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Figure 1: Ultra-high resolution multiscale style transfer. Top row from left to right: style (4226×5319), content (6048×8064), intermediary
transfer at scale 1 (756×1008) and final transfer at scale 4 (6048×8064) (intermediary results at scale 2 (1512×2016) and 3 (3024×4032)
are not shown). Bottom row: zoomed in detail of size 1024×1024 for the three UHR images and 128×128 for the low resolution transfer at
scale 1. Our method produces a style transfer of unmatched quality for such high resolution. It effectively conveys a pictorial aspect to the
output images thanks to fine painting details such as brushstrokes, painting cracks, and canvas texture.

Abstract
Neural style transfer (NST) is a deep learning technique that produces an unprecedentedly rich style transfer from a style image
to a content image. It is particularly impressive when it comes to transferring style from a painting to an image. NST was
originally achieved by solving an optimization problem to match the global statistics of the style image while preserving the
local geometric features of the content image. The two main drawbacks of this original approach is that it is computationally
expensive and that the resolution of the output images is limited by high GPU memory requirements. Many solutions have been
proposed to both accelerate NST and produce images with larger size. However, our investigation shows that these accelerated
methods all compromise the quality of the produced images in the context of painting style transfer. Indeed, transferring the
style of a painting is a complex task involving features at different scales, from the color palette and compositional style to the
fine brushstrokes and texture of the canvas. This paper provides a solution to solve the original global optimization for ultra-
high resolution (UHR) images, enabling multiscale NST at unprecedented image sizes. This is achieved by spatially localizing
the computation of each forward and backward passes through the VGG network. Extensive qualitative and quantitative com-
parisons, as well as a user study, show that our method produces style transfer of unmatched quality for such high-resolution
painting styles. By a careful comparison, we show that state of the art fast methods are still prone to artifacts, thus suggesting
that fast painting style transfer remains an open problem.

† José Lezama is now at Google Research. Contributed to this work while
at Universidad de la República.
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1. Introduction

Style transfer is an image editing strategy transferring an image
style to a content image. Given style and content, the goal is to
extract the style characteristics of the style and merge them to the
geometric features of the content. While this problem has a long
history in computer vision and computer graphics (e.g. [HJO*01;
APH*14]), it has seen a remarkable development since the semi-
nal works of Gatys et al. [GEB15; GEB16] that introduced neural
style transfer (NST) [JYF*20]. These works demonstrate that the
Gram matrices of the activation functions of a pre-trained VGG19
network [SZ15] faithfully encode the perceptual style and textures
of an input image. NST is performed by optimizing a functional
aiming at a compromise between fidelity to VGG19 features of the
content image while reproducing the Gram matrices statistics of
the style image. Other global statistics have been proven effective
for style transfer and texture synthesis [LZW16; SC17; LPSB17;
VDKC20; RWB17; HVCB21; DDD*21; GGL22] and it has been
shown that a coarse-to-fine multiscale approach allows one to re-
produce different levels of style detail for images of moderate to
high-resolution (HR) [GEB*17; Sne17; GGL22]. The two major
drawbacks of such optimization-based NST are the computation
time and the limited resolution of images because of large GPU
memory requirements. The former limitation is more critical for
the present work, since conveying the visual aspects of a painting
requires multiple scales of visual detail.

Regarding computation time, several methods have been pro-
posed to generate new stylized images by training feed-forward
networks [ULVL16; JAF16; LW16] or by training VGG encoder-
decoder networks [CS16; HB17; LFY*17; LLKY19; CG20]. These
models tend to provide images with relatively low style trans-
fer loss and can therefore be considered as approximate solutions
to [GEB16]. Despite a remarkable acceleration, these methods suf-
fer from GPU memory limitations due to the large size of the mod-
els used for content and style characterization and are therefore lim-
ited in terms of resolution (generally limited to 10242 pixels (px)).

This resolution limitation has received less attention but was re-
cently tackled [ALH*20; WLW*20; CWX*22; WZZ*22]. Nev-
ertheless, although generating UHR images (larger than 4k im-
ages), the approximate results are not able to correctly represent
the style resolution. Indeed, for some methods to satisfy the GPU’s
memory limitations, the transfer is performed locally on small
patches of the content image with a zoomed out style image (10242

px) [CWX*22]. In other methods, the multiscale nature of the net-
works is not fully exploited [WLW*20].

At the opposite of these machine learning based-approaches, we
propose to solve the original NST optimization problem [GEB16]
for UHR images by introducing an exact localized algorithm. As il-
lustrated in Figure 1, our UHR multiscale method manages to trans-
fer the different levels of detail contained in the style image from
the color palette and compositional style to the fine brushstrokes
and canvas texture. The resulting UHR images look like authentic
painting as can be seen in the UHR example of Figure 2.

Comparative experiments show that the results of competing
methods suffer from brushstroke styles that do not match those of
the UHR style image, and that very fine textures are not transferred

well and are subject to local artifacts. To straighten this visual com-
parison, we also introduce a qualitative and quantitative identity test
that highlights how well a given texture is being emulated. A user
study completes these experiments and confirm the superiority of
our approach regarding painting style reproduction.

The main contributions of this work are summarized as follows:

• We introduce a two-step algorithm to compute the style transfer
loss gradient for UHR images that do not fit in GPU memory
using localized neural feature calculation.
• We show that using this algorithm in a multi-scale procedure

leads to a UHR style transfer for images up to 20k2 px with de-
tails conveying a natural painting aspect at every scale.
• Comparative experiments show that the visual quality of our

UHR style transfer is by far richer and more faithful than state of
the art fast but approximate solutions, revealing that, in our opin-
ion, fast UHR painting style transfer is still an open problem.

In particular, the superiority of our approach is confirmed by a
blind user study. This work provides a new reference method for
high-quality style transfer with unequaled multi-resolution depth.
It also naturally extends the state of the art for UHR texture synthe-
sis. The main drawback of our approach is that it remains compu-
tationally heavy, taking several minutes to produce an image. Nev-
ertheless, it us up to the users to define their speed VS. quality
trade-off, and we believe that our algorithm can be viewed as a new
gold standard for practitioners wishing to achieve the highest style
transfer image quality. Our public implementation (see supplemen-
tary material (supp. mat.)) will also allow future research on fast
but approximate models to be compared with our method.

