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Sur4
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Abstract

Convolutional Neural Networks (CNNs) are now commonly used in the computer vision
community, in particular for optical flow estimation. Some attempts to use such tools to
measure displacement and strain fields from pairs of reference/deformed speckle images
(like Digital Image Correlation) have been recently reported in the literature. The aim
of this work is twofold. The first one is to customize a state-of-the-art CNN dedicated to
optical flow estimation to reach better performance when processing speckle images. This
is mainly obtained by removing the deepest levels. The second one is to further simplify
the CNN by reducing as much as possible the number of filters in the remaining levels while
keeping equivalent metrological performance to the original version, in order to accelerate
image processing on a power-efficient compact Graphics Processing Unit (GPU).

Synthetic images deformed through a suitable displacement field are used to assess the
metrological performance of the different versions of the CNN tested in this study. We
focus on the sub-pixel part of the displacement is considered for this first attempt, this part
being much more challenging to determine than integer displacements obtained at the pixel
scale. The latter can be found by cross-correlation or with a rough version of DIC. Real
images are tested with the simplest version of the CNN and obtained results are compared
with those provided by classic subset-based Digital Image Correlation. The two main
conclusions are i- that the customization procedure improves the metrological performance
of the original version and ii- that the metrological performance of the ultimate simplified
version of the CNN is globally equivalent to the one of the initial version despite the drastic
simplification obtained at the end of the procedure. This performance lies between that
of DIC used with first- and second-order subset shape functions.

Keywords: Convolutional Neural Network, Deep learning, Digital Image Correlation, Error

Quantification, Graphics Processing Unit, Photomechanics, Speckle
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1 Introduction

During the recent years, Digital Image Correlation (DIC) has widely spread in the experimen-

tal mechanics community because it offers a good tradeoff between ease of use and metrological

performance. However, as any other measuring technique, DIC suffers from some limitations.

The main one is certainly the fact that DIC relies on the iterative minimization of an optical

residual estimated over small zones of speckled surface images, namely the subsets, and this

induces a significant computational cost to extract displacement and strain maps. This is all

the truer as the number of pixels of camera sensors increases with time, which automatically

increases this computational cost. This limitation motivates the study of procedures speeding

up DIC calculations, if not completely revisiting the principle of DIC itself by proposing alter-

native methods. The first approach is illustrated by the parallelization of the DIC code and

its implementation in a Graphical Processing Unit (GPU), as proposed in [1, 2] for instance

in the case of classic subset-based and integrated DIC, respectively. A significant reduction of

the computing time is observed in both cases. Concerning the second approach, it has been

proposed in [3, 4]to completely depart from the classic minimization of the optical residual

over small subsets performed by classic DIC by employing Convolutional Neural Networks

(CNNs). Indeed, a recent yet wide literature is available in the computer vision community

to resolve optical flow problems with CNNs. These problems are similar to the one tackled

by DIC in experimental mechanics, namely measuring displacement fields, apart from the

amplitude of the displacement which is generally much lower in the latter case since sub-pixel

resolution must be reached. The hindsight on employing CNNs instead of DIC to measure

displacement and strain fields is by far insufficient to have a clear view on the numerous

parameters which govern the quality of the solution. For instance, the CNNs developed and

used in [3] were largely inspired from others already described in the literature for resolving

the problem of optical flow estimation such as FlowNet [5, 6]. However, CNNs developed and

discussed in [3] are deep, in the sense that the number of convolutional layers, and thus the
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number of parameters governing them, is significant, since up to 38.60 millions coefficients are

needed to define them. In this context, the aim of this paper is twofold. The first objective

is to further adapt these CNNs to sub-pixel displacement field determination. The second

one is to examine to what extent these CNNs can be simplified and lightened, so that they

can be embedded in a power-efficient and compact GPU, which is the first step toward their

integration in a smart camera providing displacement and strain fields in quasi-real time.

The paper is organized as follows: we first briefly recall how a CNN works, and give some

details on the architecture of pre-existing CNNs aimed at retrieving displacement fields from

pairs of reference/deformed speckle images. The adaptation and the simplification of these

CNNs are then explained and their impact on the metrological performance is discussed by

processing suitable synthetic images of speckle patterns. Results obtained after implementing

the original CNNs and their simplified version on a “Jetson Xavier NX” low-cost embed-

ded GPU are also discussed. The determination of the strain field obtained during a real

compression test on a wood specimen is finally given.

