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Total variation distance between two di�usions in small time with

unbounded drift: application to the Euler-Maruyama scheme

Pierre Bras*�, Gilles Pagès* and Fabien Panloup�

Abstract

We give bounds for the total variation distance between the solutions to two stochastic di�er-

ential equations starting at the same point and with close coe�cients, which applies in particular

to the distance between an exact solution and its Euler-Maruyama scheme in small time. We show

that for small t, the total variation distance is of order tr/(2r+1) if the noise coe�cient σ of the

SDE is elliptic and C2r
b , r ∈ N and if the drift is C1 with bounded derivatives, using multi-step

Richardson-Romberg extrapolation. We do not require the drift to be bounded. Then we prove

with a counterexample that we cannot achieve a bound better than t1/2 in general.

Keywords� Stochastic Di�erential Equation, Euler scheme, Total Variation, Richardson-Romberg
extrapolation, Aronson's bounds

MSC Classi�cation� 65C30, 60H35

1 Introduction

The convergence properties of Euler-Maruyama schemes to approximate the solution of a Stochastic
Di�erential Equation (SDE) have been extensively studied, in particular for Lp distances. However,
the literature seems to lack some results about the convergence in total variation in small time. More
speci�cally, in this paper we consider the two following SDEs in Rd starting at the same point:

Xx
0 = x ∈ Rd, dXx

t = b1(t,X
x
t )dt+ σ1(t,X

x
t )dWt,

Y x
0 = x, dY x

t = b2(t, Y
x
t )dt+ σ2(t, Y

x
t )dWt,

where W is a Brownian motion. We generally assume that for i = 1, 2, bi is Lipschitz continuous and
that σi is elliptic, bounded and Lipschitz continuous, but we do not assume that bi is bounded. Our
objective is to give bounds of the total variation distance between the law of Xx

t and the law of Y x
t ,

denoted dTV(X
x
t , Y

x
t ), as t→ 0. In particular, we apply our results to the case where Y x = X̄x is the

one-step Euler-Maruyama scheme associated to the SDE X, given by

dY x
t = b1(0, x)dt+ σ1(0, x)dWt.

Such bounds are well known for Lp distances and their associated Wasserstein distances and are
known to be of order t as t → 0. Yet the literature seems to lack results as it comes to dTV. If
σ1 = σ2 is constant, then it is classical background that dTV(X

x
t , Y

x
t ) is of order t, using a Girsanov
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change of measure (see for example [PP20, Proposition 4.1]) but this strategy cannot be applied to
non-constant σ. The di�culty of the total variation distance in small time is the following: considering
its representation formula and comparing it with the L1-Wasserstein distance, if x and y ∈ Rd are close
to each other and if f : Rd → R is Lipschitz continuous, then we can bound |f(x)−f(y)| by [f ]Lip|x−y|;
whereas if f is simply measurable and bounded, then we cannot directly bound |f(x)− f(y)| in terms
of |x− y|. Moreover the regularizing properties of the semi-group cannot be used in small time for the
total variation distance.

Results in the literature focus on the Euler-Maruyama scheme. In [BT96] is proved the convergence
for a �xed time horizon T > 0 and as N → ∞, where N is the number of steps in the Euler-Maruyama
scheme on a �nite horizon. More precisely, if σ1 is elliptic and if b1 and σ1 are C∞ with bounded
derivatives (but b1 and σ1 are not supposed bounded themselves), then ([BT96, Theorem 3.1])

∀x ∈ Rd, dTV(X
x
T , X̄

x,N
T ) ≤ K(T )(1 + |x|Q)

NT q
,

where X̄x,N
T stands for the Euler scheme with N steps, where Q and q are positive exponents and

where K is a non-decreasing function depending on b1 and σ1. The common strategy of proof for such
bounds is to use Malliavin calculus in order to perform an integration by parts and to use bounds
on the derivatives of the density. However, we cannot infer a bound as T → 0 since we do not know
whether K(T )/T q → 0 as T → 0 in general. In [GL08] are given bounds in small time and as N → ∞.
Assuming that σ1 is uniformly elliptic and that b1 and σ1 are bounded with bounded derivatives up to
order 3, then ([GL08, Theorem 2.3])

∀t ∈ (0, T ], ∀x, y ∈ Rd, |p(t, x, y)− p̄N (t, x, y)| ≤ K(T )T

Nt(d+1)/2
e−C|x−y|2/t,

where p and p̄N denote the transition densities of Xx and X̄x,N respectively and where C is a positive
constant depending on d and on the bounds on b1 and σ1 and on their derivatives. However, we cannot
directly use this result for the total variation distance: taking N = 1 yields

dTV(X
x
t , X̄

x
t ) =

∫
Rd

|p(t, x, y)− p̄N (t, x, y)|dy ≤ K(T )Tt−1/2

∫
Rd

1

td/2
e−C|x−y|2/t,

giving a bound in t−1/2 which does not converge to 0 as t → 0. Moreover, [GL08] assumes that b1 is
bounded. [BJ22] focuses on the case where b1 is bounded and measurable but not necessarily regular
and where σ1 is constant; it proves that the convergence in total variation of the Euler scheme on a
�nite horizon which is regularized with respect to the irregular drift b1 and with step h, is of order

√
h.

In the present paper, we �rst prove a convergence rate of order t1/3 for dTV(X
x
t , Y

x
t ), provided that

for i = 1, 2, σi is elliptic, σi and bi are Lipschitz-continuous with respect to their time variable and
that σi is C2

b and bi is C1 and Lipschitz-continuous with respect to their space variable. More generally,
if we furthermore assume that σ is C2r

b , then we obtain a convergence rate of order tr/(2r+1). Letting
r → ∞, we also prove that if σ ∈ C∞

b with some technical condition on the derivatives of the densities
of the random variables Xx

t and Y x
t , then the convergence rate is of order t1/2 exp(C

√
log(1/t)) which

is "almost" t1/2. Moreover, we provide an example using the geometric Brownian motion where the
convergence rate is exactly t1/2, thus showing that we cannot achieve better bounds in general. To
prove the bound in tr/(2r+1), we use a multi-step Richardson-Romberg extrapolation [RG11] [LP17],
which is a method imported from numerical analysis that we use in our case for theoretical purposes.
It relies on a Taylor expansion with null coe�cients up to some high order. Such method can be used
in more general settings with regularization arguments in order to improve the convergence rates (in
our case, we improve t1/3 into tr/(2r+1)).

Interestingly, the di�erence between the drift coe�cients b1 − b2 does not need to be small for our
bounds to be valid. This is because the dominant term in dTV(X

x
t , Y

x
t ) comes from the the di�usion

part.
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Recent results (see [Cle21]) establish a convergence in small time at rate t1/2 for the Euler scheme of
certain classes of di�usions driven by stable Lévy processes, not directly including the Brownian case.
This approach relies on Malliavin calculus techniques. In this work the "standard" drift is replaced
in the Euler scheme by the �ow of the associated (noiseless) ODE. This seems to be speci�c to Lévy
driven SDEs. Adapting this approach to our general continuous framework is not as straightforward
as could be expected and would deserve further investigations for future work.

The total variation distance is closely related to the estimation of the density of the solution to an
SDE and this density satis�es a Fokker-Planck Partial Di�erential Equation PDE (3.2). If the drift
is bounded, then the density and its partial derivatives admit sub-gaussian Aronson's bounds (see
[Fri64] and Section 3.1). However, giving estimates and bounds for the solution of the PDE in the case
of unbounded drift appears to be more di�cult, see [Lun97], [Cer00], [BL05]. Recent improvements
have been made in [MPZ21] using the parametrix method. Studying this case is useful to study the
convergence in total variation of SDE's with unbounded drift, in particular for the Langevin equation,
very popular in stochastic optimization, and which reads

dXt = −∇V (Xt)dt+ σ(Xt)dWt,

where in many cases, V : Rd → R has quadratic growth and ∇V has linear growth (see for example
[BP21]).

