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jlezama@fing.edu.uy

Jean-Michel Morel
Centre Borelli

ENS Paris-Saclay, University Paris-Saclay and CNRS
Gif-sur-Yvette, France

moreljeanmichel@gmail.com

Figure 1. Ultra-high resolution multiscale style transfer. Top row from left to right: style (4226×5319), content (6048×8064), transfer at
scale 1 (756×1008), 2 (1512×2016), 3 (3024×4032) and 4 (6048×8064). Bottom row: zoomed in detail for each image (from 1282 to
10242). While the transfer is globally stable from one scale to the other, each upscaling allows to add fine pictural details which give an
authentic painting aspect to the final output image. We recommend a screen examination of the images after ×8 zoom in.

Abstract

Neural style transfer is a deep learning technique that
produces an unprecedentedly rich style transfer from a style
image to a content image and is particularly impressive
when it comes to transferring style from a painting to an
image. It was originally achieved by solving an optimiza-
tion problem to match the global style statistics of the style
image while preserving the local geometric features of the
content image. The two main drawbacks of this original
approach is that it is computationally expensive and that
the resolution of the output images is limited by high GPU
memory requirements. Many solutions have been proposed

*José Lezama is now at Google Research. Contributed to this work
while at Universidad de la República.

to both accelerate neural style transfer and increase its res-
olution, but they all compromise the quality of the produced
images. Indeed, transferring the style of a painting is a
complex task involving features at different scales, from the
colour palette and compositional style to the fine brush-
strokes and texture of the canvas. This paper provides a
solution to solve the original global optimization for ultra-
high resolution images, enabling multiscale style transfer
at unprecedented image sizes. This is achieved by spatially
localizing the computation of each forward and backward
passes through the VGG network. Extensive qualitative and
quantitative comparisons show that our method produces a
style transfer of unmatched quality for such high resolution
painting styles.
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1. Introduction
Style transfer is an image editing strategy transferring

an image style to a content image. Given style and con-
tent, the goal is to extract the style characteristics of the
style and merge them to the geometric features of the con-
tent. While this problem has a long history in computer
vision and computer graphics (e.g. [2, 12]), it has seen a re-
markable development since the seminal works of Gatys et
al. [7, 8]. These works demonstrate that the Gram matri-
ces of the activation functions of a pre-trained VGG19 net-
work [26] faithfully encode the perceptual style and textures
of an input image. Style transfer is performed by optimiz-
ing a functional aiming at a compromise between fidelity
to VGG19 features of the content image while reproducing
the Gram matrix statistics of the style image. Other global
statistics have been proven effective for style transfer and
texture synthesis [6,10,11,19,20,23,24,31] and it has been
shown that a coarse-to-fine multiscale approach allows one
to reproduce different levels of style detail for images of
moderate to high-resolution (HR) [9, 10, 27]. The two ma-
jor drawbacks of such optimization-based style transfer are
the computation time and the limited resolution of images
because of large GPU memory requirement.

Regarding computation time, several methods have been
proposed to generate new stylized images by training feed-
forward networks [14, 16, 29] or by training VGG encoder-
decoder networks [3, 5, 13, 17, 18]. These models tend to
provide images with relatively low style transfer loss and
can therefore be considered as approximate solutions to [8].
Despite remarkable progress regarding computation time,
these methods suffer from GPU memory limitations due to
the large size of the models used for content and style char-
acterization and are therefore limited in terms of resolution
(generally limited to 10242 pixels (px)).

This resolution limitation was recently tackled [1, 4,
32]. Nevertheless, although generating ultra-high resolution
(UHR) images (larger than 4k images), the approximate re-
sults are not able to correctly represent the style resolution.
Indeed, for some methods to satisfy the GPU’s memory lim-
itations, the transfer is performed locally on small patches
of the content image with a zoomed out style image (10242

px) [4]. In other methods, the multiscale nature of the net-
works is not fully exploited [32].

