 0,−1) + π−1(πi) directed by the vector π−1(πi). Since πi = π(ui), this proves Proposition 5. 2
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11.2. Embeddedness. For ease of notation, we forget from now on the argument λ = 0 so we write
pi,t = pi,t(0). It will be convenient to translate all immersions by the vector (0, 0, 1), so we replace ft
by ft + (0, 0, 1) and fDi,t by fDi,t + (0, 0, 1). Thanks to this translation, the standard spherical data (see
Section 2.5) yields an immersion f0 : C ∪ {∞} → S2 equal to the inverse stereographic projection. Then
ft converges smoothly on compact subsets of C ∪ {∞} \ {π1, · · · , πn} to f0. Indeed, on compact subsets
of C \ {π1, · · · , πn}, ξt converges uniformly to the standard spherical potential ξ0 =

(
0 λ−1

0 0

)
dz, with the

same initial data; and in a neighborhood of ∞, ξt ·G∞ converges uniformly to ξ0 ·G∞. Let Mt = ft(Σt),
where Σt is defined by Equation (23).

Proposition 6. If all weights τi are positive and the angle between ui and uj is greater than π
3 for all

j 6= i, then for t > 0 small enough, Mt is embedded.

Proof: we continue with the notations of Section 11.1. In particular, ε is the number given by our
application of Theorem 4 and is fixed.

Figure 2. The domains Vi,t,r and Vt,r′ . On this figure, n = 3 and r′ > r so the domains
Vi,t,r and Vt,r′ do not overlap (for clarity). The surface Mt is represented with dots. The
Delaunay surface Di,t and the sphere S2 are represented with plain lines.

• For i ∈ [1, n], we denote Di,t the Delaunay surface fDi,t(C∗). By Point 3 of Theorem 4, for t small
enough and for all r ≤ ε, the projection from ft(D

∗(pi,t, r)) to Di,t is a diffeomorphism onto its
image which we denote Ui,t,r. In other words, ft(D∗(pi,t, r)) is the normal graph on Ui,t,r ⊂ Di,t
of a function which, by Point 1 of Theorem 4, is bounded by c1t where c1 = cεα. We denote
Vi,t,r = Tubc1tUi,t,r the tubular neighborhood of radius c1t of Ui,t,r. We have ft(D∗(pi,t, r)) ⊂
Vi,t,r (see Figure 2).

• For r > 0, let
Ωt,r = {z ∈ C : ∀i ∈ [1, n], |z − pi,t| > r} ∪ {∞}.

For t > 0 small enough, ft(Ωt, ε8 ) is the normal graph, on a domain of the sphere S2, of a function
which is bounded by c2t for some constant c2. For r ∈ [ ε8 , ε], we denote Ut,r the projection of
ft(Ωt,r) on the sphere and Vt,r = Tubc2tUt,r the tubular neighborhood of radius c2t of Ut,r. We
have ft(Ωt,r) ⊂ Vt,r.

For p ∈ R3, we denote S2(p) the unit sphere centered at p.

Claim 4. For r ∈ [ ε8 , ε]:

lim
t→0

V t,r = S2(0) \
n⋃
i=1

f0(D(πi, r)) =: Lr (31)
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∀i ∈ [1, n], lim
t→0

V i,t,r = f0(D(πi, r)) ∪
⋃
k≥1

S2(2kui) =: Li,r. (32)

In Equation (31), the limit is for the Hausdorff distance dH, and in Equation (32) for the Hausdorff
distance on compact subsets of R3: limt→0At = L means that for all compact K ⊂ R3, limt→0 dH(At ∩
K,L ∩K) = 0.

Proof:
(1) The Hausdorff distance between V t,r and ft(Ωt,r) is at most 2c2t, so

lim
t→0

V t,r = lim
t→0

ft(Ωt,r) = f0(C ∪ {∞} \
n⋃
i=1

D(πi, r)) = Lr.

