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ABSTRACT

This article wishes to contribute to the understanding of principal strains distribution in inflation test for circular
isotropic soft membranes, combining analytical, numerical, and experimental investigations. The method
developed gives a relatively simple and original solution of the deformation and thus of the stresses during an
inflating test, provided that the measurement is sufficiently close to the pole. For this purpose, a semi-analytical
model (SAM) is proposed and to evaluate that theory, two complementary approaches are used. The first
approach is experimental. Inflation and uniaxial tensile tests are set up on medical silicone sheets to identify their
hyperelastic constitutive parameters, using Digital Image Correlation. Then these mechanical properties are
injected into a 3D finite element model (FEM) of membrane, simulating the inflation test, to compare the strains
that had been obtained with those of the SAM. Numerical results show that the strain calculated by the SAM
follows the pattern of the circumferential strain obtained by the FEM. Up to a certain distance from the center of
the disk (half of the disk for our example), strain calculated by the SAM give a correct approximation of the

deformation with respect to radial and circumferential FEM strains.
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1. Introduction

The literature is very well covered in articles dealing with mechan-
ical tests of the inflation type. As explained in [1], there has been a lot of
theoretical research on the distribution of deformations. At first, the
work of [2] developed a numerical solution for the principal stresses and
strains, using Taylor series. Then, [3,4] determined strains, and curva-
tures by solving, numerically, a system of first-order differential equa-
tions. [5] resumed these approaches to outline a method for determining
functional forms of constitutive relations and to demonstrate the validity
of this method through numerical experiments for a membrane having a
known strain energy function. Before that, in 1981, [6] established
deformation expressions by assuming that the radial deformation was
constant for small deformations.

The objective of our work is to propose a simple method for the
determination of stretch ratios for use in the experimental identification
of material parameters. This study results from work on the character-
ization of the mechanical properties of biological membranes, as work of
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[5,7-10]. Often these membranes are anisotropic, but some are isotropic
or weakly anisotropic. This is generally the case when they are in
anatomical areas where no direction of stress is preferred. Here we will
focus on the case of isotropic membranes as work of [11,12]. In the
literature identification of the constitutive parameters is conducted
using either the external shape of the inflated membrane [13], or the
displacement at the special points [14], or increasingly now, the
displacement fields obtained by DIC [1,7,8,15,16]. Our identification
approach is in this trend. It considers both DIC and the shape of the
membrane avoiding uncertainties about the exact position of the top of
the membrane, when calculate deflections.

This article wishes to contribute to the understanding of principal
strains distribution combining analytical, numerical, and experimental
investigations. The first section is devoted to the semi-analytical method
(SAM). Then, we develop experimental approaches allowing the iden-
tification of hyperelastic material parameters, using stretch ratios
developed in the SAM. Finally, we present the numerical finite element
study simulating an inflation test and compare the numerical strains



with the semi-analytical ones.
2. Method

We consider the classical benchmark inflation test, where a uniform
circular thin membrane is clamped at the rim. The strain distributions in
the circumferential and radial, extensions were measured as a function
of the degrees from pole, by [17], for an isotropic gum natural rubber.
Moreover, due to the axial symmetry of the problem and respecting the
primary assertions of the membrane theory, the stress and strain could
be assumed biaxial at around the top of the inflated sample, if the stretch
ratio and distance to the center are moderate. The work of [18] effec-
tively shows that in a plane of symmetry the deformation can be
considered as an ellipse, rather than a circle. For the study we will thus
be within the framework of a stretch ratio less than 2 and a maximum
degree from the pole of about 40°, to ensure the biaxiality of the state.

The starting point of our study is the same as in [7]. We try to define
the stretch ratios in the circumferential and radial extensions. On the
scheme of Fig. 1, the membrane before inflation is represented by a disk
(radius r and center A) and by a spherical capsule (radius R and center O)
during loading. A material point P on the initial disk, at a given distance
doO from A, is located on P’ after deformation. The pole of the capsule is
noted B and C is the point at the rim, such that P is on the segment [AC].

The main question is how to find the value of the distance d of point
P’ from the axis (OA)?