2. Related work

2.1. Style transfer by optimization

As recalled in the introduction, the seminal work of Gatys et al. for-
mulated style transfer as an optimization problem minimizing the
distances between Gram matrices of VGG features [GEB16]. Other
global statistics have been proven effective for style transfer and
texture synthesis such as deep correlations [SC17; GGL22], Bures
metric [VDKC20], spatial mean of features [LZW16; DDD*21],
feature histograms [RWB17], or even the full feature distribu-
tions [HVCB21]. Specific cost function corrections have also been
proposed for photorealistic style transfer [LPSB17]. When deal-
ing with HR images, a coarse-to-fine multiscale strategy has been
proven efficient to capture the different levels of details present
in style images [GEB*17; Sne17; GGL22]. Style transfer by op-
timization has also been extended for video style transfer [RDB16]
and style transfer for neural fields [ZKB*22]. The original opti-
mization approach [GEB16] was considered unfitted for UHR style
transfer due to high memory requirements (limited to 1k2 px im-
ages, see e.g. [TFF*20]). This paper presents an algorithm that
solves this very problem for UHR images.

2.2. Universal style transfer (UST)

[ULVL16; UVL17] and [JAF16] showed that feed-forward net-
works could be trained to approximately solve style transfer. Al-
though these models produce a very fast style transfer, they require
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Figure 2: UHR style transfer. Top row, content image (top-left, 6048×8064), style image (bottom left, 6048×7914), result (right, 6048×8064)
(the three UHR images are downscaled×4 for visualization). Bottom row: three zoomed in details of the result image (8002, true resolution).
Observe how very fine details such as the chairs look as if painted.

learning a new model for each style type, making them slower than
the original optimization approach when training time is included.

Style limitation was addressed by training a VGG autoencoder
that attempts to reverse VGG feature computations after normal-
izing them at the autoencoder bottleneck. Chen et al. [CS16] in-
troduce the encoder-decoder framework with a style swap layer
replacing content features with the closest style features on over-
lapping patches. Huang et al. [HB17] propose to use an Adaptive
Instance Normalization (AdaIN) that adjusts the mean and variance
of the content image features to match those of the style image.
[LFY*17] match the covariance matrices of the content image fea-
tures to those of the style image by applying whitening and color-

ing transforms. These operations are performed layer by layer and
involve specific reconstruction decoders at each step. [SLSW18]
use one encoder-decoder block combining the transformations of
[LFY*17] and [CS16]. [PL19] introduce an attention-based trans-
formation module to integrate the local style patterns according to
the spatial distribution of the content image. [LLKY19] train a sym-
metric encoder-decoder image reconstruction module and a trans-
formation learning module. [CG20] extend [LFY*17] by embed-
ding a new transformation that iteratively updates features in a cas-
cade of four autoencoder modules. Despite the many improvements
in fast UST strategies, we remark that: (a) they rely on matching
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VGG statistics as introduced by [GEB16] (b) they are limited in
resolution due to GPU memory required for large size models.

2.3. UST for high-resolution images

Some methods attempt to reduce the size of the network in order to
perform high resolution style transfer. [ALH*20] propose ArtNet
which is a channel-wise pruned version of GoogLeNet [SLJ*15].
[WLW*20] propose a collaborative distillation approach in order
to compress the model by transferring the knowledge of a large
network (VGG19) to a smaller one, hence reducing the number of
convolutional filters involved in [LFY*17] and [HB17]. [CWX*22]
proposed an UHR style transfer framework where the content im-
age is divided into patches and a patch-wise style transfer is per-
formed from a zoomed out version of the style image of size 10242

px. [WZZ*22] recently proposed to avoid using pre-trained convo-
lutional deep neural networks for inference and instead train three
very lightweight models, a content encoder, a style encoder, and
a decoder, resulting in a ultra-high resolution UST with very low
inference time. However, as will be shown below, the UHR style
transfer results generally suffer from visual artifacts and do not
faithfully convey the complexity of the style painting at all scales.

[TFF*20] present a hybrid approach that combines neural net-
works and patch-based synthesis. They first perform NST between
the low-resolution versions of the content and the style images, then
refine the style details using patch-based transfer at a medium res-
olution followed by an upscaling. By design, this approach only
consider a low-resolution version of the content image and suffers
from a loss of details in comparison to our method (see supp. mat.).

3. Global optimization for neural style transfer

3.1. Single scale style transfer

Let us recall the algorithm of [GEB16]. It solely relies on opti-
mizing some VGG19 second-order statistics for changing the im-
age style while maintaining some VGG19 features to preserve
the content image’s geometric features. Style is encoded through
Gram matrices of several VGG19 layers, namely the set Ls =
{ReLU_k_1, k ∈ {1,2,3,4,5}} while the content is encoded with a
single feature layer Lc = ReLU_4_2.

Given a content image u and a style image v, one optimizes the
loss function

Etransfer(x;(u,v)) = Econtent(x;u)+Estyle(x;v) (1)

where Econtent(x;u) = λc

∥∥∥V Lc(x)−V Lc(u)
∥∥∥2

, with λc > 0, and

Estyle(x;v) = ∑
L∈Ls

EL
style(x;v). (2)

The style loss for a layer L ∈ Ls is the Gram loss

EL
style(x;v) = wL

∥∥∥GL(x)−GL(v)
∥∥∥2

F
, wL > 0, (3)

where ‖ ·‖F is the Frobenius norm, and, for an image w and a layer
index L, GL(w) denotes the Gram matrix of the VGG19 features at
layer L: if V L(w) is the feature response of w at layer L that has
spatial size nL

h ×nL
w and nL

c channels, one first reshapes V L(w) as a

matrix of size nL
p×nL

c with nL
p = nL

hnL
w the number of feature pixels,

its associated Gram matrix is the nL
c ×nL

c matrix

GL(w) =
1
nL

p
V L(w)>V L(w) =

1
nL

p

nL
p

∑
k=0

V L(w)k(V
L(w)k)

>, (4)

where V L(w)k ∈ RnL
c is the column vector corresponding to the k-

th line of V L(w). EL
style(x;v) is a fourth-degree polynomial and non

convex with respect to (wrt) the VGG features V L(x). [GEB15] pro-
pose to use the L-BFGS algorithm [Noc80] to minimize this loss,
after initializing x with the content image u. L-BFGS is an itera-
tive quasi-Newton procedure that approximates the inverse of the
Hessian using a fixed size history of the gradient vectors computed
during the last iterations.

