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Abstract

This article present a new method to reconstruct slowly varying width defects in 2D waveg-
uides using one-side section measurements at locally resonant frequencies. At these frequencies,
locally resonant modes propagate in the waveguide up to a “cut-off” position. In this particular
point, the local width of the waveguide can be recovered. Given multi-frequency measurements
taken on a section of the waveguide, we perform an efficient layer stripping approach to recover
shape variations slice by slice. It provides an L∞-stable method to reconstruct the width of a
slowly monotonous varying waveguide. We validate this method on numerical data and discuss
its limits.

1 Introduction
In previous work [20], we have presented the analysis of recovering a slowly varying shape of waveg-
uides from surface measurement using locally resonant frequencies. This method was suited for
waveguides such as elastic plates where surface measurements are available but is not appropriate
for acoustic waveguides such as pipes or air ducts where data are often measured on one section of
the waveguide [18, 12].

In the present work, we tackle the shape recovery problem from one-side section measurements
only. At locally resonant frequencies, the usual Born approximation (see [13, 11]) is not valid
and recovering the shape variation of the waveguide can be seen as a nonlinear inverse scattering
problem.

1.1 General description of the problem

We describe a 2D varying acoustic waveguide by

Ω :=
{

(x, y) ∈ R2 | 0 < y < h(x)
}
, (1)

where h ∈ C2(R)∩W 2,∞(R) is a positive profile function defining the top boundary (see an illustra-
tion in Figure 1). The bottom boundary is assumed to be flat, but a similar analysis could be done

1



when both boundaries vary. In the time-harmonic regime, the wavefield uk satisfies the Helmholtz
equation at frequency k > 0 with Neumann boundary conditions{

∆uk + k2uk = −f in Ω,
∂νuk = b on ∂Ω, (2)

where k is the frequency, f is an interior source term, and b is a boundary source term. In this
work, a waveguide is said to be slowly varying when there exists a small parameter η > 0 such
that ‖h′‖L∞(R) ≤ η and ‖h′′‖L∞(R) ≤ η2. We focus here on the recovery of the shape function h
modeling the top boundary of the waveguide. Controlled sources f and/or b generate wavefields uk
in Ω for some frequencies k > 0. We assume the knowledge of the wavefield measurements uk(x, y)
on the section Σ := {xmeas} × (0, h(xmeas)) ⊂ Ω for some coordinate xmeas ∈ R (see an illustration
in Figure 1). This inverse problem is good modeling of the monitoring of pipes, optical fibers, or
train rails for instance (see [15, 18, 17]).

Ω

xmeas

b

f

Figure 1: Set up of the inversion in the slowly variable waveguide Ω. An internal source f and/or a
boundary source b generate a wavefield propagating in the waveguide and measured on the section
x = xmeas, represented by red triangles.

1.2 Scientific context

The detection and reconstruction of shape defects in a waveguide are mentioned in different works.
In articles [19, 3, 2], the authors use a conformal mapping to map the geometry of the perturbed
waveguide to the geometry of a regular waveguide, and suggest to inverse the mapping to recover
the width defects. Different linear inversion methods based on the scattered field analysis are also
developed in [21, 12, 14]. All these works perform the reconstruction using a single propagation
frequency to perform detections and reconstructions of defects.

Our work concerns a different approach, also used in [7, 6], where we assume that the data
is available for a whole interval of frequencies. This usually provides additional information that
should help localize and reconstruct the defect. Moreover, the use of multi-frequency data often
provides uniqueness of the reconstruction (see [5]) and better stability (see [8, 16, 23]).

The article [11] presents a linear method to recover small width variations using back scattering
data. However, this work avoids all the locally resonant frequencies of the waveguide. In [20], we
showed that these locally resonant frequencies could be used to recover slowly varying width defects
given surface measurements. Given the high sensitivity of the reconstructions obtained using this
method, we choose to use the same approach and work only with locally resonant frequencies in
this article.

If k is chosen such that k = Nπ/h(x?k) for some N ∈ N and x?k ∈ R, k is called a locally resonant
frequency, x?k is called a resonant position and the Helmholtz problem is not well posed in general
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(see [12]). Nevertheless, it is proved in [10] that a unique solution exits as long as the waveguide is
slowly varying. The same work provides a suitable approximation of the wavefield that explicitly
depends on x?k. This approximation is used in [20] with surface measurements to recover the position
of x?k, and then to reconstruct the shape function h. We now aim to use this analysis to solve the
inverse problem from section measurements:

Find h from uk(xmeas, y) ∀y ∈ (0, h(xmeas)), ∀k ∈ R+ where k is locally resonant. (3)

Our reconstruction method is inspired by the ideas presented in [10] and use wavefield measure-
ments of uk to recover the position x?k. Since h(x?k) = Nπ/k, it gives up the information about
the waveguide width at this precise location. By taking different locally resonant frequencies k and
finding corresponding resonant location x?k, we obtain a complete approximation of the width h.

However, the realization strongly differs. Indeed, section measurements contain much less in-
formation than surface measurements, and we need to recover the localization of x?k from the value
of the resonant mode in one point instead of a whole interval. To circumvent this difficulty, we
implement in this paper a layer stripping approach inspired by [25, 24].

1.3 Main steps of the reconstruction method

The main steps of the proposed reconstruction method are summarized here:

1. From section measurements uk(xmeas, y), we select frequencies k that makes a chosen mode
N ∈ N resonant and we filter the data (orthogonal projection) to focus only on the N -th
mode.

2. We prove that this data is approached by the function Φ ◦ ζ(k) where

Φ(x) := sin(x+ π/4) exp(ix+ iπ/4), ζ(k) :=
∫ xmeas

x?
k

√
k2 − N2π2

h(x)2 dx. (4)

In this function, the dependency on the resonant point x?k and on the shape h is explicit. This
point is detailed in Section 3.1 and Corollary 1.

3. There is a left inverse function Φ−1 modulus π. However, to have access to ζ(k), we need to
eliminate the modulus. Using the fact that k 7→ ζ(k) is increasing, we prove in Section 3.2
that we can recover an approximation of ζ(k) on a discrete set of frequencies k1, . . . , kI if the
discretization step is small enough.