In order to deal with unbounded bi, we propose two di�erent methods. First, we use a localization
argument and "cut" the drift bi into b̃i outside a compact set, so that we can use bounds from [Fri64]
for the bounded drift case. We use the Girsanov formula to explicit the dependence of these bounds in
∥b̃i∥∞. A second method consists in using the density estimates from [MPZ21, Section 4] to improve
the dependency with respect to the bounds in x. However this second approach relies on advanced
parametrix methods which require further regularity assumptions on the coe�cients of the SDE and
which are not fully detailed for higher order derivatives. Our �rst method is clearly much more
elementary, starting from a quite general bound established for any pair of integrable random vectors
(see Theorem 2.7) and calling upon a standard regularization strategy which combined with a multistep
procedure, seems to be at least quasi-optimal in a very general framework.

Notations

We endow the space Rd with the canonical Euclidean norm denoted by | · |. For x ∈ Rd and for
R > 0, we denote B(x,R) = {y ∈ Rd : |y − x| ≤ R}.

We denote Md(R) the set of d× d matrices with real coe�cients.
For M ∈ (Rd)⊗k, we denote by ∥M∥ its operator norm, i.e. ∥M∥ = supu∈Rd×k, |u|=1M · u. If

M : Rd → (Rd)⊗k, we denote ∥M∥∞ = supx∈Rd ∥M(x)∥.
For k ∈ N and if f : Rd → R is Ck, we denote by ∇kf : Rd → (Rd)⊗k its di�erential of order k. If

f is Lipschitz continuous, we denote by [f ]Lip its Lipschitz constant. If f : (t, x) ∈ R×Rd 7→ f(t, x) is
Ck with respect to x, we still denote by ∇kf its di�erential with respect to x.

We denote the total variation distance between two distributions π1 and π2 on Rd:

dTV(π1, π2) = 2 supA∈B(Rd) |π1(A)− π2(A)|.

Without ambiguity, if Z1 and Z2 are two Rd-valued random vectors, we also write dTV(Z1, Z2) to
denote the total variation distance between the law of Z1 and the law of Z2. We have as well

dTV(π1, π2) = sup

{∫
Rd

fdπ1 −
∫
Rd

fdπ1, f : Rd → [−1, 1] measurable

}
.

Moreover, we recall that if π1 and π2 admit densities with respect to some measure λ, then

dTV(π1, π2) =

∫
Rd

∣∣∣∣dπ1dλ − dπ2
dλ

∣∣∣∣ dλ.
3



We denote by W1 the L
1-Wasserstein distance.

For x ∈ Rd, we denote by δx the Dirac mass at x.
If Z is a Markov process with values in Rd, we denote, when it exists, its transition probability

from x to y ∈ Rd between times s < t, pZ (s, t, x, y).
In this paper, we use the notation C and c to denote positive constants, which may change from

line to line.

2 Main results

We consider the two following SDEs in Rd:

Xx
0 = x ∈ Rd, dXx

t = b1(t,X
x
t )dt+ σ1(t,X

x
t )dWt, t ∈ [0, T ], (2.1)

Y x
0 = x, dY x

t = b2(t, Y
x
t )dt+ σ2(t, Y

x
t )dWt, t ∈ [0, T ], (2.2)

where T is a �nite time horizon, bi : Rd → Rd, σi : Rd → Md(R), i = 1, 2, are Borel functions and
W is a standard Rd-valued Brownian motion de�ned on a probability space (Ω,A,P). The one-step
Euler-Maruyama scheme of X, denoted X̄, is de�ned by X̄x = Y x when Y x reads

dY x
t = b1(0, x)dt+ σ1(0, x)dWt, t ∈ [0, T ]. (2.3)

To allievate notations, we also de�ne

∆b(x) := |b1(0, x)− b2(0, x)|, ∆σ(x) := |σ1(0, x)− σ2(0, x)|. (2.4)

Let us remark that if Y = X̄, then ∆b(x) = 0 and ∆σ(x) = 0. For g : (t, x) ∈ [0, T ]×Rd 7→ g(t, x) ∈ Rq

and r ∈ N, let us de�ne the following assumptions:
• Lipt(g): g is Lipschitz continuous with respect to t, uniformly in x.
• g ∈ Cr: g is di�erentiable with respect to x with continuous partial derivatives up to the order r.
• g ∈ Cr

b : g ∈ Cr and is bounded with bounded partial derivatives up to the order r.

• g ∈ C̃r
b : g ∈ Cr and has partial bounded derivatives up to the order r, but we do not assume that

g is bounded itself.
• For σ : [0, T ]× Rd → Md(R), we say that σ is (uniformly) elliptic if

∃
¯
σ0 > 0, ∀x ∈ Rd, ∀t ∈ [0, T ], σ(t, x)σ(t, x)⊤ ≥

¯
σ20Id. (2.5)

Theorem 2.1. Let X and Y be the solutions of the SDEs (2.1) and (2.2). For i = 1, 2, assume
Lipt(bi), Lipt(σi), σi ∈ C2

b , bi ∈ C̃1
b and σi is elliptic. Then

∀t ∈ [0, T ], ∀x ∈ Rd, dTV(X
x
t , Y

x
t ) ≤ C(t1/2 +∆σ(x))2/3 + Cec|x|

2
t1/2, (2.6)

where the positive constants C and c only depend on d, T ,
¯
σ0, ∥σi∥∞, [bi]Lip, [σi]Lip and ∥∇2σi∥∞. In

particular, if Y = X̄ we have

dTV(X
x
t , Y

x
t ) ≤ Ct1/3 + Cec|x|

2
t1/2.

Theorem 2.2. Let X and Y be the solutions of the SDEs (2.1) and (2.2). For i = 1, 2, assume
Lipt(bi), Lipt(σi), that σi ∈ C2r

b , bi ∈ C̃1
b and that σi is elliptic. Then

∀t ∈ [0, T ], ∀x ∈ Rd, dTV(X
x
t , Y

x
t ) ≤ C(t1/2 +∆σ(x))2r/(2r+1) + Cec|x|

2
t1/2, (2.7)

where the positive constants C and c only depend on d, T ,
¯
σ0, on ∥σi∥∞, on the bounds on the

derivatives of bi and σi and on their Lipschitz constants. In particular, if Y = X̄ we have

dTV(X
x
t , Y

x
t ) ≤ Ctr/(2r+1) + Cec|x|

2
t1/2.
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Remark 2.3. In Theorems 2.1 and 2.2, we can actually improve the dependency of the constants in x
in small time since we have more precisely:

∀t ∈ [0, Ce−2(2r+1)c|x|2 ], dTV(X
x
t , Y

x
t ) ≤ C(t1/2 +∆σ(x))2r/(2r+1).

Remark 2.4. We can adapt the framework of Theorem 2.2 to the study of SDEs with homogeneous
vanishing noise, i.e. where for a > 0,

dXx
t = b1(t,X

x
t )dt+ aσ1(X

x
t ), dY x

t = b2(t, Y
x
t ) + aσ2(Y

x
t )

and we identify the dependency in a as a → 0. Namely, with the same assumptions, for a > 0 small
enough we have

dTV(X
x
t , Y

x
t ) ≤ Ceca

−1|x|2t1/2 + Ca−(d+r)(t1/2 +∆σ(x))2r/(2r+1), (2.8)

where the constant C does not depend on a. This bound is obtained adapting the proof of Theorem
2.2 in Section 3.4 and using that if Zx is the martingale dZx

t = aσ(Zx
t )dWt then (Zx

t ) ∼ (Z̃x
a2t) where

Z̃x
t = σ(Z̃x

t )dWt which does not depend on a.

We can also improve the dependency in the initial condition x ∈ Rd using [MPZ21], however at the
expense of further regularity assumptions on bi and σi, i = 1, 2.

Theorem 2.5. Let X and Y be the solutions of the SDEs (2.1) and (2.2). For i = 1, 2, assume
Lipt(bi), Lipt(σi), σi ∈ C2r+1

b , bi ∈ C̃2r
b and σi is elliptic. Then

∀t ∈ [0, T ], ∀x ∈ Rd, dTV(X
x
t , Y

x
t ) ≤ C

(
t1/2(1 + ∆b(x)) + ∆σ(x) + t(|b1|+ |b2|)(0, x)

)2r/(2r+1)
,

(2.9)
where the positive constants C and c only depend on d, T ,

¯
σ0, on ∥σi∥∞, on the bounds on the

derivatives of bi and σi and on their Lipschitz constants. In particular, if Y = X̄, we have

dTV(X
x
t , Y

x
t ) ≤ Ctr/(2r+1)

(
1 + t1/2(|b1|+ |b2|)(0, x)|

)2r/(2r+1)
.