3.2. Gram loss correction

Previous works [SC17; RWB17; HVCB21] have shown that opti-
mizing the Gram loss alone may introduce some loss of contrast
artifacts. A proposed explanation is that Gram matrices encompass
information regarding both the mean values and correlation of fea-
tures. While is has been shown that reproducing the full histogram
of the features [RWB17; HVCB21] permits to avoid this artefact,
we found that simply correcting for the mean and standard devia-
tion (std) of each feature produced visually satisfying results and is
computationally simpler.

Given some (reshaped) features V ∈ Rnp×nc , define mean(V )
and std(V ) ∈ Rnc as the spatial mean and standard deviation vec-
tors of each feature chanel. Throughout the paper, the Gram loss

wL

∥∥∥GL(u)−GL(v)
∥∥∥2

F
of Eq. (3) is replaced by the following aug-

mented style loss

ẼL
style(x;v) =wL

∥∥∥GL(u)−GL(v)
∥∥∥2

F

+w′L‖mean(V L(x))−mean(V L(v))‖2

+w′′L‖std(V L(x))− std(V L(v))‖2

(5)

for a better reproduction of the feature distribution. Note that us-
ing the “mean plus std loss” alone was proposed in [LWLH17] as
an alternate loss for NST (see also [HB17]). The values of all the
weights λc, wL, w′L, w′′L , L ∈Ls, have been fixed for all images (see
the provided source code for the exact values).

Limiting our style loss ẼL
style(x;v) to second-order statistics is

capital for our localized algorithm described in Section 4. Indeed,
using more involved techniques such as slice Wasserstein distance
minimization [HVCB21] is not feasible for UHR images due to
prohibitive memory requirement. The visual improvement when re-
placing EL

style by ẼL
style is illustrated in the supp. mat.

3.3. Limited resolution

Unfortunately, applying this Gatys et al. algorithm off-the-shelf
with UHR images is not possible in practice for images of
size larger than 4000 px, even with a high-end GPU. The
main limitation comes from the fact that differentiating the loss
Etransfer(x;(u,v)) wrt x requires fitting into memory x and all its in-
termediate VGG19 features. While this requires a moderate 2.61
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GB for a 10242 px image, it requires 10.2 GB for a 20482 while
scaling up to 40962 is not feasible with a 40 GB GPU. In the next
section we describe a practical solution to overcome this limitation.

4. Localized style transfer loss gradient

As mentioned in the introduction, our main contribution is to emu-
late the computation of

∇xEtransfer(x;(u,v)) (6)

even for images larger than 40002 px for which evaluation and auto-
matic differentiation of the loss is not feasible due to large memory
requirements.

We first discuss how one can compute neural features in a lo-
calized way and straightforwardly compute the style transfer loss
using a spatial partition of the image. Then, we demonstrate that
this approach allows for the exact computation of the loss gradient
using a two-pass procedure.

4.1. Localized computation of neural features

First suppose one wants to compute the feature maps V L(x), L ∈
Ls∪{Lc}, of an UHR image x. The natural idea developed here is
to compute the feature maps piece by piece, by partitioning the in-
put image x into small images of size 5122, that we will call blocks.
This approach will work up to boundary issues. Indeed, to compute
exactly the feature maps of x one needs the complete receptive field
centered at the pixel of interest. Hence, each block of the partition
must be extracted with a margin area, except on the sides that are
actual borders for the image x. In all our experiments we use a mar-
gin of width 256 px in the image domain.

This localized way to compute features allows one to compute
global feature statistics such as Gram matrices and means and stds
vectors. Indeed, these statistics are all spatial averages that can be
aggregated block by block by adding sequentially the contribu-
tion of each block. Hence, this easy to implement procedure al-
lows one to compute the value of the loss Etransfer(x;(u,v)) (see
Equation (1)). However, in contrast with standard practice, it is not
possible to automatically differentiate this loss wrt x, because the
computation graph linking back to x has been lost.

4.2. Localized gradient given global statistics

A close inspection of the different style losses wrt the neural fea-
tures shows that they all have the same form: For each style layer
L ∈ Ls, the gradient of the layer style loss ẼL

style(x;v) wrt the layer

feature V L(x)k ∈ RnL
c at some pixel location k only depends on

the local value V L(x)k and on some difference between the global
statistics (Gram matrix, spatial mean, std) of V L(x) and the corre-
sponding ones from the style layer V L(v).

Proposition 4.1 (Locality of style loss gradient) Given the
layer global statistics values, the gradient of the layer style loss
ẼL

style(x;v) wrt the layer feature V L(x) ∈ RnL
c is local: The gradient

value at location k only depends on the feature V L(x)k at the same
location k.

Proof Recall from Equation (5) that ẼL
style(x;v) is a linear combina-

tion of the Gram, mean, and std losses. As shown in Table 1, given
the global statistics, each of these losses satisfies the local property.

Exploiting this locality of the gradient, it is also possible to ex-
actly compute the gradient vector ∇xEtransfer(x;(u,v)) block by
block using a two-pass procedure: The first pass is used to com-
pute the global VGG19 statistics of each style layer and the second
pass is used to locally backpropagate the gradient wrt the local neu-
ral features. The whole procedure is described by Algorithm 1 and
illustrated by Figure 3. As illustrated by Figure 4, Algorithm 1 en-
ables to exactly compute the global gradient of the loss in a local-
ized way. The used block margin of size 256 is necessary to avoid
visual discontinuities at block boundaries (see Figure 4).