4. From ζ(k1), . . . , ζ(kI), we develop a layer stripping approach to recover each corresponding
resonant x?ki

using the fact that h(x?ki
) = Nπ/ki (see a scheme in Figure 2) and we perform a

triangular linear recovery of each x?ki
as explained in Proposition 3.

5. Finally, using the recovery of each x?ki
and the fact that h(x?ki

) = Nπ/ki, we provide an
approximation of h whose error is quantified in Theorem 2.

The paper is organized as follows. In section 2, we briefly recall the needed results on the modal
decomposition and the study of the forward problem. In section 3, we study the inverse problem
with measurements taken at the section of the waveguide and provide a stability result for the re-
construction. Finally, in section 4, we illustrate our method with various numerical reconstructions.
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x0x?k1

h = hmax

x?k2

h = Nπ/k1

x?k3

h = Nπ/k2
h = Nπ/k3

computable using ζ(k1)
computable using ζ(k2)− ζ(k1)
computable using ζ(k3)− ζ(k2)

Figure 2: Scheme of the layer stripping approach to recover an approximation of h. At each
step, we approach the local width by Nπ/ki and we look for the optimal value x?ki+1 to fit the
measurements of ζ(ki).

1.4 Notations

The varying waveguide is denoted by Ω, its boundary by ∂Ω and the subscript “top” (resp. “bot”)
indicates the upper boundary of the waveguide (resp. lower). We denote ν the outer normal unit
vector. For every r > 0, we set Ωr = {(x, y) ∈ Ω | |x| < r}. Spaces H1, H2, W 1,1, H1/2 over Ω or R
are classic Sobolev spaces. The Airy function of the first kind (resp. second kind) is denoted by A
(resp. B). They are linear independent solutions of the Airy equation y′′ − xy = 0 (see [4] for more
results about Airy functions). See in Figure 3 the graph of these two functions. The term δx=s
denotes the Dirac distribution at the point s ∈ R and the function 1E is the characteristic function
of the set E. Finally, the notation {a : b : I} designates the uniform discretization of the interval
[a, b] with I points.
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Figure 3: Representation of the Airy functions A and B.

2 Forward problem and locally resonant modal data
Before studying the inverse problem associated with the reconstruction of the width in a varying
waveguide, we recall some needed tools to study the forward problem. These results where already
presented in [20] and their proofs can be found in [11, 12]. However, Theorem 1 is slightly different
from the one stated in [20] due to the change of measurements area.

A useful tool when working in waveguides is the modal decomposition. The following definition
provides a modal decomposition in varying waveguides:
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Definition 1. We define the sequence of functions (ϕn)n∈N by

∀(x, y) ∈ Ω, ϕn(x, y) :=


1/
√
h(x) if n = 0,√

2√
h(x)

cos
(
nπy

h(x)

)
if n ≥ 1,

(5)

which for any fixed x ∈ R defines an orthonormal basis of L2(0, h(x)).

Hence, a solution uk ∈ H2
loc
(
Ω
)
of (2) admits a unique modal decomposition

uk(x, y) =
∑
n∈N

uk,N (x)ϕn(x, y) where uk,N (x) :=
∫ h(x)

0
uk(x, y)ϕn(x, y)dy. (6)

Note that uk,N does not satisfy in general any nice equation. However, when h is constant (outside
of supp(h′)), it satisfies an equation of the form u′′k,N + k2

nuk,N = −gn where k2
n = k2 − n2π2/h2 is

the wavenumber. When h is variable, the decomposition (6) motivates the following definition:

Definition 2. The local wavenumber function of the mode n ∈ N is the complex function kn : R→
C defined by

k2
n(x) := k2 − n2π2

h(x)2 , (7)

with Re(kn), Im(kn) ≥ 0.

In this work, as h(x) is non constant, kn(x) may vanish for some x ∈ R and change from a
positive real number to a purely imaginary number. We then distinguish three different situations:

Definition 3. A mode n ∈ N falls in one of these three situations:

1. If n < kh(x)/π for all x ∈ R then kn(x) ∈ (0,+∞) for all x ∈ R and the mode n is called
propagative.

2. If n > kh(x)/π for all x ∈ R then kn(x) ∈ i(0,+∞) for all x ∈ R and the mode n is called
evanescent.

3. If there exists x?k ∈ R such that n = kh(x?k)/π the mode n is called locally resonant. Such
points x?k are called locally resonant points, and there are simple if h′(x?k) 6= 0, and multiple
otherwise.

A frequency k > 0 for which there exists at least a locally resonant mode is called a locally resonant
frequency.

Using the wavenumber function, one can adapt the classic Sommerfeld (or outgoing) condition,
defined in [11] for regular waveguides, to general varying waveguides Ω. This condition is used to
guarantee uniqueness for the source problem given in equation (2).

Definition 4. A wavefield uk ∈ H2
loc
(
Ω
)
is said to be outgoing if it satisfies∣∣∣∣u′k,N (x) x

|x|
− ikn(x)uk,N (x)

∣∣∣∣ −→|x|→+∞
0 ∀n ∈ N, (8)

where uk,N is given in (6).
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In all this work, we make the following assumptions:
Assumption 1. We assume that h ∈ C2(R) ∩W 2,∞(R) with h′ compactly supported and that

∀x ∈ R hmin ≤ h(x) ≤ hmax for some 0 < hmax < hmin <∞.

We also assume that h(x) = hmin or h(x) = hmax if x /∈ supp(h′). For such a function we define a
parameter η > 0 that satisfies

‖h′‖L∞(R) < η and ‖h′′‖L∞(R) < η2.

The forward source problem is defined for every frequency by

(Hk) :


∆uk + k2uk = −f in Ω,

∂νuk = btop in ∂Ωtop,
∂νuk = bbot in ∂Ωbot,

uk is outgoing.

(9)

As explained in [12], this problem is not well-posed when the set {x | kn(x) = 0} is a non-trivial
interval of R. This especially happens when k = nπ/hmin or k = nπ/hmax. We then avoid these
two situations and we set

δ(k) := min
n∈N

(√∣∣∣∣k2 − n2π2

hmin
2

∣∣∣∣,
√∣∣∣∣k2 − n2π2

hmax
2

∣∣∣∣
)
> 0. (10)

From now on, we define (fn)n∈N the modal decomposition of f , and

gn(x) = fn(x)√
h(x)

+ ϕn(1)btop(x)
√

1 + (h′(x))2
√
h

+ ϕn(0)bbot(x) 1√
h
. (11)

Using the work done in [10], we are able to provide an approximation of the solution of (9). If h is
increasing, we can state the following result using Theorem 1 and Remark 5 in [10]:
Theorem 1. Let k > 0 and let h be an increasing function defining a varying waveguide Ω that
satisfies Assumption 1 with a variation parameter η > 0. Consider sources f ∈ L2(Ω) ∩ L∞c (Ω),
b := (bbot, btop) ∈ (H1/2(R))2 ∩ (L∞c (R)2). Assume that there is a unique locally resonant mode
N ∈ N, associated with a simple resonant point x?k ∈ R.