2 StrainNet: how it works

2.1 Architecture

2.1.1 A reminder about StrainNet

A CNN dedicated to displacement field measurement is made of successive pyramidal lev-

els, each of them containing layers. Two CNNs, namely StrainNet-f and StrainNet-h, were

proposed in Ref. [3] to retrieve sub-pixel displacement and strain maps from pairs of refer-

ence/deformed speckle images. Their architecture was inspired from that of FlowNet-S [5, 6].

Suffix “-f”, which is the initial of “full”, is justified by the fact that the size of the maps

is the same as the size of the speckle images. Suffix “-h”, which is the initial of “half”, is

justified by the fact that the size of the maps is half the size of the speckle images. The

architecture of StrainNet-f and StrainNet-h being similar, their general principle is illustrated
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in Figure 1 with StrainNet-f as an example. This CNN is made of two main parts: feature

extraction on the left and determination of the displacement field on the right. The feature

extraction part consists of several convolution layers followed by an activation function. As

in FlowNet-S, we chose here the leaky Rectified Linear Unit (leaky ReLU) [7], which is one of

the most used activation functions in deep learning [8, 9]. This function is merely defined by

LeakyReLU(x) = max(0, x) + c ×min(0, x), with c = 0.1. This version keeps the negative

values provided by the layer, contrary to other some usual versions of ReLU, for which only

positive values are kept, such as ReLU(x) = max(0, x). Some layers have a stride of two

to perform down-sampling. Such a stack of several layers is called a level. The output of

these levels can thus be represented by narrower and narrower blocks, in yellow in this figure.

In the part dedicated to the determination of the displacement field, the levels are made of

transposed convolution layers for up-sampling, and convolution layers followed again by a

ReLU. The input of each level of this part is the output of the preceding level, concatenated

with the output of the same level of the feature extraction part, as represented by the black

arrows in Figure 1. The reader interested in more details on how CNNs work is referred to

Section 2 “A short primer on deep learning” of Ref. [3].

Since the aim of this contribution is to reduce the number of levels and filters of two

preexisting networks, among which StrainNet-f roughly illustrated in Figure 1, the following

step is to describe in more details the architecture of this network as an example. StrainNet-h

will be briefly described shortly after.

2.1.2 Architecture of StrainNet-f

StrainNet-f is made of 23 layers of four different types represented here by 23 pairs of vertical

bars. The first layer (on the left) is the input layer. In the present case, this is a pair of

images representing the reference and the deformed states. The last one (on the right) is

the output layer. In the present case, this is a set of two displacement maps (along the x−

and y− directions). The layers in between are called hidden layers. Each layer processes data
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Feature extraction

Determination of the displacement field

Figure 1: Schematic view of a convolutional neural network, with StrainNet-f introduced
in [3] as a typical example. In this figure, the input image is 256× 256 pixels in size.

files, the very first ones, which feed the input layer, correspond to the two speckle images from

which displacement maps must be extracted. The output of each layer is a series of so-called

feature maps apart from the output layer, which directly provides two displacement fields (one

along each direction). In order to more easily visualize the successive simplifications of the

architectures discussed in this paper, we propose to represent each CNN with a histogram,

see a typical example in Figure 2 with the histogram corresponding to StrainNet-f. With

this mode of representation, the height of each left-hand bar is proportional to the number of

feature maps considered as input data. As an example, it is equal to 128 for the third layer

named “l2-1” in Figure 2.
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Figure 2: Schematic view of StrainNet-f discussed in [3]. Bright shade: number of input feature maps (or images for the first
layer, equal here to 6 because there are two raw images encoded in RGB) entering each layer, dark shade: number of output

feature maps (or displacement maps for the last layer) getting out of each layer. Layers of type 1 (in yellow): convolutions+leaky
ReLU. Layers of type 2 (in blue): convolutions. Layers of type 3 (in red): transposed convolutions. Layers of type 4: (in green)
transposed convolutions+leaky ReLU. The scale for the dark blue, light red and dark red bars is five times higher than the scale
used for plotting the other bars. The link between the output and the input of the layers is illustrated by the horizontal black

arrows plotted between the vertical bars.
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Each layer is characterized by a certain number of convolutions applied to the input data.