As illustrated in Figure 1, our high-resolution multiscale
method manages to transfer the different levels of detail
contained in the style image from the colour palette and
compositional style to the fine brushstrokes and canvas tex-
ture. The resulting UHR images look like authentic painting
as can be seen in the UHR example of Figure 2.

Comparative experiments illustrate that the results of
competitive methods suffer from brushstroke styles that do
not match those of the UHR style image, and that very fine
textures are not well transferred and are subject to local ar-

tifacts. To straighten this visual comparison, we also intro-
duce a qualitative and quantitative identity test that high-
lights how well a given texture is being emulated.

The main contributions of this work are summarized as
follows:

• We introduce a two-step algorithm to compute the style
transfer loss gradient for UHR images that do not fit in
GPU memory using localized neural feature calcula-
tion.

• We show that this algorithm allows a multi-resolution
UHR transfer for images up to 81962 px in size.

• We experimentally show that the visual quality of this
UHR style transfer is richer and more faithful than re-
cent fast but approximate solutions.

This work provides a new reference method for high-
quality style transfer with unequaled multi-resolution depth.
It might serve as a reference to evaluate fast but approximate
models.

2. Related work
Style transfer by optimization. As recalled in the in-
troduction, the seminal work of Gatys et al. formulated
style transfer as an optimization minimizing the distances
between Gram matrices of VGG features. Other global
statistics have been proven effective for style transfer and
texture synthesis such as deep correlations [10, 24], Bures
metric [31], spatial mean of features [6, 19], feature his-
tograms [23], or even the full feature distributions [11].
Specific cost function corrections have also been proposed
for photorealistic style transfer [20]. When dealing with HR
images, a coarse-to-fine multiscale strategy has been proven
efficient to capture the different levels of details present in
style images [9, 10, 27].

Style transfer by training feed-forward networks.
Ulyanov et al. [29, 30] and Johnson et al. [14] showed that
one could train a feed-forward network to approximately
solve style transfer. Although these models produce a very
fast style transfer, they require learning a new model for
each type of style.

Universal style transfer (UST). Style limitation has been
addressed by training a VGG autoencoder that attempts to
reverse VGG feature computations after normalizing them
at the autoencoder bottleneck. Chen et al. [3] introduce the
encoder-decoder framework with a style swap layer replac-
ing content features with the closest style features on over-
lapping patches. Huang et al. [13] propose to use an Adap-
tive Instance Normalization (AdaIN) that adjusts the mean
and variance of the content image features to match those of
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Figure 2. UHR style transfer. Top row, content image (top-left, 6048×8064), style image (bottom left, 6048×7914), result (right,
6048×8064) (the three UHR images are downscaled ×4 for visualization). Bottom row: three zoomed in details of the result image
(8002, true resolution). Observe how very fine details such as the chairs look as if painted.

the style image. Li et al. [18] match the covariance matri-
ces of the content image features to those of the style image
by applying whitening and coloring transforms. These op-
erations are performed layer by layer and involve specific
reconstruction decoders at each step. Sheng et al. [25] use
one encoder-decoder block combining the transformations
of [18] and [3]. Park et al. [22] introduce an attention-based
transformation module to integrate the local style patterns
according to the spatial distribution of the content image.
Li et al. [17] train a symmetric encoder-decoder image re-
construction module and a transformation learning module.
Chiu et al. [5] extend [18] by embedding a new transforma-
tion that iteratively updates features in the cascade of four

autoencoder modules. Despite the numerous improvements
of fast UST strategies, let us remark that: (a) they rely on
matching VGG statistics as introduced by Gatys et al. [8]
(b) they are limited in resolution due to GPU memory re-
quired for the large sized models.

UST for high-resolution images. Some methods attempt
to reduce the size of the network in order to perform high
resolution style transfer. An et al. [1] propose ArtNet which
is a channel-wise pruned version of GoogLeNet [28]. Wang
et al. [32] propose a collaborative distillation approach in
order to compress the model by transferring the knowledge
of a large network (VGG19) to a smaller one, hence re-
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ducing the number of convolutional filters involved in [18]
and [13]. Chen et al. [4] recently proposed an UHR style
transfer framework where the content image is divided into
patches and a patch-wise style transfer is performed from a
zoomed out version of the style image of size 10242 px.