Remark 2.6. Choosing Y not to be the Euler-Maruyama scheme ofX but a general SDE and expressing
the bounds in the Theorems in terms of ∆b(x) and ∆σ(x) allows to extend our results to more general
couples of di�usions with "close" coe�cients, for example to SDE solvers other than the genuine
Euler-Maruyama scheme. Also, it is helpful to study perturbed SDEs, for example if we consider

dXx
t = b1(t,X

x
t )dt+ a1(t)σ(X

x
t )dWt, dY x

t = b2(t, Y
x
t )dt+ a2(t)σ(Y

x
t )dWt (2.10)

where |a1(t)− a2(t)| → 0 as t→ ∞. Then we have

dTV(X
x
t+s, Y

x
t+s) ≤ Cec|x|

2
s1/2 + C(s1/2 + |a1(t)− a2(t)|)2r/(2r+1)

and we obtain di�erent convergence rates as t → ∞ and s → 0, depending on (t, s). A noticeable
example of this is the Langevin-simulated annealing SDE [BP21].

Furthermore we remark that in Theorems 2.1 and 2.2, the bounds do not depend on ∆b, enhancing
that the dominant term in the total variation comes from the di�usion part.

To improve the rate of convergence from t1/3 in Theorem 2.1 to tr/(2r+1) in Theorem 2.2, we rely
on a Richardson-Romberg extrapolation [RG11] [LP17]; this argument can also be applied in a more
general framework. The following proposition gives bounds on the total variation between two random
vectors, knowing bounds on the L1-Wasserstein distance and bounds on the partial derivatives of the
densities up to some order.
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Theorem 2.7. Let Z1 and Z2 be two random vectors in L1(Rd) and admitting densities p1 and p2
respectively with respect to the Lebesgue measure. Assume furthermore that p1 and p2 are C2r with

r ∈ N and that ∇kpi ∈ L1(Rd) for i = 1, 2 and k = 1, . . . , 2r. Then we have

dTV(Z1, Z2) ≤ Cd,rW1(Z1, Z2)
2r/(2r+1)

(∫
Rd

(
∥∇2rp1(ξ)∥+ ∥∇2rp2(ξ)∥

)
dξ

)1/(2r+1)

(2.11)

where the constant Cd,r depends only on d and on r.

If σ ∈ C∞
b , then we also prove that we can "almost" get a convergence rate of order t1/2.

Theorem 2.8. Let X and Y be the solutions of the SDEs (2.1) and (2.2). For i = 1, 2, assume
Lipt(bi), Lipt(σi), that σi ∈ C2r

b for every r ∈ N, bi ∈ C̃1
b , that σi is elliptic and that ∆σ(x) = 0.

Assume furthermore that if Z and V are the martingales dZt = σ1(t, Zt)dWt and dVt = σ2(t, Zt)dWt,

then

∀r ∈ N, ∀t ∈ (0, T ],∀x, y ∈ Rd, ∥∇2r
y pZ (0, t, x, y)∥+ ∥∇2r

y pV (0, t, x, y)∥ ≤ C2r

t(d+2r)/2
e−c2r|y−x|2/t

with lim sup
r→∞

(
C2rc

−d/2
2r

)1/(2r)
<∞. (2.12)

(see Theorem 3.1). Then

∀t ∈ (0, T ], ∀x ∈ Rd, dTV(X
x
t , Y

x
t ) ≤ Cec|x|

2
t1/2 + Ct1/2ec

√
log(1/t), (2.13)

where the positive constants C and c only depend on d, T ,
¯
σ0, on ∥σi∥∞, on the bounds on the

derivatives of bi and σi and on their Lipschitz constants.

Remark 2.9. Assumption (2.12) is satis�ed in the case of a Brownian motion, which suggests that this
assumption is satis�ed in general provided that σ is "regular enough". Indeed, if dZt = σdWt with
σ ∈ Md(R) being non degenerate, then with Σ := σσ⊤ we have for t > 0 and x, y ∈ Rd:

pZ (0, t, x, y) =
1√

det(Σ)td/2
Φ

(
Σ−1/2 y − x√

t

)
, Φ(u) :=

1

(2π)d/2
e−|u|2/2.

Moreover for every r ∈ N and u ∈ Rd we have∥∥∥∥ drdurΦ(u)
∥∥∥∥ ≤ 1

(2π)d/2
|Her(|u|)|e−|u|2/2

where Her is the r
th probabilist Hermite polynomial. Following [Kra04] we have

∀u ≥ 0, |He2r(u)|e−u2/2 ≤ C2−r√r (2r)!
2

r!2
≤ C2r

√
r,

using the Stirling formula for the last inequality. On the other hand, using [AS64, 22.14.15] we have

∀u ≥ 0, |He2r(u)|e−u2/4 ≤ 2r+1r!.

Then, for for every ε ∈ (0, 1],

|He2r(u)|e−u2/2 =
∣∣∣He2r(u)e−u2/4

∣∣∣ε ∣∣∣He2r(u)e−u2/2
∣∣∣1−ε

e−εu2/4

≤ C (2rr!)ε
(
2rr1/2

)1−ε
e−εu2/2.

6



Then if we choose εr = log−1(r) for r ≥ 3, we have (r!)εr ≤ eεrr log(r) = er so that∥∥∥∥ drdurΦ(u)
∥∥∥∥ ≤ C2rεrer2rr1/2e−εr|u|2/2 =: Are

−εr|u|2/2

and then for r ≥ 3 we have

∥∇2r
y pZ (0, t, x, y)∥ ≤ ∥Σ−1/2∥2r√

det(Σ)t(d+2r)/2

d2r

du2r
Φ

(
Σ−1/2 y − x√

t

)
≤ ∥Σ−1/2∥2r√

det(Σ)t(d+2r)/2
Are

−εr∥Σ−1∥|y−x|2/(2t)

where
( (

∥Σ−1/2∥2rArε
−d/2
r

)1/(2r) )
is bounded. Thus Assumption (2.12) is satis�ed.

Remark 2.10. For the Euler-Maruyama scheme (2.3), with a slight abuse of notation, x is used both
for the starting point and in the de�nition of the drift and di�usion coe�cients. The transition density
should be considered for constant drift and di�usion coe�cients in this case. However the results
remain valid as the Euler scheme is simply a Brownian process.

3 Proof of the Theorems

3.1 Recalls on density estimates for SDEs with bounded drift

We recall results on the bounds for the density of the solution of the SDE using the theory of partial
di�erential equations. Let us consider a generic SDE:

Zx
0 = x ∈ Rd, dZx

t = bZ (t, Z
x
t )dt+ σZ (t, Z

x
t )dWt, t ∈ [0, T ]. (3.1)

Then under regularity assumptions on bZ and on σZ , the transition probability pZ exists and is solution
of the backward Kolmogorov PDE:

pZ (t, t, x, ·) = δx, t ∈ [0, T ],

∂spZ (s, t, x, y) = ⟨bZ (s, x),∇xpZ (s, t, x, y)⟩+
1

2
Tr
(
σ⊤

Z
(s, x)∇2

xpZ (s, t, x, y)σZ (s, x)
)
, s < t ∈ [0, T ].

(3.2)

Moreover, pZ and its derivatives satisfy sub-gaussian Aronson's bounds:

Theorem 3.1 ([Fri64], Chapter 9, Theorem 7). Let Z be the solution of (3.1) and let T > 0. Assume
Lipt(bZ ) and Lipt(σZ ), that bZ , σZ ∈ Cr

b and that σZ is elliptic. Then for every m0 = 0, 1 and for every

0 ≤ m1 +m2 ≤ r, ∇m0+m1
x ∇m2

y pZ exists and

∀s < t ∈ [0, T ], ∀x, y ∈ Rd, ∥∇m0+m1
x ∇m2

y pZ (s, t, x, y)∥ ≤ C

(t− s)(d+m0+m1+m2)/2
e−c|y−x|2/(t−s),

(3.3)
where the constants C and c only depend on the bounds on bZ and σZ and on their derivatives and

their Lipschitz constants, on the modulus of ellipticity of σZ , on d and on T .