In Figure 2, the number of convolutions is proportional, for each layer represented by a set of

two twin bars, to the height of the right-hand side bar. As an example, this number is equal

to 64 for the first layer and to 256 for the third layer. The number of filters employed in the

dark blue, light red and dark red bars being small (it is equal to 2), the scale for these three

types of bars is five times higher than that used for plotting the other bars. The size of the

kernels used for the convolutions is also reported in Figure 2. This size typically writes a21×a2,

where a1 is a small number defining the size of the kernel in the plane of each feature map,

and a2 the depth of this kernel. As an example, a1 = 7 and a2 = 6 for the first layer. a2 = 6

is justified by the fact that the input of the CNN is a pair of two images encoded in Red,

Green and Blue (RGB), thus leading to six input channels. It means that each filter processes

both the reference and the deformed images at the same time. Since this layer has 64 filters,

it provides 64 feature maps. For the third layer, a1 = 5 and a2 = 128 because 128 input

feature maps form the input data in this case. Indeed, in common CNN architectures, the

kernel depth is equal to the number of input feature maps. Since 256 different convolutions

are performed in this third layer, 256 different kernels must be defined. The size of each kernel

being equal to 52 × 128, 52 × 128 × 256 = 819, 200 coefficients must be set by learning for

this third layer only. Furthermore, a bias term, also to be learnt, is deliberately added to

the output of each convolution. A similar calculation can be made for the other 22 layers,

which means that the total number of parameters to be learned for the whole CNN is huge:

about 38 millions for the present CNN. Another point is the fact that the size of the feature

maps progressively changes in the CNN. This is illustrated by the gray rectangles located at

the top of Figure 2. It can be seen that this size first decreases from one layer to another.

This size is indeed divided by 4 (2 along each direction) by applying a stride of two pixels

along both directions. This downsampling of the data is followed by successive upsamplings

on the right-hand side of the network, so the size of the feature maps progressively increases
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to reach in this case the dimension of the two input speckle images (the reference image and

the current one). Note this last size can also be smaller, as will be seen in the second example

discussed below. Upsampling is obtained here by applying a transposed convolution to the

data. This procedure can also be referred to as a deconvolution. Note that the number of

feature maps also increases with downsampling, and then decreases with upsampling which

occurs on the right-hand side of the network. Successive layers characterized by feature maps

having the same size form a level. It can be checked in Figure 2 that this CNN has 5 different

levels, which also govern the last two characters of the name of each layer. For instance, the

name of the third layer is “l2-1”, which means that this is the first layer of the second level.

The size of the maps provided at the end of the procedure is the same as the one of the two

speckle images used as input data. Typical feature maps are given in a particular exemple

later on in this paper. It will be shown that these feature maps of various dimensions (the

deeper the layer, the lower these dimensions) progressively look like the final displacement

maps extracted from the initial RGB images.

These 23 layers are of four different types, characterized each by a different color. Two

different shades are used for each color: a bright one for the left-hand side bars whose height is

proportional to the number of input data files for each layer, and a dark one for the right-hand

side bar whose height is proportional to the number of convolutions, thus to the number of

feature maps provided by any layer (or the final displacement map for the last layer). The

first ten layers (colored in yellow) belong to the first type, which consists in a convolution as

explained above, followed each by a ReLU which provides a non-linear response.

Three different types of layers form the second part of the network. The layers of the

second type (in blue) provide only two feature maps by convolution. These maps progressively

become the two sought displacement maps at the very end of the network. The layers of the

third type (in red) perform upscaling by transposed convolution, so it can be checked at

the top of Figure 2 that the size after red layers is always greater than before (beware, the
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corresponding vertical red bars are tiny because they contain a small number of layers). The

last type of layer (in green) progressively upscales by transposed convolution + ReLU the

feature maps given by the different layers of the left-hand side part of the network. It is

worth noting that layers of the second type (in blue), apart from the first one, mix data

coming from the three other types of layers.

2.1.3 Architecture of StrainNet-h

Finally, Figure 3 represents the architecture of the second network considered in this study,

namely StrainNet-h described in [3]. The number of layers is the same as that of StrainNet-

f but the size of the feature maps is smaller (because of the additional down-sampling).

According to [3], this leads to a calculation time which is about ten times lower than that

obtained with StrainNet-f. The price to pay is that the size of the final displacement maps

rendered by the network is four times smaller than the size of the input images, which means

that interpolation must be performed along both directions to reach the same size as that of

the input images.
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Figure 3: Schematic view of StrainNet-h discussed in [3]. Layers of type 1 (in yellow): convolutions+leaky ReLU, layers of type 2
(in blue): convolutions, layers of type 3 (in red): transposed convolutions, layers of type 4: (in green) transposed

convolutions+leaky ReLU. Bright shade: number of input maps for each layer, dark shade: number of output maps. Suffix “-h” is
justified by the fact that the size of the maps is half the size of the speckle images along their two directions. The scale for the

dark blue, light red and dark red bars is five times higher than the scale used for plotting the other bars.
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2.2 Dataset and training strategy

2.2.1 Datasets

Two datasets were used to train the CNNs presented above. The first one, called Speckle

Dataset 1.0, was obtain first by rendering 363 synthetic reference speckle images with the

speckle generator called BSpekleRender introduced in Ref. [10], in which the settings given

in [3] to define for instance the number of speckles and their size were used. The images

generated for this dataset were 256× 256 pixels in size. A typical one is shown in Figure 4.