3. Global optimization for neural style transfer
Single scale style transfer. Let us recall the algorithm of
Gatys et al. [8]. It solely relies on optimizing some VGG19
second-order statistics for changing the image style while
maintaining some VGG19 features to preserve the con-
tent image’s geometric features. Style is encoded through
Gram matrices of several VGG19 layers, namely the set
Ls = {ReLU k 1, k ∈ {1, 2, 3, 4, 5}} while the content
is encoded with a single feature layer Lc = ReLU 4 2.

Given a content image u and a style image v, one opti-
mizes the loss function

Etransfer(x; (u, v)) = Econtent(x;u) + Estyle(x; v) (1)

where Econtent(x;u) = λc

∥∥V Lc(x)− V Lc(u)
∥∥2, with

λc > 0, and

Estyle(x; v) =
∑
L∈Ls

EL
style(x; v) (2)

with

EL
style(x; v) = wL

∥∥GL(x)−GL(v)
∥∥2
F
, wL > 0, (3)

where ∥ · ∥F is the Frobenius norm, and, for an image w
and a layer index L, GL(w) denotes the Gram matrix of
the VGG19 features at layer L: if V L(w) is the feature re-
sponse of w at layer L that has spatial size nL

h × nL
w and

nL
c channels, one first reshapes V L(w) as a matrix of size

nL
p × nL

c with nL
p = nL

hn
L
w the number of feature pixels, its

associated Gram matrix is

GL(w) =
1

nL
p

V L(w)⊤V L(w)

=
1

nL
p

nL
p∑

k=0

V L(w)k(V
L(w)k)

⊤ ∈ RnL
c ×nL

c ,

(4)

where V L(w)k ∈ RnL
c is the column vector corresponding

to the k-th line of V L(w). EL
style(x; v) is a fourth-degree

polynomial and non convex with respect to (wrt) the VGG
features V L(x). Gatys et al. [7] propose to use the L-BFGS
algorithm [21] to minimize this loss, after initializing x with
the content image u. L-BFGS is an iterative quasi-Newton
procedure that approximates the inverse of the Hessian us-
ing a fixed size history of the gradient vectors computed
during the last iterations. The history size is typically 100
but will be decreased to 10 for HR images (for all scales
except the first one) to limit memory requirement.

Gram loss correction. It is known that optimizing for
the Gram matrix alone may introduce some loss of con-
trast artefacts since Gram matrices encompass informa-
tion regarding both the mean values and correlation of fea-
tures [11, 23, 24]. Instead of considering the full histogram
of the features [11, 23], we found that correcting for the
mean and standard deviation (std) of each feature gives vi-
sually satisfying results. Given some (reshaped) features
V ∈ Rnp×nc , define mean(V ) and std(V ) ∈ Rnc by

mean(V )j =
1

np

np∑
k=1

Vk,j (5)

and

std(V )j =
( 1

np

np∑
k=1

(Vk,j − (mean(V ))j)
2
) 1

2

, (6)

j ∈ {1, . . . , nc}. In the whole paper, we replace the Gram
loss wL

∥∥GL(u)−GL(v)
∥∥2
F

of Eq. (3) by the following
augmented style loss

ẼL
style(x; v) =wL

∥∥GL(u)−GL(v)
∥∥2
F

+ w′
L∥mean(V L(x))−mean(V L(v))∥2

+ w′′
L∥ std(V L(x))− std(V L(v))∥2

(7)
for a better reproduction of the feature distribution. The
values of all the weights λc, wL, w′

L, w′′
L, L ∈ Ls, have

been fixed for all images. Note that limiting our style
loss ẼL

style(x; v) to second-order statistics is capital for a
straightforward implementation of our localized algorithm
described in Section 4.