Let us also recall the recent result from [MPZ21] giving Aronson's bounds of the partial derivatives
with respect to y in the case where bZ is unbounded. Considering [MPZ21, Section 4] with [MPZ21,
(3.1)], we have the following result.
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Theorem 3.2. Let Z be the solution of (3.1) and let T > 0. Assume Lipt(bZ ) and Lipt(σZ ), that

bZ ∈ C̃r
b , σZ ∈ Cr+1

b and that σZ is elliptic. Then for every 0 ≤ m ≤ r, ∇m
y pZ exists and

∀s < t ∈ [0, T ], ∀x, y ∈ Rd, ∥∇m
y pZ (s, t, x, y)∥ ≤ C

(t− s)(d+m)/2
e−c|y−x|2/(t−s), (3.4)

where the constants C and c only depend on the bounds on bZ and σZ and on their derivatives and on

their Lipschitz constants, on the modulus of ellipticity of σZ , on d and on T .

3.2 Preliminary results

In order to apply the bounds on the densities from Theorem 3.1 to Theorem 2.7, we �rst "cut" the
drifts b1 and b2 on a compact set. That is, we instead consider the processes X̃ and Ỹ de�ned by

dX̃x
t = b̃x1(t, X̃

x
t )dt+ σ1(t, X̃

x
t )dWt, t ∈ [0, T ], (3.5)

dỸ x
t = b̃x2(t, Ỹ

x
t )dt+ σ2(t, Ỹ

x
t )dWt, t ∈ [0, T ], (3.6)

where b̃i, i = 1, 2 is de�ned as follows. We choose R > 0 and we consider a C∞ decreasing function
ψ : R+ → R+ such that ψ = 1 on [0, R2] and ψ = 0 on [(R + 1)2,∞) and we de�ne b̃xi (t, y) :=
bi(t, y)ψ(|y − x|2), so that b̃xi is bounded:

∀y ∈ Rd, ∀t ∈ [0, T ], |b̃xi (t, y)| ≤ supz∈B(x,R+1) |bi(t, z)| ≤ C(1 + |x|), (3.7)

because bi is Lipschitz continuous.

Lemma 3.3. Assume Lipt(b1), Lipt(σ1), b1 ∈ C̃1
b , σ1 ∈ C1

b . Then for every x ∈ Rd and t ∈ [0, T ],

dTV(X
x
t , X̃

x
t ) ≤ C(1 + |b1(0, x)|2)t. (3.8)

Proof. Let f : Rd → R be measurable and bounded. We remark that on the event {sups∈[0,t] |Xx
s −x|2 ≤

R2}, we have X̃x
t = Xx

t , so that

|Ef(X̃x
t )− Ef(Xx

t )| ≤ 2∥f∥∞P

(
sup
s∈[0,t]

|Xx
s − x|2 > R2

)
.

But using the inequality |u+ v|2 ≤ 2|u|2 + 2|v|2 we have

|Xx
t −x|2 ≤ 2

∣∣∣∣∫ t

0
b1(s,X

x
s )ds

∣∣∣∣2+2

∣∣∣∣∫ t

0
σ1(s,X

x
s )dWs

∣∣∣∣2 ≤ 2t

∫ t

0
|b1(s,Xx

s )|2ds+2

∣∣∣∣∫ t

0
σ1(s,X

x
s )dWs

∣∣∣∣2
≤ 4t[b1]

2
Lip

(∫ t

0
|Xx

s − x|2ds+ 1

3
t3
)
+ 4t2|b1(0, x)|2 + 2

∣∣∣∣∫ t

0
σ1(s,X

x
s )dWs

∣∣∣∣2
so that

E sup
s∈[0,t]

|Xx
s − x|2 ≤ 4t[b1]

2
Lip

∫ t

0

(
E sup

u∈[0,s]
|Xx

u − x|2
)
ds+

4

3
[b1]

2
Lipt

4 + 4t2|b1(0, x)|2

+ 2E sup
s∈[0,t]

∣∣∣∣∫ s

0
σ1(u,X

x
u)dWu

∣∣∣∣2 .
Moreover using Doob's martingale inequality we have

E sup
s∈[0,t]

∣∣∣∣∫ s

0
σ1(u,X

x
u)dWu

∣∣∣∣2 ≤ 4E
∣∣∣∣∫ t

0
σ1(u,X

x
u)dWu

∣∣∣∣2 = 4E
∫ t

0
σ21(u,X

x
u)du ≤ 4∥σ1∥2∞t.
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Then we de�ne the non-decreasing deterministic process St := E sups∈[0,t] |Xx
s − x|2 and we get the

di�erential inequality (using t ≤ T )

St ≤ 4t

(
T |b1(0, x)|2 +

1

3
[b1]

2
LipT

3 + 2∥σ1∥2∞
)
+ 4t[b1]

2
Lip

∫ t

0
Ssds,

so the Gronwall lemma yields

St ≤ 4t

(
T |b1(0, x)|2 +

1

3
[b1]

2
LipT

3 + 2∥σ1∥2∞
)
e2t

2[b1]2Lip ≤ C(1 + |b1(0, x)|2)t.

Using Markov's inequality, we have then

|Ef(X̃x
t )− Ef(Xx

t )| ≤ 2∥f∥∞P

(
sup
s∈[0,t]

|Xx
s − x|2 > R2

)
≤ 2∥f∥∞

C(1 + |b1(0, x)|2)t
R2

.

We can now apply Theorem 3.1 to X̃ and to Ỹ however the constants arising depend on the bound
on ∥b̃xi ∥∞ and thus on x. In order to deal with the dependency in ∥b̃xi ∥∞, we apply the Girsanov
formula and reduce to the null drift case.

Proposition 3.4. Let Zx be the solution of

Zx
0 = x, dZx

t = σ1(t, Z
x
t )dWt, t ∈ [0, T ]. (3.9)

Assume Lipt(b1), Lipt(σ1), b1 ∈ C̃1
b , σ1 ∈ C1

b and σ1 is elliptic. Then we have for every t ∈ [0, T ],
x, y ∈ Rd,

p
X̃
(0, t, x, y) = pZ (0, t, x, y) +

∫ t

0
E
[
Ux
s ⟨b̃x1(s, Zx

s ),∇xpZ (s, t, Z
x
s , y)⟩

]
ds, (3.10)

where X̃ is de�ned in (3.5) and Ux is de�ned as

Ux
s = exp

(∫ s

0
⟨g(u, Zx

u)b̃
x
1(u, Z

x
u), dZ

x
u⟩ −

1

2

∫ s

0
⟨g(u, Zx

u)b̃
x
1(u, Z

x
u), b̃

x
1(u, Z

x
u)⟩du

)
, (3.11)

g = (σ1σ
⊤
1 )

−1. (3.12)

Proof. First, note that since σ1 is elliptic and since b̃x1 , σ1 ∈ C1
b , then pX̃ and pZ exist as well as ∇xpZ

(Theorem 3.1). We then use [QZ04, Theorem 2.4] extended to non-homogeneous di�usion processes.
Following [QZ04, Remark 2.5], since σ1 is elliptic and bounded, the assumptions of [QZ04, Theorem
2.4] hold.

We also have the following bounds on the process Ux.

Lemma 3.5. With the same assumptions as in Proposition 3.4, for every p ≥ 2, x ∈ Rd and t ∈ [0, T ]
we have

E

[
sup
s∈[0,t]

|Ux
s |p
]
≤ eCp2∥b̃x1∥2∞t. (3.13)

Proof. We recall that for every q ≥ 1, the process (Ux)q is a martingale with

d(Ux
s )

q = q(Ux
s )

q
〈
g(s, Zx

s )b̃
x
1(s, Z

x
s ), σ1(s, Z

x
s )dWs

〉
.
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Thus, Doob's martingale inequality yields

E

[
sup
s∈[0,t]

|Ux
s |2q

]
≤ Cq2∥b̃x1∥2∞E

∫ t

0
|Ux

s |2qds ≤ Cq2∥b̃x1∥2∞
∫ t

0
E

[
sup

u∈[0,s]
|Ux

s |2q
]
ds.

So with Ux
0 = 1 we obtain

E

[
sup
s∈[0,t]

|Ux
s |2q

]
≤ eCq2∥b̃x1∥2∞t.