To answer this question, we have used the stretch ratios and the
equibiaxiality hypothesis. The circumferential stretch ratio ic is defined,
quite intuitively, by the ratio d/d0 and do not depend on the position of
the point P, on the circle of radius dO and center A. On the other hand,
and this is where our developments differ from that of 7], the stretch
ratio in the radial extension Ar is not considered as constant over the
circular arc BC. The segment [PC] becomes the arc of curve P'C, which
leads us to define the radial stretch at point P by the ratio P’C/PC. Thus,
if @ is the angle between (OP’) and (OA) and « those between (OC) and
(OA), the stretch ratios verify:
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Fig. 1. 2D scheme of the inflated capsule. The lengths of the thick red lines are
used to compute radial stretch ratios and those of thick blue lines that of
circumferential one.(For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

we obtain the following equation:
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where the only unknown is the angle ¢. Indeed, for a given radius r
(depending on the applied pressure), the angle a = sin™! (£) and the
previous nonlinear equation becomes:

(%— I)sin(()} +0= sin"(%) (3)

Solving this equation determines the angle ¢ and then the position of
point P’. There is no analytical solution to this equation. We will propose
to solve it numerically, which justifies the semi-analytical nature of the
method.

These stretch ratios can be related to stresses using hyperelastic
models. We focused on the models of Mooney Rivlin [19-22], Yeoh [23]
and Neo-Hookean [24]. The value of the radial and circumferential
stresses (G, 6;) can then be determined for each model as follows:

Mooney-Rivlin:
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where Cy9, Co1, Coo are material coefficients and I, = A7 + 27 + 7, is the
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first invariant of right Cauchy-Green deformation tensor. To find an
equivalence between 6., 6, and the pressure P, Laplace equilibrium is
applied to the membrane surface.
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where:

- Pr P are the radii of radial and circumferential curvatures

- his the current thickness of the membrane. Under the assumption of
incompressibility, the current thickness can be calculated from the
initial thickness h;,;, and stretch ratios such as:
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In hypothesizing an isotropic material, it is assumed that when
deforming, the membrane takes the shape of a sphere; and therefore, the
radii of the radial and circumferential curvatures are equal and equal to



the radius of the sphere described by the deformation. Then the rela-
tionship is
% %[O} +a,) =P

This last expression will be useful during the experimental validation
phase.

To evaluate the theory, we used two complementary approaches. We
set up inflation tests on medical silicone sheets and reproduced these
tests numerically. The objective was to verify that the stretch ratios
obtained by the semi-analytical method were close to those obtained
numerically. To do this, we used the definition of the stretch ratios Eqs.
(1) and ((2)) to experimentally identify the material properties of the
silicones being tested, then we injected these mechanical properties into
a finite element model to compare the strains that had been obtained
with those of the SAM.

3. Experimental approach

Studies on the experimental identification of material parameters by
inflation tests are very numerous. [25], was one of the first to show the
interest of these circular inflation test for the identification procedure.
These experimental tests also allowed certain research groups to study
the distribution of strains, such as [1], trying to show that radial strain
was nearly constant over the entire surface and the circumferential
strain falls to zero at the edge. While other focused on stresses, such as
[26], using specific developments for the determination of membrane
curvatures, coupled with finite element calculations for validation.

3.1. Material and methods

The bench test is composed of a pressurization system, an inflating
device, two cameras (see Fig. 2), and a stereo-correlation image
software.

The pressurization system consists of a push-pull syringe containing
saline (for biological tissue) or air (for silicone).

During the experiment, the syringe piston is lowered with precision
to micro-bar accuracy by means of a controlled actuator. The pressure is
increased from O to 0.5 bar, in steps of 0.02 bar. At each step reached, a
rest time of about 50 s is allowed to avoid viscosity effects. The inflator is
a sealed cavity (8 mm of radius) fed by water or air from the pressuri-
zation system. A pressure transducer is mounted on it (order no.: HBM
10 bar) and supports the sample between an O-ring and a washer held
together by means of 6 screws. There are two cameras to allow the
measurement of a field of displacements in 3 dimensions. The model
number used for the camera is AlliedVision® Pike F-421B; and for the
lens: Fujinon® HF16HA-1B. For the stereo correlation, the software
VIC3D® was used. A spray of black paint was sprayed on samples to
obtain a speckle.

Fig. 2. Inflating device. Front view in the left image. Inflating device with the
two cameras in the right image.

For the identification of the material parameters, we have minimized
the classical following cost function F:
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is the theoretical pressure calculated by the relation (4) and P‘;m is the
experimental pressure, for each loading step i. In the calculation of the
theoretical pressure, we took the radius r; of the sphere fitting the point
cloud close to the pole of the deformed surface (see example of sphere
fitting in Fig. 4).

For the calculation of the stretch ratios 4. and 2!, we used the relation
(2), taken at the pole of the capsule (6=0 and d0=0). All calculations
have been done with the software MATLAB®,

Beside, to validate the identified parameters, a uniaxial tensile test
was carried out on silicone in parallel with the bulge tests.

Specimens of length 30 mm, width 6.25 mm and thickness 0.25 mm
were used.

The tests were carried out at a displacement speed of 5mm/min.