There exists η0 > 0 depending only on hmin, hmax, δ(k), defined in Assumption 1 such that if
η ≤ η0, then the problem (Hk) admits a unique solution uk ∈ H2

loc
(
Ω). Moreover, this solution is

approached by uapp
k defined for almost every (x, y) ∈ Ω by

uapp
k (x, y) :=

∑
n∈N

uapp
k,n (x)ϕn(y), uapp

k,n (x) :=
∫
R
Gapp
n (x, s)gn(s)ds, (12)

where gn is defined in (11), ϕn is defined in (5) and Gapp
n is given by

Gapp
n (x, s) :=



i

2
√
kn(s)kn(x)

exp
(
i

∣∣∣∣∫ x

s
kn

∣∣∣∣) , if n < N,

1
2
√
|kn|(s)|kn|(x)

exp
(
−
∣∣∣∣∫ x

s
|kn|

∣∣∣∣) , if n > N,
π(ξ(s)ξ(x))1/4√
kn(s)kn(x)

(
iA+ B

)
◦ ξ(s)A ◦ ξ(x) if x < s,

π(ξ(s)ξ(x))1/4√
kn(s)kn(x)

(
iA+ B

)
◦ ξ(x)A ◦ ξ(s) if x > s,

if n = N.

(13)
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Function kn is the wavenumber function defined in Definition 2 and the function ξ is given by

ξ(x) :=



(
−3

2 i
∫ x?

k

x
kN (t)dt

)2/3

if x < x?k,

−
(

3
2

∫ x

x?
k

kN (t)dt
)2/3

if x > x?k.

(14)

Precisely, given a coordinate xmeas ∈ R, there exist a control of |uk,n(xmeas)− uapp
k,n (xmeas)| by η for

all n ∈ N. Particularity, for n = N , there exists a constant C1 > 0 depending only on hmin, hmax,
and N such that

|uk,N (xmeas)− uapp
k,N (xmeas)| ≤ ηC1δ(k)−8

(
‖f‖L2(Ω) + ‖b‖(H1/2(R))2

)
. (15)

This result provides an approximation of the measurements of theN -th mode for every frequency,
and a control of the approximation error. We notice that at locally resonant frequencies, the
wavefield strongly depends on the position of x?k, which justifies the idea of using it to develop an
inverse method to reconstruct the width h. In this work, we assume that we have access to the
exact data

uk(xmeas, y) ∀k > 0 ∀y ∈ (0, h(xmeas)). (16)

An illustration is provided in Figure 4 with a representation of the wavefield uk and the section
measurements uk(xmeas, y) when k is a locally resonant frequency. From this general measurement,
we define the locally resonant modal data as follows.

Definition 5. For any N ∈ N we denote by Kres
N the interval of frequencies k such that the mode

N is locally resonant at frequency k:

Kres
N := {k > 0 | ∃x?k ∈ R, Nπ = kh(x?k)}. (17)

Then, the locally resonant modal data of the mode N is given by the N -th mode measured at
position xmeas for all frequencies that make it locally resonant:

uk,N (xmeas) :=
∫ h(xmeas)

0
uk(xmeas, y)ϕn(xmeas, y)dy, ∀k ∈ Kres

N . (18)
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Figure 4: Illustration of the wavefield measurements in a varying waveguide. The wavefield uk is
solution of (9) where h is defined in (49), sources are defined in (50), N = 1 and k1 = 31.2, k2 = 31.5,
k3 = 31.8 are locally resonant frequencies. Data are generated using the finite element method
described in section 4.1. Left: amplitude of |uk| in the whole waveguide Ω. Right: measurements
of |uk| on the section xmeas = 6 represented in red.

3 Discrete inversion from locally resonant modal data
We now focus on the inverse problem and aim at finding h using the locally resonant modal data.
We assume in this section that the waveguide is defined by a fonction h which is slowly varying
and strictly increasing in the interior of supp(h′). We also assume that source terms f and/or b
defined in (9) are supported at the right side of the measurement position {x = xmeas}. Such a
configuration is represented in Figure 1.

For a given mode number N , we assume that the modal source term gN defined in (11) does
not cancel everywhere. We also assume that the locally resonant modal data of the mode N given
by uk,N (xmeas) is fully available for any k ∈ Kres

N . Assuming that the constant hmin and hmax are
given, we can explicit Kres

N as the open interval

Kres
N =

(
Nπ

hmax
,
Nπ

hmin

)
.

We detail in Appendix A how the constants hmin and hmax can be estimated.
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We do not known if the continuous inverse problem of finding h knowing uk,N (xmeas) for all
frequencies k ∈ Kres

N is well-posed with a unique solution, and it is still an open question up to our
knowledge Therefore, and because we plan on applying the inverse method on experimental data
which are discretized, we choose to focus in this paper on the discretized inverse problem of finding
information on h knowing uk,N (xmeas) for some discretized frequencies set k.

We define now an equi-distributed discretization of the frequency interval k1, . . . , kI ∈ Kres
N such

that ki+1 − ki = ρ > 0 for all i = 1, . . . , I − 1. By extension we also call k0 := Nπ/hmax and
kI+1 := Nπ/hmin. As Kres

N is an open interval, the distance between k := (k1, . . . , kI) and the
boundary of Kres

N is non zero and we name δk the quantity defined by

δk := min
(√

k2
1 − k2

0,
√
k2
I+1 − k2

I

)
> 0.