Lemma 3.6. With the same assumptions as in Proposition 3.4, we have for every x, y ∈ Rd and

t ∈ [0, T ], ∣∣∣∣∫ t

0
E
[
Ux
s ⟨b̃x1(s, Zx

s ),∇xpZ (s, t, Z
x
s , y)⟩

]
ds

∣∣∣∣ ≤ CeC∥b̃x1∥2∞ e
−c|y−x|2/t

t(d−1)/2
. (3.14)

Proof. We use Theorem 3.1 on the process Zx, which yields bounds with constants depending on σ1
but not on b̃x1 . We obtain for every q ≥ 1 and for every s ∈ [0, t]:

E |∇xpZ (s, t, Z
x
s , y)|

q =

∫
Rd

|∇xpZ (s, t, ξ, y)|
qpZ (0, s, x, ξ)dξ

≤ Cq

(t− s)(q+(q−1)d)/2

∫
Rd

1

(s(t− s))d/2
exp

(
−cq

(
|y − ξ|2

t− s
+

|ξ − x|2

s

))
dξ

≤ Cq

td/2
1

(t− s)(q+(q−1)d)/2
e−cq |y−x|2/t,

where we used Lemma A.1 in the appendix. Then for p−1 + q−1 = 1 and p ≥ 2, using the Hölder
inequality we have∣∣∣∣∫ t

0
E
[
Ux
s ⟨b̃x1(s, Zx

s ),∇xpZ (s, t, Z
x
s , y)⟩

]
ds

∣∣∣∣
≤ ∥b̃x1∥∞

(
sup
s∈[0,t]

E|Ux
s |p
)1/p ∫ t

0
(E |∇xpZ (s, t, Z

x
s , y)|

q)1/q ds

≤ ∥b̃x1∥∞eCp∥b̃x1∥2∞tCqe
−cq |y−x|2/t

td/(2q)

∫ t

0

ds

(t− s)(1+(1−q−1)d)/2
.

The integral in ds converges under the condition q < d/(d− 1) if d > 1, and for any value of q > 1 if
d = 1. Then performing the change of variable s = tu we obtain∣∣∣∣∫ t

0
E
[
Ux
s ⟨b̃x1(s, Zx

s ),∇xpZ (s, t, Z
x
s , y)⟩

]
ds

∣∣∣∣ ≤ ∥b̃x1∥∞eCp∥b̃x1∥2∞T Cqe
−cq |y−x|2/t

t(d−1)/2
≤ CeC∥b̃x1∥2∞ e

−c|y−x|2/t

t(d−1)/2
.

3.3 Proof of Theorem 2.1

Lemma 3.7. We have for every x ∈ Rd and t ∈ [0, T ]:

dTV(X
x
t , Y

x
t ) ≤ dTV(Z

x
t , V

x
t ) + CeC|x|2t1/2,

where dZx
t = σ1(t, Z

x
t )dWt and dV

x
t = σ2(t, V

x
t )dWt.
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Proof. Let us write

dTV(X
x
t , Y

x
t ) ≤ dTV(X

x
t , X̃

x
t ) + dTV(X̃

x
t , Z

x
t ) + dTV(Z

x
t , V

x
t ) + dTV(V

x
t , Ỹ

x
t ) + dTV(Ỹ

x
t , Y

x
t ),

where X̃ and Ỹ are de�ned in (3.5) and (3.6). Using Lemma 3.3 with (3.7), we have

dTV(X
x
t , X̃

x
t ) + dTV(Ỹ

x
t , Y

x
t ) ≤ C(1 + |x|2)t.

Using the formula (3.10) and the inequality (3.14), we have

dTV(X̃
x
t , Z

x
t )=

∫
Rd

|p
X̃
(0, t, x, y)−pZ (0, t, x, y)|dy =

∫
Rd

∣∣∣∣∫ t

0
E
[
Ux
s ⟨b̃x1(s, Zx

s ),∇xpZ (s, t, Z
x
s , y)⟩

]
ds

∣∣∣∣ dy
≤ CeC∥b̃x1∥2∞t1/2

∫
Rd

e−c|x−y|2/t

td/2
dy ≤ CeC|x|2t1/2,

where we used (3.7). The term dTV(Ỹ
x
t , V

x
t ) is treated likewise.

We now prove Theorem 2.1.

Proof. Let us introduce an arti�cial regularization. For ε > 0 and using Lemma 3.7 we have

dTV(X
x
t , Y

x
t ) ≤ CeC|x|2t1/2 + dTV(Z

x
t , Z

x
t +

√
εζ) + dTV(Z

x
t +

√
εζ, V x

t +
√
εζ) + dTV(V

x
t +

√
εζ, V x

t )
(3.15)

where ζ ∼ N (0, Id) and is independent of the Brownian motion W .

• Let f : Rd → R be measurable and bounded and let us de�ne

φ : y ∈ Rd 7→ Ef(Zx
t + y) =

∫
Rd

f(ξ + y)pZ (0, t, x, ξ)dξ =

∫
Rd

f(ξ)pZ (0, t, x, ξ − y)dξ. (3.16)

Then φ is C2 with

∇2φ(y) =

∫
Rd

f(ξ)∇2
ypZ (0, t, x, ξ − y)dξ.

Moreover, using Theorem 3.1, we have

∥∇2
ypZ (0, t, x, ξ − y)∥ ≤ C

t(d+2)/2
e−c|x−ξ+y|2/t,

where the constants C and c do not depend on b̃x1 . This implies that for every y ∈ Rd,

∥∇2φ(y)∥∞ ≤ C∥f∥∞t−1

∫
Rd

1

td/2
e−c|x−ξ+y|2/tdξ ≤ C∥f∥∞t−1.

Then using the Taylor formula, for every y ∈ Rd there exists ỹ ∈ (0, y) such that

φ(y) = φ(0) +∇φ(0) · y + 1

2
∇2φ(ỹ) · y⊗2

and then for some random ζ̃ ∈ (0, ζ) we have

|Ef(Zx
t +

√
εζ)− Ef(Zx

t )| = |Eφ(
√
εζ)− φ(0)| =

∣∣∣√εE[∇φ(0) · ζ] + ε

2
E[∇2φ(

√
εζ̃) · ζ⊗2]

∣∣∣
≤ Cε∥f∥∞t−1,
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where we used that E[∇φ(0) · ζ] = ∇φ(0) · E[ζ] = 0. This way we obtain

dTV(Z
x
t , Z

x
t +

√
ϵζ) ≤ Cεt−1.

The term dTV(V
x
t , V

x
t +

√
ϵζ) is treated likewise.

• Let f : Rd → R be measurable and bounded and let us de�ne

fε : y 7→ Ef(y +
√
εζ) =

1

(2π)d/2

∫
Rd

f(y +
√
εξ)e−|ξ|2/2dξ =

1

(2πε)d/2

∫
Rd

f(ξ)e−|ξ−y|2/(2ε)dξ. (3.17)

Then fε is C1 with

∇fε(y) =
1

(2πε)d/2

∫
Rd

f(ξ)
ξ − y

ε
e−|ξ−y|2/(2ε)dξ =

ε−1/2

(2π)d/2

∫
Rd

f(y +
√
εξ)ξe−|ξ|2/2dξ

= ε−1/2E[f(y +
√
εζ)ζ]

and then
[fε]Lip ≤ ∥f∥∞ε−1/2E|ζ| ≤ C∥f∥∞ε−1/2. (3.18)

So that

|Ef(Zx
t +

√
εζ)− Ef(V x

t +
√
εζ)| = |Efε(Zx

t )− Efε(V x
t )|

≤ C∥f∥∞√
ε

∥Zx
t − V x

t ∥1 ≤
C∥f∥∞√

ε
(t+ t1/2∆σ(x)), (3.19)

where we used Lemma A.3 in the Appendix. This implies that

dTV(Z
x
t +

√
εζ, V x

t +
√
εζ) ≤ Cε−1/2(t+ t1/2∆σ(x)).

• Conclusion : Considering (3.15), we have

dTV(X
x
t , Y

x
t ) ≤ CeC|x|2t1/2 + Cεt−1 + Cε−1/2(t+ t1/2∆σ(x)).

We now choose ε =
[
t(t+ t1/2∆σ(x))

]2/3
, so that

dTV(X
x
t , Y

x
t ) ≤ CeC|x|2t1/2 + C(t1/2 +∆σ(x))2/3.

3.4 Proof of Theorem 2.2 using Theorem 2.7

We �rst prove Theorem 2.7.