Figure 4: Typical synthetic speckle pattern rendered by BSpekleRender [10].

This speckle generator can also render deformed versions of these images through dis-

placement fields defined by closed-form expressions like that used in Section 2.3 below. The

advantage is that the deformed images are free from any interpolation bias. The drawback is

that the present version of this generator is quite slow because of the Monte Carlo integration

performed in the procedure. It means that with the present version developed with Matlab,

only a limited number of pairs of reference/deformed images can reasonably be obtained. This

is not suitable for the need to generate the several thousands of images which are necessary

to train a CNN. The deformed images were therefore obtained by interpolation of the gray
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levels of the reference image. With Speckle Dataset 1.0, each of the 363 reference images

were deformed with 101 different displacement fields. These displacement field were defined

by meshing the reference images with squares, which are all 8 × 8 pixels in size. The four

corners of these element are nodes, which are subjected each to a horizontal and a vertical

displacement. The displacement within each element is defined by bilinear interpolation of the

nodal displacement. The amplitude of the displacement prescribed to the nodes was randomly

drawn following a uniform distribution lying between -1 and 1 pixel. The amplitude of this

random nodal displacement is 1 pixel since we focus here on the subpixel displacement, which

is much more challenging to retrieve than integer displacements (in pixel). Displacements

greater than one pixel can also be considered by the CNNs presented here, for instance by

estimating the integer part of the displacement by cross-correlation, or by some rough DIC

or optical flow program, and then determining the subpixel part with a CNN. This method is

used in the last example given at the end of the present paper, where displacements greater

than one pixel have to be measured. Another option, which will be considered in further

studies, is to include reference displacement fields with an amplitude greater than 1 pixel in

the dataset used to train the CNN.

The size of the elements constituting the mesh influencing the quality of the results,

in particular in terms of spatial resolution, a second dataset named Dataset 2.0 was also

generated, this time by considering the same 363 images meshed with elements of size n ×

n pixels, with n ∈ 4, 8, 16, 32, 64, 128 pixels. Bicubic interpolation was also used instead of

a bilinear one to define the displacement within each element. Each reference image was

deformed 10 times, which eventually gives 363× 6× 10 = 21, 780 different deformed images.

Noise was finally added to the deformed images. This noise was heteroscedastic to faithfully

mimic the noise affecting real camera sensors, with a variance v being an affine function of

the brightness s in the image [11], thus v = a× s+ b, with a = 0.0342 and b = 0.2679, these

values already used in previous studies ([3] for instance) being representative of a real sensor
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noise.

2.2.2 Training strategy

Both the CNNs discussed in Ref.[3], namely StrainNet-f and -h, were first trained by using

Speckle Dataset 1.0. The process was initialized with the parameters of FlowNet-S [5, 6]. The

parameters obtained at the end of this first training were then considered as initial values for

a second training performed with the images of Speckle Dataset 2.0. When simplifying the

architecture of the CNNs by removing levels and filters, the obtained CNNs were trained

with the images of Speckle Dataset 2.0. The coefficients of the layers which were kept were

fine-tuned from one version to another. In other words, the coefficients of a given version were

used as initial values of the coefficients of the following simplified version when launching the

training of the latter.

2.3 STAR displacement field

As in [3] and in other recent papers dealing with DIC [12, 13, 14] such as the recent one

dedicated to the DIC Challenge 2.0 [15], we considered here as a reference the star-shaped

vertical displacement field proposed in [16] to deform an artificial speckle image. It is such

that the horizontal displacement is null whereas the vertical one is a mere sine function with

a period linearly varying from the left to the right of the image. The mid-height also forms

a horizontal axis of symmetry ∆ along which the displacement is constant and equal to its

maximum value umax. Thus

uref2 (x, y) = 0.5 cos

(
2π

pwave(x)
(y −H/2)

)
, (1)

where H is the height of the image. The period pwave is modeled by:

pwave = pmini
wave +

pmaxi
wave − pmini

wave

L
(x− 1)/(L− 1), (2)
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where L is the length of the image. pmini
wave and pmaxi

wave are the minimum and maximum values

of the period of the sinusoidal displacement, respectively. x is the abscissa measured in pixel,

thus x lies between 1 and L. The different parameters chosen here are L = 2000 pixels,

H=501 pixels, pmini
wave=10 pixels and pmaxi

wave=150 pixels. This reference vertical displacement

field is depicted in Figure 5-a.
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(a) STAR displacement field

(b) Typical artificial pattern

Figure 5: (a): STAR displacement field used as a reference. (b): Typical artificial speckle
pattern obtained with BSpekleRender [10]

The benefit of using this type of reference displacement field is that one can assess the

progressive attenuation of the displacement retrieved by the measuring technique under study.