Multiscale style transfer. Since the style transfer solely
relies on VGG19, the transfer is spatially limited by the
receptive field of the network [9]. For images having a
side larger than 500 px, visually richer results are obtained
by adopting a multiscale approach [9] corresponding to the
standard coarse-to-fine approach for texture synthesis [34].
For the sake of simplicity, suppose that the content image u
and the style image v have the same resolution (otherwise
one can downscale the resolution of v to match the one of u
as a preprocessing [8]). When using nscales > 1, both u and
v are first downscaled by a factor 2nscales−1 to obtain the
low-resolution couple (u↓, v↓) and style transfer is first ap-
plied at this coarse resolution starting with x0 = u↓. Then,
for each subsequent scale s = 2 to nscales, the result image
x↓ is upscaled by a factor 2 to define the initialization image
x0, and style transfer is applied with the content and style
image downscaled by a factor 2nscales−s. At the last scale
the output image has the same resolution as the HR content
image. Thanks to this coarse-to-fine approach, the style is
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transferred in a coarse-to-fine way. This is especially im-
portant when using an HR digital photograph of a painting
for the style: Ideally, the first scale encompasses color and
large strokes while subsequent scales refine the stroke de-
tails up to the painting texture, bristle brushes and canvas
texture.

Unfortunately, applying this multiscale algorithm off-
the-shelf with UHR images is not possible in practice for
images of size larger than 4000 px, even with a high-end
GPU. The main limitation comes from the fact that differen-
tiating the loss Etransfer(x; (u, v)) wrt x requires fitting into
memory x and all its intermediate VGG19 features. While
this requires a moderate 2.61 GB for a 10242 px image, it
requires 10.2 GB for a 20482 while scaling up to 40962 is
not feasible with a 40 GB GPU. In the next section we de-
scribe a practical solution to overcome this limitation.

4. Localized neural features and style transfer
loss gradient

Our main contribution is to emulate the computation of
∇xEtransfer(x; (u, v)) even for images larger than 40002

px for which evaluation and automatic differentiation of the
loss is not feasible due to large memory requirement.

First suppose one wants to compute the feature maps
V L(x), L ∈ Ls ∪ {Lc}, of an UHR image x. The natural
idea developed here is to compute the feature maps piece by
piece, by partitioning the input image x into small images
of size 5122, that we will call blocks. This approach will
work up to boundary issues. Indeed, to compute exactly the
feature maps of x one needs the complete receptive field
centered at the pixel of interest. Hence, each block of the
partition must be extracted with a margin area, except on
the sides that are actual borders for the image x. In all our
experiments we use a margin of width 256 px in the image
domain.

This localized way to compute features allows one to
compute global feature statistics such as Gram matrices
and means and stds vectors. Indeed, these statistics are all
spatial averages that can be aggregated block by block by
adding sequentially the contribution of each block. Hence,
this easy to implement procedure allows one to compute the
value of the loss Etransfer(x; (u, v)) (1). Note that it is not
possible to automatically differentiate this loss, because the
computation graph linking back to x is lost.

However, a close inspection of the different style losses
wrt the neural features shows that they all have the same
form: For each style layer L ∈ Ls, the gradient of the layer
style loss ẼL

style(x; v) wrt the layer feature V L(x)k ∈ RnL
c

at some pixel location k only depends on the local value
V L(x)k and on some difference between the global statis-
tics (Gram matrix, spatial mean, std) of V L(x) and the cor-
responding ones from the style layer V L(v). This fact is

summarized in the formulas of Table 1. Exploiting this lo-
cality of the gradient, it is also possible to exactly compute
the gradient vector ∇xEtransfer(x; (u, v)) block by block
using a two-pass procedure: The first pass is used to com-
pute the global VGG19 statistics of each style layer and the
second pass is used to locally backpropagate the gradient
wrt the local neural features. The whole procedure is de-
scribed by Algorithm 1 and illustrated by Figure 3.

