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A mathematical analysis of the Kakinuma model
for interfacial gravity waves.
Part II: Justification as a shallow water approximation

Vincent Duchéne and Tatsuo Iguchi

Abstract

We consider the Kakinuma model for the motion of interfacial gravity waves. The Kak-
inuma model is a system of Euler—Lagrange equations for an approximate Lagrangian, which
is obtained by approximating the velocity potentials in the Lagrangian of the full model.
Structures of the Kakinuma model and the well-posedness of its initial value problem were
analyzed in the companion paper [3]. In this present paper, we show that the Kakinuma
model is a higher order shallow water approximation to the full model for interfacial gravity
waves with an error of order O3V 2 + 63V +2) in the sense of consistency, where §; and dy
are shallowness parameters, which are the ratios of the mean thicknesses of the upper and the
lower layers to the typical horizontal wavelength, respectively, and N is, roughly speaking,
the size of the Kakinuma model and can be taken an arbitrarily large number. Moreover,
under a hypothesis of the existence of the solution to the full model with a uniform bound, a
rigorous justification of the Kakinuma model is proved by giving an error estimate between
the solution to the Kakinuma model and that of the full model. An error estimate between
the Hamiltonian of the Kakinuma model and that of the full model is also provided.

1 Introduction

We will consider the motion of the interfacial gravity waves at the interface between two layers
of immiscible waters in (n+ 1)-dimensional Euclidean space. Let t be the time, x = (1, ...,zy)
the horizontal spatial coordinates, and z the vertical spatial coordinate. We assume that the
layers are infinite in the horizontal directions, bounded from above by a flat rigid-lid, and from
below by a time-independent variable topography. The interface, the rigid-lid, and the bottom
are represented as z = ((x,t), z = hy, and z = —hgy + b(x), respectively, where ¢ = ((x,1) is
the elevation of the interface, h; and he are mean thicknesses of the upper and lower layers, and
b = b(x) represents the bottom topography. See Figure 1.1. We assume that the waters in the
upper and the lower layers are both incompressible and inviscid fluids with constant densities
p1 and po, respectively, and that the flows are both irrotational. Then, the motion of the waters
is described by the velocity potentials ®;(x,z,t) and ®a(x, 2z,t) and the pressures Pi(x, z,t)
and Py(x, z,t) in the upper and the lower layers. We recall the governing equations, referred
as the full model for interfacial gravity waves, in Section 2 below. Generalizing the work of
J. C. Luke [15], these equations can be obtained as the Euler-Lagrange equations associated
with the Lagrangian density .Z(®1, @2, () given by the vertical integral of the pressure in both
water regions. Building on this variational structure, T. Kakinuma [9, 10, 11] proposed and
studied numerically the model obtained as the Euler-Lagrange equations for an approximated
Lagrangian density, .Z(®{"", ®3P", (), where

Ny
(1.1) PP (a0, 2,t) = Y Zy iz b)) e (a0, 1)
=0

for £ =1,2, and {Z1;} and {Z3;} are appropriate function systems in the vertical coordinate 2
and may depend on hj(x) and he(x), respectively, which are thickness of the upper and the lower
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Figure 1.1: Internal gravity waves

layers in the rest state, whereas ¢y = (g0, 001, .- .,¢57N£)T, ¢ = 1,2, are unknown variables.
This yields a coupled system of equations for ¢1, ¢2, and (, depending on the function systems
{Z1;} and {Z5;}, which we named Kakinuma model. Note that in our setting of the problem
we have hy(x) = hy and ho(z) = hy — b(x).

The Kakinuma model is an extension to interfacial gravity waves of the so-called Isobe—
Kakinuma model for surface gravity waves, that is, water waves, in which Luke’s Lagrangian
density A uke(P, ¢), where ( is the surface elevation and @ is the velocity potential of the water,
is approximated by a density . Z?PP(¢, () = L uke(P?*PP, (), where

N
(1.2) OPP(m, 2, 1) = > Zi(z: b(w)) i, 1).
1=0

The Isobe-Kakinuma model was first proposed by M. Isobe [7, 8] and then applied by T. Kak-
inuma to simulate numerically the water waves. Recently, this model was analyzed from
a mathematical point of view when the function system {Z;} is a set of polynomials in z:
Zi(z;b(x)) = (2+h—>b(x))P* with integers p; satisfying 0 = pg < p1 < --- < pny. The initial value
problem was analyzed by Y. Murakami and T. Iguchi [16] in a special case and by R. Nemoto
and T. Iguchi [17] in the general case. The hypersurface ¢ = 0 in the space-time R™ x R is
characteristic for the Isobe-Kakinuma model, so that one needs to impose some compatibility
conditions on the initial data for the existence of the solution. Under these compatibility condi-
tions, the non-cavitation condition, and a Rayleigh—Taylor type condition —d,P?PP > ¢y > 0 on
the water surface, where P?PP is an approximate pressure in the Isobe-Kakinuma model calcu-
lated from Bernoulli’s equation, they showed the well-posedness of the initial value problem in
Sobolev spaces locally in time. Moreover, T. Iguchi [5, 6] showed that under the choice of the
function system

(z+ h)* in the case of the flat bottom,
(z+h —b(x))" in the case of a variable bottom,

(1.3) Zi(zb(x)) = {

the Isobe-Kakinuma model is a higher order shallow water approximation for the water wave
problem in the strongly nonlinear regime. Furthermore, V. Duchéne and T. Iguchi [2] showed



that the Isobe-Kakinuma model also enjoys a Hamiltonian structure analogous to the one ex-
hibited by V. E. Zakharov [19] on the full water wave problem and that the Hamiltonian of
the Isobe-Kakinuma model is a higher order shallow water approximation to the one of the full
water wave problem.

Our aim in the present paper and the companion paper [3] is to extend these results on
surface gravity waves to the framework of interfacial gravity waves. In [3], we analyzed the
Cauchy problem for Kakinuma model when the approximated velocity potentials are defined by

N
PP (x, 2,t) i= ) (=2 + hn) % pra(, t),

(1.0 =

5P (x, 2,t) := Y (2 + hg — b())" P2(w, 1),
1=0

where N, N*, and pg,p1,...,pN+ are nonnegative integers satisfying 0 = pg < p1 < --- < pn+.
We found that contrary to the full model for interfacial gravity waves, the Kakinuma model has
a stability regime which can be expressed as

app app P1p2 app app |2

(1.5) —0.(Py"" — P*P) — oHyon + paHyon IV, — VPP |7 > ¢ > 0

on the interface, where P;** and P;PP are approximate pressures of the waters in the upper and
the lower layers, a; and ag are positive constants depending only on N and on pg, p1, ..., PN+,
respectively. This is a generalization of the aforementioned Rayleigh—Taylor type condition for
the Isobe-Kakinuma model. Moreover, when the motion of the waters together with the motion
of the interface is in the rest state, the above stability condition is reduced to the well-known
stable stratification condition

(1.6) (p2 — p1)g > 0.

In [3], we showed that under the stability condition (1.5), the non-cavitation assumptions, and
intrinsic compatibility conditions on the initial data, the initial value problem for the Kakinuma
model is well-posed in Sobolev spaces locally in time. It is worth noticing that the constants oy
and a9 converge to 0 as N and N* go to infinity so that the stability condition becomes more
and more stringent as N and N* grow. However, this is consistent with the fact that the initial
value problem for the full model for interfacial gravity waves is ill-posed in Sobolev spaces; see
T. Iguchi, N. Tanaka, and A. Tani [18], V. Kamotski and G. Lebeau [12] and D. Lannes [13]. We
also showed in [3] that the Kakinuma model enjoys a Hamiltonian structure analogous to the
one exhibited by T. B. Benjamin and T. J. Bridges [1] on the full model for interfacial gravity
waves. In the present paper we will complete the analysis by showing that the Kakinuma model
obtained through the approximated potentials (1.4) with

(H1) N* =N and p; =2i (i =0,1,...,N) in the case of the flat bottom b(x) = 0,
(H2) N*=2N and p; =i (i =0,1,...,2N) in the case with general bottom topographies,

provides a higher order shallow water approximation to the full model for interfacial gravity
waves in the strongly nonlinear regime. More precisely, we will show that, after suitable rescaling,
the dimensionless Kakinuma model is consistent with the full model for interfacial gravity waves
with an error of order O(51" 2 + 55" +2), where §; and &y are shallowness parameters related to
the upper and the lower layers, respectively, that is, d, = % (¢ = 1, 2) with the typical horizontal



wavelength A. A full justification of the Kakinuma model as shallow water approximations is not
straightforward, because one cannot expect to construct a solution to the initial value problem
for the full model with a uniform bound for general initial data in Sobolev spaces due to the
ill-posedness of the problem. Nevertheless, if we assume the existence of a solution to the full
model with a uniform bound and the stability condition (1.5) for the initial data, then we can
show the existence of a corresponding solution to the Kakinuma model with appropriate initial
data and the error estimate

¢ (@, ) — (™ (@, )| S 0PN T2 4 g+

on some time interval independent of 61 and do, where (¥ and 'V are solutions to the dimen-
sionless Kakinuma model and to the full model, respectively. Moreover, under an appropriate
assumption on the canonical variables ({, ¢), we show the error estimate

|5, 0) — AN (C D) S oV TR+ N2,

where 7% and 5™ are Hamiltonians of the Kakinuma model and of the full model, respectively.
Our error bounds in this paper are uniform with respect to the positive densities p; and ps
satisfying the stable stratification condition (p2 — p1)g > 0 and positive mean thicknesses of the
upper layer h; and of the lower layer hs in the following two regimes: (i) p1 ~ po; (ii) p1 < p2
and he < hy. In other words, in addition to assuming the stable stratification condition, the
regime (iii) p; < p2 and h; < hg will be excluded in this paper.

The contents of this paper are as follows. In Section 2 we first recall the basic equations
governing the interfacial gravity waves and write down the Kakinuma model that we are going
to analyze in this paper, and then rewrite them in a nondimensional form by introducing several
nondimensional parameters. Hamiltonians of the full model and of the Kakinuma model in the
nondimensional variables are also provided. In Section 3 we first introduce some differential
operators, which enable us to write the Kakinuma model in a simple form, and then we present
our main results in this paper: Theorem 3.1 ensures the existence of the solution to the initial
value problem for the Kakinuma model on a time interval independent of parameters, especially,
01 and &2, under the stability condition, the non-cavitation assumptions, and intrinsic compati-
bility conditions on the initial data, together with a uniform bound of the solution; Remark 3.2
and Proposition 3.3 explain how to prepare the initial data for the Kakinuma model, which
have to satisfy the compatibility conditions; Theorems 3.4 and 3.5 ensure the consistency of the
Kakinuma model to the full model; More precisely, Theorem 3.4 states that the solutions to the
Kakinuma model satisfy approximately the full model with an error of order O((ﬁN 24 5§N +2)
Conversely, Theorem 3.5 states that the solutions to the full model satisfy approximately the
Kakinuma model with an error of the same order; Theorem 3.8 gives conditionally a rigorous
justification of the Kakinuma model, that is, assuming the existence of a solution to the full
model with a uniform bound we derive an error estimate between a corresponding solution to
the Kakinuma model and that of the full model; Finally, Theorem 3.9 gives an error estimate
between the Hamiltonian of the Kakinuma model and that of the full model. In Section 4 we
first remind results in the framework of surface waves related to the consistency of the Isobe—
Kakinuma model, and then prove Theorems 3.4 and 3.5 by a simple scaling argument. In
Section 5 we first derive an elliptic estimate related to the compatibility conditions, and then
give uniform a priori bounds on regular solutions to the Kakinuma model, especially, a priori
bounds of time derivatives. In Section 6 we provide uniform energy estimates for the solution
to the Kakinuma model and prove Theorem 3.1. In Section 7 we first give a supplementary es-
timate on an approximation of the Dirichlet-to-Neumann map, and then revisit the consistency
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of the Kakinuma model. We prove Proposition 7.6, which is another version of the consistency
given in Theorem 3.5, where we adopt a different construction of an approximate solution to the
Kakinuma model from the solution to the full model. Then, by making use of the well-posedness
of the initial value problem for the Kakinuma model we prove Theorem 3.8 a conditional rig-
orous justification of the Kakinuma model. Finally, in Section 8 we prove Theorem 3.9 on the
approximation of the Hamiltonian.

Notation. We denote by WP the LP Sobolev space of order m on R™ and H™ = W™?2,
We put H™ = {¢; V¢ € H™ '}, The norm of a Banach space B is denoted by | - ||z. The
L%-inner product is denoted by (-,-)72. We put 0; = %, 0j = 0y, = %, and 0, = %. [P, Q] =
PQ — QP denotes the commutator and [P;u,v] = P(uv)— (Pu)v—u(Pv) denotes the symmetric
commutator. For a matrix A we denote by AT the transpose of A. O denotes a zero matrix.
For a vector ¢ = (¢q,é1,...,6n)T we denote the last N components by ¢’ = (¢1,...,0n5)".
We use the notational convention 8 = 0. f < g means that there exists a non-essential positive
constant C such that f < Cg holds. f ~ g means that f < g and g < f hold.
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2 The basic equations and the Kakinuma model

2.1 Equations with physical variables

We first recall the equations governing potential flows for two layers of immiscible, incompress-
ible, homogeneous, and inviscid fluids, and then write down the Kakinuma model at stake in this
work. In the following, we denote the upper layer, the lower layer, the interface, the rigid-lid,
and the bottom at time t by Q;(¢), Qa(t), ['(t), X1, and X9, respectively. The velocity potentials
Oy (x, z,t) and Po(x, 2,t) in the upper and lower layers, respectively, satisfy Laplace’s equations

Ad; + azq)l =0 in Ql(t),

(2.2) AdDy + 20y =0 in Qot),

where A = 92 + ... + 92 is the Laplacian with respect to the horizontal space variables = =
(1,...,2,). Bernoulli’s laws of each layers have the form

(2.3) p1 (atcpl + %(\vqn\? + (0.91)?) + gz> +P =0 in Qt),

(2.4) P2 <6th>2 + %(‘V@Q‘Q + (0,®9)%) + gz> +P,=0 in Qt),

where V = (04, ...,0,), the positive constant g is the acceleration due to gravity, and P (x, z,t)

and Py (x, z,t) are pressures in the upper and lower layers, respectively. The dynamical boundary
condition on the interface is given by

(25) P1:P2 on F(t)



The kinematic boundary conditions on the interface, the rigid-lid, and the bottom are given by

(2.6) HC+ VP, -V(—0,21=0 on TI(t),
(2.7) W+ VP -V(—0,P29=0 on TI(t),
(2.8) 9,91 =0 on X,
(2.9) V&y-Vb—0,P5=0 on Yo.

These are the basic equations for interfacial gravity waves. It follows from Bernoulli’s laws (2.3)—
(2.4) and the dynamical boundary condition (2.5) that

(2.10) . <atq>1 + %(\vqm? + (azq>1)2)>
i (atcbz (v <‘o><1>2>2>) — (p2—p)g¢ on T(t).

We will always assume the stable stratification condition (p2 — p1)g > 0. As in the case of
the surface water waves, the basic equations have a variational structure and the corresponding
Luke’s Lagrangian is given, up to terms which do not contribute to the variation of the La-
grangian, by the vertical integral of the pressure in the water regions. After using Bernoulli’s
laws (2.3)—(2.4) we can find the Lagrangian density

hi
(211)  L(®1,P9,¢) = —pl/é_ <8t<I>1 + %(IV%I2 + (achl)?)) dz

¢ 1 1
- p2/ (at% + = (|[V®y* + (82%)2)) dz — =(p2 — p1)g¢>.
“hatb 2 2

In fact, one checks readily that (2.1)—(2.2) and (2.6)—(2.10) are Euler-Lagrange equations asso-
ciated with the action function

t1
j((I)h(I)Q?g) ::/t Rnog/ﬂ(q)l,q)LC)dZBdt

We proceed to the Kakinuma model. Let NV and N* be nonnegative integers. In view of the
analysis for the Isobe-Kakinuma model for surface water waves, we approximate the velocity
potentials ®; and ®5 in the Lagrangian by

N
PP (@, 2,1) = > (=2 + h1)¥61i(=, 1),

=0
(2.12) fo

PP (w0, 2,1) = Y (2 + hg — b(@))P P2(w, 1),
=0

where pg,p1,...,pN+ are nonnegative integers satisfying 0 = pg < p1 < -+ < pn=. Plug-
ging (2.12) into the Lagrangian density (2.11), we obtain an approximate Lagrangian density

"gapp(d)l? ¢27 <) = g((p?pp7 @gppv C)v



where @1 1= (¢1.0,p1.1,---,P1.n8) " and P2 = (¢2.0, P21, .-, P2.n+)". The corresponding Euler—
Lagrange equation is the Kakinuma model, which has the form

(2.13)

24 HQ(H‘])‘H ) J HQ(H‘J) 1 I
G - 2:{ (s Vo ) - g o f =0

for ¢=0,1,...,N,

N*
. 1 i+pj+1 Pitp;
Hg 8tc+ E {V . <pl—|—p]—|—1H§ Pi V¢2,] - i +p]H2 j¢21ij
j=0
sz+pjvb v _ Pibj  ppitei-1g +|Vb|? } =
pz-i- D P2, — pi+pj—1 2 ( Vbl )¢2,J

for i=0,1,...,N*

N ) 2
[+ (Samn,)))
=0

N
{ZH t¢1,j +g<+ <

7=0

N*

,02{ HY 0o j + gC
7=0

A o))} oo

where H; and Hs are thicknesses of the upper and the lower layers, that is,

~ 1
ng Vo, — pjHY ¢>2,ij

[\

Hi(t,x) := hy — ((, 1), Hy(z,t) := hy + ((x, t) — b(x).