Indeed, it is for instance well known that DIC behaves like a low-pass filter [17], so the

amplitude of high-frequency displacements returned by DIC is generally lower than the real

one. A similar behavior is observed in the maps returned by the CNNs developed in [3], thus

leading to also use this type of displacement field in the present study. We chose here the

amplitude of the sine wave to be equal to umax = 0.5 pixel. This setting is useful for DIC
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since the interpolation bias is null for this displacement whatever the nature of the interpolant,

which enables us to investigate other sources of errors. Finally, we will see below that plotting

the cross-section along the midline ∆ of the vertical displacement retrieved by the different

techniques under study provides meaningful information on their metrological performance,

in particular the attenuation of the displacement for the highest frequencies.

This STAR displacement field was used to generate a pair of reference and deformed

artificial speckle images. An example of artificial speckle pattern is shown in Figure 5-b.

Both this image and its deformed version were generated by the same speckle generator as

the one used for rendering the reference images of the dataset discussed in Section 2.2.1

above. However, contrary to images of the dataset used to train the CNNs, the image pattern

deformed through the STAR displacement field is free of any interpolation bias since no

interpolation is used to obtain it [10]. Finally, noise was added to both the reference and

the deformed STAR images when image noise propagation was studied. The same type of

heteroscedastic noise as that descibed in Section 2.2.1 was used.

These reference and deformed images were then used to assess the metrological perfor-

mance of the CNNs under study by comparing the reference STAR displacement with the

displacement retrieved by the CNN from this pair of images. Image noise propagation was

also observed and quantified with such a map by merely comparing displacement fields re-

trieved from noisy and noiseless images.

3 Toward lightweight CNNs

The architecture of StrainNet-f and -h described above was directly inspired from FlowNet-S

developed for solving optical flow problems [5, 6]. In [3], moving on from the -f to the -h

version of the CNN was a first attempt to adapt the architecture to the problem at hand.

The aim here is to go much further by tackling in turn two issues:

• further adapting the architectures of StrainNet-h and -f to estimate displacements fea-
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turing high spatial frequencies such as those of the STAR displacement field described

above;

• simplifying as much as possible the network in order to reduce the calculation time and

the required memory size while keeping as much as possible the metrological performance

obtained with the original versions.

Tackling the first issue consists in studying the number of pyramidal levels and the impact

of their number on the results. The second one, discussed later on in the paper, consists in

reducing the number of filters in each layer of the network to be simplified. Note that the

solution proposed for the first problem consists in reducing the number of layers, which will

also positively contribute to resolving the second problem. Another remark is that developing

CNNs widely relies on heuristics, by using a trial-and-error methodology, and this is precisely

what we did here. We detail below the main stages of our approach, which has eventually led

to a simplified CNN which responds to the two above requirements.

3.1 First step: removing the deepest levels

In this section we mainly examine the contribution of the deepest layers to the solution of the

problem at hand. This is made by progressively removing the deepest levels and retraining

the network. Both the StrainNet-h and -f versions are considered here.

3.1.1 Qualitative illustration of the contribution of the deepest levels

The first step is to examine, from a qualitative point of view, the contribution of the different

levels on the displacement maps. Typical feature maps are shown in the first column of Fig-

ure 6 in order to help the reader figure out what these feature maps exactly are. They represent

typical outputs of layers from different levels located on the left-hand side of StrainNet-f. The

second column gathers typical displacement maps which are the outputs of different decon-

volutions performed on the right-hand side of StrainNet-f. For both columns, increasingly

deeper levels are considered when going from the top to the bottom of the figure.
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(a) typical feature map of level 1 (b) typical feature map of level 1

(c) typical feature map of level 2 (d) typical feature map of level 2

(e) typical feature map of level 3 (f) typical feature map of level 3

(g) typical feature map of level 4 (h) typical feature map of level 4

(i) typical feature map of level 5

Column 1: left-hand side of StrainNet-f

(j) typical feature map of level 5

Column 2: right-hand side of StrainNet-f

Figure 6: Results obtained by processing the STAR image. Left: typical feature maps
obtained as outputs of filters of the left-hand side of StrainNet-f (see Figure 1). The filters

belong to increasingly deeper levels. Right: typical displacement field obtained as outputs of
filters of the right-hand side of StrainNet-f, in pixels. The filters belong to increasingly

deeper levels. All dimensions along the two axes are in pixels.
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Five remarks can be drawn from these maps:

1. The apparent size of the feature maps and the displacement maps is the same in all the

sub-figures but the graduation along the axes shows that the real size of these maps

diminishes when going to the deepest levels. This is due to the successive strides (all

equal to 2 pixels) applied to the maps when going to the deepest levels.