Algorithm 1 Localized computation of the style transfer
loss and its gradient wrt x

Input: Current image x, content image layer
V Lc(u), and list of feature statistics of v
{(GL(v),mean(V L(v)), std(V L(v))), L ∈ Ls}
(computed block by block)

Output: Etransfer(x; (u, v)) and ∇xEtransfer(x; (u, v))
Step 1: Compute the global style statistics of x block
by block:
for each block in the partition of x do

Extract the block b with margin and compute
VGG(b) without computation graph

For each style layer L ∈ Ls: Extract the features of
the block by properly removing the margin and add their
contribution to GL(x) and mean(V L(x)).
end for
For each style layer L ∈ Ls: compute std(V L(x)) as a
function of GL(x) and mean(V L(x)).
Step 2: Compute the transfer loss and its gradient wrt
x block by block:
Initialize the loss and its gradient: Etransfer(x; (u, v))←
Ẽstyle(x; v); ∇xEtransfer(x; (u, v))← 0
for each block in the partition of x do

Extract the block b with margin and compute
VGG(b) with computation graph

For each style layer L ∈ Ls: Compute the gradient
of the style loss wrt the local features using the global
statistics of x from Step 1 and the style statistics of v as
reference (Table 1)

For the content layer Lc, add the contribution of
V Lc(b) to the loss Etransfer(x; (u, v)) and compute the
gradient of the content loss wrt the local features (first
row of Table 1)

Use automatic differentiation to backpropagate all the
feature gradients to the level of the input block image b.

Populate the corresponding block of
∇xEtransfer(x; (u, v)) with the inner part of the
gradient obtained by backpropagation.
end for

Note that the memory requirement for Algorithm 1 does
not depend on the image size. Indeed, by spatially split-
ting all the computations involving VGG19 features, deal-
ing with larger images only requires more computation time
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Figure 3. Algorithm overview: Our localized algorithm (right part) allows to compute the global style transfer loss and its gradient wrt x
for images that are too large for the original algorithm of Gatys et al. [8] (left part).

Global statistics Feature loss Expression Gradient wrt the feature
Raw features V MSE: E(V ) = ∥V − Vref∥2 ∇V E(V ) = 2(V − Vref)

Gram matrix: G = 1
np

V V T Gram loss: E(V ) = ∥G−Gref∥2F ∇V E(V ) = 4
np

V (G−Gref)

Feature mean: mean(V ) Mean loss: E(V ) = ∥mean(V )−µref∥2 (∇V E(V ))k = 2
np

(mean(V )− µref)

Feature std: std(V ) Std loss: E(V ) = ∥ std(V )− σref∥2 ∇V E(V )k,j =
2
np

(Vk,j − (mean(V ))j)
(std(V ))j−σref,j

(std(V ))j

Table 1. Expression of the feature loss gradient wrt a generic feature V having np pixels and nc channels (having size np × nc).

(since there are more blocks). However, the L-BFGS op-
timization will require more memory since it requires to
store a gradients history, each gradient having the size of
x. Using a single 40 GB GPU, our algorithm allows for
style transfer for images of size up to 81922 px.

5. Experiments

Ultra-high resolution style transfer. An example of
UHR style transfer is displayed in Figure 2 with several
highlighted details. Figure 1 illustrates intermediary steps
of our high resolution multiscale algorithm. The result for
the first scale (third column) corresponds to the ones of the
original paper [8] (except for our slightly modified style
loss) and suffers from poor image resolution and grid arte-
facts. Note how, while progressing to the last scale, the
texture of the painting gets refined and stroke details gain a
natural aspect. This process is remarkably stable; the suc-
cessive global style transfers results remain consistent with
the one of the first scale.

We compare our method with two fast alternatives
for UHR style transfer, namely collaborative distillation
(CD) [32] and URST [4] (based on [18]) using their offi-
cial implementations1. As already discussed in Section 2,
URST decreases the resolution of the style image to 10242

px, so the style transfer is not performed at the proper scale

1 [32]: https : / / github . com / MingSun - Tse /
Collaborative-Distillation; [4]: https://git.io/URST

Method PSNR ↑ SSIM ↑ LPIPS ↓ Gram ↓
SPST (ours) 24.6 0.457 0.352 1.90e5
CD 21.8 0.417 0.501 4.23e7
URST 19.0 0.415 0.545 6.53e7