We associate to every frequency ki for i = 1, . . . , I the local wave number function

ki,N (x) :=
√
k2
i −

N2π2

h(x)2 , (19)

which cancels at a single resonant point named xi := x?ki
. The uniqueness of this resonant point is

a consequence of the fact that h is monotonous. In order to use Theorem 1, each locally resonant
point xi must be simple, i.e. h′(xi) 6= 0 which is given by the strict monotonicity of h in the interior
of supp(h′). It also implies that

θ := inf
x∈[xI ,x1]

h′(x)
η

> 0. (20)

Most of these quantities are represented in Figure 5.
The proposed inversion method consists in recovering the locally resonant points x := (x1, . . . , xI)

for each frequency in k := (k1, . . . , kI). The shape function h will be then approached by a continu-
ous piecewise linear function using the formula h(xi) = Nπ/ki. Hence, the discrete inverse problem
reads

Find x := (x1, . . . , xn) from dex := (uk1,N (xmeas), . . . , ukI ,N (xmeas)). (21)

The analysis of this non-linear inverse problem is decomposed in four steps:

• Step 1: (Data approximation) In Section 3.1, we prove that

uk,N (xmeas) = C Φ ◦ ζ(k) +O(η), (22)

where C is a known constant,

Φ(x) := sin(x+ π/4) exp(ix+ iπ/4) and ζ(k) :=
∫ xmeas

x?
k

√
k2 − N2π2

h(x)2 dx. (23)

• Step 2 : (Inversion of Φ) In Section 3.2, we inverse Φ to obtain ζ(k). The function Φ
admits a left inverse function modulus π. We prove that if the frequency discretization step
ρ is small enough, the global left inverse can be found and applied to the data. It leads to an
approximation of ζ(k) up to an error in O(η).

9



k

k0
(Nπ/hmax)

k1 k2 k3 k4 kI

∼ δk ρ ρρ ρ ∼ δk

kI+1
(Nπ/hmin)

x1x2x3x4xIxI+1 x0

Nπ/k1

Nπ/k2

Nπ/k3

Nπ/k4

Nπ/kI

Nπ/hmax

Nπ/hmin

h(x)

Figure 5: Illustration of the main notations used in Section 3. In red, the external frequencies
and the support of h′ found using Appendix A. In blue, the set of frequencies k containing I = 5
frequencies and the corresponding locally resonant points x.

• Step 3: (Discretization of the integral) In Section 3.3, we use the numerical integration
elementary formula

∫ xj

xj+1
ki,N (x)dx ≈ (xj − xj+1)

(1
4ki,N (xj+1) + 3

4ki,N (xj)
)

≈ (xj − xj+1)
(1

4
√
k2
i − k2

j+1 + 3
4
√
k2
i − k2

j

)
to approach ζ(ki). It allows to run a stripping method to recover the differences xj − xj+1
from the approached values of ζ(ki), which provides an approximation of x. As we will see,
this stripping method conduces to triangular linear system.

• Step 4: (Reconstuction of h) In Section 3.4, we use the approximation x to provide a
reconstruction of h. We quantify the reconstruction error of this inverse method as well as its
stability.

3.1 Data approximation

First, we want to approach the locally resonant modal data uk,N (xmeas). Theorem 1 provides a first
approximation uapp

k,N (xmeas) of these measurements. However, this expression is hardly usable to do
inverse problems. Using the fact that the measurement section {x = xmeas} is far from the defect,
we can simplify this approximation:

Proposition 1. Let k ∈ k and assume that Ω satisfies Assumption 1. Let xmeas ∈ R, there exist
η0, A > 0 such that if η < η0 and xmeas − x0 > A, then there exists C2 > 0 depending on δk, hmin
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and hmax such that for every k ∈ δk,

uk,N (xmeas) = q(k) Φ ◦ ζ(k) +O(η), |uk,N (xmeas)− q(k) Φ ◦ ζ(k)| ≤ ηC2, (24)

where q(k) :=
∫
R
gN (z)eikN (xmeas)(z−xmeas)dz/kN (xmeas) is a constant depending only on the source terms.

Proof. Using Theorem 1, we know that for every k ∈ K,

|uk,N (xmeas)− uapp
k,N (xmeas)| ≤ ηC1δ

−8(K)
(
‖f‖L2(R) + ‖b‖H1/2(R)

)
,

where

uapp
k,N (xmeas) = π(−ξ(xmeas))1/4A(ξ(xmeas))

kN (xmeas)

∫
R
gN (z)(−ξ(z))1/4(iA+ B)(ξ(z))dz.

Using approximations of Airy functions provided in [22] and [1, Chap. 9.7], we see that there exists
a constant c1 > 0 such that for all x > 0,∣∣∣∣√πx1/4A(−x) + sin

(2
3x

3/2 + π

4

)∣∣∣∣ ≤ c1
x5/4 ,∣∣∣∣√πx1/4B(−x) + cos

(2
3x

3/2 + π

4

)∣∣∣∣ ≤ c1
x5/4 .

and so ∣∣∣∣√πx1/4(iA+ B)(−x) + exp
(
i
2
3x

3/2 + i
π

4

)∣∣∣∣ ≤ 2c1
x5/4 ,

Replacing x by −ξ(x) or −ξ(xmeas) leads to

∣∣∣uapp
k,N (xmeas)− q(k) Φ ◦ ζ(k)

∣∣∣ ≤ δ−1‖gN‖L1(R)
3c1 + 2c2

1
(−ξ(xmeas))5/4 .

We conclude the proof by noticing that

− ξ(xmeas) =
(

3
2

∫ xmeas

x?
k

kN (t)dt
)2/3

≥ (xmeas − x0)2/3kN (xmeas)2/3 −→
xmeas→+∞

+∞.

Since source terms are assumed to be chosen, q is an explicit non vanishing quantity and Propo-
sition 1 can be rewritten as follows:

Corollary 1. Let k ∈ k, and assume that Ω satisfies Assumption 1. Let xmeas ∈ R, there exist
η0, A > 0 such that if η < η0 and xmeas − x0 > A, then there exists C2 > 0 depending on δk, hmin
and hmax such that for every k ∈ k,

Φ ◦ ζ(k) = 1
q(k)uk,N (xmeas) +O(η),

∣∣∣∣Φ ◦ ζ(k)− 1
q(k)uk,N (xmeas)

∣∣∣∣ ≤ ηc2C2, (25)

where c2 := max
k∈k

1/q(k).