2. In the left-hand side column, the feature maps have the same aspect as the final dis-

placement field. It is however worth noting that their values have different amplitude

and they do not all fluctuate around zero. Choosing other feature maps from the same

levels would lead to other values. It can be observed that their amplitude tends to

decrease when going to the deepest levels.

3. The deeper the levels, the lower the amplitude of the noise affecting the feature maps,

This is due to the fact that the filters, which are successively applied when going to the

deepest levels, progressively reduce the noise level.

4. The left-hand side of the displacement maps returned by the different deconvolutions

shows that the highest frequencies are progressively lost when considering increasingly

deeper levels. Indeed, since the actual size of the maps progressively diminishes, it

becomes progressively impossible to correctly sample the vertical sine displacement fea-

turing the lowest periods. More precisely, the height of the STAR image is 501 pixels.

This height is divided by two each time a stride is applied. It means that after 4 strides,

the height is equal to 501/24 = 31.3125 rounded up to the next integer value, namely

32 pixels. Since the period p of the vertical sine wave goes from 10 to 150 pixels when x

goes from 1 to 2000 pixels [12], the link between p and x reads as follows in the initial

coordinate system: p = 10 + (150− 10)/(2000− 1)× (x− 1). After 4 strides, this equa-

tion becomes p = 10/24 + (150− 10)/(2000− 1)× 24 × (x− 1). In this new coordinate

system, the abscissa x for which the Nyquist frequency is reached satisfies the following
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equation: 2 = 10/24 + (150−10)/(2000−1)× (x−1), thus x ' 20.6 pixels. Indeed, this

is approximately the coordinate for which the cutoff frequency is observed in Figure 6-j.

5. In the right-hand side column, all the feature maps have the same colorbar lying between

-0.5 and 0.5 pixels, the last pair on the very right-hand side being the displacement maps

provided by the CNN.

The main conclusion is that removing the deepest layers should mainly lead the CNN to

focus more on high spatial frequencies, the lowest spatial frequencies being affected by this

removal. This point is discussed further in the next section.

3.1.2 Effect of removing the deepest levels

Figures 7 and 8 show various architectures obtained by progressively reducing the number of

levels in StrainNet-f and -h, respectively. These architectures are obtained by removing the

deepest levels, which correspond to the central bars of the histograms in Figures 2 and 3.
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(a) StrainNet-f3

(b) StrainNet-f2 (c) StrainNet-f1

Figure 7: Various simplified versions of StrainNet-f4 obtained by progressively removing the
central layers of the network. The scale for the dark blue, light red and dark red bars is five

times higher than the scale used for plotting the other bars.
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(a) StrainNet-h4

(b) StrainNet-h3 (c) StrainNet-h2

Figure 8: Various simplified versions of StrainNet-h5 obtained by progressively removing the
central layers of the network. The scale for the dark blue, light red and dark red bars is five

times higher than the scale used for plotting the other bars.

The suffix added to the name writes f-i or h-i, where i is the number of downsampling
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stages in each CNN, thus the architecture becomes more and more simple as i decreases.

With this rule, the original versions of StrainNet-f and StrainNet-h write StrainNet-f4 and

StrainNet-h5 since they exhibit 4 and 5 downsampling stages, respectively. For the sake of

consistency between the names of the initial and simplified versions, we adopt this notation

in the remainder of the document. The same scale is kept for all the sub-figures in order to

better visually observe the decreasing trend of the number of layers and feature maps when

progressively modifying the architecture of the network.

A key point is to know how the reduction of the number of levels impacts the metrological

performance of the CNN. As explained above, we rely for this on the STAR displacement field,

which deforms the artificial speckle image shown in Figure 5-b. Noiseless pairs of reference

and deformed images were processed in turn by the different versions of the CNNs. Figures 9

and 10 a to d show the displacement map retrieved by these different versions, as well as

the error map obtained by subtracting the maps retrieved by each CNN and the reference

displacement map. As expected, this error increases for all the versions when moving to the

highest spatial frequencies, thus to the left-hand side of the maps.