As before, the displacements of each point of the specimen have been
determined using the VIC2D® and VIC3D® software (see Fig. 3).

Three samples from medical silicon sheets of thickness 0.25mm have
been tested by each approach (inflation/traction).

Fig. 3. Tensile device. The silicone sheet is in the center of the clamps.



3.2. Experimental results

3.2.1. Inflation tests

Fig. 4 shows an example of the fitting of the point cloud (yellow
points), resulting from the experimental tracking of the capsule surface,
by a sphere. This fitting was made by a special MATLAB® function:
ellipsoid fit, which calculate the center and the radius of the sphere
closest from the point cloud. The results plotted in Fig. 4, were obtained
for a maximum pressure of 0.28 bar, during the test corresponding to
sample number 2.

The fitting was carried out for each pressure point, giving the radius
values of the spheres and allowed the material parameters to be iden-
tified (minimizing the cost function F) and the stress-stretch curves to be
plotted as shown in Fig. 5.

The experimental stress values plotted in Fig. 5 were calculated with
the relation (4), using the values of the stretch ratios A%, AL, and the radii
r; from the fitted spheres.

The clusters of crosses, at regular intervals, that we observe on the
experimental curve (Fig. 5) represent the relaxation pauses imposed to
avoid viscosity effects.

All material parameters, identified from the inflation tests, are
gathered in Table 1.

3.2.2. Traction tests

As announced in the previous paragraph, we also carried out uniaxial
tensile tests and the identified material parameters are gathered in
Table 2.

In this case, there are more differences between the parameter values
C10, sometimes from single to double, for an obviously identical
material.

There are also differences on the results between the methods of
identification of inflation versus traction, but the average values are
rather close, and of about 0.29 MPa.

The material coefficients thus identified ensure the positivity of each
strain energy for all the elongation values measured during the tests.

4. Numerical approach

Already, at the very beginning of the development of the finite
element method, [27,28] proposed an axisymmetric numerical
approach for the calculation of stresses and strains in the inflation
problem. Since then, many other studies have been conducted with this
powerful numerical tool. We can mention the works of [11,26,29-31],
which are not limited to elastomers but also deal with metallic and even

Fig. 4. Fitting of the point cloud (yellow points) by a sphere (Matlab® plot).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 5. Stress/Stretch ratio curves and hyperelastic model fitting. Points with
crosses come from the experimental measures of sample 2. The curves of the 3
hyperelastic models are confused.

Table 1
Material parameters (in MPa) of the different hyperelastic models identified
with the inflating tests.

Models Parameters  Sample 1 Sample 2 Sample 3 Average
Yech c10 0.227 0.33 0.2 0,25

c20 0.013 -0.003 1.8e-4 3.39e-03
Mooney-Rivlin C10 0.228 0.33 0.2 0.25

co1 1.8e-4 -2.2e-4 -3.7e-5 -2.57e-05
Neo-Hookean C10 0.228 0.33 0.2 0.25

Note that the values of parameters C10 are very close for each model and the
average value is of 0.25 MPa.

Table 2
Material parameters (in MPa) of the different hyperelastic models identified
with the tensile tests.

Models Parameters Sample 1 Sample 2 Sample 3 Average
Yeoh C10 0.26 0.42 0.19 0.29
C20 -0.01 -0.02 0.02 -0.003
Mooney-Rivlin C10 0.18 0.27 0.29 0.256
col 0.10 0.17 -0.12 0.05
Neo-Hookean C10 0.24 0.41 0.21 0.286

biological materials.
For the numerical validation we also used the finite element method
through the software ANSYS®,

4.1. FEM modeling

A circular membrane with a radius of 8mm, blocked on its circum-
ference, was modeled in 3D (surface body). It was subjected to a variable
pressure (linear as a function of time), varying from 0 to 0.28 bar. The
node displacements of the disk boundary are blocked, but the rotations
are free. The problem was treated in quasi-static and large strains. The
calculations were done with a two-parameter hyperelastic Yeoh model.
We chose the values of C10 and C20 from sample 2 of Table 1. The mesh
(Fig. 6) contains quadrangular membrane elements (no rigidity in
flexion) with a total of 6,064 nodes.

4.2, FEM results

Fig. 7 shows the vertical displacement isovalues (in meter) of the
deformed membrane at the end of loading.
In the software ANSYS®, for hyperelastic models, the deformations
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Fig. 6. Mesh of the membrane containing quadrangular membrane elements
(no rigidity in flexion) with a total of 6064 nodes.

calculated are those of Green-Lagrange. The principal strains (Er and Ec)
were collected along the x-axis (see Fig. 8) and compared to those
calculated by the semi-analytical method (SAM).