(2) It is known that as t → 0, the family of Delaunay surfaces Di,t converges, up to rigid motions,
to an infinite chain of unit-spheres. Since the axis of Di,t converges as t→ 0 to the line spanned
by ui, the family Di,t converges, up to translation along this line, to a chain of unit-spheres with
centers on this line. We have

lim
t→0

fDi,t(D(0, r) \D(0, r2 )) = lim
t→0

ft(D(pi,t, r) \D(pi,t,
r
2 )) = f0(D(πi, r) \D(πi,

r
2 )) ⊂ S2(0).

Hence Di,t converges to the union of the spheres S2(2kui) for k ∈ Z and

lim
t→0

V i,t,r = lim
t→0

ft(D∗(pi,t, r)) = lim
t→0

fDi,t(D
∗(0, r)) = f0(D(πi, r)) ∪

⋃
k≥1

S2(2kui) = Li,r.

2

Claim 5. There exists a positive T ′ < T such that for 0 < t < T ′ and r ∈ [ ε4 , ε]:

∀j 6= i, V i,t,r ∩ V j,t,r = ∅ (33)

∀i, V i,t, r2 ∩ V t,r = ∅ (34)

Proof: The angle hypothesis of Proposition 6 ensures that the spheres S2(2kui) and S2(2`uj) for j 6= i
and k, ` ≥ 1 do not intersect. Hence the limit sets Li,r for i ∈ [1, n] are disjoint. Let δ > 0 be the smallest
distance between Li,r and Lj,r for j 6= i. Let K = B(0, 4). There exists a positive T ′ ≤ T such that for
t < T ′ and i ∈ [1, n],

dH(V i,t,r ∩K,Li,r ∩K) <
δ

2
Hence for t < T ′ and j 6= i, V i,t,r and V j,t,r do not intersect inside K. Since it is clear that they don’t
intersect outside K, Equation (33) follows. Equation (34) is proved in the same way, observing that the
limit sets Li, r2 and Lr are disjoint. 2

Claim 6. For 0 < t < T ′ and i ∈ [1, n]:

f−1
t (Vi,t, ε2 ) = D∗(pi,t,

ε
2 )

f−1
t (Vt, ε4 ) = Ωt, ε4

Proof:
(1) Let z ∈ f−1

t (Vi,t, ε2 ). By Equation (34) with r = ε, ft(z) 6∈ V t,ε hence z 6∈ Ωt,ε. So there exists
j ∈ [1, n] such that z ∈ D∗(pj,t, ε). Equation (33) with r = ε yields j = i. Since the projection
from fi,t(D

∗(pi,t, ε)) to Ui,t,ε is a diffeomorphism, z ∈ D∗(pi,t, ε2 ).
(2) Let z ∈ f−1

t (Vt, ε4 ). Equation (34) with r = ε
4 implies that for all i ∈ [1, n], ft(z) 6∈ V i,t, ε8 so

z 6∈ D(pi,t,
ε
8 ). Hence z ∈ Ωt, ε8 . Since the projection from ft(Ωt, ε8 ) to Ut, ε8 is a diffeomorphism,

z ∈ Ωt, ε4 . 2
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Claim 6 implies that Mt is embedded. Indeed, the open sets Vi,t, ε2 for i ∈ [1, n] and Vt, ε4 cover Mt and
the intersection of Mt with each of these sets is a submanifold, so Mt is a submanifold of R3. 2

11.3. Alexandrov-embeddedness. We recall from [8] the definition of Alexandrov-embeddedness in
the non-compact case:

Definition 2. A CMC surface M of finite topology is Alexandrov-embedded if M is properly immersed,
if each end of M is embedded, and if there exists a compact 3-manifold W with boundary ∂W = Σ and
a proper immersion F : W \ {q1, · · · , qn} → R3 whose boundary restriction f : Σ \ {q1, · · · , qn} → R3

parametrizes M . Moreover, we require that the mean-curvature normal of M points into W .

