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Introduction

The convergence properties of Euler-Maruyama schemes to approximate the solution of a Stochastic Dierential Equation (SDE) have been extensively studied, in particular for L p distances. However, the literature seems to lack some results about the convergence in total variation in small time. More specically, in this paper we consider the two following SDEs in R d starting at the same point:

X x 0 = x ∈ R d , dX x t = b 1 (t, X x t )dt + σ 1 (t, X x t )dW t , Y x 0 = x, dY x t = b 2 (t, Y x t )dt + σ 2 (t, Y x t )dW t ,
where W is a Brownian motion. We generally assume that for i = 1, 2, b i is Lipschitz continuous and that σ i is elliptic, bounded and Lipschitz continuous, but we do not assume that b i is bounded. Our objective is to give bounds of the total variation distance between the law of X x t and the law of Y x t , denoted d TV (X x t , Y x t ), as t → 0. In particular, we apply our results to the case where Y x = Xx is the one-step Euler-Maruyama scheme associated to the SDE X, given by dY x t = b 1 (0, x)dt + σ 1 (0, x)dW t .

Such bounds are well known for L p distances and their associated Wasserstein distances and are known to be of order t as t → 0. Yet the literature seems to lack results as it comes to d TV . If σ 1 = σ 2 is constant, then it is classical background that d TV (X x t , Y x t ) is of order t, using a Girsanov change of measure (see for example [PP20, Proposition 4.1]) but this strategy cannot be applied to non-constant σ. The diculty of the total variation distance in small time is the following: considering its representation formula and comparing it with the L 1 -Wasserstein distance, if x and y ∈ R d are close to each other and if f : R d → R is Lipschitz continuous, then we can bound |f (x)-f (y)| by [f ] Lip |x-y|;

whereas if f is simply measurable and bounded, then we cannot directly bound |f (x) -f (y)| in terms of |x -y|. Moreover the regularizing properties of the semi-group cannot be used in small time for the total variation distance.

Results in the literature focus on the Euler-Maruyama scheme. In [START_REF] Bally | The law of the Euler scheme for stochastic dierential equations. I. Convergence rate of the distribution function[END_REF] is proved the convergence for a xed time horizon T > 0 and as N → ∞, where N is the number of steps in the Euler-Maruyama scheme on a nite horizon. More precisely, if σ 1 is elliptic and if b 1 and σ 1 are C ∞ with bounded derivatives (but b 1 and σ 1 are not supposed bounded themselves), then ([BT96, Theorem 3.1])

∀x ∈ R d , d TV (X x T , Xx,N T ) ≤ K(T )(1 + |x| Q ) N T q ,
where Xx,N T stands for the Euler scheme with N steps, where Q and q are positive exponents and where K is a non-decreasing function depending on b 1 and σ 1 . The common strategy of proof for such bounds is to use Malliavin calculus in order to perform an integration by parts and to use bounds on the derivatives of the density. However, we cannot infer a bound as T → 0 since we do not know whether K(T )/T q → 0 as T → 0 in general. In [START_REF] Gobet | Sharp estimates for the convergence of the density of the Euler scheme in small time[END_REF] are given bounds in small time and as N → ∞. Assuming that σ 1 is uniformly elliptic and that b 1 and σ 1 are bounded with bounded derivatives up to order 3, then ([GL08, Theorem 2.3]) ∀t ∈ (0, T ], ∀x, y ∈ R d , |p(t, x, y) -pN (t, x, y)| ≤ K(T )T N t (d+1)/2 e -C|x-y| 2 /t , where p and pN denote the transition densities of X x and Xx,N respectively and where C is a positive constant depending on d and on the bounds on b 1 and σ 1 and on their derivatives. However, we cannot directly use this result for the total variation distance: taking N = 1 yields

d TV (X x t , Xx t ) = R d |p(t, x, y) -pN (t, x, y)|dy ≤ K(T )T t -1/2 R d 1 t d/2 e -C|x-y| 2 /t ,
giving a bound in t -1/2 which does not converge to 0 as t → 0. Moreover, [START_REF] Gobet | Sharp estimates for the convergence of the density of the Euler scheme in small time[END_REF] assumes that b 1 is bounded. [START_REF] Bencheikh | Convergence in total variation of the Euler-Maruyama scheme applied to diusion processes with measurable drift coecient and additive noise[END_REF] focuses on the case where b 1 is bounded and measurable but not necessarily regular and where σ 1 is constant; it proves that the convergence in total variation of the Euler scheme on a nite horizon which is regularized with respect to the irregular drift b 1 and with step h, is of order √ h. In the present paper, we rst prove a convergence rate of order t 1/3 for d TV (X x t , Y x t ), provided that for i = 1, 2, σ i is elliptic, σ i and b i are Lipschitz-continuous with respect to their time variable and that σ i is C 2 b and b i is C 1 and Lipschitz-continuous with respect to their space variable. More generally, if we furthermore assume that σ is C 2r b , then we obtain a convergence rate of order t r/(2r+1) . Letting r → ∞, we also prove that if σ ∈ C ∞ b with some technical condition on the derivatives of the densities of the random variables X x t and Y x t , then the convergence rate is of order t 1/2 exp(C log(1/t)) which is "almost" t 1/2 . Moreover, we provide an example using the geometric Brownian motion where the convergence rate is exactly t 1/2 , thus showing that we cannot achieve better bounds in general. To prove the bound in t r/(2r+1) , we use a multi-step Richardson-Romberg extrapolation [START_REF] Fry | Ix. the approximate arithmetical solution by nite dierences of physical problems involving dierential equations, with an application to the stresses in a masonry dam[END_REF] [LP17], which is a method imported from numerical analysis that we use in our case for theoretical purposes. It relies on a Taylor expansion with null coecients up to some high order. Such method can be used in more general settings with regularization arguments in order to improve the convergence rates (in our case, we improve t 1/3 into t r/(2r+1) ).

Interestingly, the dierence between the drift coecients b 1 -b 2 does not need to be small for our bounds to be valid. This is because the dominant term in d TV (X x t , Y x t ) comes from the the diusion part.

Recent results (see [START_REF] Clement | Hellinger and total variation distance in approximating Levy driven SDEs[END_REF]) establish a convergence in small time at rate t 1/2 for the Euler scheme of certain classes of diusions driven by stable Lévy processes, not directly including the Brownian case. This approach relies on Malliavin calculus techniques. In this work the "standard" drift is replaced in the Euler scheme by the ow of the associated (noiseless) ODE. This seems to be specic to Lévy driven SDEs. Adapting this approach to our general continuous framework is not as straightforward as could be expected and would deserve further investigations for future work.

The total variation distance is closely related to the estimation of the density of the solution to an SDE and this density satises a Fokker-Planck Partial Dierential Equation PDE (3.2). If the drift is bounded, then the density and its partial derivatives admit sub-gaussian Aronson's bounds (see [START_REF] Friedman | Partial dierential equations of parabolic type[END_REF] and Section 3.1). However, giving estimates and bounds for the solution of the PDE in the case of unbounded drift appears to be more dicult, see [START_REF] Lunardi | Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coecients in R n[END_REF], [START_REF] Cerrai | Analytic semigroups and degenerate elliptic operators with unbounded coecients: a probabilistic approach[END_REF], [START_REF] Bertoldi | Estimates of the derivatives for parabolic operators with unbounded coecients[END_REF]. Recent improvements have been made in [START_REF] Menozzi | Density and gradient estimates for non degenerate Brownian SDEs with unbounded measurable drift[END_REF] using the parametrix method. Studying this case is useful to study the convergence in total variation of SDE's with unbounded drift, in particular for the Langevin equation, very popular in stochastic optimization, and which reads

dX t = -∇V (X t )dt + σ(X t )dW t ,
where in many cases, V : R d → R has quadratic growth and ∇V has linear growth (see for example [START_REF] Bras | Convergence of Langevin-Simulated Annealing algorithms with multiplicative noise[END_REF]).