Here and in what follows we use the notational convention 0/0 = 0.

2.2 The dimensionless equations

In order to rigorously validate the Kakinuma model (2.13) as a higher order shallow water
approximation of the full model for interfacial gravity waves (2.1)—(2.9), we first introduce
nondimensional parameters and then non-dimensionalize the equations, through a convenient
rescaling of variables. Let A be a typical horizontal wavelength. Following D. Lannes [13], we
introduce a nondimensional parameter § by

0:= h with h:= %,
A B1h2 +82h1

where p, and p, are relative densities. We also need to use relative thicknesses h; and hy of the
layers. These nondimensional parameters are defined by

pe he
= , h) = — f=1,2),
By p1+ p2 T h ( )
which satisfy the relations
P, P
2.14 =1 =L =2,
@19 R T



Note also that min{hj, ha} < h < max{hi, ha}. It follows from the second relation in (2.14)
that

hi h
(2.15) 1< min{l, 2} < 2.
Py Py
Here, we note that the standard shallowness parameters §; := % and 09 := % relative to the

upper and the lower layers, respectively, are related to the above parameters by d, = h,0 for
¢ =1,2. In many results of this paper, we restrict our consideration to the parameter regime

(2.16) hit Ryt <1

To understand this restriction, it is convenient to use nondimensional parameters v := % and

0 := % In terms of these parameters, ﬁg_l (¢ = 1,2) can be represented as
2
1 7+l 1 vt
L4 2T gt
Therefore, the only cases that (2.16) excludes are the case 7,0 < 1 and the case «,6 > 1. Since

we shall also assume the stable stratification condition (ps — p1)g > 0, we can describe the two
regimes considered in this paper as

(1) = 17 i'e'v P1 = P2,
(ii) y<land 0 2 1, ie., p1 < p2 and hy S h1.

Introducing cgw = 4/ (32 - B1>gh the speed of infinitely long and small interfacial gravity
waves, we rescale the independent and the dependent variables by
A ~ - -
x=\&, z=hz t=—t (=h(, b=hb, Pp=Asw® (£=1,2).
Csw

Plugging these into the full model (2.1)—(2.2) and (2.6)—(2.10) and dropping the tilde sign in
the notation we obtain

APy + 672020, =0 in Q(t),
A®y + 5720205 =0 in Qa(t),
0+ VP -V(—620,0, =0 on I'(t),
O+ Vs - V(620,02 =0 on I'(t),
0,P1 =0 on X1,
V®y - Vb — 620,09 = 0 on Yo,
P (atqn + 1V, 2 + %5*2(@@1)2)

0, (1@ + 3|V [2 4 3672(0.@2)2) = (=0 on T(1),

where in this scaling the upper layer € (t), the lower layer Q3(t), the interface I'(¢), the rigid-lid
Y1, and the bottom Xy are written as

Q) ={X = (x,2) e R"™; {(x,t) < 2 < by},

Qo(t) ={X = (z,2) e R"; —hy + b(x) < 2z < {(z,1)},
L(t) ={X = (z,2) e R"™; 2 = ((x,1)},

Y ={X =(x,2) e R"™; 2 = by},

Yo ={X =(x,2) e R"™; 2 = —h, + b(x)}.



Denoting
¢E($7t) = @g(w,g(a:,t),t) (EZ 172)
and using the chain rule, the above system can be written in a more compact and closed form
as
(01¢ + A1(C, 8,1 = 0,
¢ — Aa(C, b d, hz)ng =0,

2.17 2 1o (AM(G,0, )1 — V(- V)
210 g, (00 + 5var - e 2T
52A2(C, 0,0, hy)da + VC - Va)?
B R

where A1((, 9, hy) and A2(C, b, 0, hy) are the Dirichlet-to-Neumann maps for Laplace’s equations.
More precisely, these are defined by

A1(C 0, hy)dr = (—6720:@1 + V; - V()|
A2(C,b,0,hy)dg == (67209 — V@, - V()|

z=((x,t)’
z=((=,t)’

where ®; and ®5 are unique solutions to the boundary value problems

A®y +672020, =0 in (1), Ady + 5720205 =0 in Qy(t),
O =¢ on TI'(t), and Dy = ¢ on TI'(t),
0,01 =0 on X, V®y - Vb—620,9=0 on .
As for the Kakinuma model, we introduce additionally the rescaled variables
L )\CSW ~ L )\CSW 7
¢1,’L = h%z ¢l,la ¢2,’L = hgl ¢2,Z-

Plugging these and the previous scaling into the Kakinuma model (2.13) and dropping the tilde
sign in the notation we obtain the Kakinuma model in the nondimensional form, which is written
as

(2.18)
N 1 4ij
i 2(1+7)+1 2(14+7)—1 _
a0 =i YA (Vo) g s -
j=0
for ¢=0,1,...,N,
N*
. 1 pit1 + 1
HP O, + h {v- <sz“’]+ Voo HY i, b w)
5 01 2;% PRI R P25 — z+j $2,5hy
i bip; i+ — — -
3 +p _Hp +p]h 1Vb Vd) 2,5 ﬁﬂg +p; ((hg(s) 2+h22|Vb|2)¢2,j} —
7 7 pi J

for ¢=0,1,...,N*,

N ] 2
(o))}
=0

2

2
.
1JV¢1J

Pl{z HY 0y 5 + 5 <
=0 =0
N* 1
)
_'02{20 HY 0o j + 3 <
]:

N*

, 1 _
E (HY' N ¢o; — pjHy ~ $2,;h5 ' VD)
J=0

N* 2
)2 (ijHﬁ“@,j) ) } (=0,
=0




where
(2.19) Hy(z,t) :=1—h{'¢(x,t),  Ha(z,t) :=1+hy'¢(x,t) — hy 'b(x).
We impose the initial conditions to the Kakinuma model of the form

(2.20) (¢ b1, 82) = ({(0): P1(0)» P2(0) at t=0.

2.3 Hamiltonian structures

It is well-known that the full model for interfacial gravity waves has a conserved energy

Z //Q 2P (IV@y(z, 2, t)]* + 0~ (8Z<I>g(cc,z,t))2)dazdz+/ %C(m,t)zdw

(=12 "

=§22<<@m>wmm+;mwﬁ

(=172

which is the total energy, that is, the sum of the kinetic energies of the waters in the upper
and the lower layers and the potential energy due to the gravity. Here and in what follows, we
denote simply A1(¢) = A1(¢, 6, hy) and Ao(¢) = A2((, b, 0, hy). Moreover, T. B. Benjamin and
T. J. Bridges [1] found that the full model can be written in Hamilton’s canonical form

5%1\)\/ 6%1\7\7
W) 8t¢ = - 5C ’

where the canonical variable ¢ is defined by

9¢ =

(2.21) ¢ = py62 — p 1

and the Hamiltonian ™" is the total energy & written in terms of the canonical variables ({, ¢).
It follows from the kinematic boundary conditions on the interface that A;(¢)¢1 + A2({)p2 = 0,
so that ¢1 and ¢, can be written in terms of the canonical variables (¢, ¢) as

{@z—@ﬂﬂ0+%MKD*MKM
$2 = (p,A2(C) + p,A1(¢) T AL() o

Therefore, the Hamiltonian 2™V ((, ¢) of the full model for interfacial gravity waves is given
explicitly by

AN 8) = 5((2,82(0) + 2, M(O) MO8, A28 12 + I3

As was shown in the companion paper [3], the Kakinuma model (2.18) also enjoys a Hamil-
tonian structure analogous to that of the full model for interfacial gravity waves. The canonical
variables are the elevation of the interface ( and ¢ defined by

(2.22) oz, t) = p, @57 (x, ((x, t),t) — p, 217" (2, ((, 1), 1)
N* N
=p, Y Ha(, t)Pidgi(a,t) —p, > Hi(w,t)"¢1,(x, 1),
=0 1=0

10



where <I>2pp (¢ = 1,2) are nondimensional versions of the approximate velocity potentials, which
are defined by

N
(bzllpp(w7 Z,t) = Z(l - h;lz)2i¢1,i(w7t)a

=0
(2.23) o

O (@, 2,t) = Y (1+hy ' (2 — b(@)))P dni, t),

1=0

and Hy (¢ = 1,2) are thicknesses of the upper and lower layers defined by (2.19). We note
that if the canonical variables (¢, ¢) are given, then the Kakinuma model (2.18) determines
d1 = (610,011, ---,01.n8) T and pa = (¢20, P21, - -, ¢327N*)T, which are unique up to an additive
constant of the form (Cp,,Cp,) to (¢1,0,$2,0). For details, we refer to [3, Subsection 8.1] and
Lemma 5.1 in Section 5. Then, the Hamiltonian J#%((, ¢) of the Kakinuma model is given by

Z // (VO (, 2 )P0 (8z¢?pp(x,z,t))2)dazdz+/n %C(az,tﬁdm.

(=12

3 Statements of the main results

Before stating the main results in this paper, let us introduce some notations which allow in
particular to rewrite (2.18) in a compact form. We introduce second order differential operators
L17ij = Ll,ij(H17 5,@1) (l,] = 0, 1, NP N) and Lgﬂ‘j = LQJ‘]‘(HQ, b, (5, hz) (Z,] = 0, 1, . ,N*) by

1 2(i+j)+1 4ij 2(i44)—1 2
(3.1) LijPL,j v (2(@ ) +1 1 Vi) + 20i +4) — 1 1 (h10) "1,

3.2 Lo ;i = — PRIy 9 — J _ pgPitPs o ihy 1V
(3.2) 2,ij 2,5 (pi Fp+1 2 $2,5 Pi +pj 2 $2,51%

— —HY P hy Vb Vi,
pi + Pj 7

DiD i+pi—1 _ _
]W;_ng P (hg0) ™2 + by | VB )pa .

Notice that we have (Lg;;)* = Ly j; for £ = 1,2, where (Lg;;)* is the adjoint operator of Ly ;; in
LZ(RH) We pUt ¢1 = (¢1,07 d)l,la s 7¢1,N)Ta ¢2 = (¢2,07 ¢2,17 ) ¢2,N*)Ta and

l(Hy) = (1, HE, HY, ..., HZVN)T,
i (Hy) == (0, 2H1,...,2NH12N—1)T,
(3.3) llll(Hl) (0, L 2N(2N — 1)H12N72)T’
Io(H2) :=(1 H2pl7H2pQ’.“’H§N*)T7
Iy(Hs) := (0,p1 HY' 1,...,pN*H§N*)T’
|1 (H2) = (0.p1(py — DHE 2, - (o — DHEY)T,

and define uy and w, for £ = 1,2, which represent approximately the horizontal and the vertical
components of the velocity field on the interface from the water region Q(t), by

(3.4) { wy = (L(H) @ V) oy, wy = =1y (H) - ¢1,
‘ us = (lo(Ha) @ V) o — (I5(Hs) - p2)hy ' Vb, wy = ly(Hy) - .

11



Then, denoting L1 = (Ll,ij)OSi,jSN and L2 = (LQ,ij>0§i,j§N* we can write the Kakinuma
model (2.18) more compactly as

U (H1)0iC + hy L1 (Hy, 0, hy )1 = 0,
l2(H2)0iC — hoLa(Hz,b,6, hy)p2 = 0,
p Al(Hy) - Ocpr + 5 (lwa* + (2y0) %w?) }
—p,{la(Hs) - Oip2 + 5 (Jual? + (had) w3) } — ¢ =0.

By eliminating 9;¢ from the Kakinuma model, we obtain N + N* + 1 scalar relations which are
necessary conditions for the existence of the solution to the Kakinuma model, as stated below. In-
troducing linear operators Ly ; := £1;(H1,68,hy) (i =0,..., N) acting on ¢1 = (¢1,0,---,01.8) "
and £2,i = ﬁg,i(HQ, b, 5, QQ) (Z = O, e ,N*) acting on o = (902’0, . ,QDQ’N*)T by

(3.5)

N

L10p1 = E L10j01,5,
Jj=0
N

L1 = Z(Ll,ij(Pl,j — H{'Ligj1) for i=1,2,...,N,
=0

(3.6) i~

Loops =Y Loojea;,

J=0
N*

Lo i = Z(LQJ‘J’(PQ,]‘ — HgiLZ()jQOQ’j) for i=1,2,...,N*,
=0

the necessary conditions can be written simply as

L1i(Hi,6,h))p1 =0 for i=1,2,...,N,
(37) E27Z’(H2ab767ﬁ2)¢2 :0 fOI' ’l: 1,2,...,N*,
hlﬁl,O(Hh 67hl)¢1 +h2£270<HQ, b, (5,&2)¢2 =0.

Hereafter, these necessary conditions will be referred to as the compatibility conditions. Notice
that under these compatibility conditions we have for £ =1, 2

(3.8) Lepe = LeLoope,

where 1y = l;(Hy) and similar simplifications of notations will be used in the following without
any comments. In connection with the stability condition (1.5), we introduce a function

(3.9)  a:=1+phy {I{(H1) (8 +u1- V)1 — (hy6) *wil{(Hy) - ¢}
+ pyhy {I5(Ha) - (0 + ug - V) o + ((hod) *wa — hy ' Vb - ug)l5(Ha) - o},

which corresponds to —(9.(Py"” — P{™P))|r( in the stability condition.

Our first main result in this paper is the existence of the solution to the initial value problem
(2.18)—(2.20) for the Kakinuma model on a time interval independent of parameters, especially,
the shallowness parameters d; = h;§ and dy = hy6 together with a uniform bound of the solution.
For simplicity, we denote Hy(y := Hyli=0, Wy (o) = we|i=0 for £ = 1,2, and a(g) := ali=o, which
can be written in terms of the initial data according to the initial condition (2.20). Although
the function @ includes the terms (0;¢))|i—o for ¢ = 1,2, where ¢} = ($1.15---,¢1.5)T and
Dy = (2,1, ., 02, ~+)T, and the hypersurface t = 0 is characteristic for the Kakinuma model,
we can uniquely determine them in terms of the initial data. For details, we refer to Remark 5.3.

12



Theorem 3.1. Let co, Mo, by, be positive constants and m an integer such that m > 3 + 1.
There exist a time T > 0 and a constant M > 0 such that for any positive parameters
81,32,ﬁ1,ﬁ2,5 satisfying the natural restrictions (2.14), hi0,hyd < 1, as well as the condition
Bmin < By, ho, if the initial data (C(o), D1(0); P2(0)) and the bottom topography b satisfy

5.10) 1o 17m + > 2, (IV Do) l7m + (2e6) >l @y I Frm) < Mo,
. =12

by ([bllywmsr.oe + (F258) B[y 2.0) < Mo,
the non-cavitation assumption
(311) Hl(o)(m) Z Co, H2(0)($) Z Co fO’f’ xTr € Rn,

the stability condition

PP
(3.12) a(g) (@) — =1=2

p,haHy ) (x)az + Pyl Hy o) (z)an

lwi(o) () — ugy(@)]* > o for x €R”,

with positive constants cvy and ag defined by (6.9), and the compatibility conditions

L1i(Hy(0),6,h1)p1i0) =0 for i=1,2,...,N,
(3.13) L2i(Ha(0y, 0,0, ho) ooy =0 for i=1,2,...,N*,
hyL10(Hy(0), 0, hy) P10y + haLao(Hay, b, 0, ho)Pago) = 0,
then the initial value problem (2.18)—(2.20) has a unique solution (, ¢1, ¢2) on the time interval
[0,T] satisfying
(, V1,0, Voo € C([0,T]; H™) NG ([0, T]; H™ 1),
1y € C([0,T); H™ ) nC' ([0, T); H™),

where we recall the notation &) = (1.1, P1.2,---,P1.n)T and ¢y = (d2.1, 2.9, ..., P2 n+)T. More-
over, the solution satisfies the uniform bound

(3.14) ICONFm + Y 2 he(IV et Frm + (hed) |t Fm) < M
=12
for t € [0,T] together with
PPy
a(x,t) —
(3.15) (%) pyhoHo(, t)as + p,hy i (x, 1) ay
Hi(x,t) > co/2, Ha(z,t)>co/2  for xzeR"tel0,T].

”U;l(w,t) - u2(x,t)|2 > 00/27

Remark 3.2. It is easy to check that the non-cavitation assumption (3.11) and the stability
condition (3.12) are automatically satisfied for small initial data ({(0), ®1(0), ®2(0)) and small
bottom topography b, whereas an arrangement of nontrivial initial data satisfying the compat-
ibility conditions (3.13) together with the uniform bound (3.10) is a non-trivial issue. To this
end, we use the canonical variable ¢ defined by (2.22), which can be written as

(3.16) ¢ = pyla(Hz) - 2 — p Li(H1) - ¢1.