Table 2. Quantitative evaluation of identity test for UHR style
transfer. The PSNR, SSIM [33], LPIPS [35] and the Gram (style
distance) metrics are shown for our results (SPST), CD [32] and
URST [4]. All metrics are averages using 79 HR paintings images
used as both content and style. Best results shown in bold.

and fine details cannot be transferred. As in UST methods,
CD does not take into account details at different scales
but simply proposes to reduce the number of filters in the
auto-encoder network through collaborative distillation to
process larger images. Unsurprisingly, one observes in Fig-
ure 4 that our method is the only one capable of convey-
ing the aspect of the painting strokes to the content image.
CD suffers from halo and high-frequency artefacts, while
URST presents visible patch boundaries and a detail fre-
quency mismatch due to improper scaling. Observe also
that the style transfer results are in general better when the
geometric content of the style image and the content image
are close, regardless of the method.

Identity test for style transfer quality assessment. Style
transfer is an ill-posed problem by nature. We introduce
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Style image Content image SPST (ours) CD URST

Figure 4. Comparison of UHR style transfers. For each example, top row, left to right: style, content, our result (SPST), CD [32],
URST [4]. Bottom row: zoom in of the corresponding top row. First row: content (3168× 4752), style (2606× 3176). Third row: content
(3024×4032), style (3024×3787). We used three scales for both of our results. Observe the loss of details and the unrealistic looks of the
outputs produced by both fast methods.

here an identity test to evaluate if a method is able to repro-
duce a painting when using the same image for both content
and style. Two examples of this sanity check test are shown
in Figure 5. We observe that our multiscale algorithm is
slightly less sharp than the original style image, yet high-
resolution details from the paint texture are faithfully con-
veyed. In comparison, the results of [32] suffer from color
deviation and frequency artefacts while the results of [4]
apply a style transfer that is too homogeneous and present
color and scale issues as already discussed. Some previ-
ous work introduce a style distance [32] that corresponds to
the Gram loss for some VGG19 layers, showing again that
fast approximate methods try to reproduce the algorithm of
Gatys et al. which we extend to UHR images. Since we ex-
plicitly minimize this quantity, it is not fair to only consider
this criterion for a quantitative evaluation. For this reason,
we also calculate PSNR, SSIM [33] and LPIPS [35] metrics
on a set of 79 paint styles (see supplementary material) to

quantitatively evaluate our results, in addition to the “Gram”
metric, that is, the style loss of Equation (8) using the orig-
inal Gram loss of Equation (3), computed on UHR results
using our localized approach. The average scores reported
in Table 2 confirm the good qualitative behaviour discussed
earlier: Our method is by far the best for all the scores.

Computation time. Our UHR style transfer algorithm
takes several minutes, from 16 minutes for the third row
result in Figure 4 to 74 minutes for the result in Figure 2 us-
ing an A100 GPU. In comparison, fast UST methods only
take a few seconds.

6. Discussion

Our work presented an extension of the Gatys et al.
style transfer algorithm to UHR images. Regarding visual
quality, our algorithm clearly outperforms competing UHR
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Style/content image SPST (ours) CD URST

Figure 5. Identity test: a style image is transferred to itself. We compare three style transfer strategies. From left to right: ground truth
style, our result (SPST), CD [32], URST [4]. First row: The style image has resolution 3375×4201; Third row: The style image has
resolution 3095×4000 (UHR images have been downscaled by ×4 factor to save memory). Second and fourth row: Close-up view with
true resolution. Observe that our results are the more faithful to the input painting and do not suffer from color blending

methods by conveying a true painting feel thanks to faithful
HR details such as strokes, paint cracks, and canvas texture.

It is here that we may confess: Our iterative method is
obviously slow, even though its complexity scales linearly

with image size. Yet, as we have demonstrated, fast meth-
ods do not reach a satisfying quality, and fast high-quality
style transfer remains an open problem to this date.