In order to deal with unbounded b i , we propose two dierent methods. First, we use a localization argument and "cut" the drift b i into bi outside a compact set, so that we can use bounds from [Fri64] for the bounded drift case. We use the Girsanov formula to explicit the dependence of these bounds in ∥ bi ∥ ∞ . A second method consists in using the density estimates from [MPZ21, Section 4] to improve the dependency with respect to the bounds in x. However this second approach relies on advanced parametrix methods which require further regularity assumptions on the coecients of the SDE and which are not fully detailed for higher order derivatives. Our rst method is clearly much more elementary, starting from a quite general bound established for any pair of integrable random vectors (see Theorem 2.7) and calling upon a standard regularization strategy which combined with a multistep procedure, seems to be at least quasi-optimal in a very general framework.

Notations

We endow the space R d with the canonical Euclidean norm denoted by | • |. For x ∈ R d and for R > 0, we denote B(x, R) = {y ∈ R d : |y -x| ≤ R}.

We denote M d (R) the set of d × d matrices with real coecients. For M ∈ (R d ) ⊗k , we denote by ∥M ∥ its operator norm, i.e.

∥M ∥ = sup u∈R d×k , |u|=1 M • u. If M : R d → (R d ) ⊗k , we denote ∥M ∥ ∞ = sup x∈R d ∥M (x)∥. For k ∈ N and if f : R d → R is C k , we denote by ∇ k f : R d → (R d ) ⊗k its dierential of order k. If f is Lipschitz continuous, we denote by [f ] Lip its Lipschitz constant. If f : (t, x) ∈ R × R d → f (t, x) is
C k with respect to x, we still denote by ∇ k f its dierential with respect to x. We denote the total variation distance between two distributions π 1 and π 2 on R d :

d TV (π 1 , π 2 ) = 2 sup A∈B(R d ) |π 1 (A) -π 2 (A)|.
Without ambiguity, if Z 1 and Z 2 are two R d -valued random vectors, we also write d TV (Z 1 , Z 2 ) to denote the total variation distance between the law of Z 1 and the law of Z 2 . We have as well

d TV (π 1 , π 2 ) = sup R d f dπ 1 - R d f dπ 1 , f : R d → [-1, 1] measurable .
Moreover, we recall that if π 1 and π 2 admit densities with respect to some measure λ, then

d TV (π 1 , π 2 ) = R d dπ 1 dλ - dπ 2 dλ dλ.
We denote by W 1 the L 1 -Wasserstein distance. For x ∈ R d , we denote by δ x the Dirac mass at x. If Z is a Markov process with values in R d , we denote, when it exists, its transition probability from x to y ∈ R d between times s < t, p Z (s, t, x, y).

In this paper, we use the notation C and c to denote positive constants, which may change from line to line.

Main results

We consider the two following SDEs in R d :

X x 0 = x ∈ R d , dX x t = b 1 (t, X x t )dt + σ 1 (t, X x t )dW t , t ∈ [0, T ],
(2.1)

Y x 0 = x, dY x t = b 2 (t, Y x t )dt + σ 2 (t, Y x t )dW t , t ∈ [0, T ], (2.2)
where T is a nite time horizon, b i :

R d → R d , σ i : R d → M d (R), i = 1, 2
, are Borel functions and W is a standard R d -valued Brownian motion dened on a probability space (Ω, A, P). The one-step Euler-Maruyama scheme of X, denoted X, is dened by Xx = Y x when Y x reads

dY x t = b 1 (0, x)dt + σ 1 (0, x)dW t , t ∈ [0, T ]. (2.3)
To allievate notations, we also dene

∆b(x) := |b 1 (0, x) -b 2 (0, x)|, ∆σ(x) := |σ 1 (0, x) -σ 2 (0, x)|. (2.4) 
Let us remark that if Y = X, then ∆b(x) = 0 and ∆σ(x) = 0. For g : (t, x) ∈ [0, T ]×R d → g(t, x) ∈ R q and r ∈ N, let us dene the following assumptions:

• Lip t (g): g is Lipschitz continuous with respect to t, uniformly in x.

• g ∈ C r : g is dierentiable with respect to x with continuous partial derivatives up to the order r.

• g ∈ C r b : g ∈ C r and is bounded with bounded partial derivatives up to the order r. • g ∈ C r b : g ∈ C r and has partial bounded derivatives up to the order r, but we do not assume that g is bounded itself.

• For σ :

[0, T ] × R d → M d (R), we say that σ is (uniformly) elliptic if ∃ σ0 > 0, ∀x ∈ R d , ∀t ∈ [0, T ], σ(t, x)σ(t, x) ⊤ ≥ σ2 0 I d .
(2.5)

Theorem 2.1. Let X and Y be the solutions of the SDEs (2.1) and (2.2). For i = 1, 2, assume

Lip t (b i ), Lip t (σ i ), σ i ∈ C 2 b , b i ∈ C 1 b and σ i is elliptic. Then ∀t ∈ [0, T ], ∀x ∈ R d , d TV (X x t , Y x t ) ≤ C(t 1/2 + ∆σ(x)) 2/3 + Ce c|x| 2 t 1/2 , (2.6)
where the positive constants C and c only depend

on d, T , σ0 , ∥σ i ∥ ∞ , [b i ] Lip , [σ i ] Lip and ∥∇ 2 σ i ∥ ∞ . In particular, if Y = X we have d TV (X x t , Y x t ) ≤ Ct 1/3 + Ce c|x| 2 t 1/2 .
Theorem 2.2. Let X and Y be the solutions of the SDEs (2.1) and (2.2). For

i = 1, 2, assume Lip t (b i ), Lip t (σ i ), that σ i ∈ C 2r b , b i ∈ C 1 b and that σ i is elliptic. Then ∀t ∈ [0, T ], ∀x ∈ R d , d TV (X x t , Y x t ) ≤ C(t 1/2 + ∆σ(x)) 2r/(2r+1) + Ce c|x| 2 t 1/2 , (2.7)
where the positive constants C and c only depend on d, T , σ0 , on ∥σ i ∥ ∞ , on the bounds on the derivatives of b i and σ i and on their Lipschitz constants. In particular, if Y = X we have

d TV (X x t , Y x t ) ≤ Ct r/(2r+1) + Ce c|x| 2 t 1/2 .
Remark 2.3. In Theorems 2.1 and 2.2, we can actually improve the dependency of the constants in x in small time since we have more precisely:

∀t ∈ [0, Ce -2(2r+1)c|x| 2 ], d TV (X x t , Y x t ) ≤ C(t 1/2 + ∆σ(x)) 2r/(2r+1) .
Remark 2.4. We can adapt the framework of Theorem 2.2 to the study of SDEs with homogeneous vanishing noise, i.e. where for a > 0,

dX x t = b 1 (t, X x t )dt + aσ 1 (X x t ), dY x t = b 2 (t, Y x t ) + aσ 2 (Y x t )
and we identify the dependency in a as a → 0. Namely, with the same assumptions, for a > 0 small enough we have

d TV (X x t , Y x t ) ≤ Ce ca -1 |x| 2 t 1/2 + Ca -(d+r) (t 1/2 + ∆σ(x)) 2r/(2r+1) , (2.8) 
where the constant C does not depend on a. This bound is obtained adapting the proof of Theorem 2.2 in Section 3.4 and using that if Z x is the martingale

dZ x t = aσ(Z x t )dW t then (Z x t ) ∼ ( Zx a 2 t
) where Zx t = σ( Zx t )dW t which does not depend on a. We can also improve the dependency in the initial condition x ∈ R d using [START_REF] Menozzi | Density and gradient estimates for non degenerate Brownian SDEs with unbounded measurable drift[END_REF], however at the expense of further regularity assumptions on b i and σ i , i = 1, 2.