Proposition 7. If all weights τi are positive then for t > 0 small enough, Mt is Alexandrov-embedded.

Proof: the idea is to construct an abstract flat 3-manifold Nt in which the n half Delaunay surfaces
do not intersect, so Mt lifts to an embedded surface in Nt.

We continue with the notations of Section 11.2. Let Ci,t be the solid cylinder in R3 bounded by the
Delaunay surface Di,t. For positive δ, let

Qi,t,δ = {x ∈ R3 : d(x, Ci,t) < c1t and 〈x, ui〉 > 1− δ}.

Then

lim
t→0

Qi,t,δ = {x ∈ B(0, 1) : 〈x, ui〉 ≥ 1− δ} ∪
⋃
k≥1

B(2kui, 1) =: Li,δ.

We have

lim
δ→0

Li,δ ∩B(0, 1 + δ) = {ui}

so we may choose δ > 0 small enough such that the sets Li,δ ∩B(0, 1 + δ) for i ∈ [1, n] are disjoint. Then
for t small enough and j 6= i,

Qj,t,δ ∩Qi,t,δ ∩B(0, 1 + δ) = ∅.

Let Nt be the flat 3-manifold obtained as the disjoint union of B(0, 1 + δ) and Qi,t,δ for i ∈ [1, n], gluing
B(0, 1 + δ) with Qi,t,δ (with the identity map) where they intersect in R3. Let ψt : Nt → R3 be the
canonical projection. Then ψt is an immersion and Nt is called an immersed domain. The point here is
that the domains Qi,t,δ for i ∈ [1, n] are disjoint in Nt, even if they may intersect in R3.

We have for t small enough

ft(Ωt, ε2 ) ⊂ B(0, 1 + δ)

and taking ε smaller if necessary,

ft(D
∗(pi,t, ε)) ⊂ Qi,t,δ.

Hence we may lift the immersion ft to rft : Σt → Nt so that ψt ◦ rft = ft. Let ĂMt = rft(Σt). Since the
domains Qi,t,δ for i ∈ [1, n] are disjoint in Nt, the proof of Proposition 6 gives that ĂMt is embedded in
Nt. Let Wt be the domain in Nt bounded by ĂMt. Since the Delaunay surfaces are Alexandrov-embedded
(in the positive weight case), we may compactify Wt by adding one point at infinity per Delaunay end of
ĂMt. We take Ft to be the restriction of ψt to Wt. This proves that Mt is Alexandrov embedded. 2
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11.4. Hopf differential and umbilics. Umbilics are points where the two principal curvatures are
equal. On a CMC-1 surface, they are the zeros of the Hopf quadratic differential. Writing the potential
ξ as in Equation (1), the Hopf differential is Q = −2β0γ0. In our case, the Hopf differential is equal to
−2tω0

t dz. Since ωt has a double zero at ∞, the Hopf differential is holomorphic at ∞ and has n double
poles at the punctures. Being a quadratic differential on the Riemann sphere, it has 2n−4 zeros, so there
are 2n− 4 umbilics (counting multiplicity). The umbilics converge as t→ 0 to the zeros of ω0 dz, which,
by Equation (21), is given by

ω0 dz =

n∑
i=1

(
τi

(z − πi)2
− 2τiπi

(1 + |πi|2)(z − πi)

)
dz2.

So the limit position of the umbilics can in principle be computed by solving polynomial equations.

Appendix A. derivative of the monodromy

The following proposition is adapted from Proposition 9 in [23].

Proposition 8. Let ξt be a C1 family of matrix-valued 1-forms on a Riemann surface Σ. Let rΣ be the
universal cover of Σ. Fix a point z0 in Σ and let rz0 be a lift of z0 to rΣ. Let Φt be a family of solutions
of dΦt = Φtξt on rΣ, such that Φt(rz0) does not depend on t. Let γ ∈ π1(Σ, z0) and let M(t) be the
monodromy of Φt with respect to γ. Let rγ be the lift of γ to rΣ such that rγ(0) = rz0. Then for all t,

M ′(t) =

∫
rγ

Φt
∂ξt
∂t

Φ−1
t ×M(t).