Given the initial data ({(g), ¢(0)) for the canonical variables (, ¢) of the Kakinuma model and the
bottom topography b, the necessary conditions (3.7) and the above relation (3.16) determine the
initial data (¢ (o), P2(0)) for the Kakinuma model satisfying the compatibility conditions (3.13)
and the uniform bound (3.10), which is unique up to an additive constant of the form (682, 681)
to (é1,0(0), $2,000))- In fact, we have the following proposition, which is a simple corollary of
Lemma 5.1 given in Section 5.
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Proposition 3.3. Let ¢y, My be positive constants and m an integer such that m > §+1. There
exists a positive constant C' such that for any positive parameters Py Py hy, he, 0 satisfying the

natural restrictions (2.14) and hy6,hyd < 1, if the initial data (), P(p)) € H™ x H™ of the
canonical variables, the bottom topography b € W, and initial depths Hygy := 1 — @flc(o)
and Hy(g) :=1 —|—ﬁ2_1C(0) — ﬁ;lb satisfy

By MI¢o) lam + By M I¢0) | m 4 By 1Bl lwm.ee < Mo,
Hygy(x) > co, Hygy(x)>co for xeR",

then there exist initial data (by(0), P2(0)) satisfying the compatibility conditions (3.13) as well as
b0y = pyl2(Ho0)) - P20y — p b1 (Hi0)) - P1(0)- Moreover, we have

> (1N ey | Fm—1 + (he8) "By | Fm—1) < ClIV )1 Frm—1-
(=1,2

The next theorem shows that the Kakinuma model (2.18)—(2.19) is consistent with the full
model for interfacial gravity waves (2.17) at order O((h;8)*¥*2 + (hy)*¥+2) under the special
choice of the indices pg, p1,...,pN* as

(H1) N* =N and p; =2i (i =0,1,...,N) in the case of the flat bottom b(x) = 0,
(H2) N*=2N and p; =i (i =0,1,...,2N) in the case with general bottom topographies.

Theorem 3.4. Let ¢, M be positive constants and m an integer such that m > 4(N + 1) and
m > § + 1. We assume (H1) or (H2). There exists a positive constant C' such that for any
positive parameters p,, p,, by, ho, 0 satisfying hy0, hed < 1 and for any solution (¢, ¢1, @2) to the
Kakinuma model (2.18)—(2.19) on a time interval [0, T| with a bottom topography b € Wm+1eo
satisfying

(3.17) BTHICE L + By IC@) | + By [bllwmtroe < M,
Hi(xz,t)>¢, Ha(xz,t)>c for xeR" tel0,T],

if we define ¢p := lo(Hy) - ¢y for £ = 1,2, then ((, ¢1, ¢2) satisfy approximately the full model for
interfacial gravity waves as

8t< + Al(Ca 57&1)¢1 =T,
atc - AQ(C; b7 57 h2)¢2 = 9,
A o,h . 2
Pl(at¢1+1\V¢1’2 *52( 1(6, 1£ﬁévcv‘2< vey )
52 (82(C,D,0, k)60 + V- Vo) (=t
1+ 02|V(|? -

—P, <8t¢>2 + *|V¢ 23
\
Here, the errors (t1,ta,t0) satisfy

[ee() | gm—scvan) < Chy(hed) 2V (t)][ gm—1 (€ = 1,2),

eo()l gm-scveny < C Y p,(hed) N +2 [V (8) |1
(=12

fort €10,T].
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Particularly, we see that under the special choice of indices (H1) or (H2) the solutions
to the Kakinuma model constructed in Theorem 3.1 satisfy approximately the full model for
interfacial gravity waves with the choice ¢y = ly(Hy) - ¢p¢ (¢ = 1,2) and that the error is of order
O((ﬁ15)4N+2 4 (ﬁ25)4N+2).

Conversely, the next theorem shows that the full model for interfacial gravity waves is con-
sistent with the Kakinuma model at order O((h;86)*¥+2 4 (hyd)*V*2) under the special choice
of indices (H1) or (H2).

Theorem 3.5. Let ¢, M be positive constants and m an integer such that m > 4(N + 1) and
m > g+ 1. We assume (H1) or (H2). There exists a positive constant C' such that for any
positive parameters p , p,, by, ho, d satisfying hy0,hed < 1 and for any solution ((, ¢1,¢2) to the
full model for interfacial gravity waves (2.17) on a time interval [0, T] with a bottom topography
b € WmHLoo satisfying (3.17), if we define Hy and Hy as in (2.19) and ¢y and ¢po as the unique
solutions to the problems

{ll(Hn-qsl:asl, L1i(Hy,0,h)p1 =0 for i=1,2,...,N,

(3.18) .
l2(H2)'¢2:¢25 ‘CQ,i(H27b767ﬁ2)¢2:0 fOT Z:1727"')N*7

then ((, @1, ¢2) satisfy approximately the Kakinuma model as

1y (H1)hy '0:C + Ly(Hy, 6, by )1 = 1,
Io(Ha)hy ' 0i¢ — Ly(Ha, b, 6, hy) o = T,
p AL (HY) - 81 + & (lual® + (hy8) 2w 2)}
—BQ{IQ (H2) - Orp2 + 5(!U2|2 (hyd)~2 2)} ¢ = 7.

Here, the errors (t1,ta,%)) satisfy

[Ee()]| grmacviny < Cgd) N2V y(t) | g (£ =1,2),
(3.19) [Eo ()| rm-scvsny < C S p, () N2V g(t) |21
= 1,2

fort €10,T].

Remark 3.6. The unique existence of the solutions ¢, and ¢2 to the problems (3.18) is guar-
anteed by Lemma 4.4 below under an additional assumption ¢1(+,t), ¢2(-,t) € H™. Lemma 4.4
is essentially a simple corollary of [6, Lemma 3.4].

Remark 3.7. In order to define the approximate solution (¢1, ¢2) to the Kakinuma model from
the solution ((, ¢1, ¢2) to the full model, we can use, in place of (3.18), the following system of
equations

,C17Z‘(H1,5,h1)¢1 =0 for = 1,2, . ,N,

Loi(Hi,b,0,hy)po =0 for i=1,2,...,N*,

hyL10(H1,0,hy)p1 + hoLoo(Ha, b, 6, hy)d2 = 0,

Pola(Hz) - 2 — p Li(Hh) - §1 = &,

where ¢ = p,¢2 — p 1 is the canonical variable for the full model for interfacial gravity waves.
The above system is nothing but the compatibility conditions (3.7) together with the defini-
tion (3.16) of the canonical variable for the Kakinuma model. The existence of the approximate

solution (¢1, ¢2) is guaranteed by Lemma 5.1 given in Section 5. Then, we have similar error
estimates to (3.19). For details, we refer to Proposition 7.6.

(3.20)
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The above Theorems 3.4 and 3.5 concern essentially the approximation of the equations. To
give a rigorous justification of the Kakinuma model as a higher order shallow water approx-
imation, one needs to give an error estimate between solutions to the Kakinuma model and
that to the full model. However, we cannot expect to construct general solutions to the initial
value problem for the full model for interfacial gravity waves because the initial value problem
is ill-posed. Nevertheless, if we assume the existence of a solution to the full model with a
uniform bound with respect to the shallowness parameters 6; = h;0 and d2 = h,d, then we
can give an error estimate with respect to a solution to the Kakinuma model by making use of
the well-posedness of the initial value problem for the Kakinuma model as we can see in the
following theorem.

Theorem 3.8. Let ¢, M, hy;,, be positive constants and m an integer such that m > 5 +4(N + 1).
We assume (H1) or (H2). Then, there exist a time T > 0 and a constant C' > 0 such that the
following holds true. Let 31,32,ﬁ1,ﬁ2,5 be positive parameters satisfying the natural restric-
tions (2.14), h;8,hyd < 1, and the condition hy, < hy,hy, and let b € W22 such that
ﬁ51||b\|wm+z,w < M. Suppose that the full model for interfacial gravity waves (2.17) possesses
a solution (™, g1V, V) € C([0, T™]; H™ ! x H™ 1 5 H™ Y satisfying a uniform bound

||Clw(t)H?qm+1 + Z &ﬁg“Vﬂﬁzw(t)H?qm <M,
=12

HW(x,t) > ¢, HMW(x,t)>c for xeR"tel0,TV],

where we denote H{Y =1 — QIICIW and HYW =1 Jrﬁ;lCIW - ﬁ;lb. Let () := ¢("|t=0 and
b0y == (py#3" — p,1")|t=0 be the initial data for the canonical variables, and let (¢1(0), P2(0))
be the initial data to the Kakinuma model constructed from ((y, ¢(0)) by Proposition 3.3.
Assume moreover that the initial data (o), d1(0), P2(0)) satisfy the stability condition (3.12),
let (C*, @Y, d5) be the solution to the initial value problem for the Kakinuma model (2.18)—
(2.20) on the time interval [0,T] whose unique existence is guaranteed by Theorem 3.1, and put
o = U(Hy) - @) for £ =1,2. Then, we have the error bound

16 () = ™ )l sy + Y /2Ll VEE () = VO ()] m-cans)
(=1,2

< C((ﬁ15)4N+2 + (ﬁ25>4N+2)
for 0 <t < min{T,T"}.

The next theorem is the final main result in this paper and states the consistency of the
Hamiltonian #%((, ¢) of the Kakinuma model with respect to the Hamiltonian 52"V ((, ¢) of
the full model for interfacial gravity waves exhibited by T. B. Benjamin and T. J. Bridges [1].

Theorem 3.9. Let ¢, M, h;, be positive constants and m an integer such that m > § + 1 and

m > 4(N + 1). We assume (H1) or (H2). There exists a positive constant C' such that for any
positive parameters BpByﬁl?ﬁ?"s satisfying the natural restrictions (2.14), hyd,hyd < 1, and

the condition hyy, < hy,hy, and for any (¢, ¢) € H™ x HANFD and b € W10 satisfying

B ¢l + By MGz + g HIb e < M,
Hi(x) >¢, Hs(x)>c for xeR",

with Hy and Hs defined by (2.19), we have
|55(C, 0) = (¢ D) < CIVY| anes |Vl 12 (e 0) V2 + (hpd) N H2).
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4 Consistency of the Kakinuma model; proof of Theorems 3.4
and 3.5

In this section we show that under the special choice of the indices pg, p1,...,pn* as
(H1) N* =N and p; =2i (i=0,1,...,N) in the case of the flat bottom b(x) = 0,
(H2) N*=2N and p; =i (i =0,1,...,2N) in the case with general bottom topographies,

the Kakinuma model (2.18)—(2.19) is a higher order model to the full model for interfacial gravity
waves (2.17) in the limit 6; = hyd — 0, d2 = hyd — 0, in the sense of consistency. Specifically,
we prove Theorems 3.4 and 3.5. Our proof relies essentially on results obtained in the framework
of surface waves in [6], which are recalled in Subsection 4.1. The extension to the framework of
interfacial waves and the completion of the proof are provided in Subsection 4.2.

4.1 Results in the framework of surface waves

In this subsection, we consider the case of surface waves where the water surface and the bottom

of the water are represented as z = ((«) and z = —1 4 b(x), respectively. Here, the time ¢ is
fixed arbitrarily, so that we omit the dependence of ¢ in notations. Let H(x) =1+ ((x) — b(x)
be the water depth. For a nonnegative integer N, let N* and pg,p1,...,pnN+ be nonnegative
integers satisfying the condition (H1) or (H2). Put
(4.1) I(H):=(1,HP,..., H~)T
and define L;; = L;;(H,b,0) (4,7 =0,1,...,N*) by
1 . Dj .
4.9 Liio; =—V - - HPitpitlyg,. — J__ [pitp; ~Vb>
4.2) gie (pi+pj+1 T pit &
Di A Dipj dpi—1/5—2 2
— ——HPFPiIVh - Vp; + ——L—— HPFPi~1 (572 + |Vb[*) ;.
T o+ DI 672 ),
Introduce linear operators £; = £;(H,b,8) (i =0,1,..., N*) acting on ¢ = (g, ...,on+)" by
N*
Lo =Y Lojej,
(4.3) -
['z‘P = Z(Lij(pj—HpiLngOj) for i:1,2,...,N*.
§=0

The following Lemma has been proved in [6, Lemmas 3.2 and 3.4].

Lemma 4.1. Let ¢, M be positive constants and m an integer such that m > 5 +1. There exists
a positive constant C such that if ( € H™, b€ W™ and H =1+ ( — b satisfy

{MMm+MmeSM,

(4.4)
H(x)>c¢ for xR,

then for any k = £0,...,+£(m — 1), any o € (0,1], and any ¢ € H* there exists a unique
solution ¢ = (¢o, 1, ..., 0n+) = (¢o, @) € HFTL x (HF)N" to the problem
Li(H,b,0)p=0 for i=1,2,...,N*
Lw»¢=¢
Moreover, the solution satisfies ||V || gr + @' g < CIIV S| v

(4.5)
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As a corollary of this lemma, under the assumptions of Lemma 4.1
M(¢,b,0): ¢ Lo(H,b,0)¢

where ¢ is the unique solution to (4.5), is defined as a bounded linear operator from H*! to
HF=1 for any k = 40,...,4(m—1). A key result is that the operator AN)(¢, b, §) provide good
approximations in the shallow water regime § < 1 to the corresponding Dirichlet-to-Neumann
map A((,b,0), which is defined by

where @ is the unique solution to the boundary value problem

AD +05720%0 =0 in —14+0bx)<z<((x),
(4.7) d=¢ on z=((xz),
Vb-V® — 520,06 =0 on z=—1+b(x).

More precisely, we have the following Lemma.

Lemma 4.2. Let ¢, M be positive constants and m, j integers such that m > §+1, m > 2(j+1),
and 1 < j < 2N + 1. We assume (H1) or (H2). There exists a positive constant C' such that if
CeH™, be Wnth® and H =1+ ¢ — b satisfy

{mmHm+wbmymHQJSAm

(4.8)
H(x)>c for zeR",

then for any ¢ € H*20HD) with 0 <k <m —2(j + 1) and any & € (0,1] we have

JACY(C,b,8)6 — A(C, b, 8)gll e < CO¥ ||V o

Proof. We observe that the bound on t; := AMN)(¢,b,8)¢ — A(C,b,0)¢ in the case j = 2N + 1
and k =m — 4(N + 1) is given in [6, Theorem 2.2] and proved in [6, Sections 8.1 and 8.2]. The
proof is also valid in the case 1 < j < 2N +1land 0 <k <m—2(5+1). O

The above estimate allows us to obtain the desired consistency result on the equations de-
scribing the conservation of mass. We need a similar estimate for the contributions of Bernoulli’s
equation. To this end, we denote

(4.9) B(6:¢,0,0) = 5V - 307 e

and

(4.10) BV(6:¢,0,8) := 5 (juf? + 6-%u?) —wA™(¢,b,5)0
with

u:=((H)® V) ¢~ (I'(H) ¢)Vb,
w:=1U(H)- ¢,

Where U(H) = (0,pH L py-HPY"HD)T and ¢ == (¢o, ¢1,...,¢n+)" is the solution

o (4.5), Whose unlque existence is guaranteed by Lemma 4.1. Then, the following lemma

shows that B™)(¢; ¢, b, 8) is a higher order approximation to B(¢;¢,b,d) in the shallow water
regime § < 1.
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Lemma 4.3. Let ¢, M be positive constants and m an integer such that m > 4(N + 1) and
m > 5 + 1. We assume (H1) or (H2). There exists a positive constant C such that if ( € H™,

be Wmthee and H = 1+ ¢ — b satisfy (4.8), then for any ¢ € H™ and any 6 € (0,1] we have
1B (93€,5,8) = B(¢: ¢, b,0)l| sy < C5 N2V 3.
Proof. Notice first that differentiating ¢ = I(H) - ¢ we have V¢ = u + wV{, so that

B (6:,6,6) =5 (VoI +672w?(1 + FIVCP) — w(VC- Vo + AN (C,5,6)9)
=5 (VO + 572021+ 2IVCR)) — w(A(Gb,6)6 + V¢ V)
If we introduce a residual t by
t = (0720,0%P — V(- VOPP)| _- — (6720,0 — V(- VO)|.—,

where ® is the solution to the boundary value problem (4.7) and ®2PP is an approximate velocity

potential defined by
N*

B (1, 2) = 37 (= + 1 — ()P (),
i=0
then we have t = 6 2w — V(- u — A((,0,0)¢ = 6 2w(1 + 6%|V(|?) — V- Vo — A((, b, 6)é.
Therefore, we obtain

2

T+ o2vee

The desired estimate for the second term readily follows from Lemma 4.1 and Lemma 4.2. As
for the first term, in view of m > % we can use a calculus inequality [[¢?|x < ||tH?t](m+k)/2 for

B (6:¢,0,0) = B(6:6,b,0) = 57 w(AGb,0)6 ~ AM(C,b,5)6).

k € {0,1,...,m}. Particularly, we have |[t?||gm-axvi1) S Ht||§{m72(N+1). The last term can be

evaluated by estimates in [6, Sections 8.1 and 8.2]. O
4.2 Results in the framework of interfacial waves

In this section, we prove Theorems 3.4 and 3.5. To this end, we first rewrite the Kakinuma
model (2.18) using a formulation which allows a direct comparison with the full model for
interfacial gravity waves (2.17), thanks to the following Lemma.

Lemma 4.4. Let ¢, M be positive constants and m an integer such that m > 5 +1. There exists
a positive constant C' such that for any positive parameters hy, hy,d satisfying hq0, hod < 1, if
Ce H™, be W™, Hy=1—hi'¢, and Hy =1+ hy'¢ — hy'b satisfy

(4.11) by (€l mm + By MGl + By M [bllwmes < M,
‘ Hi(x) >¢, Ha(x)>c for xeR",

then for any k = 0,+£1,.. ., E(m —1) and any ¢1,02 € H* there exists a unique solution
b1 = (¢1,0, @) € HFHL X (HFO)N pgy = (a0, ) € HFL x (HFTY)N™ 10 the problem

(412) ll(Hl)'¢1:¢1a El,i(Hlv(saﬁl)qbl:O fOT’ i:1727"'aN7
l2(H2)-¢2:¢2, £2J(H2,b,5,ﬁ2)¢2:0 fOT i:1,2,...,N*.