Theorem 2.5. Let X and Y be the solutions of the SDEs (2.1) and (2.2). For i = 1, 2, assume

Lip t (b i ), Lip t (σ i ), σ i ∈ C 2r+1 b , b i ∈ C 2r b and σ i is elliptic. Then ∀t ∈ [0, T ], ∀x ∈ R d , d TV (X x t , Y x t ) ≤ C t 1/2 (1 + ∆b(x)) + ∆σ(x) + t(|b 1 | + |b 2 |)(0, x) 2r/(2r+1) , (2.9)
where the positive constants C and c only depend on d, T , σ0 , on ∥σ i ∥ ∞ , on the bounds on the derivatives of b i and σ i and on their Lipschitz constants. In particular, if Y = X, we have

d TV (X x t , Y x t ) ≤ Ct r/(2r+1) 1 + t 1/2 (|b 1 | + |b 2 |)(0, x)| 2r/(2r+1)
.

Remark 2.6. Choosing Y not to be the Euler-Maruyama scheme of X but a general SDE and expressing the bounds in the Theorems in terms of ∆b(x) and ∆σ(x) allows to extend our results to more general couples of diusions with "close" coecients, for example to SDE solvers other than the genuine Euler-Maruyama scheme. Also, it is helpful to study perturbed SDEs, for example if we consider

dX x t = b 1 (t, X x t )dt + a 1 (t)σ(X x t )dW t , dY x t = b 2 (t, Y x t )dt + a 2 (t)σ(Y x t )dW t (2.10)
where

|a 1 (t) -a 2 (t)| → 0 as t → ∞. Then we have d TV (X x t+s , Y x t+s ) ≤ Ce c|x| 2 s 1/2 + C(s 1/2 + |a 1 (t) -a 2 (t)|) 2r/(2r+1)
and we obtain dierent convergence rates as t → ∞ and s → 0, depending on (t, s). A noticeable example of this is the Langevin-simulated annealing SDE [START_REF] Bras | Convergence of Langevin-Simulated Annealing algorithms with multiplicative noise[END_REF]. Furthermore we remark that in Theorems 2.1 and 2.2, the bounds do not depend on ∆b, enhancing that the dominant term in the total variation comes from the diusion part.

To improve the rate of convergence from t 1/3 in Theorem 2.1 to t r/(2r+1) in Theorem 2.2, we rely on a Richardson-Romberg extrapolation [START_REF] Fry | Ix. the approximate arithmetical solution by nite dierences of physical problems involving dierential equations, with an application to the stresses in a masonry dam[END_REF] [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF]; this argument can also be applied in a more general framework. The following proposition gives bounds on the total variation between two random vectors, knowing bounds on the L 1 -Wasserstein distance and bounds on the partial derivatives of the densities up to some order. Theorem 2.7. Let Z 1 and Z 2 be two random vectors in L 1 (R d ) and admitting densities p 1 and p 2 respectively with respect to the Lebesgue measure. Assume furthermore that p 1 and p 2 are C 2r with r ∈ N and that ∇ k p i ∈ L 1 (R d ) for i = 1, 2 and k = 1, . . . , 2r. Then we have

d TV (Z 1 , Z 2 ) ≤ C d,r W 1 (Z 1 , Z 2 ) 2r/(2r+1) R d ∥∇ 2r p 1 (ξ)∥ + ∥∇ 2r p 2 (ξ)∥ dξ 1/(2r+1) (2.11)
where the constant C d,r depends only on d and on r.

If σ ∈ C ∞
b , then we also prove that we can "almost" get a convergence rate of order t 1/2 .

Theorem 2.8. Let X and Y be the solutions of the SDEs (2.1) and (2.2). For

i = 1, 2, assume Lip t (b i ), Lip t (σ i ), that σ i ∈ C 2r b for every r ∈ N, b i ∈ C 1 b , that σ i is elliptic and that ∆σ(x) = 0. Assume furthermore that if Z and V are the martingales dZ t = σ 1 (t, Z t )dW t and dV t = σ 2 (t, Z t )dW t , then ∀r ∈ N, ∀t ∈ (0, T ], ∀x, y ∈ R d , ∥∇ 2r y p Z (0, t, x, y)∥ + ∥∇ 2r y p V (0, t, x, y)∥ ≤ C 2r t (d+2r)/2 e -c 2r |y-x| 2 /t with lim sup r→∞ C 2r c -d/2 2r 1/(2r) < ∞.
(2.12) (see Theorem 3.1). Then

∀t ∈ (0, T ], ∀x ∈ R d , d TV (X x t , Y x t ) ≤ Ce c|x| 2 t 1/2 + Ct 1/2 e c √ log(1/t) , (2.13) 
where the positive constants C and c only depend on d, T , σ0 , on ∥σ i ∥ ∞ , on the bounds on the derivatives of b i and σ i and on their Lipschitz constants.

Remark 2.9. Assumption (2.12) is satised in the case of a Brownian motion, which suggests that this assumption is satised in general provided that σ is "regular enough". Indeed, if dZ t = σdW t with σ ∈ M d (R) being non degenerate, then with Σ := σσ ⊤ we have for t > 0 and x, y ∈ R d :

p Z (0, t, x, y) = 1 det(Σ)t d/2 Φ Σ -1/2 y -x √ t , Φ(u) := 1 (2π) d/2 e -|u| 2 /2 .
Moreover for every r ∈ N and u ∈ R d we have

d r du r Φ(u) ≤ 1 (2π) d/2 | He r (|u|)|e -|u| 2 /2
where He r is the r th probabilist Hermite polynomial. Following [START_REF] Krasikov | New bounds on the Hermite polynomials[END_REF] we have

∀u ≥ 0, | He 2r (u)|e -u 2 /2 ≤ C2 -r √ r (2r)! 2 r! 2 ≤ C2 r √ r,
using the Stirling formula for the last inequality. On the other hand, using [AS64, 22.14.15] we have

∀u ≥ 0, | He 2r (u)|e -u 2 /4 ≤ 2 r+1 r!.
Then, for for every ε ∈ (0, 1],

| He 2r (u)|e -u 2 /2 = He 2r (u)e -u 2 /4 ε He 2r (u)e -u 2 /2 1-ε e -εu 2 /4 ≤ C (2 r r!) ε 2 r r 1/2 1-ε e -εu 2 /2 .
Then if we choose ε r = log -1 (r) for r ≥ 3, we have (r!) εr ≤ e εrr log(r) = e r so that d r du r Φ(u) ≤ C2 rεr e r 2 r r 1/2 e -εr|u| 2 /2 =: A r e -εr|u| 2 /2 and then for r ≥ 3 we have

∥∇ 2r y p Z (0, t, x, y)∥ ≤ ∥Σ -1/2 ∥ 2r det(Σ)t (d+2r)/2 d 2r du 2r Φ Σ -1/2 y -x √ t ≤ ∥Σ -1/2 ∥ 2r det(Σ)t (d+2r)/2 A r e -εr∥Σ -1 ∥|y-x| 2 /(2t)
where

∥Σ -1/2 ∥ 2r A r ε -d/2 r 1/(2r)
is bounded. Thus Assumption (2.12) is satised.