11



3.2 Left inverse of the function Φ
Using the previous Corollary, we now have a good approximation of Φ◦ζ(k) for all frequencies k ∈ k.
To get access to ζ(k), we need to find the left inverse function of Φ. Since Φ is π-periodic, we can
only provide a partial left inverse function Φ−1 modulus π satisfying Φ−1(Φ(θ)) = θ mod(π), with

Φ−1(z) :=


arcsin(|z|) if |z| < 1/2 and Real(z) ≥ 0,

π − arcsin(|z|) if |z| < 1/2 and Real(z) < 0,
arccos (Real(z)/|z|) if |z| ≥ 1/2.

(26)

We represent in Figure 6 the values of Φ−1(uk,N (xmeas)/q(k)) mod(π) for different sets of fre-
quency. We can see that ρ, the discretization step of k, needs to be sufficiently small if we expect to
get rid of the modulus π. Using the fact that ζ is increasing and assuming that ρ is small enough,
the following proposition proves that we can get rid of the modulus π up to a constant. We set

` =
⌊
ζ(k1)
π

⌋
, tapp

i = ζ(ki)− `π, 1 ≤ i ≤ m. (27)

30.9 31 31.1 31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.90

1

2

3

k

Φ−1(uk,N/q)
I = 50
I = 25
I = 13

30.9 31 31.1 31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.90

20

40

60

k

tapp
i

ti, I = 50
ti, I = 25
ti, I = 13

Figure 6: Computation of the left inverse of Φ for a set of frequencies k = {30.92 : 31.93 : I},
xmeas = 6, h defined in (46) and source defined in (50). On the top, representation of Φ−1(vapp

k ) and
Φ−1(vk) modulus π. On the bottom, representation of tapp

i and ti after getting rid of the modulus π.
Here, `app = 0.

Proposition 2. Assume that Ω satisfies Assumptions 1. There exist η0, A > 0 such that if η < η0,
xmeas − x0 > A, there exist ρ0 > 0 depending on xmeas and η such that if ρ < ρ0, then there exist a
unique sequence (ti)1≤i≤m such that

∀1 ≤ i ≤ m ti = Φ−1
(
uk,N (xmeas)

q(k)

)
mod(π), |ti+1 − ti| < π/2. (28)

12



Moreover, there exists a constant C3 > 0 depending on δk, θ, hmin and hmax such that

∀1 ≤ i ≤ m |ti − tapp
i | ≤ C3η. (29)

Proof. Using Corollary 1, there exist η0, A > 0 such that if η < η0 and xmeas − x0 > A then∣∣∣∣uk,N (xmeas)
q(k) − Φ ◦ ζ(k)

∣∣∣∣ ≤ min(1/4, ηc2C2).

The quantity 1/4 is chosen to ensure that in each case of the definition of Φ−1, we then have
1/4 ≤ z ≤ 3/4. Then, we see that for every k ∈ K,∣∣∣∣Φ−1

(
uk,N (xmeas)

q(k)

)
− Φ−1(Φ ◦ ζ(k))

∣∣∣∣ ≤ 1√
1− (3/4)2

∣∣∣∣uk,N (xmeas)
q(k) − Φ ◦ ζ(k)

∣∣∣∣ < min(1.6 ηc2C2, π/8).

We also notice that

0 ≤ tapp
i+1 − t

app
i =

∫ xi

xi+1
ki+1,N +

∫ xmeas

xi

(ki+1,N − ki,N ).

Using the fact that

|xi − xi+1| =
∣∣∣∣h−1

(
Nπ

ki

)
− h−1

(
Nπ

ki+1

)∣∣∣∣ ≤ 1
θη

∣∣∣∣Nπki − Nπ

ki+1

∣∣∣∣ ≤ ρNπ

k2
0θη

, (30)

we have ∫ xi

xi+1
ki+1,N ≤ kn+1,N (xmeas)(xi − xi+1) = O(ρη−1),∫ xmeas

xi

(ki+1,N − ki,N ) ≤ (xmeas − xm+1)ρkm+1
δk

= O(ρ(xmeas − x0)),

where we denote by O every majoration depending only on δk, θ, hmin, hmax. If ρ is small enough
compared to (xmeas − x0)−1 and η then

|tapp
i+1 − t

app
i | < π/4.

Therefore,
|ti+1 − ti| ≤ |ti+1 − tapp

i+1|+ |t
app
i+1 − t

app
i |+ |t

app
i − ti| < π/2.

Since there is a one-to-one correspondence between a sequence where the distance between each
term does not exceed π/2 and its representation modulus π, we conclude our proof.

This result is illustrated in Figure 6 where we see that providing a sufficiently small discretiza-
tion of the frequency interval, we can recover an approximation of each tapp

i giving measurements
of Φ−1(vk).

Lastly, we have to find the constant ` ∈ N in order to reconstruct a complete approximation of
ζ(k). Since

t1 ≈ tapp
1 ≈ (xmeas − x?k1)k1,N (xmeas)− `π, t2 ≈ tapp

2 ≈ (xmeas − x?k1)k2,N (xmeas)− `π, (31)

we propose to approach ` by the following expression:

`app =
⌊
t2k1,N (xmeas)− t1k2,N (xmeas)
π(k2,N (xmeas)− k1,N (xmeas))

⌋
. (32)

The following lemma proves that under certain assumptions, `app is equal to `:

13



Lemma 1. Under the same assumptions as in Proposition 2, if δk, x0 − x?k2 and η are sufficiently
small then ` = `app.

Proof. We notice that

`π =
∫ xmeas

x1
k1,N (z)dz − tapp

1 ≈ (xmeas − x1)k1,N (xmeas)− t1.

More precisely, we introduce ε1 such that

(xmeas − x1)k1,N (xmeas) = `π + t1 + ε1,

and using Proposition 2, there exists a constant c3 > 0 such that

|ε1| ≤ C3η +
∣∣∣∣∫ x0

x1
(k1,N (z)− k1,N (x0))dz

∣∣∣∣ ≤ C3η + c3(x0 − x2)δk.

Similarly, we introduce ε2 such that (xmeas − x1)k2,N (xmeas) = `π + t2 + ε2 and

|ε2| ≤ C3η + d3(x0 − x2)δk.

It follows that
|`− `app| ≤ |ε2|k2,N (xmeas) + |ε1|k1,N (xmeas)

k2,N (xmeas)− k1,N (xmeas) ,

and this quantity is smaller than 1 if ε1 and ε2 are small enough. Since `, `app ∈ N, it concludes the
proof.