The results along this axis are plotted in Fig. 9.

5. Strain comparisons between FEM and SAM

For the SAM, only one of the two strains has been plotted (in green in
Fig. 9), as they are assumed to be equal. For their calculation, we used
the following relationships:

1 i 1 3
E, =E(ir,— 1) =E, =5(ﬂ, —-1)

The stretch ratios have been computed using Fiq. (2), varying d0 from
0 to r = 8 mm, assuming R = 8.9 mm (radius of the experimental fitted
sphere at the end of the loading) and calculating ¢, by solving the non-
linear Eq. (3) with a Newton-Raphson algorithm.

Before presenting the deformation results, we performed a verifica-
tion of the dimensional parameters of the capsule according to the work
of Joye et al. [31]. In the paper [31], a correspondence between the two
ratios R/r and h/r was established, where h represents the capsule height
at the pole. For h=5 mm (calculated experimentally and numerically),
we obtained R/r=1.11 and h/r=0.625, which are in agreement with
Joye et al.’s results.

B _0,00058466
| -0,0011693
-0,001754

| -0,0023386
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-0,003508
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The numerical results from the FEM clearly show, in accordance with
the literature, a divergence of radial and circumferential strain values
the further away from the center of the disk. Concerning SAM results,
note that the values for d0=0 and d0O=r, are particular because for d0=0
the formula (3) is not defined and for dO=r, it is the formula (2) which is
not defined. However, we can still calculate the stretch-ratio values,
taking formula (2) in the case where d0=0 and formula (1) in the other
case.

The strains calculated by the SAM follow the pattern of the circum-
ferential FEM values and overestimating them. In this example, up to
half of the disk, strains calculated by the SAM give a correct approxi-
mation of the deformation with respect to radial and circumferential
FEM strains. Beyond that, the values (radial and circumferential) differ
too much to be approximated by a single value.

6. Discussion and limitations

Our identification approach considers both DIC and the shape of the
capsule avoiding uncertainties about the exact position of the top of the
membrane, when calculate deflections. The advantage of our method is
that it is not necessary to compute average values, at each pressure load.
Everything is contained in the approximation of the point cloud by a

ANSYS
2019 R3

ACADEMIC

Fig. 8. Isovalues of the Green-Lagrange principal strains (Er and Ec) along the
x-axis.

0,005 0,01 (m)
0,0075

Fig. 7. Vertical displacement isovalues (in meter) of the deformed membrane at the end of loading.
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Fig. 9. Comparison of FEM and SAM Green-Lagrange principal strains. SAM
results are in green while they are red and blue for the FEM.

sphere.

As this study was performed to test biological tissues, the mechanical
bulging loads were performed in a physiological range (stretch-ratios
<1.5). Thus, the results obtained show a low nonlinearity of the stress/
strain response, which does not allow to differentiate between the
different hyperelastic models. This is one of the limitations of the study.

The number of tests (3) remains limited compared to what can be
classically found in the literature, but they were relatively reproducible
with this type of standard material.

Note that we could have used an axisymmetric 2D model for the
numerical simulation, but we decided to use a membrane approximation
to be as close as possible to the experimental tests, like work of [26,15].

Discrepancies between the SAM results and FE predictions are
mainly due to the approximation chosen for the elongations and because
the problem is not equibiaxial.

It should be noted that no tuning has been made to adjust the nu-
merical parameters to best fit the analytical results. These are raw
results.

The method (SAM) gives a relatively simple and original semi-
analytical solution of the deformation and thus of the stresses during
an inflating test but is only valid “close” to the pole. This is another
limitation of the study.

7. Conclusion and perspectives

It was developed in this article, a semi-analytical, simple, and orig-
inal method (SAM) to determine the principal strains during an inflation
test of isotropic soft membranes. Its validation was obtained by coupling
two complementary approaches.

The first approach was experimental. Inflation and uniaxial tensile
tests were set up on medical silicone sheets to identify their hyperelastic
constitutive parameters. Then, we injected these mechanical properties
into a 3D finite element model of membrane, simulating the inflation
test, to compare the strains that had been obtained with those of the
SAM.

Numerical results have shown that the strain calculated by the SAM
follows the pattern of the circumferential strain obtained by the FEM. Up
to a certain distance from the center of the disk (half of the disk for our
example), strains calculated by the SAM give a correct approximation of
the deformation with respect to radial and circumferential FEM strains.

The methodology implemented in this paper will allow to identify
the hyperelastic behavior of biological membrane tissues, weakly
anisotropic and to estimate the intensity of deformations close to the
pole. This will then allow these deformation values to be compared with
the rupture limits, for example those established for cerebral [32,33] or

aortic aneurysms [34,35].
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