Several extensions and applications of our work can be
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considered. For instance, we can perform HR texture syn-
thesis by removing the content term [7] (see supplemen-
tary material). Our two-pass procedure can be extended to
any function of the Gram matrix and feature spatial means,
such as the Bures metric used in [31] for texture mixing.
One could also consider extending the method to the slice
Wasserstein style loss [11] using the Run-Sort-ReRun strat-
egy [15]. However, the memory requirements to store five
VGG feature maps (or their projections) increase linearly
with the size of the input image, in contrast to the size-
agnostic global statistics used in this paper.

This work opens the way for several future research di-
rections, from allowing local control for UHR style trans-
fer [9] to training fast CNN-based models to reproduce our
results.

Acknowledgements: B. Galerne and L. Raad acknowledge
the support of the project MISTIC (ANR-19-CE40-005).
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Supplementary material

This supplementary material presents additional style
transfer results, gives an overview of the dataset of pictures
used for the identity test comparison, and discuss the adap-
tation of the algorithm for UHR texture synthesis.

A. Additional style transfer results

A.1. Multiscale examples

Figure 6 presents a second example of ultra-high reso-
lution (UHR) style tranfer with each intermediate results of
the multiscale algorithm. One can see how the texture of
the painting and the stroke details are gradually refined.

A.2. Additional comparison experiments

Figure 7 presents some additional comparison exam-
ples. These results show that the competing methods suf-
fer from color imbalance and do not match the fine texture
and strokes of the style painting. This is due to the fact that
neither URST [4] nor CD [32] take into account details at
different scales. On the other hand, we are able to convey
the appearance of fine details and painting strokes to the
content image.

Figure 8 shows some examples of style transfer on por-
traits. Once again, we can observe that our method is the
only one able to transfer the texture and strokes of the paint-
ing to the portrait content.

Figure 9 shows some examples of failure cases that un-
derline the importance of correctly choosing the couple con-
tent/style for a correct style transfer. The first row example
uses the same style as in Figure 8 but with a different con-
tent image where the proportion of the face space is much
larger than in the style image. Note also that the lack of a
beard in the content produces an undesirable effect on the
face. The second row example lack of details and the style
transfer creates undesirable noisy patterns in the sky and
grass. As said in the conclusion of the main paper, allow-
ing local control [9] for UHR style transfer is an interesting
direction for future developments.

A.3. Full resolution images

In the main paper all UHR images have been down-
scaled by a factor ×4, with highlighted details included
with the true resolution. In the following figures, we include
the style and content images with a better resolution (only
downgraded by a factor ×2) and our style transfer result in
full resolution. Note that images have been compressed us-
ing jpeg quality 85 to limit the .pdf file size. See Figure 10,
11, 12, and 13.

B. Painting images dataset for the identity test
experiment

Figure 14 shows the 79 UHR painting images used for
the identity test where we evaluate whether a method was
able to reproduce a painting when the content and style im-
age were identical.

C. Texture synthesis
As said in the Discussion section of the paper, our ap-

proach also allows for UHR texture synthesis. Following
the original paper on texture synthesis [7], given a texture
exemplar v, texture synthesis is performed by minimizing

Estyle(x; v) =
∑
L∈Ls

EL
style(x; v) (8)

starting from a random white noise image x0. From a practi-
cal point of view, it consists in minimizing the style transfer
loss with the following differences:

• The style image is replaced by the texture image.

• There is no content image and no content loss (set
λc = 0).

• The image x is initialized by a random noise x0.

We perform texture synthesis following the same mul-
tiscale approach and using the using our augmented style
loss

ẼL
style(x; v) =wL

∥∥GL(u)−GL(v)
∥∥2
F

+ w′
L∥mean(V L(x))−mean(V L(v))∥2

+ w′′
L∥ std(V L(x))− std(V L(v))∥2.