Proof. Let f : Rd → R be measurable and bounded, let ε > 0 and let ζ ∼ N (0, Id) be independent of
(Z1, Z2). We have

|Ef(Z1)− Ef(Z2)| ≤

∣∣∣∣∣Ef(Z1)−
r∑

i=1

wiEfε/ni
(Z1)

∣∣∣∣∣+
∣∣∣∣∣

r∑
i=1

wiEfε/ni
(Z1)−

r∑
i=1

wiEfε/ni
(Z2)

∣∣∣∣∣
+

∣∣∣∣∣
r∑

i=1

wiEfε/ni
(Z2)− Ef(Z2)

∣∣∣∣∣ , (3.20)

where fε is de�ned as in (3.17) and where the ni's and the wi's will be de�ned later.
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Let φ be as de�ned in (3.16) replacing Zx
t by Z1. Then, φ is di�erentiable up to the order 2r and

for all k = 0, 1, . . . , 2r:

∇kφ(y) = (−1)k
∫
Rd

f(ξ)∇kp1(ξ − y)dξ.

Using the Taylor formula up to order 2r, for every y ∈ Rd there exits ỹ ∈ (0, y) such that

φ(y) = φ(0) +
2r−1∑
k=1

∇kφ(0)

k!
· y⊗k +

∇2rφ(ỹ)

(2r)!
· y⊗2r.

Moreover, we have ∣∣∇2rφ(ỹ) · y⊗2r
∣∣ ≤ C∥f∥∞|y|2r

∫
Rd

∥∇2rp1(ξ)∥dξ. (3.21)

Then there exists a random ζ̃ ∈ (0, ζ) such that

Ef(Z1 +
√
εζ)− Ef(Z1) = Eφ(

√
εζ)− φ(0) =

2r−1∑
k=1

∇kφ(0)

k!
εk/2 · E[ζ⊗k] +

E[∇2rφ(
√
εζ̃) · ζ⊗2r]

(2r)!
εr

=
r−1∑
k=1

∇2kφ(0)

(2k)!
εk · E[ζ⊗2k] +

E[∇2rφ(
√
εζ̃) · ζ⊗2r]

(2r)!
εr =:

r−1∑
k=1

βk(t)ε
k + β̃r(t, ε)ε

r, (3.22)

because if k is odd, then E[ζ⊗k] = 0. We now rely on a multi-step Richardson-Romberg extrapolation
[LP17, Appendix A]. Let us denote the re�ners ni = 2i−1 and the auxiliary sequences and weights

uk :=

(
k−1∏
ℓ=1

(1− 2−ℓ)

)−1

, vk := (−1)k2−k(k+1)/2uk+1, wk := ukvr−k, k = 1, . . . , r. (3.23)

These weights are the unique solution to the r × r Vandermonde system

r∑
i=1

win
−k
i =

{
1 if k = 0,
0 else.

, k = 0, 1, . . . , r − 1. (3.24)

Then we have

r∑
i=1

wi

(
Ef(Z1 +

√
ε/niζ)− Ef(Z1)

)
=

r∑
i=1

wi

r−1∑
k=1

βk(t)ε
kn−k

i +

r∑
i=1

wiβ̃r(t, ε/ni)ε
rn−r

i

=
r−1∑
k=1

εkβk(t)
r∑

i=1

win
−k
i + εr

r∑
i=1

β̃r(t, ε/ni)win
−r
i

= εr
r∑

i=1

β̃r(t, ε/ni)win
−r
i , (3.25)

where we used (3.24) in the last equation. Now, using (3.21) we have∣∣∣∣∣
r∑

i=1

β̃r(t, ε/ni)win
−r
i

∣∣∣∣∣ ≤ C∥f∥∞
(∫

Rd

∥∇2rp1(ξ)∥dξ
) r∑

i=1

|wi|n−r
i .

Since uk → u∞ =
∏

ℓ≥1(1− 2−ℓ)−1 <∞, the weights satisfy

|wi| ≤ u2∞2−(r−i)(r−i+1)/2, i = 1, . . . , r,
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so that
r∑

i=1

|wi|
nri

≤ u2∞

r∑
i=1

2−(r−i)(r−i+1)/2 ≤ u2∞

r∑
i=1

2(r−i)/2 = u2∞

r−1∑
i=0

2−i/2 ≤ C. (3.26)

As a consequence and since
∑r

i=1wi = 1, we may write from (3.25)∣∣∣∣∣Ef(Z1)−
r∑

i=1

wiEfε/ni
(Z1)

∣∣∣∣∣ ≤ C∥f∥∞εr
∫
Rd

∥∇2rp1(ξ)∥dξ. (3.27)

The same way, we obtain∣∣∣∣∣Ef(Z2)−
r∑

i=1

wiEfε/ni
(Z2)

∣∣∣∣∣ ≤ C∥f∥∞εr
∫
Rd

∥∇2rp2(ξ)∥dξ.

On the other side, using (3.18) we have∣∣∣∣∣
r∑

i=1

wiEfε/ni
(Z1)−

r∑
i=1

wiEfε/ni
(Z2)

∣∣∣∣∣ ≤ C∥f∥∞√
ε

W1(Z1, Z2)

(
r∑

i=1

|wi|2(i−1)/2

)
. (3.28)

Moreover, for every i = 1, . . . , r,

|wi|2(i−1)/2 ≤ u2∞2−(r−i)(r−i+1)/2+(i−1)/2

and then
r∑

i=1

|wi|2(i−1)/2 ≤ u2∞

r∑
i=1

2(i−1)/2 ≤ u2∞2r. (3.29)

Thus considering (3.20), we obtain for every ε > 0,

dTV(Z1, Z2) ≤ Cεr
∫
Rd

(
∥∇2rp1(ξ)∥+ ∥∇2rp2(ξ)∥

)
dξ + Cε−1/2W1(Z1, Z2).

Optimizing in ε gives

ε⋆ =

(
W1(Z1, Z2)/(2r

∫
Rd

(
∥∇2rp1(ξ)∥+ ∥∇2rp2(ξ)∥

)
dξ)

)2/(2r+1)

and then

dTV(Z1, Z2) ≤ Cd,rW1(Z1, Z2)
2r/(2r+1)

(∫
Rd

(
∥∇2rp1(ξ)∥+ ∥∇2rp2(ξ)∥

)
dξ

)1/(2r+1)

.

We now prove Theorem 2.2.

Proof. Using Lemma 3.7, we have

dTV(X
x
t , Y

x
t ) ≤ CeC|x|2t1/2 + dTV(Z

x
t , V

x
t ) (3.30)

We now apply Theorem 2.7 with the random vectors Z1 = Zx
t and Z2 = V x

t . Assuming that σ1 is C
2r
b

and using Theorem 3.1, ∇k
ypZ exists for k = 0, 1, . . . , 2r and

∀k = 0, 1, . . . , 2r, ∀t ∈ (0, T ], ∀x, y ∈ Rd, ∥∇k
ypZ (0, t, x, y)∥ ≤ C

t(d+k)/2
e−c|y−x|2/t.
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Then we have ∫
Rd

∇2r
y pZ (0, t, x, ξ)dξ ≤ Ct−r

∫
Rd

1

td/2
e−c|x−ξ+y|2/tdξ ≤ Ct−r.

The same way we have ∫
Rd

∇2r
y pV (0, t, x, ξ)dξ ≤ Ct−r.

Applying Theorem 2.7 with Lemma A.3 yields

dTV(Z
x
t , V

x
t ) ≤ C(

√
t+∆σ(x))2r/(2r+1).

3.5 Proof of Theorem 2.5

For the proof of Theorem 2.5, we do not use Lemma 3.7; instead we directly apply Theorem 2.7. Using
Theorem 3.2, ∇k

ypX and ∇k
ypY exist for k = 0, 1, . . . , 2r and satisfy the same bounds as previously.

Then using Theorem 2.7 with Lemma A.3 we obtain

dTV(X
x
t , Y

x
t ) ≤ C(

√
t(1 + ∆b(x)) + ∆σ(x) + t|b(x)|)2r/(2r+1).

3.6 Proof of Theorem 2.8

Proof. We use Lemma 3.7 again and rework the bound on dTV(Z
x
t , V

x
t ) by paying attention to the

dependency of the constants in r in the proof of Theorem 2.7 with Z1 := Zx
t and Z2 := V x

t . Since
σ1 ∈ C2r

b for every r ∈ N, we write (3.22) for any r ∈ N and we have

|β̃r(t, ε)| ≤ C̃2r∥f∥∞t−rE[|ζ|2r]
(2r)!