Remark 2.10. For the Euler-Maruyama scheme (2.3), with a slight abuse of notation, x is used both for the starting point and in the denition of the drift and diusion coecients. The transition density should be considered for constant drift and diusion coecients in this case. However the results remain valid as the Euler scheme is simply a Brownian process.

3 Proof of the Theorems

Recalls on density estimates for SDEs with bounded drift

We recall results on the bounds for the density of the solution of the SDE using the theory of partial dierential equations. Let us consider a generic SDE:

Z x 0 = x ∈ R d , dZ x t = b Z (t, Z x t )dt + σ Z (t, Z x t )dW t , t ∈ [0, T ]. (3.1)
Then under regularity assumptions on b Z and on σ Z , the transition probability p Z exists and is solution of the backward Kolmogorov PDE:

p Z (t, t, x, •) = δ x , t ∈ [0, T ], ∂ s p Z (s, t, x, y) = ⟨b Z (s, x), ∇ x p Z (s, t, x, y)⟩ + 1 2 Tr σ ⊤ Z (s, x)∇ 2 x p Z (s, t, x, y)σ Z (s, x) , s < t ∈ [0, T ]. (3.2)
Moreover, p Z and its derivatives satisfy sub-gaussian Aronson's bounds:

Theorem 3.1 ([Fri64], Chapter 9, Theorem 7). Let Z be the solution of (3.1) and let T > 0. Assume Lip t (b Z ) and Lip t (σ Z ), that b Z , σ Z ∈ C r b and that σ Z is elliptic. Then for every m 0 = 0, 1 and for every

0 ≤ m 1 + m 2 ≤ r, ∇ m 0 +m 1 x ∇ m 2
y p Z exists and

∀s < t ∈ [0, T ], ∀x, y ∈ R d , ∥∇ m 0 +m 1 x ∇ m 2 y p Z (s, t, x, y)∥ ≤ C (t -s) (d+m 0 +m 1 +m 2 )/2 e -c|y-x| 2 /(t-s) , (3.3)
where the constants C and c only depend on the bounds on b Z and σ Z and on their derivatives and their Lipschitz constants, on the modulus of ellipticity of σ Z , on d and on T .

Let us also recall the recent result from [START_REF] Menozzi | Density and gradient estimates for non degenerate Brownian SDEs with unbounded measurable drift[END_REF] giving Aronson's bounds of the partial derivatives with respect to y in the case where b Z is unbounded. Considering [MPZ21, Section 4] with [MPZ21, (3.1)], we have the following result. Theorem 3.2. Let Z be the solution of (3.1) and let

T > 0. Assume Lip t (b Z ) and Lip t (σ Z ), that b Z ∈ C r b , σ Z ∈ C r+1 b
and that σ Z is elliptic. Then for every 0 ≤ m ≤ r, ∇ m y p Z exists and

∀s < t ∈ [0, T ], ∀x, y ∈ R d , ∥∇ m y p Z (s, t, x, y)∥ ≤ C (t -s) (d+m)/2 e -c|y-x| 2 /(t-s) , (3.4)
where the constants C and c only depend on the bounds on b Z and σ Z and on their derivatives and on their Lipschitz constants, on the modulus of ellipticity of σ Z , on d and on T .

Preliminary results

In order to apply the bounds on the densities from Theorem 3.1 to Theorem 2.7, we rst "cut" the drifts b 1 and b 2 on a compact set. That is, we instead consider the processes X and Y dened by

d X x t = bx 1 (t, X x t )dt + σ 1 (t, X x t )dW t , t ∈ [0, T ], (3.5) d Y x t = bx 2 (t, Y x t )dt + σ 2 (t, Y x t )dW t , t ∈ [0, T ], (3.6) 
where bi , i = 1, 2 is dened as follows. We choose R > 0 and we consider a C ∞ decreasing function ψ : R + → R + such that ψ = 1 on [0, R 2 ] and ψ = 0 on [(R + 1) 2 , ∞) and we dene bx i (t, y) := b i (t, y)ψ(|y -x| 2 ), so that bx i is bounded:

∀y ∈ R d , ∀t ∈ [0, T ], | bx i (t, y)| ≤ sup z∈B(x,R+1) |b i (t, z)| ≤ C(1 + |x|), (3.7) because b i is Lipschitz continuous. Lemma 3.3. Assume Lip t (b 1 ), Lip t (σ 1 ), b 1 ∈ C 1 b , σ 1 ∈ C 1 b . Then for every x ∈ R d and t ∈ [0, T ], d TV (X x t , X x t ) ≤ C(1 + |b 1 (0, x)| 2 )t. (3.8) 
Proof. Let f : R d → R be measurable and bounded. We remark that on the event

{sup s∈[0,t] |X x s -x| 2 ≤ R 2 }, we have X x t = X x t , so that |Ef ( X x t ) -Ef (X x t )| ≤ 2∥f ∥ ∞ P sup s∈[0,t] |X x s -x| 2 > R 2 .
But using the inequality |u + v| 2 ≤ 2|u| 2 + 2|v| 2 we have

|X x t -x| 2 ≤ 2 t 0 b 1 (s, X x s )ds 2 +2 t 0 σ 1 (s, X x s )dW s 2 ≤ 2t t 0 |b 1 (s, X x s )| 2 ds+2 t 0 σ 1 (s, X x s )dW s 2 ≤ 4t[b 1 ] 2 Lip t 0 |X x s -x| 2 ds + 1 3 t 3 + 4t 2 |b 1 (0, x)| 2 + 2 t 0 σ 1 (s, X x s )dW s 2 so that E sup s∈[0,t] |X x s -x| 2 ≤ 4t[b 1 ] 2 Lip t 0 E sup u∈[0,s] |X x u -x| 2 ds + 4 3 [b 1 ] 2 Lip t 4 + 4t 2 |b 1 (0, x)| 2 + 2E sup s∈[0,t] s 0 σ 1 (u, X x u )dW u 2 .
Moreover using Doob's martingale inequality we have

E sup s∈[0,t] s 0 σ 1 (u, X x u )dW u 2 ≤ 4E t 0 σ 1 (u, X x u )dW u 2 = 4E t 0 σ 2 1 (u, X x u )du ≤ 4∥σ 1 ∥ 2 ∞ t.
Then we dene the non-decreasing deterministic process S t := E sup s∈[0,t] |X x s -x| 2 and we get the dierential inequality (using t ≤ T )

S t ≤ 4t T |b 1 (0, x)| 2 + 1 3 [b 1 ] 2 Lip T 3 + 2∥σ 1 ∥ 2 ∞ + 4t[b 1 ] 2 Lip t 0
S s ds, so the Gronwall lemma yields

S t ≤ 4t T |b 1 (0, x)| 2 + 1 3 [b 1 ] 2 Lip T 3 + 2∥σ 1 ∥ 2 ∞ e 2t 2 [b 1 ] 2 Lip ≤ C(1 + |b 1 (0, x)| 2 )t.
Using Markov's inequality, we have then

|Ef ( X x t ) -Ef (X x t )| ≤ 2∥f ∥ ∞ P sup s∈[0,t] |X x s -x| 2 > R 2 ≤ 2∥f ∥ ∞ C(1 + |b 1 (0, x)| 2 )t R 2 .
We can now apply Theorem 3.1 to X and to Y however the constants arising depend on the bound on ∥ bx i ∥ ∞ and thus on x. In order to deal with the dependency in ∥ bx i ∥ ∞ , we apply the Girsanov formula and reduce to the null drift case. Proposition 3.4. Let Z x be the solution of