Proof: since Φt(rz0) is constant and ξt depends C1 on t, Φt depends C1 on t. Let Ψt = ∂Φt
∂t . By

differentiation of the Cauchy Problem satisfied by Φt with respect to t, we obtain that Ψt satisfies the
following Cauchy Problem on rΣ: {

dΨt = Ψtξt + Φt
∂ξt
∂t

Ψt(rz0) = 0.

Following the method of variation of constants , the function Ut = ΨtΦ
−1
t satisfies:{

dUt = Φt
∂ξt
∂t Φ−1

t

Ut(rz0) = 0.

Hence (writing rγ(1) for the endpoint of rγ)

Ut(rγ(1)) =

∫
rγ

Φt
∂ξt
∂t

Φ−1
t .

We have by definition
M(t) = Φt(rγ(1))Φt(rz0)−1.

Hence since Φt(rz0) is constant:

M ′(t) = Ψt(rγ(1))Φt(rz0)−1

= Ut(rγ(1))Φt(rγ(1))Φt(rz0)−1

=

∫
γ

Φt
∂ξt
∂t

Φ−1
t M(t).

2
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Appendix B. Smoothness of maps between Banach spaces

The following proposition is useful to prove that the maps considered in this paper are smooth maps
between Banach spaces. The Banach algebra Wρ is defined in Section 4. For R > 1, we denote AR the
annulus 1

R < |λ| < R in C. For a = (a1, · · · , an) ∈ Cn and r = (r1, · · · , rn) ∈ (0,∞)n, we denote D(a, r)
the polydisk

∏n
i=1D(ai, ri) in Cn.

Proposition 9. Let R > ρ and f : AR × D(a, r) → C be a holomorphic function of (n + 1) variables
(λ, z1, · · · , zn). Let

B(a, r) = {(u1, · · · , un) ∈ Wn
ρ : ∀i ∈ [1, n], ||ui − ai|| < ri}

where we identify ai with a constant function in Wρ. Define for (u1, · · · , un) ∈ B(a, r):

F (u1, · · · , un)(λ) = f(λ, u1(λ), · · · , un(λ)).

Then F : B(a, r) ⊂ Wn
ρ →Wρ is of class C∞.

Proof: we expand f in Laurent series with respect to λ and power series with respect to z1, · · · , zn:

f(λ, z1, · · · , zn) =
∑
k∈Z

∑
i1,··· ,in

ck i1···inλ
k(z1 − a1)i1 · · · (zn − an)in .

For any r′ < r (in the sense r′i < ri for all i), the series f(ρ±1, a1 + r′1, · · · , an + r′n) converges absolutely
so ∑

k∈Z

∑
i1,··· ,in

|ck i1···in |ρ|k|(r′1)i1 · · · (r′n)in <∞. (35)

Let v ∈ Wρ be the function defined by v(λ) = λ. Then formally:

F (u1, · · · , un) =
∑
k∈Z

∑
i1,··· ,in

ck i1···inv
k(u1 − a1)i1 · · · (un − an)in . (36)

Since ||vk|| = ρ|k| and Wρ is a Banach algebra, for (u1, · · · , un) ∈ B(a, r′), we have

||ck i1···invk(u1 − a1)i1 · · · (un − an)in || ≤ |ck i1···in |ρ|k|(r′1)i1 · · · (r′n)in

Hence by Inequality (35), the series (36) converges normally, so F (u1, · · · , un) ∈ Wρ and F is of class
C∞ on B(a, r′). (See Theorem 11.12 in [1] for the smoothness of maps defined by power series in Banach
spaces.) 2
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