Algorithm 1 Localized computation of the style transfer loss and
its gradient wrt x

Input: Current image x, content image layer V Lc(u), and list of
feature statistics of v {(GL(v),mean(V L(v)),std(V L(v))), L ∈
Ls} (computed block by block)

Output: Etransfer(x;(u,v)) and∇xEtransfer(x;(u,v))
Step 1: Compute the global style statistics of x block by block:
for each block in the partition of x do

Extract the block b with margin and compute VGG(b) with-
out computation graph

For each style layer L ∈ Ls: Extract the features of the block
by properly removing the margin and add their contribution to
GL(x) and mean(V L(x)).
end for
For each style layer L ∈ Ls: compute std(V L(x)) as a function of
GL(x) and mean(V L(x)).
Step 2: Compute the transfer loss and its gradient wrt x block
by block:
Initialize the loss and its gradient: Etransfer(x;(u,v)) ←
Ẽstyle(x;v);∇xEtransfer(x;(u,v))← 0
for each block in the partition of x do

Extract the block b with margin and compute VGG(b) with
computation graph

For each style layer L∈Ls: Compute the gradient of the style
loss wrt the local features using the global statistics of x from
Step 1 and the style statistics of v as reference (Table 1)

For the content layer Lc, add the contribution of V Lc(b) to the
loss Etransfer(x;(u,v)) and compute the gradient of the content
loss wrt the local features (first row of Table 1)

Use automatic differentiation to backpropagate all the feature
gradients to the level of the input block image b.

Populate the corresponding block of ∇xEtransfer(x;(u,v))
with the inner part of the gradient obtained by backpropagation.
end for

5. Multiscale high-resolution painting style transfer

5.1. Coarse-to-fine style transfer

Thanks to Algorithm 1, we can apply style transfer to unprece-
dented scales. However, applying a direct style transfer to UHR
images generally does not produce the desired effects due to the
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Step 1: Compute the global style statistics block by block:
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style statistics

Block style
layers

VGG19

Step 2: Compute the global loss gradient block by block:
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Block style
layers

VGG19
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(see Table 1)
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Gradient
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Gradient Block content
layer
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margin area

Image

Figure 3: Algorithm overview: Our localized algorithm (right part) allows to compute the global style transfer loss and its gradient wrt x for
images that are too large for the original algorithm of [GEB16] (left part). See Algorithm 1 for the fully detailed procedure.

Global statistics Feature loss Expression Gradient wrt the feature
Raw features V MSE: E(V ) = ‖V −Vref‖2 ∇V E(V ) = 2(V −Vref)

Gram matrix: G = 1
np

VV T Gram loss: E(V ) = ‖G−Gref‖2
F ∇V E(V ) = 4

np
V (G−Gref)

Feature mean: mean(V ) Mean loss: E(V ) = ‖mean(V )−µref‖2
(∇V E(V ))k =

2
np
(mean(V )−µref)

Feature std: std(V ) Std loss: E(V ) = ‖std(V )−σref‖2 ∇V E(V )k, j =
2
np
(Vk, j− (mean(V )) j)

(std(V )) j−σref, j
(std(V )) j

Table 1: Expression of the feature loss gradient wrt a generic feature V having np pixels and nc channels (matrix size np×nc).

Algorithm 2 Multiscale style transfer
Input: Content image u, a style image v, number of scales nscales
Output: Style transfered image x

for scale s = 1 to nscales do
Downscale u and v by a factor 2nscales−1 to obtain the low-

resolution couple (u↓,v↓)
Initialization: If s = 1 let x = u↓, otherwise upscale current

x by a factor 2
Style transfer at current scale:

x↓← StyleTransfer((u↓,v↓),x↓) using ns
it iterations of L-BFGS

with gradient computed with Algorithm 1
end for

fixed size of VGG19 receptive fields. For images larger than 5002

px, visually richer results are obtained by adopting a multiscale
approach [GEB*17] corresponding to the standard coarse-to-fine
texture synthesis [WL00] that we recall in Algorithm 2.

Our two step localized computation approach allows to apply
style transfer through up to 6 scales (e.g. from 5122 px to 163842

px). Except for the first step, all subsequent style transfers are well-
initialized, allowing for a faster optimization [GEB*17]. For our
baseline implementation, we use L-BFGS with 600 iterations for
the first scale and 300 iterations for the subsequent scales. Due to
the large memory needed to store UHR images, the L-BFGS history
is limited to the 10 last gradients for all scales except the first one
that uses the standard history size of 100.

Finally, in order to avoid GPU memory saturation, for very large
images we perform the L-BFGS update procedure and gradient his-
tory storing on the CPU for the last scale. This allows to increase
the maximal number of pixels by 190% (+70% in square image
side), as reported in the left column of Table 2. In particular this al-
lows to apply style transfer on images with the unprecedented size
of 20k2 using a GPU with 80 GB of memory.

The coarse-to-fine procedure is revealed to be essential to convey
the visual complexity of UHR digital photograph of a painting: the
first scale encompasses color and large strokes while subsequent
scales refine the stroke details up to the painting texture, bristle
brushes, fine painting cracks and canvas texture, as illustrated in
Figure 1. Surprisingly, fast methods for universal style transfer are
not based on a coarse-to-fine approach, which is probably the main
reason for their lack of fidelity to fine details (see Section 7.1).

5.2. Accelerated multiscale style transfer

The main drawback of our baseline approach is the computational
cost. Indeed, the complexity is linear in the number of pixels, mak-
ing each upscaling step four times longer than the previous one.
Nevertheless, we experimentally observed that the style transfer is
remarkably stable from one step to the next, as can be observed in
the top row of Figure 5. To the best of our knowledge, this property
has never been reported, probably because style transfer involving
several scales was not reachable without our localized algorithm
for gradient computation.

The role of the last steps is to refine local texture in accor-
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Style Content Global gradient Localized gradient Blocks without margin

100

101

102

Figure 4: Localized gradient computation: From left to right: Style image (size 1953×2466), content image (size 1953×2900), norm of
the RGB gradient at each pixel computed with three different approaches: reference global gradient [GEB16], localized gradient using
Algorithm 1 (blocks of size 512×512, block margin is 256), and localized gradient with block margin set to zero. Algorithm 1 allows for
the exact computation of the gradient up to numerical errors (relative error is 1.03e-2). Using a block margin of size zero instead of 256
produces a gradient with visible seams at block boundaries (relative error is 5.23e-1).