Z x 0 = x, dZ x t = σ 1 (t, Z x t )dW t , t ∈ [0, T ]. (3.9) Assume Lip t (b 1 ), Lip t (σ 1 ), b 1 ∈ C 1 b , σ 1 ∈ C 1 b and σ 1 is elliptic. Then we have for every t ∈ [0, T ], x, y ∈ R d , p X (0, t, x, y) = p Z (0, t, x, y) + t 0 E U x s ⟨ bx 1 (s, Z x s ), ∇ x p Z (s, t, Z x s , y)⟩ ds, (3.10)
where X is dened in (3.5) and U x is dened as

U x s = exp s 0 ⟨g(u, Z x u ) bx 1 (u, Z x u ), dZ x u ⟩ - 1 2 s 0 ⟨g(u, Z x u ) bx 1 (u, Z x u ), bx 1 (u, Z x u )⟩du , (3.11) g = (σ 1 σ ⊤ 1 ) -1 . (3.12)
Proof. First, note that since σ 1 is elliptic and since bx 1 , σ 1 ∈ C 1 b , then p X and p Z exist as well as ∇ x p Z (Theorem 3.1). We then use [QZ04, Theorem 2.4] extended to non-homogeneous diusion processes. Following [QZ04, Remark 2.5], since σ 1 is elliptic and bounded, the assumptions of [QZ04, Theorem 2.4] hold.

We also have the following bounds on the process U x . Lemma 3.5. With the same assumptions as in Proposition 3.4, for every p ≥ 2, x ∈ R d and t ∈ [0, T ] we have

E sup s∈[0,t] |U x s | p ≤ e Cp 2 ∥ bx 1 ∥ 2 ∞ t . (3.13)
Proof. We recall that for every q ≥ 1, the process (U x ) q is a martingale with

d(U x s ) q = q(U x s ) q g(s, Z x s ) bx 1 (s, Z x s ), σ 1 (s, Z x s )dW s .
Thus, Doob's martingale inequality yields

E sup s∈[0,t] |U x s | 2q ≤ Cq 2 ∥ bx 1 ∥ 2 ∞ E t 0 |U x s | 2q ds ≤ Cq 2 ∥ bx 1 ∥ 2 ∞ t 0 E sup u∈[0,s] |U x s | 2q ds.
So with U x 0 = 1 we obtain

E sup s∈[0,t] |U x s | 2q ≤ e Cq 2 ∥ bx 1 ∥ 2 ∞ t .
Lemma 3.6. With the same assumptions as in Proposition 3.4, we have for every x, y ∈ R d and

t ∈ [0, T ], t 0 E U x s ⟨ bx 1 (s, Z x s ), ∇ x p Z (s, t, Z x s , y)⟩ ds ≤ Ce C∥ bx 1 ∥ 2 ∞ e -c|y-x| 2 /t t (d-1)/2 . (3.14)
Proof. We use Theorem 3.1 on the process Z x , which yields bounds with constants depending on σ 1 but not on bx 1 . We obtain for every q ≥ 1 and for every s ∈ [0, t]:

E |∇ x p Z (s, t, Z x s , y)| q = R d |∇ x p Z (s, t, ξ, y)| q p Z (0, s, x, ξ)dξ ≤ C q (t -s) (q+(q-1)d)/2 R d 1 (s(t -s)) d/2 exp -c q |y -ξ| 2 t -s + |ξ -x| 2 s dξ ≤ C q t d/2 1 (t -s) (q+(q-1)d)/2 e -cq|y-x| 2 /t ,
where we used Lemma A.1 in the appendix. Then for p -1 + q -1 = 1 and p ≥ 2, using the Hölder inequality we have

t 0 E U x s ⟨ bx 1 (s, Z x s ), ∇ x p Z (s, t, Z x s , y)⟩ ds ≤ ∥ bx 1 ∥ ∞ sup s∈[0,t] E|U x s | p 1/p t 0 (E |∇ x p Z (s, t, Z x s , y)| q ) 1/q ds ≤ ∥ bx 1 ∥ ∞ e Cp∥ bx 1 ∥ 2 ∞ t C q e -cq|y-x| 2 /t t d/(2q) t 0 ds (t -s) (1+(1-q -1 )d)/2 .
The integral in ds converges under the condition q < d/(d -1) if d > 1, and for any value of q > 1 if d = 1. Then performing the change of variable s = tu we obtain

t 0 E U x s ⟨ bx 1 (s, Z x s ), ∇ x p Z (s, t, Z x s , y)⟩ ds ≤ ∥ bx 1 ∥ ∞ e Cp∥ bx 1 ∥ 2 ∞ T C q e -cq|y-x| 2 /t t (d-1)/2 ≤ Ce C∥ bx 1 ∥ 2 ∞ e -c|y-x| 2 /t t (d-1)/2 .

Proof of Theorem 2.1

Lemma 3.7. We have for every x ∈ R d and t ∈ [0, T ]:

d TV (X x t , Y x t ) ≤ d TV (Z x t , V x t ) + Ce C|x| 2 t 1/2 ,
where

dZ x t = σ 1 (t, Z x t )dW t and dV x t = σ 2 (t, V x t )dW t .
Proof. Let us write

d TV (X x t , Y x t ) ≤ d TV (X x t , X x t ) + d TV ( X x t , Z x t ) + d TV (Z x t , V x t ) + d TV (V x t , Y x t ) + d TV ( Y x t , Y x t ),
where X and Y are dened in (3.5) and (3.6). Using Lemma 3.3 with (3.7), we have

d TV (X x t , X x t ) + d TV ( Y x t , Y x t ) ≤ C(1 + |x| 2 )t.
Using the formula (3.10) and the inequality (3.14), we have

d TV ( X x t , Z x t )= R d |p X (0, t, x, y)-p Z (0, t, x, y)|dy = R d t 0 E U x s ⟨ bx 1 (s, Z x s ), ∇ x p Z (s, t, Z x s , y)⟩ ds dy ≤ Ce C∥ bx 1 ∥ 2 ∞ t 1/2 R d e -c|x-y| 2 /t t d/2 dy ≤ Ce C|x| 2 t 1/2 ,
where we used (3.7). The term d TV ( Y x t , V x t ) is treated likewise.

We now prove Theorem 2.1.

Proof. Let us introduce an articial regularization. For ε > 0 and using Lemma 3.7 we have

d TV (X x t , Y x t ) ≤ Ce C|x| 2 t 1/2 + d TV (Z x t , Z x t + √ εζ) + d TV (Z x t + √ εζ, V x t + √ εζ) + d TV (V x t + √ εζ, V x t ) (3.15)
where ζ ∼ N (0, I d ) and is independent of the Brownian motion W .