Moreover, the solution satisfies |V ol gx + (hed) @)l gr < C|| Ve gr for £ =1,2.

19



Proof. Notice that we have identities
Luij(H1,0,hy) = Lij(H1,0,148),  Laj(Ha,b,0, hy) = Lij(Ha,hy'b, hyd)
with suitable choices of indices {p;}. Hence, Lemma 4.1 gives the desired result. O

As a corollary of this lemma, under the assumptions of Lemma 4.4

(N)(€757ﬁ ): ¢1 — El,O(Hl)ﬁh&)gbl)
AN (6,6, hy) ¢ g > Loo(Ha, b, by, 5) o,

where (¢1, ¢2) is the unique solution to (4.12), are defined as bounded linear operators from
H*! to H*! for any k = +0,... ,£(m — 1). Using these definitions and noting the rela-
tions (3.8) and ly(Hy) - Ovpy = Ou(Le(Hy) - ¢pp) — wghe_l&(, we can transform the Kakinuma
model (2.18)—(2.19) equivalently as

¢ + AN (¢ 5, h))pr =0,
¢ — ﬁzAﬁN (€., 6, hg)d2 = 0,
p {01 + 1(\u1!2 + (hy0) 2 ) +un A (c 5 hy)ér}
—p 02 + & (Jual® + (hd) ~2wd) — wah M (¢,0,8,hy) 2} — ¢ =0,

where we recall that wq, w2, wy, and wy are uniquely determined from ¢ and ¢ by (3.4),
wherein ¢; and ¢ are defined as the solutions to (4.12).

We further introduce notations, which are contributions of Bernoulli’s equation and interfa-
cial versions of B and BWV) defined by (4.9) and (4.10). We denote

52 (A1(G, 0,y )1 — VC - V1)?
1+ 2V (P !
52 A2(C, 0,8, )¢5 + V¢ - Vs)?
1+ 62|V(J? ’

(4.13)

Bi(¢1;¢,0,hy) = f\w > -

Bs(¢2;¢, b, 6, hy) = ,W \2

and
B§N)(¢>1;C,5,h1) = = (Jwa]* + (hy0) 2 )+w1A (¢, 8,11)01,

1
B (62;¢,6,0, hy) 1= 5(\u2\2 + (hy) " 2wd) — waeASY) (¢, b, 8, hy) .

DN |

Then, the full model for interfacial gravity waves (2.17) and the Kakinuma model (4.13) can be
written simply as

01C + A1(¢, 6, hy)p1 = 0,
¢ — Aa((, 0,6, hy)do = 0,
Py (Orp1 + Bi(¢1;¢, 6, hy)) — 32(3t¢2 + By(¢2; ¢, b, 6, hy)) — ¢ =0,
and
O + Iy A(N (g 8,h1)¢1 =0,
¢ — h2 (C b, 8, ho)p2 = 0,
pl(at¢1 +B (¢1’C 6,h )) —02(3t¢2 +B (¢2’C b, 9, hz)) ¢=0,

respectively. The following lemmas show that ﬁlAgN), QZAg ), B§ ), and Bé ) are higher order
approximations in the shallow water regime 6; = h;0 < 1 and 3 = hyd < 1 to Ay, A2, By, and
Bs, respectively.
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Lemma 4.5. Let ¢, M be positive constants and m, j integers such that m > §41, m > 2(j+1),
and 1 < j <2N+1. We assume (H1) or (H2). There exists a positive constant C such that for
any positive parameters hy, hy, & satisfying hy0,hed < 1, ifC € H™, b€ WmHLeo Iy = 1—@;14,
and Hy =1 —i—ﬁQ_lC — h;lb satisfy

s B+ b5 Gl + B bl < M,
Hi(x)>e¢, Ha(x)>c for xeR",

then for any ¢1, g € HF20+D) with 0 < k < m —2(j + 1) we have

1A, 8,1y r = Ma(C, 8| e < Chy (B 8)2 ||V | sz
o A5 (€., 8, ho) g — Aa(C. b, 8, ) ol g < Chg(hod)X ||V ol ez
Proof. By simple scaling arguments, we have

Al((? 57 hl) = hlA(_ﬁ;1C7 O?ﬁlé)v
AQ(C? ba 57 ﬁ2) = h2A(h51<7ﬁ51b3h25)’

4.15
( ) N)(ga(svﬁl) = A(N)(_EI1C707QI(S)>
M(C5,6,hg) = AN (y ¢, by b, y9).
Therefore, the results follow from Lemma 4.2. O

Lemma 4.6. Let ¢, M be positive constants and m an integer such that m > 4(N + 1) and
m > 5 + 1. We assume (H1) or (H2). There exists a positive constant C such that for any
positive parameters hy, ho,d satisfying hi0,hyd < 1, if ¢ € H™, b€ WmHhe Hy =1 — QI_IC,
and Hy =1 +ﬁ2‘1§ — ﬁ;lb satisfy (4.14), then for any ¢1, P2 € H™ we have

1BM (61:¢,6,hy) — B(61;C, 0, hy) || ppm—siv sty < ClIV |2 (hy 6)1N+2,
IBSN (25 ¢, b, 6, 1) — Ba(h2; €, b, 8, o) | prmscnsy < C|| V| Zms (h8) N +2,

Proof. By simple scaling arguments, we have

Bl(qbl;gaéah ) = (¢1a ﬁ C O h 6)
Bz(¢2,C b6, hy) = <¢2, 5 1¢, hy b, hyd),

(¢1,C5h) N (¢1;—-h17¢,0,hy0),
(¢2a<.. b 5 h ) (N)(¢27 1C7 1b h2 )
Therefore, the results follow from Lemma 4.3. ]

We can now prove Theorems 3.4 and 3.5. In view of (3.8) the errors (t1, te, t9) and (¥, T2, Tp)
can be written explicitly as

v = A1(¢, 6 hy)dr — AN (¢ 6.y,
ta = ho A (€, 6,6, hy) o — Aa(C, b, 6, ) o,
v = 3p, (Bu(615¢.8,hy) — B (61:¢,6, )
—3p, (Ba(2:C. b, 8, hy) — B (62:¢,0,6, b)),
(1 = —h{ 'L (Hy)v, T2 = —hy la(Hy)ve, T = —1o.

Therefore, the theorems are simple corollaries of the above Lemmas 4.5 and 4.6.
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5 Elliptic estimates and time derivatives

In this section we derive useful uniform a priori bounds on regular solutions to the Kakinuma
model (2.18)—(2.19). Firstly, due to the fact that the hypersurface ¢ = 0 in the space-time
R"™ x R is characteristic for the Kakinuma model, we need the following key elliptic estimate in
order to be able to estimate time derivatives of the solution. Let us recall that the operators £ ;
fori=0,1,...,N and Ly, for i =0,1,..., N* are defined by (3.6), and the vectors l;(H;) and
l2(Hs) are defined by (3.3). We recall the convention that for a vector ¢ = (¢o, ¢1,...,6n)T
we denote the last N components by ¢’ = (¢1,...,0n)".

Lemma 5.1. Let ¢, M be positive constants and m an integer such that m > 5+1. There exists a
positive constant C' such that for any positive parameters B1’£2’h1’ﬁ27 0 satisfying hyd, hyd < 1,
ifCe€ H™, b€ W™, Hy =1—h{'¢, and Hy = 1+ hy "¢ — hy 'b satisfy (4.11), then for any
= )T € HON, 3= (forse.o, fon)T € (HNY', f3 € (HY)", and fy € HF
with k € {0,1,...,m — 1}, there exists a solution (¢1,p2) to

E1¢(H1,5,h1)(p1 = f172‘ f07‘ 1= 1, 2, e ,N,

Lo i(Ha,b,0,hy)p2 = fo; for i=1,2,...,N¥,
hL10(H16,hy)p1 + hoLoo(Ha, b,6,hy)p2 =V - f3,
—p,li(Hy) - 1+ pyla(Ha) - 2 = fa,

(5.1)

satisfying

Pl (IVepellip + (ed) =21 l130)

=1,
<C p e min{|| £l 31, (hed)? (| £7ll70 }
=1,
+ min< =, = || f3 4+ ming =, == ||V f4 .
(B 2 Pl mind 2 2 19 4

Moreover, the solution is unique up to an additive constant of the form (6827 681) to (¢1,0,92,0)-

Proof. The existence and uniqueness up to an additive constant of the solution has been given
in the companion paper [3, Lemma 6.4]. We focus here on the derivation of uniform estimates.
By direct rescaling within the proof of [3, Lemma 6.1], we infer that

(Lewe, o) 2 = [Vepell72 + (he8) > 1)l 72
for £ =1,2. We note the identities

Lipr =ULiogp1 + (0, L1101, ..., L1ner) T,
Lopa =1Ly g2 + (0, Lo1p2, ..., Lon+p2)T

)

so that for the solution (¢1, ¢2) to (5.1) we have

(5.2) > ph(Lepr, ez = > phu(Loopebe- o)z + > pho(F1 0012
=12 =12 =12
=11 + Is.
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Therefore, it is sufficient to evaluate I; and I. As for the term Iy we have

|(f2> f) 2] < min{ || F7ll - 00l [ F2ll 2 il 2}
< min{]| f7ll -1, (o)l £oll 2} IV el 12 + ()~ 100l 2)-

As for the term [I7, we note the trivial identities

> p el Loopele - @o) e

=12

_ ) (mLiopr + hoLoopa, pili - 1) 2 + (haloopr, pyla - w2 — pili - 1) 2
(hiL1,0p1 + hoLo w2, pla - p2)r2 + (R Liopr, pli - o1 — pylo - p2)r2

Therefore, the term I in (5.2) can be expressed in two ways as

1= 1oV fs b 1)z + ho(La0p2, fa)re,
2o(V - f3,la - p2) 2 — by (L1061, fa) L2

By the linearity of (5.1) it is sufficient to evaluate it in the case f; = 0 and in the case f3 =0,
separately. In the case f; = 0, we evaluate it as

(1| < min{p, [ 5] 2]| V(8 - 1)l L2, o | F3ll 22V (2 - 2) [ 12}

—mm{,/ PN/ CRr PN PP/ TS m)HB}
. Pq Py /
< mm{w/h; , /h2}|lf3HL2 by \/&Muwzum T loble).

In the case f3 = 0 we evaluate it as

LS mln{h ||v901HL2HVf4HL2 ho([IVep2llr2 + leall )1V fall 2}

= min 1/ IIVf4HL2 Pl [Verll e, @/ HVf4HL2 PQhQ(HV‘AOlHL?“‘HSOQHLZ)}
h
Smin ;1, ;2 IV fall 2 v/ eIVl 2 + Il )
\/31 \/82 gjz n

From the above estimates we deduce immediately the desired inequality for k£ = 0.
In order to obtain the desired inequality on derivatives, we let k € {1,2,...,m — 1} and 8
be a multi-index such that 1 < || < k. Applying the differential operator 9% to (5.1), we have

,C1laﬂ(,01 85f11+f115 for 1=1,2,...,N,
/.,‘2718[3502 = 86]”271 + foup for i= 1,27 ... 7N"‘,
7 £1,00° @1 + hoLo00° 2 =V - (0° f3 + hy f31,5 + hof3,2,8),
—pli -0 p1+pla- 0%y = 0% fu+ p farp+ pyfazs,
where
frip = —[0% L1:(H1,0,hy)p1 for i=1,2,...,N,
faip = —[0%, Lai(Ha, b, 6, hy)]p2 for i=1,2,... N*
V- fi1,8:=—[0° L10(H1, 6 h)|er,
V- f30:=—[0°, L20(Ha2,b,0,hy)]ep2,
fan,p = [0%,Li(Hy)| - 1,
| f12,6 = 107, 12(H)] - 2
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We put f15 = (0, f171,5., . fing) and fag = (0, fo1.8,..., fon+p). Then, with a suitable
decomposition fy g = fl}lggh + fl}oﬁw for £ = 1,2, we see that

high _
128 a1 + Red) | £ 1z + [ Faeplliz + IV Faellz S IVl ns + (128) " ol s

for ¢ = 1,2. Therefore, in view of the linearity of (5.1) the desired inequality for & > 1 follows
by induction on k. O

From the above elliptic estimates we deduce the following bounds on time derivatives of
regular solutions to the Kakinuma model (2.18)—(2.19). We introduce a mathematical energy
E,.(t) for a solution (¢, ¢1, ¢2) to the Kakinuma model by

(5.3) En(t) = ICO3m + Y 2V e(t)3m + (1) 2|5 (8) | Frm ),
(=12

where ¢} = (¢11,...,01.n8)T and ¢y = (p2.1,. .., p2,n+)T.

Lemma 5.2. Let ¢, M1, h,;, be positive constants and m an integer such that m > 5 +1. There
exists a positive constant Cy such that for any positive parameters Py Py hy, hs, 0 satisfying the
natural restrictions (2.14), hyd,hy0 < 1, and the condition h,;, < hy,hs, if a reqular solution
(¢, p1, P2) to the Kakinuma model (2.18)~(2.19) with bottom topography b € W™ satisfy

Em(t) + by [[bllwme1.00 < M,
Hy(xz,t) > ¢, H(xz,t)>c for ¢e€R"0<t<T,

then we have
(54 NOCENFmr + D 2oV De )T + (hd) 2|01 (E)[Fpm 1)
0=1,2

FNOZCO N m2 + Y 0 eIV o)1 Fym—2 + (2e6) 27 B (1) [ Fpm—2) < C1Em (1)
=12

for0<t<T.

Proof. First, we remind that the Kakinuma model (2.18) can be written compactly as (3.5). It
follows from the first component of the first two equations in (3.5) that 0, can be written in
two way as 0i( = —h 1 L1,0¢1 = hyLls o2, so that

106C 1 Fym—1 = min{h3 [ L1001 Fm-1, B3| L20@2| Fm—1}
S min{h7 (Ve [[7rm, B3 (|| V pal Frm + |95 Fm )}

< min{hl, hQ}Em <2F,,
Py Py

where we used (2.15).
As for the estimate of (Oy¢p1, Orp2), we differentiate the compatibility conditions (3.7) with
respect to time and use the last equation in (3.5). Then, we have

L1001 = f1; for i=1,2,...,N,
Lo:01py = fo; for i=1,2,...,N*,
ﬁ1£1,03t¢1 + ﬁgﬁz,oat(ﬁg =V-fs,
—pli - 01 + pla - O = fu,

(5.5)
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where
—[0¢, L1,i(H1,6,hy)|p1 for i=1,2,...,N,
fgZ —[04, L2i(H2,b,0,hy)|p2 for i=1,2,...,N*,
f3:= (u2 — u1)9(,
fo=gp, (Jua? + (1 8)>wi) — 5p, (Juzl® + (hed) *w3) —C.

Therefore, by Lemma 5.1 we have

(5.6)

(5.7) > IV OellFpm s + (2ed) |03y )
=12
P,
3 o b P+ mind 2,22 Al 1l
=1,2 =2

where f] = (fi1,---, fin)T, f5=(f21,--., fon+)T, and we used (2.15). We proceed to evaluate
the right-hand side. By writing down the operators Ly ; explicitly, we see that the operators do
not include any derivatives of Hy. Therefore, we can write fy; as

fii= <(8§I 511)¢1>h Lo, f2,i:<(a?{ £2z>¢2>h LoiC.

We note also that the differential operators aLHEEM have a similar structure as £, ;. Therefore,

2o (hed) 2 Fill3pm—1 S e (hed)? IV el Frm + (o)~ D07 rm—1) 1y Gl s
S E?2 for £=1,2,

where, here and henceforth, we utilize fully our restriction ﬁl_l, hy 1 < 1. In view of the defini-
tion (3.4) of w1, ug,wi, and wsy, we see easily that

(5:8) Y plulluliem + (hed) "2 wel|Fm) S Em-
(=1,2

We evaluate the term on f3 as

p, P P
wind 1, 21120 S 5 bl

=12~

S p bl 3 g O
(=12

S Ex.

Similarly, we have

1 £allFm <D o2l Fm + (e 8) 2 wellFrm)? + 1IC ] Fm
=12

S 2 el i + (18) el 3m) > + 1l Fpm
=12
< E2 + E,,.
Plugging in (5.7) the above estimates, we obtain the desired estimate for (0;¢p1, O;¢p2).
Finally, the estimate of 9?¢ can be obtained by differentiating 9;¢ = —hL10¢p1 = hoL2 o2

with respect to time. Then, the estimate of (02¢1, 02¢2) can be obtained by differentiating (5.5)
with respect to time once more and applying Lemma 5.1. O
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Remark 5.3. In view of the above arguments, we see easily that for the Kakinuma model (2.18)—
(2.19), (Or1, Orp2)|t=0 can be determined from the initial data (((gy, @1(0), P2(0)) and the bottom
topography b, although the hypersurface ¢ = 0 is characteristic for the model. They are unique up
to an additive constant of the form (CB2, Cgl) to (9rd1,0, Ord2,0)|t=0. Particularly, (9r], Orh)|i=0
and hence al;—¢ with the function a given in (3.9) can be uniquely determined from the data.

6 Uniform energy estimates; proof of Theorem 3.1

In this section we provide uniform energy estimates for solutions to the Kakinuma model. Con-
sequently, we prove Theorem 3.1. We remind that the Kakinuma model (2.18)-(2.19) can be
written compactly as

Ui (H1)0eC + hy L1(H1, 6, by )1 = O,
lQ(H2)atC - thQ(H% b, 9, ﬁz)‘f’? =0,
o, {l(Hy) - 8ip1 + 5 (Jwa]? + (1y6) 2wi) }
—32{12(H2) 02 + 5 (|ual® + (hyd) 2wid) } — ¢ =0,

where we recall that H; := 1 — ﬁl_lC, Hy :=1+ QQ_IC — ﬁ2_157 b1 = (¢1,0»¢1,17--->¢>1,N)Ta
@2 := (20,021, .., P2.n+) T, and Uy, lo, L1, Lo, u1, uz, wy, wy are defined in Section 3.