Scale 1 (128×128) Scale 2 (256×256) Scale 3 (512×512) Scale 4 (1024×1024)

SP
ST

(b
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t

Figure 5: UHR multiscale style transfer: Stability of upscaling and SPST-fast. The top row shows intermediary steps for the experiment of
Figure 1 displaying details of size 1282 to 10242. While the transfer is globally stable from one scale to the next, each upscaling enables the
addition of fine pictorial details which give an authentic painting aspect to the final output image. Bottom row: Same details for the output of
the SPST-fast alternative that uses less and less L-BFGS iterations after each upscaling. Computation times for the full scale image outputs
of size 6048×8064 are 74 minutes for SPST and 13 minutes for SPST-fast (×5.6 speed up). Observe that both methods produce very close
results but that the very fine details of the SPST-fast output are slightly less complex.

dance to the style image at the current resolution. To allow for
a faster alternative, we found that these last steps can be allevi-
ated by reducing the number of iterations. We thus propose an
alternative procedure, called SPST-fast in what follows, that re-
duces the number of iterations by a factor 3 from one scale to
the other, while ensuring a minimal number of 30 iterations, e.g.
for 4 scales one uses (ns

it)1≤x≤4 = (600,200,66,30) instead of
(ns

it)1≤x≤4 = (600,300,300,300) for the baseline implementation.
Computation times for both SPST and SPST-fast are reported in Ta-
ble 2 for three different GPU hardwares. They show that SPST-fast

is about five times faster than SPST. Note that our algorithm allows
for multiscale style transfer of UHR images up to 20k2 px. Even
on a moderate GPU with 11 GB of memory, our algorithm can deal
with images of size 5k2 px, while the original implementation of
[GEB16] does not run on a 40GB GPU for an image of size 4k2 px.

As shown in Figure 5, SPST-fast produces visually satisfying re-
sults but with small texture details that are slightly less aligned with
the UHR content image compared to the SPST baseline approach.
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GPU (VRAM) Computation time (in min.)
w/ max. res. GPU / GPU+CPU 2k 4k 8k 16k

RTX 2080 (11GB) SPST 12.8 70.3? - -
max. res. 3k / 5k? SPST-fast 4.3 13.1? - -

A100 (40GB) SPST 4.0 20.6 96.6 -
max. res. 8k / 14k? SPST-fast 1.7 4.1 15.2 -

A100 (80GB) SPST 3.8 19.0 89.7 406?

max. res. 12k / 20k? SPST-fast 1.5 3.9 14.4 61.4?

Table 2: Resolution and computation time of SPST and SPST-fast
depending on GPU hardware. Below each hardware name, we give
the maximum resolution achievable with full computation on the
GPU and the maximum resolution achievable when using the CPU
for L-BGFS steps for the last scale (denoted by ?). For the computa-
tion times, ? indicates that L-BFGS optimization had to be moved to
the CPU to avoid GPU memory saturation. All images are square.

6. Numerical Results

6.1. Ultra-high resolution style transfer

An example of UHR style transfer is displayed in Figure 2 with
several highlighted details. Figure 1 illustrates intermediary steps
of our high resolution multiscale algorithm. The result for the first
scale (third column) corresponds to the ones of the original pa-
per [GEB16] (except for our slightly modified style loss) and suf-
fers from poor image resolution and grid artifacts. As already dis-
cussed with Figure 5, while progressing to the last scale, the texture
of the painting gets refined and stroke details gain a natural aspect.
This process is remarkably stable; the successive global style trans-
fers results remain consistent with the one of the first scale.

6.2. Ultra-high resolution texture synthesis

Although we focus our discussion on style transfer, our approach
also allows for UHR texture synthesis. Following the original paper
on texture synthesis [GEB15], given a texture exemplar v, texture
synthesis is performed by minimizing Estyle(x;v) (2), starting from
a random white noise image x0. From a practical point of view, it
consists in minimizing the style transfer loss with the three follow-
ing differences: a) The style image is replaced by the texture image.
b) There is no content image and no content loss (set λc = 0). c)
The image x is initialized as a random white noise x0. We perform
texture synthesis following the same multiscale approach and using
the augmented style loss ẼL

style(x;v) defined in Equation (5).

Our experiments show that for texture synthesis, one should use
a number of scales as high as possible, that is, the multiscale pro-
cess starts with images of moderate size (about 200 pixels). To il-
lustrate this point we show two different UHR texture synthesis in
Figures 6 (six additional results are displayed in the supp. mat.).
For each example, the synthesis using three scales (same setting as
for style transfer) and five scales is shown. Starting with a first scale
with small size is critical for a satisfying synthesis quality. Indeed,
using only three scales yields textures that are spatially homoge-
neous due to the white noise initialization.

Let us recall that our approach enables to reach up to 20k2 px
(see Table 2 for maximal resolutions), which pushes by far the max-
imal resolution for neural texture synthesis. Indeed, to the best of
our knowledge the highest resolution reported in the neural texture
synthesis literature was limited to 20482 px [GGL22] for the mul-
tiscale version of Gatys et al. algorithm [GEB15].

7. Comparison with very fast alternatives

7.1. Visual comparison

We compare our method with two fast alternatives for UHR style
transfer, namely collaborative distillation (CD) [WLW*20] and
URST [CWX*22] (based on [LFY*17]) using their official imple-
mentations.To improve readability of Figure 7, results for SPST-
fast, which are really close to the ones of SPST but have slightly
less details, are only reproduced in supp. mat..

As already discussed in Section 2, URST decreases the resolu-
tion of the style image to 10242 px, so the style transfer is not per-
formed at the proper scale and fine details cannot be transferred
(e.g. the algorithm is not aware of the brushstroke style). As in
UST methods, CD does not take into account details at different
scales but simply proposes to reduce the number of filters in the
auto-encoder network through collaborative distillation, to process
larger images. Unsurprisingly, one observes in Figure 7 that our
method is the only one capable of conveying the aspect of the paint-
ing strokes to the content image. CD suffers from halos around
objects (e.g., tress in the first example), saturated color, and high-
frequency artifacts (see fourth column of Figure 7). URST presents
visible patch boundaries, a detail frequency mismatch due to im-
proper scaling, loss of structure (e.g., buildings in the second ex-
ample) and sometimes critical shrinking of the color palette (see
fifth column of Figure 7).