, C̃2r := C2rc
−d/2
2r ,

where C2r and c2r are de�ned in (2.12) and where

E[|ζ|2r] = 2rΓ(d/2 + r)

Γ(d/2)
=

r−1∏
i=0

(d+ 2i).

Using (3.26) we get ∣∣∣∣∣
r∑

i=1

β̃r(t, ε/ni)win
−r
i

∣∣∣∣∣ ≤ CC̃2r∥f∥∞t−r

∏r−1
i=0 (d+ 2i)

(2r)!

and we obtain as in (3.27):∣∣∣∣∣Ef(Zx
t )−

r∑
i=1

wiEfε/ni
(Zx

t )

∣∣∣∣∣ ≤ 1

2
κ1∥f∥∞εrt−r, κ1 := CC̃2r

∏r−1
i=0 (d+ 2i)

(2r)!∣∣∣∣∣Ef(V x
t )−

r∑
i=1

wiEfε/ni
(V x

t )

∣∣∣∣∣ ≤ 1

2
κ1∥f∥∞εrt−r.

On the other hand, considering (3.28) and (3.29) with Lemma A.3 with ∆σ(x) = 0 we have∣∣∣∣∣
r∑

i=1

wiEfε/ni
(V x

t )−
r∑

i=1

wiEfε/ni
(Zx

t )

∣∣∣∣∣ ≤ κ2
∥f∥∞√

ε
t, κ2 := C2r. (3.31)
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We now minimize κ1ε
rt−r + κ2ε

−1/2t in ε, giving

ε⋆ =
t(2r+2)/(2r+1)

(2rκ1)2/(2r+1)
κ
2/(2r+1)
2

and then

κ1ε
r
⋆t

−r + κ2ε
−1/2
⋆ t ≤ Cκ

2r/(2r+1)
2 κ

1/(2r+1)
1 tr/(2r+1)

with as r → ∞:

κ
2r/(2r+1)
2 κ

1/(2r+1)
1 ∼ C̃

1/(2r+1)
2r

(
r−1∏
i=0

(d+ 2i)

)1/(2r+1)
1

(2r)!1/(2r+1)
22r

2/(2r+1)

with(
r−1∏
i=0

(d+ 2i)

) 1
(2r+1)

= exp

(
r

2r+1

1

r

r−1∑
i=0

log(d+ 2i)

)
≤ exp

(
r

2r+1
log(d+(r−1))

)
≤

√
d+r−1,

1

(2r)!1/(2r+1)
∼ e

2r
, lim sup

r→∞
C̃

1/(2r+1)
2r <∞

where we used Assumption (2.12), so that

κ
2r/(2r+1)
2 κ

1/(2r+1)
1 ≤ C

√
d+ r − 1

e

2r
2r.

Then we have dTV(Z
x
t , V

x
t ) ≤ C2rr−1/2tr/(2r+1) and we choose r(t) = ⌊log1/2(1/t)⌋ so that as t→ 0,

dTV(Z
x
t , V

x
t ) ≤ Ct1/2 exp

(
C
√

log(1/t)
)
.

4 Counterexample

In this section we give a counter-example showing that we cannot achieve a bound better than t1/2

in general. More speci�cally, we show that we cannot achieve a bound better than t1/2 for the total
variation between an SDE and its Euler-Maruyama-scheme in general. For x > 0 and σ > 0, let us
consider the one-dimensional process

Y x
t = xeσWt , (4.1)

where W is a standard Brownian motion. The process Y is solution of the SDE dY x
t = (σ2/2)Y x

t dt+
σY x

t dWt and its associated Euler-Maruyama schemes reads

Ȳ x
t = x+ (σ2/2)xt+ σxWt ∼ N

(
x(1 + tσ2/2), σ2x2t

)
. (4.2)

Proposition 4.1. Let Y be the process de�ned in (4.1). Then for small enough t we have

dTV(Y
x
t , Ȳ

x
t ) ≥ Cxt

1/2. (4.3)

Proof. We have

pY (t, x, y) =
1√

2πσ2t

exp
(
− 1

2σ2t
log2(y/x)

)
y

1y≥0 (4.4)
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so that

dTV(Y
x
t , Ȳ

x
t ) =

1√
2πσ2t

∫
R

∣∣∣∣exp(− log2(y/x)

2σ2t

)
y−11y≥0 − exp

(
−(y − x− xtσ2/2)2

2σ2x2t

)
x−1

∣∣∣∣ dy
≥ 1√

2πσ2

∫ ∞

−x/
√
t

∣∣∣∣ 1

x+
√
ty

exp

(
− log2(1 +

√
ty/x)

2σ2t

)
− 1

x
exp

(
−(y − x

√
tσ2/2)2

2σ2x2

)∣∣∣∣ dy.
But we have as (t, y) → 0:

1

1 +
√
ty/x

exp

(
− log2(1 +

√
ty/x)

2σ2t

)
− exp

(
−(y − x

√
tσ2/2)2

2σ2x2

)
= (1−

√
ty/x+O(ty2)) exp

(
− 1

2σ2t
(
ty2

x2
− t3/2y3

x3
+O(t2y4))

)
− exp

(
− y2

2σ2x2
− tσ2

8
+

√
ty

2σ2x

)
= e−

y2

2σ2x2

[
(1−

√
ty/x+O(ty2))

(
1 +

√
ty3

2σ2x3
+O(ty4)

)
−
(
1 +

√
ty

2σ2x
− tσ2

8
+O(t2) +O(ty2)

)]
= e−

y2

2σ2x2

[
−
√
ty

x
−

√
ty

2σ2x
+

√
ty3

2σ2x3
+
tσ2

8
+O(ty2) +O(t2)

]
.

Thus there exists ϵ > 0 and t0 such that for every t ≤ t0:

dTV(Y
x
t , Ȳ

x
t ) ≥

1√
2πσ2x2

e−
ε2

2σ2x2

√
t

2

∫ ε

−ε

∣∣∣∣−yx − y

2σ2x
+

y3

2σ2x3

∣∣∣∣ dy,
so that dTV(Y

x
t , Ȳ

x
t ) is of order t

1/2 as t→ 0.

However, the process Y does not satisfy the assumptions of Theorem 2.2 as its noise coe�cient is
not elliptic neither bounded on (0,∞). We then prove the following result.

Proposition 4.2. There exists a di�usion process X on R with C1 and Lipschitz continuous drift, with

C∞
b and elliptic di�usion coe�cient σ and there exists T > 0 and ε ∈ (0, 1) such that

∀t ∈ [0, T ], ∀x ∈ (ε, ε−1), dTV(X
x
t , X̄

x
t ) ≥ Cxt

1/2

where X̄ is the Euler-Maruyama scheme of X and where the positive constant Cx depends on x.

Proof. We construct from the geometric Brownian motion Y de�ned in (4.1), a process X with elliptic
and bounded drift and such that dTV(X

x
t , X̄

x
t ) ≥ Cxt

1/2. For ε ∈ (0, 1/2), let us consider ψ : R → R+

a C∞
b approximation of

ψ̃ : x ∈ R 7−→


x if x ∈ [ε, ε−1],
ε if x ≤ ε
ε−1 if x ∈ [ε−1,∞)

such that ψ = ψ̃ on [2ε, ε−1/2] ∪ (−∞, ε/2] ∪ [2ε−1,∞). Then we de�ne the process with elliptic and
bounded noise coe�cient

dXx
t = −σ

2

2
Xx

t dt+ σψ(Xx
t )dWt.

Then for x ∈ (2ε, ε−1/2) we have X̄x
t = Ȳ x

t and

P(Y x
t ̸= Xx

t ) ≤ P
(
sups∈[0,t] Y

x
s ≥ ε−1/2

)
+ P

(
infs∈[0,t] Y

x
s ≤ 2ε

)
.
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With a proof similar to the proof of Lemma 3.3, we show that

P
(
sups∈[0,t] Y

x
s ≥ ε−1/2

)
≤ Cx,εt.

Moreover, we remark that (Y x)−1 ∼ x−2Y x in law so

P
(
infs∈[0,t] Y

x
s ≤ 2ε

)
= P

(
sups∈[0,t](Y

x
s )

−1 ≥ ε−1/2
)
= P

(
sups∈[0,t] Y

x
s ≥ x2ε−1/2

)
≤ Cx,εt.