(6.1)

6.1 Analysis of linearized equations

Before deriving linearized equations to the Kakinuma model (6.1), we introduce some more
notations. For £ = 1,2, the coefficient matrices of the principal part and the singular part with
respect to the small parameter 6y = h,d of the operator L, are denoted by A,(H,) and Cy(Hy),
respectively, that is,

1 it
Al(Hl) = <2<H12( +J)+1>
0<i,j<N

i+7)+1 ’
(6.2) 1 pit+p;+1
Ay(Hg) := | ———Hy' ™ ,
pi+pj+1 0<i,j<N*
and
439 i)
Ci(Hy) = (.Z‘?le(“”) 1) ’
(6.3 N osts<w
o S
Co(Hy) = (P%l P ,
PitPpj— 0<i j<N*
We put also
By(Hy) := <pf_’:p'H§"+”f> ,
(64) ? J 0<7,j<N*

BQ(HQ) = BQ(HQ) — BQ(HQ)T,
Co(Ha, hy 'b) := |hy 'Vb|2Co(Ha) + hy ' (Ab) Bo( Hy).

Then, the operators L; and Lo can also be written as

(6.5) Ligpr = —A1A¢py — Ui(uy - VHy) + (hy6) 2C1 1, ) )
' Loy = —As Ay — la(uz - VHa) + (hy8) 2Caps + Ba(hy ' Vb - V)ghy + Cogh.
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For £ = 1,2, we decompose the operator Ly as Ly = L?r + Lleow, where

(6.6) LY (Hp)pe :=— Y O/(Au(H)Oupe) + (he8) >Co(Hy)py.
=1

We now linearize the Kakinuma model (6.1) around an arbitrary flow (¢, ¢1, ¢2) and denote
the variation by ((, ¢1, ¢2). After neglecting lower order terms, the linearized equations have
the form

L (H1) (8 +ur - V)C+ by LY (Hy, 6, hy ) = fu,
(6.7) lo(H2)(0¢ +ug - V)¢ — ho Ly (Hz, 6, ho )2 = fo,

pi(H1) - (O +u1 - V)1 — pla(Hz) - (O + w1 - V)2 — a = fo,
where the function a is defined by (3.9). In order to derive a good symmetric structure of the
equations, following the companion paper [3] we introduce

(6.8) o = Llhan g Ialetlo
‘ b phoHaoz + p,hy Hion’ 2 p hoHooz + p,hy Hion
where
det AE,O ~ 0 1T
(69) Oy = det Ag}o’ AK,O = <_1 AZ,O ) AK,O ‘= Aé(l)

for £ = 1,2 and 1 := (1,...,1)T. Then, we have #; + 6 = 1. We remind that a; and s are
positive constants depending only on N and N*, respectively, and go to 0 as N, N* — oco. We
also introduce

u = Oquq + OLuo, Vi=U — UL

Then, we have u; = u—60;v and us = u+602v. Plugging these into the linearized equations (6.7),
we can write them in a matrix form as

(6.10) A (0 +u - VU + U = F,
where ) )
. 3 . . fo .
U:=|(¢1], F .= Bl(fl —(V-(hlh® v))g ;
®2 Py (f2 = (V- (62l2 ® )¢
and
0 _BllrlT EQZQT
= pli 0] o 1,
_32l2 0] O
a BlﬁlllT('v V) 3292l2T('v V)
%mod — (’U . v)*(glelll ) BlﬁlLlfr 0
(v-V)*(p,bil2-) O Pola Ly

Here, (v-V)* denotes the adjoint operator of v-V in L?, that is, (v-V)*f = =V - (fv). We note
that 7 is a skew-symmetric matrix and %m"d is symmetric in L?. Therefore, the corresponding
energy function is given by (#"°U,U) 2. We put

(6.11) EWU) =72+ Y phuIVell72 + () 2| dpl172)-
(=12
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The following lemma shows that (iU, U) 2 ~ &(U) under the non-cavitation assumption
and the stability condition.

Lemma 6.1. Let ¢, M, h;, be positive constants. There exists a positive constant C such that
for any positive parameters Py Py hy, he, 0 satisfying the condition h,;, < hy, hs, if H1, Ha, w1, us,
and the function a satisfy

S (Hellze + /o, ulluellzo) + llall e < M,
=12

(6.12) a(x) — 210y B
(z) £1ﬁ2H2(a:)a2 +£2h1H1(:n)a1| 2(x) 1(@)]” > ¢,

Hi(x) >¢, Hi(x)>c for xeR",

then for any U = (C, ¢y, d2)T € L2 x (H' x (HY)N) x (H! x (HY)YN") we have
C7lEU) < (U, U) 2 < CE(U).

Proof. This lemma can be shown along with the proof of [3, Lemma 7.4]. For the sake of
completeness, we sketch the proof. We first note that

(0. U) 2 = (al, Q) gz + D {p e LY e o)z + 20,0k - (v V)r. {) 12}

=12
= (a2 + Y {&ﬁz (Z(Azaz@, Ope) 12 + (hed) > (Cogpr, ¢€>L2>
=12 =1

+ 28@(051] ’ (l@ ® V)Téfa é)L2}7
where we used the identity a - (v-V)p = v - (a ® V)Te. On the other hand, we can put

( qe(Hy) (M(HK)T) _ ( 0 le(He)T>1
—q(Hy) Qu(He) ) " \—L(Hy) Ae(Hy)

for ¢ = 1,2. Then, we see that q,(H;) = Hyop and that Qg(Hy) is nonnegative. Moreover, the
identity

(6.13) Ao(Hy) e - pe = qe(He) (Le(Hy) - o) + Qe(He) Ae(He)pe - Ao(Ho) o

holds for any . Therefore,

> (Adipe, Do) 2 =Y {(aebe - Orpe, Lo - Dupe) 12 + (QuAwDicpe, Ardype) 12}
=1 =1
= (Heau(ly @ V) o, L @ V) o) 12+ (QuAiDicbe, Aedrpe) 12,
=1
so that

(%10, U) 2 = (¢, Oz + Y {p,he(Heae(le ® V) g, (b © V) hy) 12
=1,2
+2p,(0v - (L ® V) e, Q) p2}

+ géhe{Z(QeAzazd)e, Aed10) 12 + (hyd) "> (Cogpe, 1) 12 }
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We proceed to evaluate I;.

nz [ fal e ¥ ottt 9 i - 2,100l 9 ) b

=12
= / A | /ol @ V)| | P @ V)T de,
' Pyhal(l2 @ V)T by Pyhal(l2 @ V)T by

where the matrix 2l is given by

a —\/Py/ P01V —/p,/hota|v]
Ql() = — Bl/ﬁ191|’v| Hloq 0
32/Q292|v| 0 HQO(Q

Here, we see that

PPy
phoHoao + p,hy Hion

det 2y = HiHoagan (a — \'U\Q) > Bajag >0,

so that 2y is positive definite by Sylvester’s criterion. Moreover, tr 2y < max{1, a;,as} M <1
and the minimal eigenvalue of the matrix 2l is bounded from below by 4 det 2o/ (tr2lp)? > 1.
Therefore, we obtain

Lz / (CQ + ) p,hHo| (1 ®V)T¢e!2>d$-
” 0=1,2

As for I, it is easy to see that (Cyy, dy)p2 ~ ||¢2H%2 for £ = 1,2. Summarizing the above
estimates and using the decomposition (6.13) again, we obtain (&/°U, U) . > &(U).

In order to obtain the estimate of (%mOdU, U) ;> from above, it is sufficient to show that
each element of the matrix 2 is uniformly bounded. Since 61 + 63 = 1, we have

py/hibilv] < ity [ byfud| + \/p, /hibr]us,
Py haba|v] < \/p, /ol lur| + byt [ pholusl.

Here, we see that

o _ Hlal \/ pthHQCtg (p2h Hlal)
py/hbr|us| = I, Poholusl

a9 p1h2H2a2 + p2h1H1a1

H1a1
< — h
= 2h2 Hga Polk o| s

< - <1
2ﬁmin ]\C/[ao; M
Similarly, we have  /p,/hyf2|ui| < 1. Therefore, we obtain (fredU, U) 2 < EU). O
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In the following Lemma we provide uniform energy estimates for regular solutions to the
linearized Kakinuma model (6.7).

Lemma 6.2. Let ¢, M, My, h,;, be positive constants. There exist positive constants C =
C(e, M, hppyy) and Cy = Ci(c, M, My, hyyyyy) such that for any positive parameters p , py, by, hy, 0
satisfying the natural restrictions (2.14) and the condition h,;, < hy,hy, if H1, Ha, w1, w2, and
the function a satisfy (6.12) and

> (0:Hel Iz + IV Hellzoe + pho(|0cuel|7oe + |Vl Zoo)) + 10sall oo + |[Val|poe < My,
(=12

then for any reqular solution U = (C, b1, gf)g)T to the linearized Kakinuma model (6.7) we have

EU(t) < CeMEU(0) + 01/ ecl(tT){||Jé0(7')||H1(Haté(T)HH—l + 1)1 22)

0

+ > plfe(m)l 2 + !!i(f)\\Lz)ll(atée(T),V(i)z(T))Hn}dT

=12

Proof. We deduce from (6.10) that

dszodU 0

= ([at, mod| 7 U 12 + 2(0U, U) 12
= ([00, A"NU,U) 2 + 2((0 + u - VU, "0 ) 2 — 2((u - V)U, "0 ) 12
= ([0, mod] U2 —2((w- VU, &0 ) 2 + 2((0 +u - VYU, F) 2

= Il + I2 + I37

where we used the fact that %m"d is a symmetric operator in L? and that .27 is a skew-symmetric
matrix. As for I1, we have

n

L= ((3a)( Q2+ Y {Pgﬁe (Z((@Ae)ﬁl@, Oupe) 2 + () ((9:Co) e G5Z)L2>

=12 =1
2,100, 04F (6 - V)b é>Lz}.

Here, as in the proof of Lemma 6.1 we have /p,/hyf¢(|v| + |0v]) < 1 for £ = 1,2. In view

of the relations 9,0y = —9y02 = 610,(H; '0,H, — Hy '0,H,), we have |90, < 6165 for £ =1,2.
Therefore, we obtain |I;1| < &(U). As for Iy, by integration by parts we have

Iy = (V- (au)){, ()
-2 P@J{Z{Q (Acidpe, ((Orw) - V)pe) 2 + (((w - V) Ar)Dicpe, Dugpe) 12 }

(=1,2
T () (- V)" Co)r. q'bmz}

+2> p AV - w047 (v Vo) 2 + (C [u -V, 000] (v - V)] hy) 12
(=1,2
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By using (2.14), we see that

Jun _ Py ,~ 2L _ P

01 ~ ~ = = =
Blﬁg + B2ﬁ1 hy

N Blﬁg + B2ﬁ1 B QQ’

Therefore, we have [u| < a|u;| + 01|uz| S 1. In view of [V| < 610 for £ = 1,2, we have also
|[Vu| <1 and /pe/h0;|Vo| <1 for £ = 1,2. Hence, we obtain |I2| < &(U). Finally, as for I3,
we have

I = 2(0:¢, fo)r2 —2(C, V- (ufo)) 2

+2 ) p, (0 +u- V), fo— (V- (0ely ©v))C) 2
=12

S Wfollzr (10l + 1<l z2) + D p, 1 fellzz + 1S 22) [ (Debe, Vébe) | 2

=12
Summarizing the above estimates we obtain

d L ) . . .
— ("0, U) 2 S W) + [ foll g (106 -1 + 1€ 2)

dt
+ > 2 (el + <1 22) 1 (Bebe, Vo)l 2

=12

This together with Lemma 6.1 and Gronwall’s inequality gives the desired estimate. 0

6.2 Energy estimates

In this subsection, we will complete the proof of Theorem 3.1. The existence and the uniqueness
of the solution to the initial value problem for the Kakinuma model (6.1) has already been
established in the companion paper [3], so that it is sufficient to derive the uniform bound (3.14)
of the solution for some time interval [0, 7] independent of parameters. The following lemma
can be shown in the same way as the proof of [6, Lemma 4.2].

Lemma 6.3. Let ¢, M be positive constants and m an integer such that m > 5 +1. There exists
a positive constant C' such that for any positive parameters hy, ho,d satisfying h,d, hyd < 1, if
Ce H™ ', be W™, Hy =1—h{¢, and Hy =1+ hy'¢ — hy 'b satisfy

BHICH =1+ hy MG e+ By H[Bllwme < M,
Hi(x) >¢, Hi(x)>c for xeR",

and if p1 and @y satisfy

‘Cl,i(HL(S,ﬁl)@l :fl,i fOT’ i:1,2,...,N,
£2,i(H27b7 5aﬁ2)902 = f2,i for i=1,2,...,N*,

then for any k =0,+£1,...,£(m — 1) we have

(he8) 2ol e < CUVpellgnss + el mres + I fille) — (€=1,2).

The next lemma gives an energy estimate of the solution to the Kakinuma model (6.1) under
appropriate assumptions on the solution. We remind that the mathematical energy function

E,,(t) is defined by (5.3).
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Lemma 6.4. Let ¢, M, M1, h,;, be positive constants. There exist two positive constants C' =
C(e, M, hyy,) and Cy = Ci(c, M, My, hyyyyy) such that for any positive parameters p , p,, by, hy, 0
satisfying the natural restrictions (2.14), hyd,ho0 < 1, and the condition h,;, < hy,hy, if a
reqular solution (¢, @1, ¢p2) to the Kakinuma model (6.1) with a bottom topography b satisfies
(6.12), h (||b||Wm+loo + (hod)|bllwm+2.00) < My, and En(t) < My for some time interval
[0,77], then we have B, (t) < Ce“ ' E,,(0) for0 <t < T.

Proof. Let 8 be a multi-index such that 1 < |3| < m. Applying 9° to the Kakinuma model
(6.1), after a tedious but straightforward calculation, we obtain

L (Hy) (0 + w1 - V)OPC + by LY (Hy, 6, h0)3% 1 = fus,
(6.14) lo(Ho)(0) + ug - V)¢ — hy LY (Ha, 8, hy) 3P o = fo 5,
Blll(Hl) . (8t + w1 - V)a’8¢1 —B2l2(H2) . (at + us - V)85¢2 — a@ﬁc = foﬁ,

where L' and LY are defined by (6.6), the function a by (3.9), and

(6.15)  f1,5 = —[0°,Li(H1)]0:¢ + by {[0°, A1(H1)|Agpy — (1(Hy) @ 11 (H1))(VHy - V)9 by
+[0°, i (Hy) ® wa]VHy — (1 6)*[0°, C1(H1)]¢h },
(6.16)  fo5 := —[0°,12(H2)]0:¢ — ho{[0”, As Hg)]Ad)g — (ly(Hy) ® ly(Hy))(VHy - V)% o

+[07,12(Ha) © ug]VHy — (hyd) (07, Ca(Hz)] 2

— Ua(Hz)(us - 07 (hy'Vb)) — 07 (Ba(Ha)(hy ' Vb - V) + Co(Hz, by 'b)p2) }.
(617) oz = —p, {(10°, i (HL)] = G(HL) (07 H)) " Orgpy

+ %[8ﬁ;u1,u1] + %(ﬁ15>72[aﬂ§w1,w1]

+up - (([0°, L(Hy)] = U (H1)(0°Hy)) @ v)T¢1

= (1y0)wn (0%, 0 (H)] = 1 (1) (9P Hn)) " + i (Hy) - 07 h1) }

+ 0,1 ([0 o (H)) — Ly (Hy) (0° Hy) — Uy(Ha)(9° (ky '0)))  Ouspo

+ %[86;1@,1@] + %(@5)_2[85;102,102]

+ua - (([0°, 1a(Ha)) = U(Ho) (97 Ha) — 1y(Ha) (07 (15 '0))) © V) " 2

—uy - [0°, by Vb ® ollh(Hs)

— (ug - 1y 'Vb) s - (9°15(Ha) — 15 (H2) (07 Ha) — 15(H2) (07 (hy 'D)))

+ (hgd) 2w (([07, 1y (Hy)] — 15(Ha) (07 Ha) — Uy (Hy) (97 (hy b)) " ¢

+1y(Hy) - 0°¢a) }.

Here, [0°;u,v] = 0% (uv) — (0°u)v — u(0Pv) is the symmetric commutator. For vector valued
functions, it is defined by [0°; u,v] = 0°(u - v) — (0°u) - v — u - (0°v).