(9)
However, for texture synthesis starting with a random im-
age, the number of scales should be as high as possible, that
is the multiscale process starts with images of moderate size
(about 200 pixels). To illustrate this point we show eight
different texture synthesis in Figures 15, 16, 17 and 18. For
each example we show the synthesis using 3 scales (same
setting as for style transfer) and 5 scales. We remark that it
is quite important to start with a first scale with small size
for a satisfying synthesis quality that reproduces the tex-
ture statistics. Using only 3 scales yields textures that are
spatially homogeneous due to the white noise initialization.
Let us remark that to the best of our knowledge the highest
resolution produced in the literature was limited to 20482

pixels [10] for the multiscale version of Gatys et al. algo-
rithm [7].
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Style image Content image Scale 1 Scale 2 Scale 3

Figure 6. UHR multiscale style transfer. Top row from left to right: style (3906×4933), content (4933×5800), transfer at scale 1
(976×1450), 2 (1953×2900), 3 (4933×5800). Bottom row: zoomed in detail for each image (from 2002 to 8002). While the transfer
is globally stable from one scale to the other, each upscaling allows to add fine pictural details which give an authentic painting aspect to
the final output image. We recommend a screen examination of the images after ×8 zoom in.
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Style image Content image SPST (ours) CD URST

Figure 7. Comparison of UHR style transfers. For each example, top row, left to right: style, content, our result (SPST), CD [32],
URST [4]. Bottom row: zoom in of the corresponding top row. First row: content (3024× 4032), style (3024× 4477). Third row: content
(3024 × 4032), style (3024 × 4738). Fifth row: content (3024 × 4032), style (3655 × 2836). We used three scales for all our results.
Observe the loss of details and the unrealistic looks of the outputs produced by both fast methods.
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Style image

Content image SPST (ours) CD URST

Figure 8. Comparison of UHR style transfer on portraits. For each example, top row, left to right: style, content, our result (SPST),
CD [32], URST [4]. Bottom row: zoom in of the corresponding top row. First row: content (3264 × 4512), style (4126 × 3264). Third
row: content (4480× 5973), style (6000× 4747). We used three scales for our result in the first example and four scales for our result in
the second example. Observe the loss of details and the unrealistic looks of the outputs produced by both fast methods.
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Figure 9. Examples of UHR style transfer failure cases. For each example, from left to right: style, content and our result. First row:
content (5184 × 3456), style (4368 × 3456). Second row: content (3024 × 4032), style (3024 × 3787). We used three scales for both
results.
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Figure 10. UHR style transfer in full resolution (from Figure 1 of the main paper). Top row: style image (4226×5319), content image
(6048×8064). Bottom: result (6048×8064). Observe how very fine details such as the chairs look as if painted.
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Figure 11. UHR style transfer in full resolution (from Figure 2 of the main paper). Top row: style image (6048×7914), content image
(6048×8064). Bottom: result (6048×8064). Observe how very fine details such as the chairs look as if painted.
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Figure 12. UHR style transfer in full resolution (from Figure 4 of the main paper). Top row: style image (2606 × 3176), content image
(3168× 4752). Bottom: result (3168× 4752).
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Figure 13. UHR style transfer in full resolution (from Figure 4 of the main paper). Top row: style image (3024×3787), content image
(3024×4032). Bottom: result (3024×4032).
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Figure 14. Overview of the 79 UHR painting images used for the identity test.
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Figure 15. UHR texture synthesis: From left to right: Input texture image, synthesis using 5 scales, synthesis using 3 scales. Image have
size (3024×4032) (downscaled by a factor 4 for inclusion in the .pdf) and true resolution details have size (512×512)

21



Figure 16. UHR texture synthesis (same as Figure 15): From left to right: Input texture image, synthesis using 5 scales, synthesis using 3
scales. Image have size (3024×4032) (downscaled by a factor 4 for inclusion in the .pdf) and true resolution details have size (512×512)
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Figure 17. UHR texture synthesis (same as Figure 15): From left to right: Input texture image, synthesis using 5 scales, synthesis using 3
scales. Image have size (3024×4032) (downscaled by a factor 4 for inclusion in the .pdf) and true resolution details have size (512×512)
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Figure 18. UHR texture synthesis (same as Figure 15): From left to right: Input texture image, synthesis using 5 scales, synthesis using 3
scales. Image have size (3024×4032) (downscaled by a factor 4 for inclusion in the .pdf) and true resolution details have size (512×512)
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