Figures 9-e and 10-e show cross-sections of the displacement and error maps obtained

for all these versions of CNNs. The error maps represented at the bottom of each figure

are calculated columnize (over the zone bordered by the green rectangle in Figure 5-a to

avoid edge effects). This gives a more global estimation compared to the one given by the

cross-section along ∆ only. These curves clearly show the improvement brought about by

the successive modifications on the possibility to reliably detect the details with the highest

spatial frequencies. This is due to the fact that the deepest levels provide feature maps with

the lowest size. Indeed, high numbers of downsampling stages lead to layers which provide

information on the lowest spatial frequencies of the image, thus removing them leads the

network to mainly focus on the determination of the highest spatial frequencies.

An interesting result is that this error tends first to decrease when reducing the number
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(a) StrainNet-f4, MAE = 0.0266 (b) StrainNet-f3, MAE = 0.0230

(c) StrainNet-f2, MAE = 0.0233 (d) StrainNet-f1, MAE = 0.0391

(e) Displacement along ∆ and mean absolute error per column. All dimensions
are in pixels.

Figure 9: Results obtained with noiseless STAR images StrainNet-f.
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(a) StrainNet-h5, MAE = 0.0305 (b) StrainNet-h4, MAE = 0.0276

(c) StrainNet-h3, MAE = 0.0263 (d) StrainNet-h2, MAE = 0.0338

(e) Displacement along ∆ and mean absolute error per column. All dimensions
are in pixels.

Figure 10: Results obtained with noiseless STAR images StrainNet-h.
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of levels of the architecture, except at the end of the simplification procedure, thus when

going from the -f2 to -f1 and from the -h3 to -h2 versions. This may be explained by the

fact that when using -f1 and -h2, higher spatial frequencies can be detected. Compared to

the other simplified versions, this causes a lower smoothing of the displacement maps and a

higher noise level to appear. The visual observation is confirmed by the global error in the

displacement map, which is estimated by the mean absolute error (MAE) calculated over the

field of interest. This quantity is defined by

MAE =
1

NM

N∑
i=1

M∑
j=1

|ue(i, j)− ug(i, j)| (3)

where ue and ug are the estimated displacement and ground truth, respectively, and | · |

denotes the absolute value of “·”. M and N are here the dimensions of the green rectangle in

Figure 5 over which this quantity is calculated. This global indicator is reported in the fourth

line of Tables 1 and 2. This MAE is the smallest for StrainNet-f3 (the result for StrainNet-f2

is very close) and StrainNet-h3.
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Tables 1 and 2 also give the number of layers and parameters to be learned for each modi-

fication of the -f and -h versions of the CNN. It can be seen that these quantities, which reflect

the complexity of the CNN, dramatically decrease when removing levels from the architecture.

This directly impacts the number of operations to be performed to obtain displacement at a

given pixel. This quantity is given by the number of Multiplication-ACcumulation operations

(MAC), which are necessary to obtain the value of the displacement along x and y at each

pixel. This quantity, named MAC/pixel, is given in the third line of both tables. It logi-

cally decreases when going toward the right in these tables, thus to simpler networks. The

MAC/pixel number directly governs the calculation times needed to get a displacement map

from the speckle images while the number of coefficients governs the memory size.

Table 1: Performance of the proposed full-resolution networks

Network StrainNet-f4 StrainNet-f3 StrainNet-f2 StrainNet-f1
(=initial version)

N. parameters ×106 38.68 8.69 3.69 1.31

N. layers 23 15 11 7

MAC/pixel 12.3E5 7.76E5 6.73E5 4.99E5

MAE (pixel) 0.0266 0.0230 0.0233 0.0391

Table 2: Performance of the proposed half-resolution networks

Network StrainNet-h5 StrainNet-h4 StrainNet-h3 StrainNet-h2
(=initial version)

N. parameters ×106 38.68 8.69 3.69 1.31

N. layers 23 15 11 7

MAC/pixel 3.22E5 2.08E5 1.82E5 1.40E5

MAE (pixel) 0.0305 0.0276 0.0263 0.0338

It is worth noting that in these tables, the MAE characterizing StrainNet-f2 is slightly

lower than the MAE characterizing StrainNet-f4 despite a significantly lower number of param-

eters. The same remark holds for StrainNet-h3 and StrainNet-h5, respectively. Furthermore,

StrainNet-f2 and -h3 improve the estimation of the highest spatial frequencies. It can be con-

26



cluded that the quality of the displacement maps returned by StrainNet-f2 and StrainNet-h3

is better for the STAR displacement field than that obtained with the corresponding original

versions of the CNNs, which are respectively StrainNet-f4 and StrainNet-h5. Since the goal of

the second step of this study is to simplify as much as possible the architecture of the CNN,

we finally selected StrainNet-h3 as the best candidate for the next step.