Using this lemma, we can find the value of `. We represent in Figure 6 the different steps to
compute the left inverse of Φ:

• We apply the function Φ−1 to the approximations of Φ ◦ ζ(k).

• We recover each ζ(ki) up to a constant ` is ρ is small enough using the increase of ζ.

• We compute the value of the constant ` using (32).

As mentioned in Proposition 2, we clearly see the importance of choosing a sufficiently small dis-
cretization of the frequency interval δk in order to get a good approximation of each ζ(ki).

To summarize, we proved in this section that if the step of discretization of k is sufficiently
small, we are able to post process the measurements in order to find an approximation of ζ(ki) for
every frequency ki ∈ k. Moreover, this approximation is improving is η diminishes. From now on,
we work on data (di)1≤i≤m satisfying

∀i = 1, . . . ,m di := ti + `π, |di − ζ(ki)| ≤ C3η. (33)
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3.3 Triangular linear recovery of x

Using the left inverse of Φ and the data provided in the previous section, we now try to reconstruct
from (ζ(ki))1≤i≤I the set x. To do so, we need to find a link between (ζ(ki))1≤i≤I and x. Noticing
that

∀1 ≤ i ≤ I h(xi) = Nπ

ki
, ∀1 ≤ j < i ≤ I ki,N (xj) =

√
k2
i −

N2π2

h(xj)2 =
√
k2
i − k2

j , (34)

we choose to discretize the integral
∫ xmeas

xi
ki,N on the grid (xj)1≤j≤i. We define the known quantities

pi,j :=
√
|k2
i − k2

j |. (35)

A first idea would be to use a rectangular rule to discretize the integral, as illustrated in the
introduction in Figure 2. However, since h is increasing, x 7→ ki,N (x) is concave and we know that
for all j > 2, ∫ xj−1

xj

ki,N ≥ (xj−1 − xj)
ki,N (xj) + ki,N (xj−1)

2 = (xj−1 − xj)
pi,j + pi,j−1

2 , (36)

∫ xj−1

xj

ki,N ≤ (xj−1 − xj)ki,N (xj−1) = (xj−1 − xj)pi,j−1. (37)

Instead of using a rectangular rule, we choose to approach the integral using the mean of these two
bounds: ∫ xj−1

xj

ki,N ≈
1
4(xj−1 − xj) (pi,j + 3pi,j−1) . (38)

When j = 1, we cannot apply this approach and we simply choose to use∫ xmeas

x1
ki,N ≈ (xmeas − x1)ki,N (xmeas) = (xmeas − x1)p1,0. (39)

Remark 1. We chose here to approach the integral by taking the mean of a rectangle and a
trapezoidal rule. However, any barycenter between these two bounds would also work. Further
investigations may prove that the mean may not be the optimal choice. However, giving the lack of
regularity of ki,N around xi, any quadrature method should give the same error estimation up to a
constant.

We define the triangular matrix

T := 1
4



4p1,0 0 0 . . . 0
4p2,0 3p2,1 0

...

4p3,0 p3,2 + 3p3,1
. . . . . . ...

...
... . . . 3pI−1,I−2 0

4pI,0 pI,2 + 3pI,1 . . . pI,I−1 + 3pI,I−2 3pI,I−1


, (40)
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and we expect that

TV ≈ d := (di)1≤i≤I , where V =


xmeas − x1
x1 − x2

...
xI−1 − xI

 . (41)

The following proposition quantify the error of this approximation:

Proposition 3. Assume that Ω satisfies Assumption 1. There exist η0, A > 0 such that if η < η0,
xmeas − x0 > A, there exists ρ0 > 0 such that if ρ < ρ0, then there exist constants C4, C5 > 0
depending on δk, θ, | supp(h′)|, hmin and hmax such that

‖d− TV ‖∞ ≤ C3η + C4(x0 − x1) + C5η
1/2ρ−1. (42)

Remark 2. We notice that in addition of the need for η to be small, we need to ensure that x0 is
sufficiently precise and close to x1 if we want a small error between d and TV . This assumption
was already evoked in Lemma 1 to find the quantity `.

Remark 3. We notice in this inequality that if η tends to zero then the error decreases. However,
for a fixed η, the parameter ρ needs to be chosen wisely since it needs to be small enough in order
for the post processing of the measurements to work, and not too small so that the matrix T is well
conditioned. We will discuss this point with more detail in Section 4.

Proof. Using the proof of Lemma 1, we already know that∣∣∣∣∣
∫ xmeas

x1
ki,N − (xmeas − x1)pi,0

∣∣∣∣∣ ≤ C3η + c3(x0 − x1)δk.

Then, for x ∈ (xj , xj−1), we denote by z ∈ (xj , xj−1) the coordinate such that ki,N (z) = (pi,j +
3pi,j−1)/4. If j < i, then

|ki,N (x)− ki,N (z)| ≤ |x− z| N2π2η

h3
minki,N (xj)

≤ |xj − xj−1|
N2π2η

h3
min
√

2
√
k0
√
i− jρ1/2 .

If j = i and x > z, then

|ki,N (x)− ki,N (z)| ≤ |xi − xi−1|
4N2π2η

3h3
minpi,i−1

≤ |xi − xi−1|
4N2π2η

3h3
minρ

1/2
√

2
√
k0
.

If j = i and x < z, we use the approximation of ki,N near xi demonstrated in [20, (20)] to deduce
that there exists a constant c4 > 0 depending on θ such that

ki,N (x) ≥ c4η
1/2(x− xi)1/2.

If follows that
|ki,N (x)− ki,N (z)| ≤ |xi − xi−1|

N2π2η1/2

h3
minc4(x− xi)1/2 ,∫ z

xi

|ki,N (x)− ki,N (z)|dx ≤ 2|xi − xi−1|3/2η1/2 N
2π2

h3
minc4

.
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By noticing that |xi − xi−1| ≤ x0 − xI+1, we conclude that there exists a constant c5 > 0 such that∣∣∣∣∣
∫ xj−1

xj

ki,N −
1
4(xj−1 − xj) (pi,j + 3pi,j−1)

∣∣∣∣∣ ≤ c5η
1/2ρ−1/2

(
δi=j + 1√

i− j
δi>j

)
.