• Let f : R d → R be measurable and bounded and let us dene

φ : y ∈ R d → Ef (Z x t + y) = R d f (ξ + y)p Z (0, t, x, ξ)dξ = R d f (ξ)p Z (0, t, x, ξ -y)dξ. (3.16) Then φ is C 2 with ∇ 2 φ(y) = R d f (ξ)∇ 2 y p Z (0, t, x, ξ -y)dξ.
Moreover, using Theorem 3.1, we have

∥∇ 2 y p Z (0, t, x, ξ -y)∥ ≤ C t (d+2)/2 e -c|x-ξ+y| 2 /t ,
where the constants C and c do not depend on bx 1 . This implies that for every y ∈ R d ,

∥∇ 2 φ(y)∥ ∞ ≤ C∥f ∥ ∞ t -1 R d 1 t d/2 e -c|x-ξ+y| 2 /t dξ ≤ C∥f ∥ ∞ t -1 .
Then using the Taylor formula, for every y ∈ R d there exists ỹ ∈ (0, y) such that

φ(y) = φ(0) + ∇φ(0) • y + 1 2 ∇ 2 φ(ỹ) • y ⊗2
and then for some random ζ ∈ (0, ζ) we have

|Ef (Z x t + √ εζ) -Ef (Z x t )| = |Eφ( √ εζ) -φ(0)| = √ εE[∇φ(0) • ζ] + ε 2 E[∇ 2 φ( √ ε ζ) • ζ ⊗2 ] ≤ Cε∥f ∥ ∞ t -1 ,
where we used that E[∇φ(0

) • ζ] = ∇φ(0) • E[ζ] = 0.
This way we obtain

d TV (Z x t , Z x t + √ ϵζ) ≤ Cεt -1 . The term d TV (V x t , V x t + √ ϵζ) is treated likewise.
• Let f : R d → R be measurable and bounded and let us dene

f ε : y → Ef (y + √ εζ) = 1 (2π) d/2 R d f (y + √ εξ)e -|ξ| 2 /2 dξ = 1 (2πε) d/2 R d f (ξ)e -|ξ-y| 2 /(2ε) dξ. (3.17) Then f ε is C 1 with ∇f ε (y) = 1 (2πε) d/2 R d f (ξ) ξ -y ε e -|ξ-y| 2 /(2ε) dξ = ε -1/2 (2π) d/2 R d f (y + √ εξ)ξe -|ξ| 2 /2 dξ = ε -1/2 E[f (y + √ εζ)ζ]
and then

[f ε ] Lip ≤ ∥f ∥ ∞ ε -1/2 E|ζ| ≤ C∥f ∥ ∞ ε -1/2 . (3.18) So that |Ef (Z x t + √ εζ) -Ef (V x t + √ εζ)| = |Ef ε (Z x t ) -Ef ε (V x t )| ≤ C∥f ∥ ∞ √ ε ∥Z x t -V x t ∥ 1 ≤ C∥f ∥ ∞ √ ε (t + t 1/2 ∆σ(x)), (3.19) 
where we used Lemma A.3 in the Appendix. This implies that

d TV (Z x t + √ εζ, V x t + √ εζ) ≤ Cε -1/2 (t + t 1/2 ∆σ(x)).
• Conclusion : Considering (3.15), we have

d TV (X x t , Y x t ) ≤ Ce C|x| 2 t 1/2 + Cεt -1 + Cε -1/2 (t + t 1/2 ∆σ(x)).
We now choose ε = t(t + t 1/2 ∆σ(x)) 2/3 , so that

d TV (X x t , Y x t ) ≤ Ce C|x| 2 t 1/2 + C(t 1/2 + ∆σ(x)) 2/3 .

3.4

Proof of Theorem 2.2 using Theorem 2.7

We rst prove Theorem 2.7.

Proof. Let f : R d → R be measurable and bounded, let ε > 0 and let ζ ∼ N (0, I d ) be independent of

(Z 1 , Z 2 ). We have |Ef (Z 1 ) -Ef (Z 2 )| ≤ Ef (Z 1 ) - r i=1 w i Ef ε/n i (Z 1 ) + r i=1 w i Ef ε/n i (Z 1 ) - r i=1 w i Ef ε/n i (Z 2 ) + r i=1 w i Ef ε/n i (Z 2 ) -Ef (Z 2 ) , (3.20) 
where f ε is dened as in (3.17) and where the n i 's and the w i 's will be dened later.

Let φ be as dened in (3.16) replacing Z x t by Z 1 . Then, φ is dierentiable up to the order 2r and for all k = 0, 1, . . . , 2r:

∇ k φ(y) = (-1) k R d f (ξ)∇ k p 1 (ξ -y)dξ.
Using the Taylor formula up to order 2r, for every y ∈ R d there exits ỹ ∈ (0, y) such that

φ(y) = φ(0) + 2r-1 k=1 ∇ k φ(0) k! • y ⊗k + ∇ 2r φ(ỹ) (2r)! • y ⊗2r .
Moreover, we have

∇ 2r φ(ỹ) • y ⊗2r ≤ C∥f ∥ ∞ |y| 2r R d ∥∇ 2r p 1 (ξ)∥dξ. (3.21)
Then there exists a random ζ ∈ (0, ζ) such that

Ef (Z 1 + √ εζ) -Ef (Z 1 ) = Eφ( √ εζ) -φ(0) = 2r-1 k=1 ∇ k φ(0) k! ε k/2 • E[ζ ⊗k ] + E[∇ 2r φ( √ ε ζ) • ζ ⊗2r ] (2r)! ε r = r-1 k=1 ∇ 2k φ(0) (2k)! ε k • E[ζ ⊗2k ] + E[∇ 2r φ( √ ε ζ) • ζ ⊗2r ] (2r)! ε r =: r-1 k=1 β k (t)ε k + βr (t, ε)ε r , (3.22) because if k is odd, then E[ζ ⊗k ] = 0.
We now rely on a multi-step Richardson-Romberg extrapolation [LP17, Appendix A]. Let us denote the reners n i = 2 i-1 and the auxiliary sequences and weights

u k := k-1 ℓ=1 (1 -2 -ℓ ) -1 , v k := (-1) k 2 -k(k+1)/2 u k+1 , w k := u k v r-k , k = 1, . . . , r. (3.23) 
These weights are the unique solution to the r × r Vandermonde system r i=1

w i n -k i = 1 if k = 0, 0 else. , k = 0, 1, . . . , r -1. (3.24)
Then we have

r i=1 w i Ef (Z 1 + ε/n i ζ) -Ef (Z 1 ) = r i=1 w i r-1 k=1 β k (t)ε k n -k i + r i=1 w i βr (t, ε/n i )ε r n -r i = r-1 k=1 ε k β k (t) r i=1 w i n -k i + ε r r i=1 βr (t, ε/n i )w i n -r i = ε r r i=1 βr (t, ε/n i )w i n -r i , (3.25) 
where we used (3.24) in the last equation. Now, using (3.21) we have

r i=1 βr (t, ε/n i )w i n -r i ≤ C∥f ∥ ∞ R d ∥∇ 2r p 1 (ξ)∥dξ r i=1 |w i |n -r i . Since u k → u ∞ = ℓ≥1 (1 -2 -ℓ ) -1 < ∞, the weights satisfy |w i | ≤ u 2 ∞ 2 -(r-i)(r-i+1)/2 , i = 1, . . . , r, so that r i=1 |w i | n r i ≤ u 2 ∞ r i=1 2 -(r-i)(r-i+1)/2 ≤ u 2 ∞ r i=1 2 (r-i)/2 = u 2 ∞ r-1 i=0 2 -i/2 ≤ C. (3.26)
As a consequence and since r i=1 w i = 1, we may write from (3.25)

Ef (Z 1 ) - r i=1 w i Ef ε/n i (Z 1 ) ≤ C∥f ∥ ∞ ε r R d ∥∇ 2r p 1 (ξ)∥dξ. (3.27)
The same way, we obtain