Then we obtain

dTV(X
x
t , X̄

x
t ) ≥ dTV(Y

x
t , Ȳ

x
t )− dTV(X

x
t , Y

x
t ) ≥ Cx

√
t.

Remark 4.3. We could also consider the processX with "cut" bounded drift b̃ and get the same bounds,
proving then that we cannot achieve better bounds in general than the ones established in Theorem
2.8 even if we assume that b is bounded.

A Appendix

Lemma A.1 ([Fri64], Chapter 9, Lemma 7). For a > 0, 0 < u < t ≤ T , x ∈ Rd, ξ ∈ Rd, let

Ia :=

∫
Rd

1

(u(t− u))d/2
exp

(
−a
(
|x− y|2

t− u
+

|y − ξ|2

u

))
dy.

Then there exists a constant C > 0 depending only on d and T such that for every 0 < ε < 1,

Ia ≤ C

(εat)d/2
exp

(
−a(1− ε)

|x− ξ|2

t

)
.

Let us recall [PP20, Lemma 3.4(a)], with an immediate adaptation to the non-homogeneous case.

Lemma A.2. Let Z be solution to the generic SDE:

Zx
0 = x ∈ Rd, dZx

t = b(t, Zx
t )dt+ σ(t, Zx

t )dWt, t ∈ [0, T ],

where b and σ are Lipschitz continuous in (t, x) and where σ is bounded. Then for p ≥ 1,

∀t ∈ [0, T ], ∀x ∈ Rd, ∥Zx
t − x∥p ≤ C(p, T, [b]Lip, [σ]Lip, ∥σ∥∞)

(
t|b(0, x)|+ t1/2

)
.

Lemma A.3. Let X and Y be the solution to the two general SDEs (2.1) and (2.2). Assume that b
and σ are Lipschitz continuous in (t, x) and that σ is bounded. Then for every p ≥ 1,

∀t ∈ [0, T ], ∀x ∈ Rd, ∥Xx
t − Y x

t ∥p ≤ C
(
t(1 + ∆b(x)) + t3/2(|b1|+ |b2|)(0, x) + ∆σ(x)t1/2

)
(A.1)

Proof. We �rst deal with the case p ≥ 2. We have

∥Xx
t − Y x

t ∥p ≤
∥∥∥∥∫ t

0
(b1(s,X

x
s )− b2(s, Y

x
s ))ds

∥∥∥∥
p

+

∥∥∥∥∫ t

0
(σ1(s,X

x
s )− σ2(s, Y

x
s ))dWs

∥∥∥∥
p

≤
∥∥∥∥∫ t

0
(b1(s,X

x
s )− b1(0, x))ds

∥∥∥∥
p

+ t∆b(x) +

∥∥∥∥∫ t

0
(b2(s, Y

x
s )− b2(0, x))ds

∥∥∥∥
p

+

∥∥∥∥∫ t

0
(σ1(s,X

x
s )− σ1(0, x))dWs

∥∥∥∥
p

+

∥∥∥∥∫ t

0
∆σ(x)dWs

∥∥∥∥
p

+

∥∥∥∥∫ t

0
(σ2(s, Y

x
s )− σ2(0, x))dWs

∥∥∥∥
p
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But using the Burkholder-Davis-Gundy and the generalized Minkowski inequalities, we have∥∥∥∥∫ t

0
(σ1(s,X

x
s )− σ1(0, x))dWs

∥∥∥∥
p

≤ CBDG
p [σ1]Lip

∥∥∥∥∫ t

0
|(s,Xx

s )− (0, x)|2ds
∥∥∥∥1/2
p/2

≤ CBDG
p [σ1]Lip

(∫ t

0
∥(s,Xx

s )− (0, x)∥2pds
)1/2

≤ C(t+ t3/2|b1(0, x)|),

where CBDG
p is a constant which only depends on p and where we used Lemma A.2. So that

∥Xx
t − Y x

t ∥p ≤ [b1]Lip

∫ t

0
∥(s,Xx

s )− (0, x)∥pds+ [b2]Lip

∫ t

0
∥(s, Y x

s )− (0, x)∥p + t∆b(x)

+ C(t+ t3/2(|b1|+ |b2|)(0, x)) + ∆σ(x)
√
t∥W1∥p

≤ C
(
t(∆b(x) + 1) + t3/2(|b1|+ |b2|)(0, x) + ∆σ(x)

√
t
)

which completes the proof for p ≥ 2. For p ∈ [1, 2), the inequality is still true remarking that
∥ · ∥p ≤ ∥ · ∥2.

References

[AS64] Milton Abramowitz and Irene A. Stegun. Handbook of mathematical functions with formulas,

graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series,
No. 55. U. S. Government Printing O�ce, Washington, D. C., 1964.

[BJ22] Oumaima Bencheikh and Benjamin Jourdain. Convergence in total variation of the Euler-
Maruyama scheme applied to di�usion processes with measurable drift coe�cient and additive
noise. SIAM J. Numer. Anal., 60(4):1701�1740, 2022.

[BL05] Marcello Bertoldi and Luca Lorenzi. Estimates of the derivatives for parabolic operators with
unbounded coe�cients. Trans. Amer. Math. Soc., 357(7):2627�2664, 2005.

[BP21] Pierre Bras and Gilles Pagès. Convergence of Langevin-Simulated Annealing algorithms with
multiplicative noise. arXiv e-prints, page arXiv:2109.11669, September 2021.

[BT96] Vlad Bally and Denis Talay. The law of the Euler scheme for stochastic di�erential equations.
I. Convergence rate of the distribution function. Probab. Theory Related Fields, 104(1):43�60,
1996.

[Cer00] Sandra Cerrai. Analytic semigroups and degenerate elliptic operators with unbounded coe�-
cients: a probabilistic approach. J. Di�erential Equations, 166(1):151�174, 2000.

[Cle21] Emmanuelle Clement. Hellinger and total variation distance in approximating Levy driven
SDEs. arXiv e-prints, page arXiv:2103.09648, March 2021.

[Fri64] Avner Friedman. Partial di�erential equations of parabolic type. Prentice-Hall, Inc., Englewood
Cli�s, N.J., 1964.

[GL08] Emmanuel Gobet and Céline Labart. Sharp estimates for the convergence of the density of the
Euler scheme in small time. Electron. Commun. Probab., 13:352�363, 2008.

[Kra04] Ilia Krasikov. New bounds on the Hermite polynomials. East J. Approx., 10(3):355�362, 2004.

19



[LP17] Vincent Lemaire and Gilles Pagès. Multilevel Richardson-Romberg extrapolation. Bernoulli,
23(4A):2643�2692, 2017.

[Lun97] Alessandra Lunardi. Schauder estimates for a class of degenerate elliptic and parabolic opera-
tors with unbounded coe�cients in Rn. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24(1):133�
164, 1997.

[MPZ21] Stéphane Menozzi, Antonello Pesce, and Xicheng Zhang. Density and gradient estimates for
non degenerate Brownian SDEs with unbounded measurable drift. J. Di�erential Equations,
272:330�369, 2021.

[PP20] Gilles Pagès and Fabien Panloup. Unajusted Langevin algorithm with multiplicative noise:
Total variation and Wasserstein bounds. arXiv e-prints, to appear in Annals of Applied Prob-

ability, page arXiv:2012.14310, 2020.

[QZ04] Zhongmin Qian and Weian Zheng. A representation formula for transition probability densities
of di�usions and applications. Stochastic Process. Appl., 111(1):57�76, 2004.

[RG11] Lewis Fry Richardson and Richard Tetley Glazebrook. Ix. the approximate arithmetical so-
lution by �nite di�erences of physical problems involving di�erential equations, with an ap-
plication to the stresses in a masonry dam. Philosophical Transactions of the Royal Society

of London. Series A, Containing Papers of a Mathematical or Physical Character, 210(459-
470):307�357, 1911.

20


	Introduction
	Main results
	Proof of the Theorems
	Recalls on density estimates for SDEs with bounded drift
	Preliminary results
	Proof of Theorem 2.1
	Proof of Theorem 2.2 using Theorem 2.7
	Proof of Theorem 2.5
	Proof of Theorem 2.8

	Counterexample
	Appendix