By assembling everything, we see that

|di − (TV )i| ≤ C3η + δkc3(x0 − x2) + c5η
1/2ρ−1/2

1 +
i−1∑
j=1

1√
j

 .
We conclude the proof by noticing that

i∑
j=1

j−1/2 = O
(√

i
)

= O(ρ−1/2).

The matrix T is a lower triangular matrix with non vanishing diagonal entries so it is invertible.
To find an approximation of vector V and of x given data d, we define

V app := T−1d, (xapp)i := xapp
i := xmeas −

i∑
j=1

V app
j . (43)

3.4 Reconstruction of h

We now have approximations of each xi. Since we know that h(xi) = Nπ/ki, we define the approx-
imation of the width h by

happ(xapp
i ) = Nπ

ki
∀ ki ∈ k, happ(x0) = Nπ

km+1
, happ(xm+1) = Nπ

k0
. (44)

The following Theorem concludes the reconstruction process and proves that we are able to quantify
the error of reconstruction between happ and h:

Theorem 2. Let k be a subset ofKres
N . Assume that Ω satisfies assumption 1. There exist η0, A > 0

such that if η < η0 and xmeas − x0 > A, there exists ρ0 > 0 such that if ρ < ρ0 then there exist
constants C3, C4, C5, C6 > 0 depending on θ, δk, | supp(h)|, hmin and hmax such that

‖happ(xapp)− h(xapp)‖∞ ≤ ηρ−5/2C6
(
C3η + C4(x− x1) + C5η

1/2ρ−1
)
. (45)

Remark 4. We notice in this inequality that if η tends to zero then the error tends to zero. However,
as mentionned before, for a fixed η the parameter ρ needs to be chosen wisely since T is not well
conditioned. We illustrate it in Figure 7 where we present two different reconstructions of h with
the same data (di) discretized for two different sets of frequencies k. We notice that the relative
error of reconstruction ‖h− happ‖∞/hmax increases when I increases (and when ρ decreases).

Proof. For every 1 ≤ i ≤ I, we see that

|xapp
i − xi| ≤

∣∣∣∣∣∣
i∑

j=1
V app
j − Vj

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
i∑

j=1
T−1(dj − (TV )j)

∣∣∣∣∣∣ .

17



−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 40.98

0.99

1

1.01

1.02 ·10−1

h

happ(X?,app), I = 10
happ(X?,app), I = 30

Figure 7: Representation of h and happ with post processing measurements discretized with I = 10
or I = 30 points. Due to the bad condition number of T , the use of too many frequency points
diminishes the quality of the reconstruction: the error ‖h− happ‖∞/hmax is 2.7% when I = 10 and
7.9% when I = 30. Here, xmeas = 6, h defined in (46) and sources in (9) are defined in (50).

We denote a = d− TV , and b = T−1a. We see that

b1 = a1
p1,0

, bi = 4
3pi,i−1

ai − pi,0a1 −
1
4

i−1∑
j=2

(pi,j + 3pi,j−1)aj

 ,
Using the definition of pi,j given in (35), we notice that pi,j = O(ρ) and it follows that

b1 = O(‖a‖∞), bi = O(ρ−1/2I‖a‖∞) = O(ρ−3/2‖a‖∞),∣∣∣∣∣∣
i∑

j=1
bj

∣∣∣∣∣∣ = O(‖a‖∞ρ−3/2I) = O(‖a‖∞ρ−5/2).

We conclude using Proposition 3 and the fact that

|happ(xapp
i )− h(xapp

i )| ≤ |h(xi)− h(xapp
i )| ≤ η|xi − xapp

i |.

To summarize, we have presented here a layer stripping method to recover an approximation
of the width h. After processing the measurements in Section 3.1, we get rid of the periodicity of
the data in Section 3.2 using a small discretization step ρ. Then, we solve a triangular system to
provide a reconstruction of each xi in Section 3.3 and an approximation of h in Section 3.4. The
triangular system been not well-conditioned, we need to ensure that the discretization step ρ is not
too small if we want a controlled reconstruction error. The following section aims at applying this
reconstruction method to numerical data.

4 Numerical computations
In this section, we show some numerical applications of our reconstruction method on slowly varying
waveguides. We simulate section measurements using numerically generated data, and we provide
reconstructions of increasing waveguides with different shape profiles.
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4.1 Generation of data

In the following, numerical solutions of (9) are generated using the software Matlab to solve nu-
merically the equation in the waveguide Ω. In every numerical simulation, we assume that h′ is
supported between x = −7 and x = 7. To generate the solution u of (9) on Ω7, we use a self-coded
finite element method and a perfectly matched layer [9] on the left side of the waveguide between
x = −15 and x = −8 and on the right side between x = 8 and x = 15. The coefficient of absorption
for the perfectly matched layer is defined as α = −k((x−8)1x≥8− (x+8)1x≤−8) and the structured
mesh is built with a stepsize of 10−3.

4.2 Method of reconstruction

In the following, all the numerical measurements are generated following the process described in
section 4.1. Using the previous results, we present all the steps to reconstruct happ, an approximation
of h.

1. Find an approximation of hmin and hmax using the method described in Appendix A.

2. Choose a set of frequencies k ⊂ Kres
N with a very small step of discretization ρ1, and sources

f , btop, bbot. For every frequency k ∈ k, measure the N -th modal component uk,N (xmeas) of
the wavefield u solution of (9).

3. Process the measurements by multiplying them by 1/q(k) and applying Φ−1. Then, get rid
of the modulus π by straightening up the sequence, and compute the approximate value of `
using (32). The available data (di) are then the approximations of

∫ xmeas

xi
ki,N .

4. Reduce the number of frequencies ki used in k and keep the associated data di, in order to
have a bigger step size denoted ρ2 ≥ ρ1. Solve TV = d, where T is defined in (40), to find an
approximation of the distance between every xapp

i .

5. Compute happ using (44).

Remark 5. We propose here to choose two values of ρ: the first one is very small to ensure the
existence of the left inverse of Φ in Proposition 2. The second one is bigger due to the cutting of
some frequencies, which improve the precision of the reconstruction in Theorem 2.