On the other hand, by Lemma 5.2 we have the estimate (5.4) for time derivatives of the
solution. Particularly, we have

(6.18) > 2 (100uel3mr + (hed) [ OswelFms + 10} | Ty + 107 Dl Fgm1) S Em.
(=12

Note that we have also the estimate (5.8) for the velocities (ug,wy) (¢ = 1,2). Moreover, it
follows from Lemma 6.3 that p,hy(hed)™ eyl 2m-1 S Em for £=1,2. In view of the definition
(3.9) of the function a, it is not difficult to check the estimate [|a — 1[|%m + |0¢all%m-1 S Em

~
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Therefore, by the Sobolev imbedding theorem we see that all the assumptions in Lemma 6.2 are
satisfied, so that for the solution U = ((, ¢1, ¢2)T we have

t
(U (1)) < Ce“11&(0°U(0)) + Cy / “1=1) g2y (1) dr,
0

where

Z5 = 1 fosll i (10:07Cl i+ + 107¢ |l 2)

+ ) p,lfeslre + 10°C1 £2) (0007 e, VO )| 2.
(=12

In view of the estimates (5.4), (5.8), and (6.18) together with
1107, Le(H)] = 1 (H1)(0° He) el i S Ml pam
for £ = 1,2, we obtain #3 < E,. We note that the multi-index  is assumed to satisfy

1< |8 <m. As for the case § = 0, in view of %@@(U(t)) < En(t) we infer the inequality
EU(t) <&WU(0)) 4+ Cy f(f E,,(7)dr. Summarizing the above estimates we obtain

t
En(t) < CeCt B (0) + O / G B (r)dr
0
with constants C' = C'(¢, M, h;,) and C; = Cy(c, M, My, h;,). Therefore, Gronwall’s inequality
gives the desired estimate. O

Now, we are ready to prove Theorem 3.1. Suppose that the initial data (i), ®1(0), P2(0))
and the bottom topography b satisfy (3.10)—(3.13). Let Cj be a positive constant such that

> (HHeoyll + p ey 1) + llagy = < Co.
=12

Such a constant Cy exists as a constant depending on cy, My, i, and m. We will show that
the solution ((, ¢1, ¢2) satisfies (3.14), (3.15), and

(6.19) S H Dl + plolluc®)e) + la(®)llz= < 2C0
(=12

for 0 <t < T with a constant M and a time T which will be determined below. We note that
(3.14) is equivalent to E,,(t) < M. To this end, we assume that the solution satisfies (3.14),
(3.15), and (6.19) for 0 < ¢ < T'. In the following, the constant depending on cg, Cy, b, m but
not on M is denoted by C' and the constant depending also on M by C';. These constants may
change from line to line. Then, it follows from Lemma 6.4 that E,,(t) < CeC1t' My for 0 <t < T.
Therefore, if we chose M = 2C My and if T is so small that T < C] ' log2, then (3.14) holds in
fact for 0 < ¢ < T. It remains to show (3.15) and (6.19). As before, we can check

=12 (10cHe (8| Lo + /ol |Osae(t)] Lo ) + [|Opa(t) || < Ch,

_ PPy () — (2 ) [ o
Hat(a(t) pHa(t)az +g2Hl(t)a1| 1(t) — ua(1))] >HL < (.

Therefore, if T is so small that T < (201) " !cg and T < ((203/2 +1)C1)~1Cp, then the lower
bound (3.15) and the upper bound (6.19) hold in fact for 0 < ¢ < T'. This completes the proof
of Theorem 3.1.
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7 Approximation of solutions; proof of Theorem 3.8

In this section we prove Theorem 3.8, which gives a rigorous justification of the Kakinuma
model as a higher order shallow water approximation of the full model for interfacial gravity
waves under the hypothesis of the existence of the solution to the full model with uniform
bounds.

7.1 Supplementary estimate for the Dirichlet-to-Neumann map

In this subsection, we give a supplementary estimate to Lemma 4.2 for the Dirichlet-to-Neumann
map A((, b,9) defined by (4.6) appearing in the framework of surface waves. We recall the map
AN(¢,b,8): ¢ — Lo(H,b,8)p, where Lo(H, b, ) is defined by (4.3) and ¢ is the unique solution
to (4.5). In this section we omit the dependence of ¢ in notations.

Lemma 7.1. Let c, M be positive constants and m, j integers such that m > 5 +1, m > 2(j+1),
and 1 < 7 < 2N + 1. We assume (H1) or (H2). There exists a positive constant C' such that
if ¢ e H™, b e Wntleo and H = 1+ ¢ — b satisfy (4.8), then for any ¢ € HET20+D with
0<k<m-—2({+1) and any 6 € (0,1] we have

1(=A) (AN, b, )6 — AC,b,8)B)|gr < COF |V girarsa.

Proof. This lemma can be proved in a similar way to the proof of Lemma 4.2 with a slight
modification. For the completeness, we sketch the proof. By the duality (H*)* = H~* and the

symmetry of the operator (—A)_%, it is sufficient to show the estimate

(A= A6, 4) 2] S 67| V| prsesan | V|| gy
for any ¢ € H*20+1) and any ¢ € H'~*. We decompose it as

(A= A6, )2 = (A = ACYFD)g, ) + (ABYH) — AN, ),
=1+ I

and evaluate the two components of the right-hand side separately.
We remind the definitions (4.1) of the (N* + 1) vector-valued function I(H) and (4.3) of
the operator £;(H,b,d), which acts on (N* + 1) vector-valued functions. These depend on N,

so that we denote them by I")(H) and EEN) (H,b,0), respectively, in the following argument.

Let ® be the solution to the boundary value problem (4.7) and let ¢ = (o, ¢1,...,dN+),
¢ = (¢0, P15 .., Pan++2), and ¥ = (Yo, 1, ..., Yan++2) be the solutions to the problems

LN(H b, S)p=0 for i=1,2,. .. N*
IN(H) - ¢ = ¢,

LENTD(H b)Y =0 for i=1,2,...,2N" +2,
1CN+2) (). ¢ =09,

and
LN H b S)p =0 for i=1,2,...,2N"+2,
BN (H) -4 =,
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respectively. Put

2N*42
PP (x, z) 1= (2 4+ 1= b(z))"¢i(x),
(71) oyeir!
U(x,2) = (z + 1= b(z))" (),
1=0

and @ := & — PP, We note that PP is a higher order approximation of the velocity potential
® and that it satisfies the boundary value problem (4.7) approximately in the sense that

AP 4 572025 — R i —14b@) <2< C(a),
e = ¢ on 2= (),
Vb VOPP — 5729, 0%P = rp on z= —1+ b(x),

where the residual R can be written in the form

2AN*42
R(z,z)= > (241 —bx))Pir(x).
i=0
Estimates for the residuals (rg,71,...,7on++2) and rp were given in [6, Lemmas 6.4 and 6.9]. In
fact, we have |(ro,71,...,7on+12) || ge + 7B |lgr S 0% (| V|| grseisr for —m <k <m —2(5 + 1)

and 0 < j < 2N + 1.
Now, with a slight modification from the strategy in [6], we use the identity

L :/L;VX@reS-L;VX\Ide,
Q

where we denote Q := {X = (x,2); =1 + b(x) < z < ((x)}, I; := diag(1,...,1,671), and
Vx:=(V,0,) = (d1,...,0n,0,). Indeed, we have on one hand

(Ap, )2 = / IsVx® - IsVxPdX
Q

as a consequence of (4.7), ¥(x, ((x)) = ¢(x), and Green’s identity, and on the other hand

2N*+2

(ACN®2 g ) o = (LFVD AN ) = 3™ (HPLED ) 2
=0
2N*+2 ~ B
= Z (Lij@j, i) 2 z/INchaPP.INX\IJdX,
i,j=0 Q2

where the last identity follows from the expressions (4.2) and (7.1).

To evaluate I, it is convenient to transform the water region 2 into a simple flat domain
Qo = R"™ x (—1,0) by using a diffeomorphism which simply stretches the vertical direction
O(x, 2) = (x,0(x,2)): Qo — Q, where O(x, z) = ((x)(z + 1) + (1 — b(x))z. Put & = &0 0
and ¥ = ¥ o ©. Then, the above integral is transformed into

I = | PI;Vx®™. I;VxUdX,
Qo
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where

90 00\~ L/ [00\\T
det L'~ G|+ It
roaa(Ge)nt (o) #((5x) ) o
Therefore, under the restriction |k| < m — 1 and using the hypothesis (4.8), we have

11| S N TFIV x| g2 () 1T IV x P 12 (0.
where J = (1 — A)% Moreover, &' satisfies the boundary value problem

Vy - IsPIsVx® =—R in Q,
Pres = () on z=0,
e, IsPI;Vx®® =—rg on z=—1,

where R = Ro© = ZQN *2(2 4+ 1)PHPirj and e, = (0,...,0,1)T. By applying the standard
theory of elliptic partial differential equations to the above problem, for 0 < k < m — 1 we have

”ka&VX‘iresHL?(Qo) S 5(HJkRHL2(QO) + 175l +)
S 0(l[(ro, r1s - - raneg2) L + (7B e)-
Moreover, in view of U = ZQN +2( + 1)Pi HPiqp; and by Lemma 4.1, we have
1T 15V x| p20g) S IVl + [l
SVl -»

for |k] < m — 1. Summarizing the above estimates we have |I1| < 6% Y| Vo| grtaist || V| gr
for0<k<m-—-2( +1)and 0<j<2N +1.
As for the term I, the evaluation is exactly the same as in [6]. In fact, the identities

N2 N*
=Y (Lijbj )2 — Y _(Lojos, )
ij=0 =0
N* 2N*42 IN* 42 i
=3 > ((Lij— HYLoj)pj, i)z — Y, ((Lig — HP Loj)bj, 1) 12
j=0i=N*+1 t,j=N*+1

were shown in [6, Equation (7.7)], where ¢ = (@q,¢1,...,¢n+) was defined by ¢; == ¢; — ¢;
fori=0,1,..., N*. Now, we decompose j = j; + jo such that 1 < j; < N+ 1and 0 < j, < N.
Then, by [6, Lemmas 5.2, 5.4, 6.2 and 6.7] we see that

L] S Il grszinin + [(dnests - - -y Paneso) || i +1
+ 672 (lpll grsain—1 + [ (Dnwg1, - - -, anveg) | vz —1) HI (s - Yanes2) | g—hrai -1
< 92 tiz) V& gr+261 +io) |V -5

if max{|k|, |k+271—2|, |k+2j1+1]|, |k+2(j1+72)|} < m—1and max{|k|, |k+1]|, |k+2j1—1]|} < m.
These conditions are satisfied under the restriction —m + 1 < k <m —2(j + 1).

To summarize, we obtain as desired |((A — AM)p,¥) 12| < 6%V grrairt | V|| g-r for
0<k<m-2(+1)and 1 <j <2N + 1. The proof is complete. O

This lemma and the scaling relations (4.15) imply immediately the following lemma.
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Lemma 7.2. Let ¢, M be positive constants and m, j integers such that m > §+41, m > 2(j+1),
and 1 < j <2N+1. We assume (H1) or (H2). There exists a positive constant C such that for
any positive parameters hy, hy, & satisfying hy0,hyd < 1, ifC € H™, b€ WmHLeo Iy = 1—@;14,
and Hy = 1+hy ' ¢—hy 'b satisfy (4.14), then for any b1, ¢ € HE26H) with 0 < k < m—2(j+1)
we have

1(=A) 2 (y AN (¢, 6, hy) b — A1 (€, 8,h0) 1) g < Chay (hy6)2 | Vb | s,
(=) "2 (Ao A (€, b, 6, o) o — Na(C, b, 6, o) o)l gy < Chg (o) ||V bl pisasin.

We remind also the estimate for the Dirichlet-to-Neumann map A((, b, 9) itself. The following
lemma is now standard. For sharper estimates, we refer to T. Iguchi [4] and D. Lannes [14].

Lemma 7.3. Let ¢, M be positive constants m an integer such that m > 5 + 2. There ewists a
positive constant C' such that if ( € H™, b € W™ and H =1+ ( — b satisfy (4.4), then for
any ¢ € HET with |k| <m — 1 and any & € (0,1] we have ||A(C,b,8)d|| gr-1 < C||V| g

This lemma and the scaling relations (4.15) imply immediately the following lemma.

Lemma 7.4. Let ¢, M be positive constants and m an integer such that m > 5 +2. There exists
a positive constant C' such that for any positive parameters hy,hy,d satisfying h,d, hyd < 1, if
e H", be Wm>* H; =1 —ﬁflc, and Hy =1 —1—@5% —ﬁ;lb satisfy (4.11), then for any
1,09 € HF+1 with |k| < m —1 we have

I1A1(C, 6, hy) o1l gr—1 < Chy ||V or g,
[A2(C, 0,6, ho) 2|l gr—1 < Chy||V 2| g

7.2 Consistency of the Kakinuma model revisited

As we mentioned in Remark 3.7, the approximate solution to the Kakinuma model made from
the solution (¢, ¢1, ¢2) to the full model can be constructed as a solution to (3.20), that is,
£17i(H1,5,h1)¢)1 =0 for = 1,2, e ,N,

Loi(Ho,b,0,hy)po =0 for i=1,2,... N*

bl‘cl,O(Hla 57 h1)¢1 + ﬁ2£2,0<H27 b7 67 hQ)d)Q == 07

Pola(Hz) - @2 — p Li(Hi) - d1 = p,d2 — pydhr,

in place of (3.18), that is,

(7.2)

(7 3) {ll(Hl)d)l :¢1a El,i(H1757h1)¢1 =0 for i:1727"'7N7

lg(Hg) . ¢2 = qf)g, ;CQ’Z‘(HQ,Z), 5,@2)¢2 = 0 fOF 7= 1,2, e ,N*.

To show this fact, we need to guarantee that the difference between these two solutions is of
order O((hy0)*N+2 + (hy0)*N+2). The following lemma gives such an estimate.

Lemma 7.5. Let ¢, M be positive constants and m an integer such that m > 5 + 1 and
m > 4(N +1). We assume (H1) or (H2). There exists a positive constant C' such that for
any positive parameters 81>£2aﬁ17ﬁ275 satisfying hy6,hed < 1, if ¢ € H™, b € Wmtloo
Hy =1—h "¢, and Hy = 1+ hy '¢ — hy b satisfy (4.14), then for any ¢1, o € HFHANFD yith,
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0 <k <m—4(N +1) satisfying the compatibility condition A1(C,0,hy)d1 + A2(¢,b,9,hy)p2 =0
the solution (@1, ¢2) to (7.3) and the solution (¢1, ¢2) to (7.2) satisfy

> 0,V (be = d0) I3y + () 1B — Dol e + ()| bf — Bl 7s1)

=12

< C Y p (8PN Vgl 2 pasa.
=12

Proof For simplicity, we Write Li; = L1,i(H1,0,hy), i = l1(Hp), and so on. We recall that
gf)l — L1 0¢1 and A gZ52 — Lo 0(,252 Notice that (,bg ¢p for £ = 1,2 satisfy

L1i(¢1— 1) =0 for i=1,2,...,N,
Loi(pa — o) =0 for i=1,2,...,N*
I L1o(d1 — 1) + hoLog(e — ¢2) = (A1 — Iy AT™)d1 + (A — hoASY) o,
pola- (2 — ¢2) —pli- (1 — 1) = 0.
Since the right-hand side of the third equation can be written as V - f3 with

Fs = =V(=2)7 (A = A1 — (As — A ),
by Lemmas 5.1 and 7.2 we obtain

™ 2 eIV (be — )2 + ()2 — 4l120)

(=1,2
Py
mm{hl 2Ll
@

<Y L = A)72 (Mg — he A ) el 2
1=1,2 ¢

S Z pghf hyd) 4N+2)”V¢£HHH4N+3
1=1,2

Moreover, it follows from Lemma 6.3 that

(he6) 2N @) = Dol SV (Do = @)l zx + (1) | D — Dt e
for £ = 1,2. This completes the proof. O

The following proposition gives another version of Theorem 3.5 for the consistency of the
Kakinuma model.

Proposition 7.6. Let ¢, M be positive constants and m an integer such that m > 4N + 4 and
m > g + 2. We assume (H1) or (H2). There exists a positive constant C' such that for any
positive parameters p,, pz,hl,hQ,(S satisfying hy0,hyd < 1, and for any solution ((,¢1,¢2) to
the full model for mterfacml gravity waves (2. 17) on a time interval [0, T] satisfying (3.17), if
we define Hy and Ho as in (2.19) and (¢p1,p2) as a solution to (7.2), then (C, 1, ¢2) satisfy
approzimately the Kakinuma model as

L (Hy)h 0,C + Ly (Hy, 6,hy )1 = 1,
lo(Ha)hy '0:¢ — Lo(Ha, b, 6, hy) g = 1o,
i (Hy) - Oy + 3 (|a1]? + (hy0) 2}
31{ 1(H1) - v +~2(|U1| + (hy8) @i }
_32{l2(H2) - Orp2 + 5 ([a2]? + (hod) 2w3) } — ¢ = 1o,

(7.4)
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where 1, Uy, W1, Wy are defined by (3.4) with (¢p1,P2) replaced by (Pp1, ¢2), and the errors
(v1,v9,t0) satisfy

Y plullee®Fmanis) < C Y p (g8 NPV (8) 3,

(7.5) { L2 =1,2 ) )
eo(®)ll gm-scven < C((hy8)*™N 2+ (hod) M 2) (b +hy") D p bl Voe(®)l[Fm1,
=12
fort €10,T].