Ef (Z 2 ) - r i=1 w i Ef ε/n i (Z 2 ) ≤ C∥f ∥ ∞ ε r R d ∥∇ 2r p 2 (ξ)∥dξ.
On the other side, using (3.18) we have

r i=1 w i Ef ε/n i (Z 1 ) - r i=1 w i Ef ε/n i (Z 2 ) ≤ C∥f ∥ ∞ √ ε W 1 (Z 1 , Z 2 ) r i=1 |w i |2 (i-1)/2 . (3.28)
Moreover, for every i = 1, . . . , r,

|w i |2 (i-1)/2 ≤ u 2 ∞ 2 -(r-i)(r-i+1)/2+(i-1)/2
and then r i=1

|w i |2 (i-1)/2 ≤ u 2 ∞ r i=1 2 (i-1)/2 ≤ u 2 ∞ 2 r . (3.29) 
Thus considering (3.20), we obtain for every ε > 0,

d TV (Z 1 , Z 2 ) ≤ Cε r R d ∥∇ 2r p 1 (ξ)∥ + ∥∇ 2r p 2 (ξ)∥ dξ + Cε -1/2 W 1 (Z 1 , Z 2 ).
Optimizing in ε gives

ε ⋆ = W 1 (Z 1 , Z 2 )/(2r R d ∥∇ 2r p 1 (ξ)∥ + ∥∇ 2r p 2 (ξ)∥ dξ) 2/(2r+1)
and then

d TV (Z 1 , Z 2 ) ≤ C d,r W 1 (Z 1 , Z 2 ) 2r/(2r+1) R d ∥∇ 2r p 1 (ξ)∥ + ∥∇ 2r p 2 (ξ)∥ dξ 1/(2r+1)
.

We now prove Theorem 2.2.

Proof. Using Lemma 3.7, we have

d TV (X x t , Y x t ) ≤ Ce C|x| 2 t 1/2 + d TV (Z x t , V x t ) (3.30)
We now apply Theorem 2.7 with the random vectors Z 1 = Z x t and Z 2 = V x t . Assuming that σ 1 is C 2r b and using Theorem 3.1, ∇ k y p Z exists for k = 0, 1, . . . , 2r and ∀k = 0, 1, . . . , 2r, ∀t ∈ (0, T ], ∀x, y ∈ R d , ∥∇ k y p Z (0, t, x, y)∥ ≤ C t (d+k)/2 e -c|y-x| 2 /t .

Then we have

R d ∇ 2r y p Z (0, t, x, ξ)dξ ≤ Ct -r R d 1 t d/2 e -c|x-ξ+y| 2 /t dξ ≤ Ct -r .
The same way we have

R d ∇ 2r y p V (0, t, x, ξ)dξ ≤ Ct -r .
Applying Theorem 2.7 with Lemma A.3 yields

d TV (Z x t , V x t ) ≤ C( √ t + ∆σ(x)) 2r/(2r+1) .

3.5

Proof of Theorem 2.5

For the proof of Theorem 2.5, we do not use Lemma 3.7; instead we directly apply Theorem 2.7. Using Theorem 3.2, ∇ k y p X and ∇ k y p Y exist for k = 0, 1, . . . , 2r and satisfy the same bounds as previously. Then using Theorem 2.7 with Lemma A.3 we obtain

d TV (X x t , Y x t ) ≤ C( √ t(1 + ∆b(x)) + ∆σ(x) + t|b(x)|) 2r/(2r+1) .

3.6

Proof of Theorem 2.8

Proof. We use Lemma 3.7 again and rework the bound on d TV (Z x t , V x t ) by paying attention to the dependency of the constants in r in the proof of Theorem 2.7 with Z 1 := Z x t and Z 2 := V x t . Since σ 1 ∈ C 2r b for every r ∈ N, we write (3.22) for any r ∈ N and we have

| βr (t, ε)| ≤ C 2r ∥f ∥ ∞ t -r E[|ζ| 2r ] (2r)! , C 2r := C 2r c -d/2 2r ,
where C 2r and c 2r are dened in (2.12) and where

E[|ζ| 2r ] = 2 r Γ(d/2 + r) Γ(d/2) = r-1 i=0 (d + 2i).
Using (3.26) we get

r i=1 βr (t, ε/n i )w i n -r i ≤ C C 2r ∥f ∥ ∞ t -r r-1 i=0 (d + 2i) (2r)!
and we obtain as in (3.27):

Ef (Z x t ) - r i=1 w i Ef ε/n i (Z x t ) ≤ 1 2 κ 1 ∥f ∥ ∞ ε r t -r , κ 1 := C C 2r r-1 i=0 (d + 2i) (2r)! Ef (V x t ) - r i=1 w i Ef ε/n i (V x t ) ≤ 1 2 κ 1 ∥f ∥ ∞ ε r t -r .
On the other hand, considering (3.28) and (3.29) with Lemma A.3 with ∆σ(x) = 0 we have

r i=1 w i Ef ε/n i (V x t ) - r i=1 w i Ef ε/n i (Z x t ) ≤ κ 2 ∥f ∥ ∞ √ ε t, κ 2 := C2 r . (3.31) We now minimize κ 1 ε r t -r + κ 2 ε -1/2 t in ε, giving ε ⋆ = t (2r+2)/(2r+1) (2rκ 1 ) 2/(2r+1) κ 2/(2r+1) 2
and then

κ 1 ε r ⋆ t -r + κ 2 ε -1/2 ⋆ t ≤ Cκ 2r/(2r+1) 2 κ 1/(2r+1) 1 t r/(2r+1)
with as r → ∞:

κ 2r/(2r+1) 2 κ 1/(2r+1) 1 ∼ C 1/(2r+1) 2r r-1 i=0 (d + 2i) 1/(2r+1) 1 (2r)! 1/(2r+1) 2 2r 2 /(2r+1) with r-1 i=0 (d + 2i) 1 (2r+1) = exp r 2r+1 1 r r-1 i=0 log(d + 2i) ≤ exp r 2r+1 log(d+(r-1)) ≤ √ d+r-1, 1 (2r)! 1/(2r+1) ∼ e 2r , lim sup r→∞ C 1/(2r+1) 2r < ∞
where we used Assumption (2.12), so that

κ 2r/(2r+1) 2 κ 1/(2r+1) 1 ≤ C √ d + r -1 e 2r 2 r .
Then we have d TV (Z x t , V x t ) ≤ C2 r r -1/2 t r/(2r+1) and we choose r(t) = ⌊log 1/2 (1/t)⌋ so that as t → 0,

d TV (Z x t , V x t ) ≤ Ct 1/2 exp C log(1/t) .

Counterexample

In this section we give a counter-example showing that we cannot achieve a bound better than t 1/2 in general. More specically, we show that we cannot achieve a bound better than t 1/2 for the total variation between an SDE and its Euler-Maruyama-scheme in general. For x > 0 and σ > 0, let us consider the one-dimensional process

Y x t = xe σWt , (4.1)
where W is a standard Brownian motion. The process Y is solution of the SDE dY x t = (σ 2 /2)Y x t dt + σY x t dW t and its associated Euler-Maruyama schemes reads

Ȳ x t = x + (σ 2 /2)xt + σxW t ∼ N x(1 + tσ 2 /2), σ 2 x 2 t . (4.2)
Proposition 4.1. Let Y be the process dened in (4.1). Then for small enough t we have

d TV (Y x t , Ȳ x t ) ≥ C x t 1/2 . (4.3) Proof. We have p Y (t, x, y) = 1 √ 2πσ 2 t exp -1 2σ 2 t log 2 (y/x) y 1 y≥0 (4.4) so that d TV (Y x t , Ȳ x t ) = 1 √ 2πσ 2 t R exp - log 2 (y/x) 2σ 2 t y -1 1 y≥0 -exp - (y -x -xtσ 2 /2) 2 2σ 2 x 2 t x -1 dy ≥ 1 √ 2πσ 2 ∞ -x/ √ t 1 x + √ ty exp - log 2 (1 + √ ty/x) 2σ 2 t - 1 x exp - (y -x √ tσ 2 /2) 2 2σ 2 x 2
dy.