All in all, even though CD and URST produce UHR images,
one can argue that the effective resolution of the output does not
match their size due to the many visual artifacts. In comparison, our
iterative SPST algorithm produces images for which every image
part is in accordance with UHR painting style, up to the pixel level.

Finally, let us observe that the style transfer results are in general
better when the geometric content of the style image and the con-
tent image are close, regardless of the method. See supp. mat. for
an illustration of this limitation.

7.2. Identity test for style transfer quality assessment

Style transfer is an ill-posed problem by nature. We introduce here
an identity test to evaluate if a method is able to reproduce a paint-
ing when using the same image for both content and style. Two ex-
amples of this sanity check test are shown in Figure 8. We observe
that our iterative algorithm is slightly less sharp than the original
style image, yet high-resolution details from the paint texture are
faithfully conveyed. In comparison, the results of [WLW*20] suf-
fer from color deviation and frequency artifacts while the results
of [CWX*22] apply a style transfer that is too homogeneous and
present color and scale issues as already discussed. Again corre-
sponding results for Figure 8 for SPST-fast are only reproduced in
supp. mat. for readability.
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Input texture image Synthesis using 5 scales Synthesis using 3 scales

Figure 6: UHR texture synthesis (same as Figure 6): From left to right: Input texture image, synthesis using 5 scales, synthesis using 3 scales.
Image have size (3024×4032) (downscaled by a factor 4 for inclusion in the .pdf) and true resolution details have size (512×512).
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Style image Content image SPST (ours) CD URST

Figure 7: Comparison of UHR style transfers. For each example, top row, left to right: style, content, our result (SPST), CD [WLW*20],
URST [CWX*22]. Bottom row: zoom in of the corresponding top row. First row: content (3168×4752), style (2606×3176), SPST uses three
scales; third row: content (3024×4032), style (3024×3787), SPST uses three scales; fifth row: content (4480× 5973), style (6000× 4747),
SPST uses four scales. In comparison to our results, state of the art very fast methods produce images with many defects: halo effect, neural
artifacts, blending, unfaithful color palette, ... This result in images that do not look like painting contrary to SPST outputs.
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Method PSNR ↑ SSIM ↑ LPIPS ↓ Gram ↓ Time ↓

SPST 24.6 0.454 0.352 1.99e5 25.1
SPST-fast 24.6 0.438 0.446 4.08e5 4.96

CD 21.8 0.413 0.500 4.28e7 0.373
URST 19.0 0.413 0.546 6.77e7 0.232

Table 3: Quantitative evaluation of identity test for UHR style
transfer. Results include PSNR, SSIM [WBSS04], LPIPS [ZIE*18],
the Gram (style distance) metrics, and computation time in min-
utes for our results (SPST), its faster alternative (SPST-fast),
CD [WLW*20] and URST [CWX*22]. All metrics are averages us-
ing 79 HR paintings images used as both content and style. Best re-
sults are in bold, second best underlined. Our iterative procedures
SPST and SPST-fast are the best for all the image fidelity metrics
but are respectively 100 and 20 times slower.

Some previous works introduced a style distance [WLW*20] that
corresponds to the Gram loss for some VGG19 layers, showing
again that fast approximate methods try to reproduce the algorithm
of Gatys et al. which we extend to UHR images. Since we explicitly
minimize this quantity, it is not fair to only consider this criterion
for a quantitative evaluation. For this reason, we also calculated
PSNR, SSIM [WBSS04] and LPIPS [ZIE*18] metrics on a set of
79 paint styles (see supp. mat.) to quantitatively evaluate our re-
sults. We further report the “Gram” metric, that is, the style loss
of Equation (2) using the original Gram loss of Equation (3), com-
puted on UHR results using our localized approach. The average
scores reported in Table 3 confirm the good qualitative behavior
discussed earlier: SPST and SPST-fast are by far the best for all the
scores. However, SPST and SPST-fast are respectively 100 and 20
times slower than the fastest method.

7.3. User study

To further compare our results, we performed a user study compar-
ing the fast version of our algorithm (SPST-fast) to CD [WLW*20]
and URST [CWX*22].

The user study consisted of several evaluation instances, each of
which compared four images: the style used for the transfer and
the results of the three methods (SPSt-fast, URST, and CD), which
were displayed at random positions for each evaluation instance.
Each participant was asked to select the result closest to the style
of the style image among the three displayed results.

Participants were presented three types of experiments, each of
which had five instances to evaluate, thus yielding a total of 15 in-
stances to evaluate per candidate. The results were saved only if the
participant conducted the whole test. The first two experiments aim
to compare the results of our identity test. In one case, the overall
performance of the methods is evaluated by displaying the com-
plete results at a resolution of 1280×720, and in the other case, the
performance of the methods on fine details is evaluated by display-
ing a close-up of the results at a size of 512×512. For the identity
test, 79 painting styles were used and each participant was shown
five random instances for the global evaluation and another five for
the detail evaluation. The third experiment aims to compare the re-

Voting results (%)
Id global Id detail Style transfer

CD 6.56 22.95 4.92
URST 0.33 2.29 4.26
SPST-fast 93.11 74.75 90.82

Table 4: This user study results shows the percentage of times each
method was selected out of the 305 comparisons for each experi-
ment. Best results are in bold, second best underlined.

sults of the three methods when transferring a painting style image
to a generic content image. Only the overall performance of the
methods is compared displaying the whole results at a resolution of
1280×720. In this case, 13 pairs of style/content images were used,
and five instances were randomly shown to each participant.

A total of 61 participants took the test, yielding a total of 305
evaluations for each type of experiment. All invited participants
were image processing experts in academy and industry. The results
of the study are shown in Table 4. They confirm that our approach,
both for the identity test (global and close-up) and the transfer of a
painting style to any image, is by far superior to CD and URST in
terms of visual quality: Our method is considered better more than
90% of the times as the one that better reproduces the style of the
painting (Table 4 third column).