Proof. Let ¢1 and ¢2 be the unique solutions to (7.3), and (¥1, T2, Tp) the errors in Theorem 3.5.
Then, the errors (v, ta,tg) in the proposition can be written as

v1 =% — Li(H1,0,h) (1 — 1),
to =t + La(Ha, 0,06, hy) (P2 — ¢2),
v = T + p, {hy 1 (8:Q) (@1 — wi) — 3 (@1 +w1) - (@1 — w1) + (by8) 72 (@1 + wi) (@1 — w1))}
—p,{hy (0:Q) (12 — wa) — 3 (B2 + ug) - (@2 — ug) + (hyd) ~2(dy + wa) (B — w2)) }.
Therefore, we have
[ee = Toll g S 1V (D — d0)ll s + 190 — Dol griss + (Bed) 2 (1B — il e

for —m < k <m —1 and ¢ = 1,2. Applying this estimate with k = m — (4N + 5) and the
estimate in Lemma 7.5 with & = m — 4(N + 1) and using the result in Theorem 3.5, we obtain
the first estimate in (7.5). Since m — 2 > 3, we have

o = Tolle S D p Al grm—z + l[awel| grm—2) |G — el e
=12

+ (hy 106l prm2 + () ™2 (el grm—2 + [[well grm—2)) [l = wel| g }
for |k| < m — 2. Here, it follows from Lemmas 4.4, 5.1, and 7.5 that

> el + (Bed) 2wl fpm—1) S D p eIV DelFrm1 + (28) 2§71 Fpm1)

(=12 =12
S S 0,hel Ve,
€=1,2
S bl + 1) 206 2m1) S S (1Bl 2ot + (128) 2B 2ymr)
=12 =12
. hi h
smm{ oy 2}w<p2 = p,60) B
pl Py
S Yl Veullim-r,s
(=12
and

> ol — well 7 + (he6) [l — wel|3s)
=12

S Y 21V (e = Do)l + (hed) 21, — DllIFe)

=1,2
<D 2,k N [V | an v
(=12
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for 0 < k < m—4(N+1). Moreover, it follows from Lemma 7.4 that ||0:C|| gm—2 = ||Aeel| grm—2 <
ho||V el gm—1 for £ = 1,2. Summarizing the above estimates and using the result in Theorem 3.5,
we easily obtain the second estimate in (7.5). The proof is complete. O

7.3 Completion of the proof of Theorem 3.8

Now we are ready to prove Theorem 3.8. Let (¢"V, #1V, »5") be the solution to the full model
for interfacial gravity waves (2.17) with uniform bound stated in the theorem, and define
o™ = p, 3" — p,#1", which is a canonical variable of the full model. We first ensure a uniform
bound on the time derivative of the canonical variables (¢"V, ¢"V). It follows from the first and
the second equations in (2.17) that 0;¢™ = —AV@IV = ARV LY, where A1V = A;(¢™, 0, hy) and
AV = Ay(¢"™W,b,0, hy). Similar notations will be used in the following without any comment.
Therefore, by Lemma 7.4 we have

1™ 1 Fpm—s = min{[|ATY S1Y |27, [1ASY 05V |71 }
< min{ b3 [|V 1™ [ Fm, b3 V05" || 7m }

. [hy h
Smind 2,220 5 19 e
Ly Pyl 1y

<23 p,hyl VR[5,
(=12

where we used (2.15). It follows from the third equation in (2.17) that

"™ = p,0idy" — p 0"
_1 wiz _ 52 (MO — VE - Vi)
~2h <|W1 =9 1+ 02|V 2
L (Ivapp - A ETCT T

- 582 14+ 52|VCIW|2

Here, we note that in view of the conditions h;d, hyd < 1 and ﬁfl,ﬁg_l < 1 we have § < 1.
Therefore, by Lemma 7.4 we have

10:6™ [ g1 S NS gm—s + > p IV 3pms + 6> (B NIV [ Frm + IV 3 1)}
(=12

SN Ngm—r + > 2l VO [[3m.
(=1,2

Hence, we obtain [|0:¢™ || gm-1 + [[0¢¢™ || gm—1 < 1.

Let (91", 93") be the solution to (7.2) with (¢, ¢) = (¢"",¢™). Then, Proposition 7.6 states
that (¢"V, @1V, ¢5") satisfy approximately the Kakinuma model as (7.4) and the errors (t1, v2, to)
satisfy (7.5). Moreover, it follows from Lemma 5.1 that

~ oy . [hy h
S (19 o + (hed) 2 B0 ) < mm{ b 2}HV¢>‘WH%m
/=12 1 Fo

S el VR im S 1,
/=12
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which yields

> oA [m + (1e8) D] [Frm + (e8) NS N Fpm-1) S 1,
(=1,2

where @V, @bV, WiV, WLV are defined by (3.4) with (¢1, ¢2) replaced by (@}, $5V), and we used
Lemma 6.3. We proceed to evaluate (atJle, atqf)IQW). To this end, we derive equations for these
time derivatives by differentiating (7.2) with respect to ¢. The procedure is almost the same
as in the proof of Lemma 5.2. The only difference is the last equation in (5.5), especially, the
expression of fy. In this case, fy has the form

f4 — 8t¢1w +Blwllwﬁ1_18tclw —BQUN/IQWﬁQ_IatCIW,

so that || f4]|gm-1 < 1. Therefore, we obtain

> 0 (IVOB (s + () 0B [Fnm2) S 1.
(=1,2

Let (¢¥, @Y, @5) be the solution to the initial value problem for the Kakinuma model stated
in the theorem, whose unique existence is guaranteed by Theorem 3.1 and Proposition 3.3. Note
also that the solution satisfies the uniform bound (3.14) together with the stability and non-
cavitation conditions (3.15). It follows from Lemma 6.3 that p,hy(hed)~ Hepf 12m—1 S 1 for

¢ =1,2. Moreover, the time derivatives (0;C*, 0;@7, Or5) satisfy (5.4) and (u, wy) (£ =1,2),
which are defined by (3.4) with (¢1, ¢2) replaced by (¢f, @), satisfy (5.8). Putting

¢=C =Y, AT =gl -9 (1=1,2),

we will show that (", @1%, p5*) can be estimated by the errors (v, v2,tg). To this end, we are
going to evaluate

Ei=(t) = IC @O + Y phe(IVOE )70 + (hed) 215 (8)]1770)

(=1,2

for an appropriate integer k by making use of energy estimates similar to the ones obtained in
Sections 5 and 6 for the proof of the well-posedness of the initial value problem for the Kakinuma
model. Here, we note that E}*(0) = 0.

As in the case of the energy estimate for the Kakinuma model, we first need to evaluate
times derivatives (0™, 0,1%, 0;p5™) in terms of E;®. By taking difference between the first
components of the first two equations in (3.5) and (7.4), 9;,¢** can be written in two way as

(" = —hy { LT g™ + (LT — IW) Vi)
_hz{ﬁzod’res ( )¢ +t2,0}7

where LY = L10(H,0,hy), H =1 — QI_ICK, and similar simplifications are used, and v, is
the Oth component of the error v, for £ = 1, 2. Therefore, we have

10:C™ et < BoA IV S | + 105™ | e
S PR PR A P
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for £ = 1,2 and |k| < m. Hence, by the technique used in the proof of Lemma 5.2 we obtain

10 s S Y 2NV + 107 170
(=12

1k IV S I + 195 N Frm) + llveoll Fra1}
B+ Z ngHtﬁ”Hk 1
=12

for |k| < m. We proceed to evaluate (0@, 0,¢p5™). We recall that (0,07, 0,¢pk) satisfy (5.5)
with (¢, @1, P2) = (C¥, @Y, @5) and note that, differentiating the first three equations of (7.2)
with respect to ¢ and using the last equation in (7.4), (D, P, D, pLY) also satisfy (5.5) with
(¢, @1,02) = ('Y, IW d)lw) and f4 added with the error term —ty. By taking the difference
between these equatlons we have therefore

LW9P = fi5 for i=1,2,...,N,
Ly0ps™ = f35 for i=1,2,...,N*,
h £I\jV 8t¢res + h2 6t¢res v . fr657
oY D+ 005 = 11
where
5= + (LY} — LY ,)0epy  for i=1,2,...,N,
reb_le_ 27, ( 12\:\;_ é{,z)atqbg for ¢=1,2,...,N*,
F5° = f5 = fiV + I ((af — affp) © V)" 0,0f
+ho{((a5y — ab) ® V)"0 — (b5, — bLY) - 0rgs)hy ' Vb},
F1 = 15 = Y+ 0 — p, (I — 15) - 5 + p, (I3 — 15) - D1,
Here? f1K77,7 f2K,za f§<7 fr (respecmvely flz? 27,7 f3 ’ ZILW) are those in (5 6) with (C ¢17¢2) =
(CKa 11(3¢I2<) (respectively (C7¢1a¢2) = (CIW7 ? I2W))7 azo = a’f,O(Hé() and b 2,0 — b2 O(HQ)
where ago(Hy) and by o(H2) are the Oth Columns of the matrixes Ay(H,) and BQ(HQ) defined
by (6.2) and (6.4), respectively, and so on. Note the relations £10¢1 = =V - ((a1,0 ® V)T ¢1)
and Logpa = —V - ((azo @ V)T pa — (bag - p2)hy ' Vb). Therefore, by Lemma 5.1 we have, for
1<k<m+1,

> e (IVOB g + () 2[00 2 )

=12

reS p p res h h res
S 3 ot P s +mind 2 2 A s min 2 B2 g,

(=1,2 71 Ea

We will evaluate each term in the right-hand side. For 1 < k < m — 1, we see that
£ an—r S g N e IV @ e + () 215 1 ) g ([0S | gy
+ (IV 5= v+ (o) 215 | ) By H10C |
+ IV + (hed) NP [ )y H|0C™ | gy
+ 0 I (Vb Nl rm—1 + (g8) ™28 || rrm—1)
for £ =1,2,

1E5 M rrmr S Al = @ | g 96 | g + NG [|erm [|96C™S | s
=12

+ IS e IV Oeg || rrm—1 + 110:f [ prm—1)},
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and

1£5% e S D p ANl i + 1@ | rrm) |l — @™ | e
=12

+ () T2 (i | + 11" | ) [ = 06 || v
+ by 1 10 | prm—1  + 1C™ e + l[vo| v

Moreover, for any 0 < k < m we have also

(7.6) S ool — | + () 2l — @Y 20) S B
(=12

Summarizing the above estimates and using h1 Jhy L' <1 we obtain, for 1 <k <m —1,

(7.7) 10N Fms + Y 2l (VOB pis + (1) 0™ |01
{=1,2

Ei® 4+ Y phulleel s + ol 3
=12

We need also to evaluate p,hy(hed)~ g ||%,6—1 for £ =1,2 in terms of E}*. In view of

LNPEes = LWGE = (LY — LE )P = W% for i=1,2,...,N,
cgg 1 = LIV = (L — £5,)¢5 = hES for i=1,2,...,N",

Lemma 6.3 yields (hyd) 2|5 | gr—1 S (VXS gr + |05 e + [|hES|| ge—1 and we have
1R e S (V@I + 105 N + (hed) 2N @ | rm-1)[| €| v for 1 <k < m. Therefore,
for 1 < k < m we obtain

(7.8) > ph(d) Hldp G S EF.
=12

Now, by deriving equations for spatial derivatives of ((***, @}*, ¢5°°) and applying the energy
estimate obtained in Subsection 6.1 we will evaluate E;®. Let 3 be a multi-index such that
1< |ﬁ] < k. Applying 0” to the Kakinuma model (3.5) for (C¥, ¥, ¢5) and to (7.4) for
(™, @Y, @4V) and taking the difference between the resulting equatlons we obtain

I (0 + - V)P 4 Iy LY OP 1 = 15,

I5(0; + ub - V)07 — hy Ly ™07 9™ = f5%,

P U - (O + - V)PP — p IS - (0r + uf - V)P ™ — a¥o (s = fies,
where ~ ~
Fi% = s — F1% — 0%er + Iy (L7 = LEP) 07 1Y

+ (I8 + @Y - V) = ¥ (9 + uff - V)97,
155 =T — f - h285t2 — hy(Ly"P" — Ly™")0P "
(llw(at +ayy - V) = IS0 + ub - V)9,
F55 = s — T30 — 8% — (@ =)o
+p, (lIW(at + AV V) = 150 +uf - V) - 90
— p, (1Y (0 + '&Izw V) —15(0 + uf - V) - 0P
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Here, fi'5. f3, and fg are those in (6.15)—(6.17) with (¢, ¢1, p2) = (¢¥, @¥, @%), and so on.
As we saw, all the assumptions in Lemma 6.2 are satisfied, so that we have

t
EOT™(1) < /O FEo(r)r,

where U™ := (¢, ¢, @)1, & is defined in (6.11), and

T = | fosll mr (10" [ =1 + 1€ | )
+ > p,(IF% 2 + 16 ) IV Oe ™ i + IV 55| )
=12

In view of [[(¢™,(®)||gm < 1, straightforward calculations yield

(II&:CWIIHm v 18 ) (167
he(IV @ N + 185" Nl + (e8) 1™ -1 ) 17

+ he(Hvﬁbfsllm 15 g + (hed) 2| G| i)
+ [10:C7 | =1+ @™ — wif || g 4 Bgllee]| o

for{=1,2and § <k <m —1. As for foss» we note the relation
{([0°,15] — 1y (H5) (hy 07 C¥)) — ([0°,15"] —l'z(Héw)(ElaBCIW))}Tatqgéw
:/ ([0°, 1y (sH™ + (1 — 5)HY)]
0
—W(sH™ 4 (1 — s)HS)hy ' 0% (s¢™ + (1 — 8)¢)} (hy ') Dby
+I(sH™ + (1 — 5)H){[0°, by ' ¢"] — (07 (h ' ¢™)) } T b dis

Therefore, straightforward calculations yield

1550 S D 2 AV ODE Nl prm—2 + 110D} | m-2) 1S
=12

+ (@ |z + [ ) IV R Nz + NG | IS g

+ (g8) 2w N |G 1 16 st + V0 i + 191D | s
L (V@5 e+ 195 1 zrv) + (o) =g | | | v

+ (g i + 1@ L + 1V Sz + 1190 | rrm ) 125 — |

+ (8) 2 (llwilzrm + 107 [ + 168 Nl )@Y — i } + [lvo | s

for § <k <m —2. In view of the above estimates and (7.6)~(7.8) we obtain F#;* < E* + Ry,
with Ry := [t 30 + >om1 &@Ht{gﬂék. We note that the multi-index /3 is assumed to satisfy
1 < |B] < k. As for the case 8 = 0, we have & GECC() S Eps(t), hence EF™(t) S fo Es(r)dr.

Summarizing the above estimates we obtain E]res ) < fo (EpS(1) +Rp(r))dr for § <k <m—2.
Putting K = m — 4(N + 1) and applying Gronwall S mequahty and (7.5) in PI‘OpOSlthH 7.6 we

obtain EJ* v 1) (8) S (hy0)*N*2 4 (hy0)*NF2 for 0 < ¢ < min{T, T™V}.
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It remains to evaluate ¢, — ¢} for £ = 1,2. Let (¢}, ¢3V) be the solution to (3.18) with

(¢, b1, 02) = (¢, 61, ¢5"). Then, we have ¢ff —¢p™ = U+ (U — 1)) - p¥ +1) - (4 — ¢}Y),
so that forany 0 <k <m —1

IV6E = Vol S IVOEllan + 105 ez + hy ICTN prwea | 9|
+ V(@™ = &) ae + 100" = &5 | -

Therefore, the previous result together with Lemma 7.5 implies

> 0l VoE = VO [ 3m-anss S ()2 4 (hyd)* N+,
=12

This completes the proof of Theorem 3.8.

8 Approximation of Hamiltonians; proof of Theorem 3.9

As was shown in the companion paper [3, Theorem 8.4], the Kakinuma model (2.18) enjoys a
Hamiltonian structure analogous to the one exhibited on the full model for interfacial gravity
waves by T. B. Benjamin and T. J. Bridges in [1]. In this section, we will prove Theorem 3.9,
which states that the Hamiltonian .##%((, ¢) of the Kakinuma model approximates the Hamil-
tonian ™ (C, ¢) of the full model with an error of order O((hy0)*N*2 + (hyd)*N+2).

8.1 Preliminary elliptic estimates

We consider the following transmission problem

Vx - I2Vx®; =0

(8.1) n-IZVx®, =0

PyP2—p1®P1 =9

n-I}Vx® —n I}Vx® =rg

in Q  ((=1,2),
on (¢=1,2),
on I,

on I,

where the rigid-lid 31 of the upper layer €21, the bottom Yo of the lower layer )5, and the interface
I' are defined by z = hy, 2 = —hy + b(x), and z = ((x), respectively, I5 := diag(1,...,1,671),
Vx = (V,0.)T = (01,...,0,,0.), and n is an upward normal vector, specifically, n = e, on
Y1, n=(=Vb,1)T on ¥y, and n = (—=¢,1)* on T.