But we have as (t, y) → 0:

1 1 + √ ty/x exp - log 2 (1 + √ ty/x) 2σ 2 t -exp - (y -x √ tσ 2 /2) 2 2σ 2 x 2 = (1 - √ ty/x + O(ty 2 )) exp - 1 2σ 2 t ( ty 2 x 2 - t 3/2 y 3 x 3 + O(t 2 y 4 )) -exp - y 2 2σ 2 x 2 - tσ 2 8 + √ ty 2σ 2 x = e -y 2 2σ 2 x 2 (1 - √ ty/x + O(ty 2 )) 1 + √ ty 3 2σ 2 x 3 + O(ty 4 ) -1 + √ ty 2σ 2 x - tσ 2 8 + O(t 2 ) + O(ty 2 ) = e -y 2 2σ 2 x 2 - √ ty x - √ ty 2σ 2 x + √ ty 3 2σ 2 x 3 + tσ 2 8 + O(ty 2 ) + O(t 2 ) .
Thus there exists ϵ > 0 and t 0 such that for every t ≤ t 0 :

d TV (Y x t , Ȳ x t ) ≥ 1 √ 2πσ 2 x 2 e -ε 2 2σ 2 x 2 √ t 2 ε -ε - y x - y 2σ 2 x + y 3 2σ 2 x 3 dy, so that d TV (Y x t , Ȳ x t ) is of order t 1/2 as t → 0.
However, the process Y does not satisfy the assumptions of Theorem 2.2 as its noise coecient is not elliptic neither bounded on (0, ∞). We then prove the following result. Proposition 4.2. There exists a diusion process X on R with C 1 and Lipschitz continuous drift, with C ∞ b and elliptic diusion coecient σ and there exists T > 0 and ε ∈ (0, 1) such that

∀t ∈ [0, T ], ∀x ∈ (ε, ε -1 ), d TV (X x t , Xx t ) ≥ C x t 1/2
where X is the Euler-Maruyama scheme of X and where the positive constant C x depends on x.

Proof. We construct from the geometric Brownian motion Y dened in (4.1), a process X with elliptic and bounded drift and such that d TV (X x t , Xx t ) ≥ C x t 1/2 . For ε ∈ (0, 1/2), let us consider ψ : R → R + a C ∞ b approximation of

ψ : x ∈ R -→    x if x ∈ [ε, ε -1 ], ε if x ≤ ε ε -1 if x ∈ [ε -1 , ∞)
such that ψ = ψ on [2ε, ε -1 /2] ∪ (-∞, ε/2] ∪ [2ε -1 , ∞). Then we dene the process with elliptic and bounded noise coecient

dX x t = - σ 2 2 X x t dt + σψ(X x t )dW t .
Then for x ∈ (2ε, ε -1 /2) we have Xx t = Ȳ x t and P(Y x t ̸ = X x t ) ≤ P sup s∈[0,t] Y x s ≥ ε -1 /2 + P inf s∈[0,t] Y x s ≤ 2ε .

With a proof similar to the proof of Lemma 3.3, we show that P sup s∈[0,t] Y x s ≥ ε -1 /2 ≤ C x,ε t.

Moreover, we remark that (Y x ) -1 ∼ x -2 Y x in law so P inf s∈[0,t] Y x s ≤ 2ε = P sup s∈[0,t] (Y x s ) -1 ≥ ε -1 /2 = P sup s∈[0,t] Y x s ≥ x 2 ε -1 /2 ≤ C x,ε t.

Then we obtain

d TV (X x t , Xx t ) ≥ d TV (Y x t , Ȳ x t ) -d TV (X x t , Y x t ) ≥ C x √ t.
Remark 4.3. We could also consider the process X with "cut" bounded drift b and get the same bounds, proving then that we cannot achieve better bounds in general than the ones established in Theorem 2.8 even if we assume that b is bounded.

A Appendix Lemma A.1 ([Fri64], Chapter 9, Lemma 7). For a > 0, 0 < u < t ≤ T , x ∈ R d , ξ ∈ R d , let

I a := R d 1 (u(t -u)) d/2 exp -a |x -y| 2 t -u + |y -ξ| 2 u dy.
Then there exists a constant C > 0 depending only on d and T such that for every 0 < ε < 1,

I a ≤ C (εat) d/2 exp -a(1 -ε) |x -ξ| 2 t .
Let us recall [PP20, Lemma 3.4(a)], with an immediate adaptation to the non-homogeneous case.

Lemma A.2. Let Z be solution to the generic SDE: 

Z x 0 = x ∈ R d ,

  dZ x t = b(t, Z x t )dt + σ(t, Z x t )dW t , t ∈ [0, T ],where b and σ are Lipschitz continuous in (t, x) and where σ is bounded. Then for p ≥ 1,∀t ∈ [0, T ], ∀x ∈ R d , ∥Z x t -x∥ p ≤ C(p, T, [b] Lip , [σ] Lip , ∥σ∥ ∞ ) t|b(0, x)| + t 1/2 .Lemma A.3. Let X and Y be the solution to the two general SDEs (2.1) and (2.2). Assume that b and σ are Lipschitz continuous in (t, x) and that σ is bounded. Then for every p ≥ 1,∀t ∈ [0, T ], ∀x ∈ R d , ∥X x t -Y x t ∥ p ≤ C t(1 + ∆b(x)) + t 3/2 (|b 1 | + |b 2 |)(0, x) + ∆σ(x)t 1/2 (A.1)Proof. We rst deal with the case p ≥ 2. We have But using the Burkholder-Davis-Gundy and the generalized Minkowski inequalities, we have constant which only depends on p and where we used Lemma A.2. So that∥X x t -Y x t ∥ p ≤ [b 1 ] Lip Y x s ) -(0, x)∥ p + t∆b(x) + C(t + t 3/2 (|b 1 | + |b 2 |)(0, x)) + ∆σ(x) √ t∥W 1 ∥ p ≤ C t(∆b(x) + 1) + t 3/2 (|b 1 | + |b 2 |)(0, x) + ∆σ(x) √ twhich completes the proof for p ≥ 2. For p ∈ [1, 2), the inequality is still true remarking that ∥ • ∥ p ≤ ∥ • ∥ 2 .

	t	(σ 1 (s, X x s ) -σ 1 (0, x))dW s	≤ C BDG	t	|(s, X x s ) -(0, x)| 2 ds	1/2
	0						p	0	p/2
	≤ C BDG p	[σ 1 ] Lip	0	t	∥(s, X x s ) -(0, x)∥ 2 p ds	1/2	≤ C(t + t 3/2 |b 1 (0, x)|),
	where C BDG						
				t				t
				0	∥(s, X x s ) -(0, x)∥ p ds + [b 2 ] Lip	0	∥(s,
		t						t
	∥X x t -Y x t ∥ p ≤	(b 1 (s, X x s ) -b 2 (s, Y x s ))ds	+	(σ 1 (s, X x s ) -σ 2 (s, Y x s ))dW s
		0						p	0

p ≤ t 0 (b 1 (s, X x s ) -b 1 (0, x))ds p + t∆b(x) + t 0 (b 2 (s, Y x s ) -b 2 (0, x))ds p + t 0 (σ 1 (s, X x s ) -σ 1 (0, x))dW s p + t 0 ∆σ(x)dW s p + t 0 (σ 2 (s, Y x s ) -σ 2 (0, x))dW s p p [σ 1 ] Lip p is a