8. Discussion

This work presented the SPST algorithm, a provably correct exten-
sion of the Gatys et al. style transfer algorithm to UHR images. Re-
garding visual quality, our algorithm outperforms competing UHR
methods by conveying a true painting feel thanks to faithful HR de-
tails such as strokes, paint cracks, and canvas texture. This is clearly
supported by our user study and our proposed quantitative identity
test. SPST also allows for the synthesis by example of high-quality
UHR textures. While the baseline SPST method can become pro-
hibitively slow, even though its complexity scales linearly with im-
age size, we proposed a faster alternative SPST-fast that limits com-
putations as the scale grows by exploiting the stability of multiscale
style transfer.

As we have demonstrated, very fast methods do not reach a sat-
isfying quality. They fail our proposed identity test due to the pres-
ence of many artifacts, and our results are considered more faith-
ful to the style image by a vast majority of users. This work also
leads to conclude that very fast high-quality style transfer remains
an open problem and that our results provide a new standard to as-
sess the overall quality of such algorithms.

This work opens the way for several future research directions,
from allowing local control for UHR style transfer [GEB*17] to
training fast CNN-based models to reproduce our results. Another
promising direction is to extend our framework to video or radiance
fields style transfer for which reaching ultra-high resolution would
be beneficial.

Acknowledgements: B. Galerne and L. Raad acknowledge the
support of the project MISTIC (ANR-19-CE40-005).
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Style/content image SPST (ours) CD URST

Figure 8: Identity test: a style image is transferred to itself. We compare three style transfer strategies. From left to right: ground truth style,
our result (SPST), CD [WLW*20], URST [CWX*22]. First row: The style image has resolution 3375×4201; Third row: The style image has
resolution 3095×4000 (UHR images have been downscaled by ×4 factor to save memory). Second and fourth row: Close-up view with true
resolution. Observe that our results are the more faithful to the input painting and do not suffer from color blending.
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Supplementary material

A. Implementation details and reproducibility

Our implementation is based on PyTorch and our
source code is provided as supplemental material (see
scaling_painting_style_transfer.zip that will
be made a public github repository in case of acceptance). It
mainly uses a class dealing with tensor spatial partitioning to
compute the localized gradient block by block.

In most figures the UHR images have been downscaled and
saved in jpeg format. UHR images of all figures will be made avail-
able for detailed inspection and future comparison on a dedicated
project website.

As mentioned in the paper, the values of all the weights λc, wL,
w′L, w′′L , L ∈ Ls, have been fixed for all images, hence all figures
are reproducible.

B. Visualization of Gram loss correction

A “mean plus std” corrective term is added to the Gram loss
to avoid loss of contrast artifacts and grayish color alteration
that may occur when minimizing this loss, as previously docu-
mented [SC17; RWB17; HVCB21]. Figure 10 shows comparative
experiment when using the original Gram loss EL

style(x;v) instead of
our proposed augmented style loss ẼL

style(x;v) (see the main paper
for equations).

C. Additional style transfer results

C.1. Multiscale example

Figure 9 presents a second example of ultra-high resolution (UHR)
style tranfer with each intermediate results of the multiscale algo-
rithm. One can see how the texture of the painting and the stroke
details are gradually refined.

C.2. Additional comparison between SPST and SPST-fast

We introduce a faster version of SPST, called SPST-fast that uses
less and less iterations as the scale grows. SPST-fast is five times
faster than SPST. It produces results that are really close to our
SPST baseline. The main difference is that some textural details
at the highest scale are less aligned with the UHR content since
we only use only a few iterations for the last scale (eg 66 or 30
iterations instead of 300). Figure 11 shows the three examples of
style transfer used as comparison in the main paper. One can see
that both results are visually very close. A close inspection shows
some slight variations such as for the eye detail in the last example.

For the sake of completeness, the results of SPST-fast for the two
examples of identity tests are shown in Figure 12. One can observe
on the top part of the first close-up that some brush strokes texture
are better reproduced with SPST.

C.3. Additional comparison experiments

Figure 13 presents some additional comparison examples. These
results show that the competing methods suffer from color imbal-
ance and do not match the fine texture and strokes of the style
painting. This is due to the fact that neither URST [CWX*22] nor
CD [WLW*20] take into account details at different scales. On the
other hand, we are able to convey the appearance of fine details
and painting strokes to the content image. In the first example, nei-
ther CD nor URST is consistent with the size of the brushstroke
visible in the style image. In the second example, CD doubles the
frequency of details (e.g., branches), resulting in structural incon-
sistency, while URST loses the branches completely. In the third
example, CD has a halo effect around the bell tower and URST
has inconsistent color compared to the input style and diffuminated
edges.

Figure 14 shows an additional examples of style transfer on a
portrait. Once again, we can observe that our method is the only one
able to transfer the texture and strokes of the painting to the portrait
content. In this example, URST has inconsistent colors compared
to the style image and neither URST nor CD is consistent with the
fine scale details of the style brush strokes.

C.4. Failure cases due to content-style mismatch

Figure 15 shows some examples of results in case of content-style
mismatches that underline the importance of correctly choosing the
couple content/style for a correct style transfer. The first row exam-
ple uses the same style as in Figure 14 but with a different content
image where the proportion of the face space is much larger than
in the style image. As result, some red dots from the background
are spread over the face. Note also that the lack of a beard in the
content produces an undesirable effect on the face. The content im-
age of the second row example lack of details and the style transfer
creates undesirable noisy patterns in the sky and grass area. The
third example is more extreme and results in loss of details from
the content image and synthesis of phantom portrait silhouettes in
the flat areas of the image.

As said in the conclusion of the main paper, allowing local con-
trol [GEB*17] for UHR style transfer is an interesting direction for
future developments.

C.5. Comparison between SPST and AST Using
Neurally-Guided Patch-Based Synthesis

Our paper focuses on neural style transfer methods. As said in the
main paper, [TFF*20] propose a hybrid method combining neural
style transfer and patch-based transfer. Figure 16 shows a compar-
ison between our algorithm and the one described in [TFF*20]. It
can be observed that compared to the UHR fast UST methods, the
style details coherence at different scales is by far of better quality.
Despite that, the content image is only used at the lowest scale for
neural style transfer. This yields a final stylized image with high-
resolution details unaligned with the original content image. For

Preprint version (4/2024).
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Style image Content image Scale 1 Scale 2 Scale 3

Figure 9: UHR multiscale style transfer. Top row from left to right: style (3906×4933), content (3906×5800), transfer at scale 1 (976×1450),
2 (1953×2900), 3 (3906×5800). Bottom row: zoomed in detail for each image (from 2002 to 8002). While the transfer is globally stable from
one scale to the other, each upscaling allows to add fine pictural details which give an authentic painting aspect to the final output image.
We recommend a screen examination of the images after ×8 zoom in.

instance, in the example of figure 16, the chairs present in the con-
tent image are no longer present in the stylized result of [TFF*20]
(third column) contrary to our result (second column).