4.3 Numerical results

We now apply this method to reconstruct different profiles of slowly increasing waveguides. We
present in Figure 8 the reconstruction happ obtained for different profiles h:

h1(x) = 0.1 + γ1

(
x5

5 − 32x
3

3 + 256x
)
1{−4≤x≤4} − γ21{x<−4} + γ21{x>4}, (46)

h2(x) = 0.1 + γ3

(
x5

5 − 2x4 + 16x
3

3

)(
1{0≤x≤4} − 1{−4≤x<0}

)
+ γ4

(
1{x>4} − 1{x<−4}

)
, (47)

h3(x) = 0.1 + γ5x1{−4≤x≤4} + 4γ51{x>4} − 4γ41{x<−4}, (48)

h4(x) = 0.1− 4γ5 + 4γ5

√
x+ 4√

2
1{−4≤x≤4} + 8γ51{x>4}. (49)
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where γ1 = 3.10−6, γ2 = 8192/5.10−6, γ3 = 5.10−5, γ4 = 53/3.10−5, γ5 = 0.01/30. All these profiles
are represented in black in Figure 8. The first two profiles are in C2(R) while h3 and h4 show
corners, with an infinite derivative in h4. Sources in (9) are defined by

f(x, y) = δ6(x)y, btop(x) = δ6(x), bbot = 0, (50)

the sets of frequencies are defined by

k1 = {30.92 : 31.93 : 50}, k2 = {30.9 : 31.95 : 50}, k3 = k4 = {31.01 : 31.83 : 50}, (51)

and data (di) are reduced to use only 12 frequencies for the inversion. The initial profiles are
represented in black, while the reconstructions happ are plotted in red and slightly shifted for
comparison purposes. We see that the reconstruction are satisfactory and that the relative L∞
error of the reconstruction E∞(happ) := ‖h−happ‖∞/hmax is of the same order as the one presented
in [20] and even better than the one in [11].

Figure 8: Reconstruction of four different increasing profiles. In black, the initial shape of Ω5,
and in red, the reconstruction, slightly shifted for comparison purposes. In each case, k = ki is
defined in (51), I is equal to 50 for the post processing of the measurements and then to 12 for the
inversion of the data, h = hi is defined in (46), (47), (48), (49), and the sources of (9) are defined in
(50). Top left: i = 1, E∞(happ) = 0.97%. Top right: i = 2, E∞(happ) = 1.0%. Bottom left: i = 3,
E∞(happ) = 1.1%. Bottom right: i = 4, E∞(happ) = 1.5%.

In Figure 9, we illustrate the stability of the recovery by adding some artificial noise on measured
data. We notice that the recovery is still satisfactory as long as the amplitude of the noise is small,
and that the reconstruction error grows until it reaches a saturation error close to 100%.

Finally, we illustrate in Figure 10 that this method of reconstruction only works for increasing
functions. We define

h6(x) = 0.1− γ7(x+ 5)1{−5≤x≤0} + γ6
4 (x− 4)1{0<x≤4}, (52)

where γ6 = 25.10−4, γ7 = 5.10−4. The reconstruction of this function shows that if the width profile
is not monotonous, we are only able to reconstruct the increasing part of the profile. To get the
other part, one needs to move both the source and the receiver.

To conclude, using a known source located far away at the right of the defect, we are able to
reconstruct slowly increasing widths. Even if this method does not work for general shape defects,
it is relevant to identify and localize obstruction types of defects and gives good numerically results.
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Figure 9: Relative reconstruction error E∞(happ) with increasing additive noise on measured data.
Given a standard deviation σ, we apply the inversion method with data uN (xmeas) +N where N is
a uniform random Gaussian noise of standard deviation σ. The width profile h is defined in (49),
sources of (9) are defined in (50), k is defined in (51) and I = 50 for the post processing an 12 for
the inversion.

5 Conclusion
From the same analysis of the forward problem than in [20], we have developed a new method to
recover width defect using section measurements. We have used the study of the forward problem
in slowly varying waveguide presented in [10] and the approximation of the solutions using the
π-periodic function Φ to develop an inverse reconstruction method in slowly varying monotonous
waveguides. Given wavefield measurements on a section of the waveguide for different locally reso-
nant frequencies, we reconstruct with stability the associated resonant points which provides a good
approximation of the width in the waveguide.

Even if this method only works when sources and receivers are on the larger side of the waveguide,
its reconstruction results are excellent and we believe that this method could be useful to detect
and localize precisely the position of width defects in waveguides. Combined with a traditional
multi-frequency back-scattering method like the one presented in [10], this method could produce
great results in recovering any type of width defect as long as there are small and slowly varying.

Appendix A: Identification of kmin and kmax

Giving a compactly perturbed waveguide Ω, we describe here how section measurements enable
to approximate very precisely the quantities kmin and kmax. The article [12] mentions that the
problem (9) is not well-defined when kn(x) = 0 in a non-trivial interval, which especially happens
when k = nπ/hmin or k = nπ/hmax. Numerically, this results in an explosion of the solution when
k tends to nπ/hmin (resp. nπ/hmax) with a source term located in the area where h(x) = hmin
(resp. h(x) = hmax). Since our sources are located in the area k = nπ/hmax, measurements of the
wavefield enable to find a good approximation of hmax.

Moreover, using Theorem 1, we see that the Green function changes behavior when the mode N
switches from an evanescent mode to a locally resonant one. This change appends exactly around
the frequency Nπ/hmin and comparing the measurements with the known behavior of evanescent
modes, we can get a good approximation of hmin. We illustrate it in Figure 11.
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Figure 10: Reconstruction of a non monotonous profile. On the left, we represent the wavefield
|u| at frequency k = 32.1. On the right, we show the reconstruction of the width profile. In black
is the initial shape of Ω5, and in red is the reconstruction slightly shifted for comparison purposes.
We notice that we cannot reconstruct the left variations of the waveguide, which is explained by the
fact that the wavefield u never propagates in the left area of the waveguide. In the reconstruction,
k = {31.42 : 32.1 : 50}, we only select 12 frequencies for the inversion of data, h is defined in (52)
and the sources of (9) are defined in (50).
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Figure 11: Amplitude of uk,N (xmeas) with respect to k for xmeas = 6 and a source b = δxmeas ,
compared with the amplitude of the Green function Gapp

N (xmeas, xmeas). For comparison purposes,
Nπ/hmax and Nπ/hmin are plotted.

Measuring the section wavefield while k varies and detecting its explosion and its changes of
behavior provides a good approximation of the width at the left and the right of the waveguide.
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