Lemma 8.1. Let ¢, M be positive constants. There exists a positive constant C such that for
any positive parameters BI,QQ,QDQQ,(S satisfying hi0,heyd < 1, if (b€ WH®, Hy =1 — QI_IC,
and Hy =1 +ﬁ§1C — Q;lb satisfy

B MIClwee + 3 ICwee + by [bllwice < M,
Hi(x)>e¢, H(x)>c for xeR",

1

then for any (rg, ¢) satisfying Vo € H™ 2 and (—A)férg € H? there exists a solution (P, Do)
to the transmission problem (8.1). The solution is unique up to an additive constant of the form
(p,C.p,C) and satisfies

(8.2) Z BEHLSVX(I)EH%%QZ)
(=1,2

_ 1 _1
< C(I1((p, A20 + pyA1.0) ' A10820)28l|72 + p, 2, | (P, A20 + p, A1 0) " 275]172),

45



where A1 o = A1(0,0,hy) and Aap = A2(0,0,9, hy) are Dirichlet-to-Neumann maps in the case
((x) = b(x) = 0. Particularly, if we further impose ¢ € HY, (—A)_%rs € H!', the natural
restrictions (2.14), and hy;, < hy, hy with a positive constant h,;,, then we have

. P _1
83) Y plsVx®eliag, < CIVElT: +C gg{ﬁill((—ﬁ) 2+ﬁe5)7“s||2m},
=12 ’

where the constant C' depends also on Ry, -

Proof. The existence and the uniqueness of the solution is standard, so that we focus on deriving
the uniform estimate of the solution. To this end, it is convenient to transform the water
regions € and €2y into simple domains € 9 = R™ x (0, ) and Q39 = R™ X (—hy,0) by using
diffeomorphisms O¢(x, z) = (x,0/(x,2)): Qe — QL (¢ = 1,2), respectively, where 6;(x, z) =
(1—=h{'¢(x))z+C(x) and Oa(x, 2) = (14+hy  (((x) —b(x))) 2z +((x). Put &y = ®00, (£ = 1,2).
Then, the transmission problem (8.1) is transformed into

Vx - IsPIsVx®, =0 in Qo (£=1,2),
e, IsPIsV x Py =0 on Y0 (£=1,2),
e, IsPoIsVx®y — e, - [yP1I;Vx®P =rg on T,
gz(i)z —p1®1 = ¢ on T,
where X1, Y20, and I'g are represented as z = hq, z = —hy, and z = 0, respectively, and

- 000\ . 1 (00,\ /(00N N\ | B
We note that [[1sVx®¢llr2(q,) ~ HI(SVXéZHLQ(QZ’O) (¢ =1,2). Let (¥, ¥3) be a solution to the
transmission problem

Vx I}VxU,=0 in Qo (£=1,2),
e, IZVx¥,=0 on Yy (=1,2),
e, I3VxV¥y—e, IZVx¥;=rg on Ty,
pP¥2— W1 =¢ on Do,

and put @} = b, — T, (¢ =1,2). Then, we can decompose
IV x |2 — IsVx @ - (I — Pp)IsVx®p = Vx ) - {(IsPI;V x Py — I3V x¥y)}
for £ =1,2 and P P1" = p,®5" on z = 0. Therefore, denoting the unit outward normal vector
to 00 by Ny (£ =1,2) we have
> Be/g (|IsVx @52 — IV x @5 - (I — Pp) IV x By)dX
=12 €0

= Z/ p, @ (Ne - IsPIsV x®p — Ny - IFV x Wy)dS
894707

0=1,2
- Z / 81 [(I)lies{(ez ’ I&PZLSVX(i)Q — €, - IgvX‘I’Z)
=127R"
— (e, IsP1I;Vx®1 — e, - I3V X))} }Zzod:c
=0,
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so that we obtain

> Be/ IV x D PdX = ) Be/ IsV x O - (I — Pp)IsV xPpd X.
=12 Q0 =12 Q0

Similarly, in view of the decomposition

IV x O - PIsV x D5 — IsV x ®IS - (I — Py) 15V x Uy
= Vx® - {(IsPI;Vx D, — I2VxT,)}

for £ = 1,2, we obtain

=

/ IV x B - PpIsV x B = Z P, / IsVx @S - (I — P IsVxTdX.
Q0 B

(=12 =12 780

It follows from these two identities that
> VP72, S min{ > 25V x®elia, ) D Pe‘|16VX‘I’€”%2<m,O)}’
(=12 =12 £=1,2
which yields the equivalence
D sV x®ellFag, 0 = Y 2V Villi2q, o)
(=12 =12

Therefore, it is sufficient to evaluate the right-hand side of the above equation. In other words,
the evaluation is reduced to the simple case ((x) = b(x) = 0.
Putting vy = ¥y|,—0 (¢ = 1,2), we see that

Z Bg||l§vX\I’f||%2(Qe70) = Z P, (Aeote, Ye) 2
=12 =12

and that
A1 o1 + Ao otpo =15,

Particularly, we have

¢1> 1 <—A2,o¢ +p ?“s)
= (p, A A LTS
(7/12 (P20 + Py10) Ao+ prs

Therefore,

2 2l Vx Vel ) =

{H((plAz,o +pyA10) T Ar0A20)2 03, ifrs =0,
=12

_1 .
P1P5l1(py 20 + py A1) 2153, if = 0.
Hence, by the linearity of the problem we obtain (8.2).

Finally, in order to show (8.3) it is sufficient to evaluate the symbols of the Fourier multipliers
(£1A270 + B2A170)_1A1,0A2’0 and 8182(81A270 + BgAl,O)_l' We remind that the symbol of the
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Dirichlet-to-Neumann map Ay is given by o(Ago) = 6 1|€| tanh(h,0|€]) for £ = 1,2. In view of
0 <tanh¢& < ¢ for € > 0, we have

_ . [o(A o(A
o((p,A20 + pyA10) " AroA2p) < mln{ (pl’O), (pQ’O)}
1 2

< min{hl, hQ}|«$|2
Py Py

< 2l¢f,
where we used (2.15). In view of tanh ¢ ~ (1 4 &)~1¢ for € > 0 and the relation (2.14), we have

o Dby (14 hy0[&])(1 + hyol&])
hqhy (14 0[&|) (€%
P 1+h0E] Py 14N 5151}
< min{ =t L , =2 2
~ {h1"2 €2 BT g

0(8182(£1A2,0 + BQAI,O)_I)

. |P _ P _
< mind £(€ + 10 £2(€ + o) .
ny Ny
where we used 1 < hy, hy. These estimates imply (8.3). The proof is complete. O

8.2 Completion of the proof of Theorem 3.9

Now we are ready to prove Theorem 3.9. We remind the definitions (3.3) of 1;(H1), l2(Ha)

and (3.6) of the operators L1 ;(Hi,9,hy) and Lo;(Ha2,b,d, hy). These depend on N, so that we

denote them by lgN) (Hy), lgN) (Hs) and Eg{p (Hy,0,hy) and Eé{\i]) (Ha,b,0, hy), respectively, in

the following argument. For given (¢, ¢), let ® be the solution to the transmission problem (8.1)
with rg = 0 and let (¢1, ¢2) and (¢1, d2) be the solutions to the problems

J(Hy.6,hy)p1 =0 for i=1,2,...,N,
J(Ha,b,8,hy)po =0 for i=1,2,... N*,
hy L400 (Hy, 8, hy) 1 + hy L83 (Ha, b,6, ho)ps = 0,
82l§ )(HQ) 2 — BllgN)(Hl) Q1 =09
and .
LN (Hy, 6, hy)gr =0 for i=1,2,...,2N +2,
LENT (Ha 0,6, hy)do =0 for i=1,2,...,2N* +2,
ﬁ1£§j3N+2) (H1,0,hy) b1 +%2L%V+2)(H2, b, 8, hy)a = 0,
2 2 ~ 2 2 ~
leg (H,) - b2 *Bllg 2 Hy) - ¢ =0,
respectively, and define (®3PP, ®5PP) and (PP, ®5PP) by (2.23) and

2N+2

PP (@,2) = Y (1 —hy'2) (),
i=0
2N*42

(i);pp(a:’z) = Z (1 +h2_1(z - b(w)))pi(z)li(a:)?

i=0
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respectively. Then, by the definitions of the Hamiltonian functionals 5"V ((, ¢) and J%((, ¢)
given in Section 2.3, we have

2A™(C8) — AN D) = 3 p, / (19 x B2 — |[;V x 02PP[2)dX
=12 /S

-y &/ (IsV x @2 — [I5V x 2P 2)dX
=12 ‘%

+ Y pE/ ([I;V x ®PP2 — | IV x 3PP |2)d X
=12 Y
=11 + I5.

We will evaluate I; and Iy, separately. 3
In order to evaluate I;, we put ®}* = &, — ®;*" (¢ = 1,2), so that

Zoh,

<Y IV x| 20 (115V x Pell 1200, + 115V x 5P (| 12(0,)-
=12

|| =

IV x®5% - I5V x (®g + é;pp)dX’

It follows from Lemma 8.1 that »,_; , BEHL;VXCI)gHiQ(QZ) S[IV|l3.. We see also that

5 2N+2) 7 7
3 o sV 20y = S oL i, oe) e
0=1,2 =12

SO p(IVBell7a + (hed) (1@ 1172)
(=1,2
< IVol[3.,

where we used Lemma 5.1 and (2.15). In order to evaluate [I5Vx®;%[|12(q,), we first notice
that (P}, ®5) satisfy

Vx - IZVx®* = Ry in Q (t=1,2),
n-IZVx®® =0 on Y,

n - IZVx®5S = hyrp on Yo,

PP — p, P71 =0 on I,

A @1 [a=¢] + AP [.=] = 75,

where ~
Ry=—-Vx -I}Vx®,”® ((=1,2),
rg = —hy (=Vb, )T - I (Vx®PPP) .= p, 10,
2N+2 Fa
rs= Y (h APV — Ag)[5PPL._].
=12
Here, we note that Ry (¢ =1,2) can be written the form

2N+2

Ri(m,z) = Y (1= hy'2)r(@),
=0
2N*+2

Ro(x,z) = Y (L+hy'(z = b(®))Pre.(x).

1=0
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Estimates for the residuals (r1,0,71,1,...,71,28+2), (r2,0,72,0, - - -, 2,2N*42), and rp were given in
[6, Lemmas 6.4 and 6.9] and their proofs. In fact, we have

1(r0,71,0s - - mian+2)n2 S |61 2n2l a2
S (1 0)*N 2| V| ganss

and

1(r2,0,72,1 - - - r2an42) |22 + IrBllze S Il(D22n++1, P2 on++2) | m2
< (o) N2 (| Vol granss + (|| gran+s).-

We decompose @} = <I>res 1y <I>res 2 , where (q)rles’l, @;es’l) is a unique solution to the problem

Vx -BVx®™ =R, in Q  (£=1,2),

n-2Vx®™' =0 on X,
n-I2Vx®5¥! = hyrp on 3y,
Pyt = on T' (£1=1,2),

so that (@1 ®5™?) satisfy

Vx - 2Vx®™* =0 in Q  (£=1,2),
(8.4) n-IZVx®>* =0 on ¥, (£=1,2),
n-RVx®y™ —n- IVx®®? =rg on T,
p2q)res ,2 qu)lies,Q -0 on F,
where we used the relations A [®}?|._] = —n- 2V x®™? and Ag[®5>|,—(] = n- 2V x &5

on I'. It is easy to see that

15V X 200y S (10| Ral22a
< hy(h0)?(|(r10s 7115 - - -5 12N 42) || 22
S ( ) (AN+3) Hvd)l”%mNJr?,
and that
res,1 _
15V x5 17200y S ho(B20)? (hy || Rall72 (o) + I781172)
< ho(he6)?(|(ro,0, 72,1, - - - T2on+42)| 12 + T8l 72)
<

=

2(had)? N (Vs pranrs + (| @ | ranvss)-

Therefore, by Lemma 5.1 together with (2.15) we have

Y 2l VX T2 S (R 8)* N 4 (hy8) N 2)? |Vl an s
(=1,2
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On the other hand, it follows from Lemmas 8.1, 4.5, 7.2, and 5.1 that

res, . P _1
> 25V x @ o,y S pin FEI(=A)"5 + hedrs]3s
=12
P _1 2N+2 za
S D0 PEIA) T2 4 hd) (AP — AR5 7
=12
S D 2PV (@GP ) v sa
=12
S D ol PNV el Favss + [l paxsa)
=12

A

(h15)4N+2 + (h25)4N+2)2 Hv¢”?{4N+3 .

Summarizing the above estimates, we obtain |I;| < ((hy8)*N*2 4 (hy)*N+2)|| V@ gan+3 || VO 12.
We proceed to evaluate Iz, which can be written as

IQ = Z th L(2N+2 ¢ ¢ )2 — Z Jhé L( )¢57¢5)

/=1,2 (=1,2
=: 12’1 —I—IZQ.

In view of (3.8), we see that

1.2,1 _ p h (£(2N+2)(Z)1,l§2N+2) . (Z)I)L2 +82h2(£(2N+2 ¢ l(2N+2) (2)2)[,2

NN R AR
= (hs W*”qbz, <z>>
= (L5 P G, p 157 - o — p 1Y) - 1) 12

= Blhl(ﬁ(m+2 G115 - p1) 2 +£2h2(£(2N+2 G2, 1) - p2) 2
N 2N+2 i N* 2N*+2 )

=p 2 Y Y (Luigdrg dri)iz + pyha d Y (Loijdo, d2)re
i=0 ;=0 =0 j=0
N 2N+2 ~ N* 2N*42 _

=pl Z Z (L1,ji®1,i, $1,5) 12 + pylo Z Z (L2,jid2,is 92,5) 12
i=0 ;=0 =0 j=0

where we used Lj; i = Ly j;. Similarly, we see also that

Lo = p, (L300, 15 - )12 + p2ﬁ2(£§%)¢z, 157 ) 12
= (hy (N)¢2,,02 2 — p I 1) 12
= (ﬁzﬁz,o $2,P) 12
= (b, cé%z, PN Gy — p 1PN q31>
= p b (L0 1 2 1) 12+ o ho (L5 2 18V - o) 12

2N+2 N N 2N*+2 N _
=ph Y. (HY LY 1, d15) 12 +p,hy > (HY £33 o, b2 j) 12
j=0 j=0

o1



Here, it follows from (38) that Hfjﬁg{\é)¢1 = Zfio Ll,ji¢1,i and ngﬁg’\é)(ﬁl = Z'fi*[) LQ,ji¢2,i
hold only for j =0,1,...,N and for j =0,1,..., N*, respectively. Therefore, we have

N N N* N*
Lo =p hy Z Z(Ll,ji¢1,i> P1,5) L2 + pyho Z Z(L2,ji¢2,i, $2,5) 12
=0 j=0 i—0 j=0
N 2N+42 ' i N* 2N*42 i
tp Y Y (HY Ligidr dri)re +pyho Y (HY Logico, ¢2,5) 12,
=0 j=N-+1 =0 j=N*+1
so that
N 2N42 ‘ i
L=phy Y > (Ligi— HY L1 o)1, 1,5) 12
=0 j=N-+1
N* 2N*42 i
+poha Y D> ((Lagi = Hy Looi) o, $2,5) 12
=0 j=N*+1
N 2N42 ‘ o
=p, Z Z ((L1j: — H{P L1 0i) (61,5 — 1.4), $1,5) L2
=0 j=N-+1
N* 2N*42 o
+phe Y Y ((Lagi — HY Logi) (62,5 — 62), d2,5) 12
=0 j=N*+1
IN+2 2N+2

. .
—p Z Z ((L1ji — HY L10i) P $1,4) 12
i=N+1j=N+1
IN* 42 2N*42

— p,hs Z Z ((Loji — HY Loi)$2,is 2,4) 12-

i=N*+1j=N*+1

Hence, denoting by o1 = (©1,0,91,1,---,¢1,8)" and 9o = (920,021, ..,p2,n+)T with ¢ =
®e,i — Pui We obtain

1] S Y phu(IVerll7a + (hed) 2 #ll172)

=12
+p 1(d1,8+1, B1 N+2, - - - 7951,2N+2)H%{1
+ £2h2”(€52,1v*+17 BN 425 -+ - » P22n42) |21

+ glhl(h15)72||(¢~51,N+17 (51,N+27 <ony &1,2N+2)”2L2

+ gzhg(ﬁ25)72||(¢~52,N*+17 B2 N 425 - -+ P22N+2) |22

Here, we note that (¢1, @2) satisfy

EgN(PQZTQ’i for i:O,l,...,N*,
h L o1 + ho £l oy =V - (R h
Ly g P1+ hols o P2 (hyr31 + hor32),

N N
Qng ). Y2 — Bllg ). P1 = pyTal T PyTa2,

'CEN)LPl :Tl,i for i:0717...,N7
)
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where
2N+2 H2' 7 -
T4 = — j:N—i—l(leij — zLLO]‘)gﬁLj for = O, 1, ey N,

)

2N*+42 ) It .
ro; = — Zj:N—tJrl(LQ,ij — leL2,0j)¢2,j for 7= 0, 1, Ce ,N*,

_ \2N2 - _ 2NTA2 -
Vorgy =3 0N Liojdry, Vorse =3 50N Loojda,,

_2N42 727 _ IN*+2° pj T
T4,1 = Zj:N-H Hi"¢r5, r42=— Zj:N*-H Hy ¢5.
We put 7} = (0,71,1,...,71.n)" and 7§ = (0,721,...,725)T. Then, with a suitable decomposi-

tion 1y = r?igh + (hed)~2rleY for £ = 1,2, and using the linearity of (5.1), we see by Lemma 5.1
that

> p,he(IV@el2a + (he8) 2llt]122)
=12

high —2y, 1
S D oIy G+ (Red) (172 + 73
(=12

22+ Iraellzn)

S p (G181, PN 42, - Dran2) | in
+ pyholl(Go, N 41, P2 N 12, - -, D22n+12) T
+ glﬁl(ﬁ15)_2||(¢~51,1v+1, G1N12; - PLan12) |72

+ g2ﬁ2(h25)_2||(¢~52,1v*+1, ¢~52,N*+27 e an2,2N*+2) H%z-
Moreover, it follows from [6, Lemmas 5.2 and 5.4] that
(G151, 1.8+2, -, Sravs)lle S (1a6)* 2 7F Vi ransa
(D2, 541, D2n-s2, - dzans2) e S (o) 2 (IVal ravsn + (|5 2,

for kK = 0,2, and hence also for kK = 1 by interpolation, so that

(hy0) 2+ (hod) ™ 2) IV | Fran s
(hy0) N F2 4 (o) M 2) [V | grans2 |Vl 2,

where we used Lemma 5.1 with (2.15), and interpolation. This completes the proof of Theo-
rem 3.9.
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