C.6. Full resolution images

To limit the main paper file size full resolution UHR images were
not included. All UHR images have been downscaled by a factor
×4, with highlighted details included with the true resolution.

In the following figures Figure 17, 18, 19, and 20, we include
four experiments with the style and content images with a better
resolution (only downgraded by a factor ×2) and our style transfer
result in full resolution. Note that images have been compressed us-
ing jpeg quality 85 to limit the size of this supplementary material.

D. Painting images dataset for the identity test experiment

Figure 21 shows the 79 UHR painting images used for the identity
test where we evaluate whether a method was able to reproduce a
painting when the content and style image were identical.

E. Additional UHR texture synthesis results

Figures 22, 23 and 24 present additional UHR texture synthesis
results.

Preprint version (4/2024).
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Style image Content image SPST Gram loss only

Input texture image Synthesis using augmented loss Synthesis using Gram loss only

Figure 10: Interest of the augmented style loss for style transfer and texture synthesis: Top part: Style transfer with style of size 6048×7914,
content and transfer results of size 6048×8064. Bottom part: Texture synthesis results for an image of size 2848×4272. Using only the
original Gram loss produces gray color areas. Note that for the style transfer example this results in an image with darker colors and less
brushstrokes.
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Style image Content image SPST SPST-fast

Figure 11: Comparison of SPST and SPST-fast style transfers (same images as the comparison figure of the main paper). First row: content
(3168× 4752), style (2606× 3176), SPST and SPST-fast use three scales; third row: content (3024×4032), style (3024×3787), SPST and
SPST-fast use three scales; fifth row: content (4480×5973), style (6000×4747), SPST and SPST-fast use four scales. Both algorithm produce
visually similar style transfer. Some details of SPST are slightly better such as the eye contours in the last example.
Preprint version (4/2024).
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Style/content image SPST SPST-fast

Figure 12: Identity test: Comparison between SPST and SPST-fast results. First row: The style image has resolution 3375×4201; Third row:
The style image has resolution 3095×4000 (UHR images have been downscaled by ×4 factor to save memory). Second and fourth row:
Close-up view with true resolution. SPST-fast outputs are visually close to SPST results but have slightly less details.
Preprint version (4/2024).
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Style image Content image SPST (ours) CD URST

Figure 13: Comparison of UHR style transfers. For each example, top row, left to right: style, content, our result (SPST), CD [WLW*20],
URST [CWX*22]. Bottom row: zoom in of the corresponding top row. First row: content (3024× 4032), style (3024× 4477). Third row:
content (3024× 4032), style (3024× 4738). Fifth row: content (3024× 4032), style (3655× 2836). We used three scales for all our results.
Observe the loss of details and the unrealistic looks of the outputs produced by both fast methods.
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Style image

Content image SPST (ours) CD URST

Figure 14: Comparison of UHR style transfer on portraits. For each example, top row, left to right: style, content, our result (SPST),
CD [WLW*20], URST [CWX*22]. Bottom row: zoom in of the corresponding top row. Content (3264× 4512), style (4126× 3264), SPST
uses three scales. Observe the loss of details and the unrealistic looks of the outputs produced by both fast methods, notably in the background
and skin texture.
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Figure 15: Examples of UHR style transfer with content-style mismatch. For each example, from left to right: style, content and our result.
First row: content (5184×3456), style (4368×3456). Second row: content (3024×4032), style (3024×3787). Third row: content (4096×
4096), style (2048×2048). We used three scales for the first two results and four scale for the last example.
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SPST (ours) Texler et al. [TFF*20] SPST (ours) Texler et al.[TFF*20]

Figure 16: Comparison to AST Using Neurally-Guided Patch-Based Synthesis: From left to right: Our result, result of [TFF*20] (after a
Gatys style transfer of size 384×512), and close up detail. By design the result of [TFF*20] is not faithful to the HR details of the content
image. Here the chair simply disappear in the output result while it is reproduced using fine brushstrokes in the SPST output
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Figure 17: UHR style transfer in full resolution (from Figure 1 of the main paper). Top row: style image (4226×5319), content image
(6048×8064). Bottom: result (6048×8064). Observe that fine details such as the canvas texture in the sky is well transferred.
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Figure 18: UHR style transfer in full resolution (from Figure 2 of the main paper). Top row: style image (6048×7914), content image
(6048×8064). Bottom: result (6048×8064). Observe how very fine details such as the chairs look as if painted.
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Figure 19: UHR style transfer in full resolution (from Figure 4 of the main paper). Top row: style image (2606×3176), content image
(3168×4752). Bottom: result (3168×4752).
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Figure 20: UHR style transfer in full resolution (from Figure 4 of the main paper). Top row: style image (3024×3787), content image
(3024×4032). Bottom: result (3024×4032).
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Figure 21: Overview of the 79 UHR painting images used for the identity test.
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Input texture image Synthesis using 5 scales Synthesis using 3 scales

Figure 22: UHR texture synthesis: From left to right: Input texture image, synthesis using 5 scales, synthesis using 3 scales. Image have size
(3024×4032) (downscaled by a factor 4 for inclusion in the .pdf) and true resolution details have size (512×512).
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Figure 23: UHR texture synthesis (same as Figure 22): From left to right: Input texture image, synthesis using 5 scales, synthesis using 3
scales. Image have size (3024×4032) (downscaled by a factor 4 for inclusion in the .pdf) and true resolution details have size (512×512).
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Input texture image Synthesis using 5 scales Synthesis using 3 scales

Figure 24: UHR texture synthesis (same as Figure 22): From left to right: Input texture image, synthesis using 5 scales, synthesis using 3
scales. Image have size (3024×4032) (downscaled by a factor 4 for inclusion in the .pdf) and true resolution details have size (512×512).
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