3.2 Second step: reducing the number of filters per layer

This second step consists in reducing the number of filters for each layer of the candidate

selected at the end of the first step, namely StrainNet-h3. The simplification strategy depends

on the nature of the layer:

• Input layer: as gray level images are used as inputs in our case, 2 input channels

(corresponding to the reference and deformed states) are used instead of the 6 input

channels required for RGB images;

• Hidden layers: StrainNet-h3 was simplified by using a filter pruning approach. This

consists in progressively reducing the number of filters in each layer and evaluating the

obtained results after the retraining step. This is repeated until reaching a reasonable

trade-off between accuracy and complexity. The goal here is to keep a metrological

performance close to that of the original versions of StrainNet-h and f;

• Output layer: no simplification is applied because two displacement maps are needed.

Figure 11 shows the architecture of StrainNet-l, the network obtained at the end of this

procedure. Suffix “-l” is justified by the fact that a light CNN is obtained at the end of the two-

step simplification procedure. The main striking point is the global decrease, compared to the

histrogram representing StrainNet-h3 in Figure 8-b, of the height of the bars representing the

number of filters in the different layers. This directly impacts the number of parameters and

MAC/pixel reported in Table 3 without really impairing the MAE values which were initially
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obtained with StrainNet-f4 and -h5. Figure 12 shows the displacement map retrieved by DIC

with 2M+1 = 21 pixels and second-order subset shape functions, StrainNet-f4, StrainNet-

h5, and StrainNet-l. Figures 13 shows the cross-sections of the displacement field along

the midline ∆ as well as the error distributions obtained for all these three versions of CNNs.

These figures clearly show the improvement brought about by StrainNet-l to detect the details

corresponding to the highest spatial frequencies on the left. This is clearer when considering

the cross section of the displacement fields along y at x′ = 100 pixels from the left border

of the green zone in Figure 5, see Figure 14a. The absolute value of the difference between

measured reference displacements is shown in Figure 14b. This difference is, on average, the

lowest with the profile given by StrainNet-l. This is confirmed by calculating the MAE along

this cross-section in each case, see Figure 14c. In conclusion, none of the four procedures

enables us to reliably reconstruct the reference sine displacement, but these results show that

SrainNet-l provides the profile which is the closest to this reference profile.

Table 3 compares the main characteristics of the architecture of the initial CNN versions

of StrainNet-f (StrainNet-f4) and -h (StrainNet-h5) and the ultimate simplified version of

StrainNet-h5, namely StrainNet-l. A Jetson Xavier NX compact power-efficient embedded

GPU, which can potentially be connected to a camera to perform real-time measurements,

was used to compare the performance of these CNNs. This is a compact (70 mm×45 mm),

low-cost and low-power consumption (10 W) device.

As a general remark, it may be quite surprising and puzzling to see that a huge simplifica-

tion of the network in terms of coefficients to be learned (from 38.68 millions to 0.67 million,

thus about 58 times lower) leads to results, which are globally equivalent to those given by

CNNs without simplification. This is due to the fact that StrainNet-h5, which was inspired

from FlowNet-S [5, 6, 3], is much more specialized than the latter. Indeed, the former only

considers speckle images, which is not the case of the latter. Several other simplifications

of CNNs obtained in a similar way are available in the literature, see Refs.[18, 19, 20] for
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Figure 11: Final version of StrainNet-l after simplification of StrainNet-h3. The scale for the
dark blue, light red and dark red bars is five times higher than the scale used for plotting

the other bars.

instance. A possibility, not explored in the present paper, is to apply knowledge distillation,

a procedure which consists in learning a small student model from a large teacher model [21].

This leads to a dramatic reduction of the number of parameters. CNN pruning can also be

used to reduce the network complexity [19]. Pruning typically removes the CNN weights lower

than a given threshold by forcing their value to zero. Pruned networks are known for their

high sparsity (the portion of their weights having a null value), which reduces their model

size as well as their execution time on dedicated hardware. Results shown in [19] feature a

sparsity level of 75% can be reached while maintaining an acceptable loss of accuracy .

The impact of the low value of the MAC/pixel can be seen in the present case, with the

greater value of the Points of Interest per second (PoI/s) of StrainNet-l compared to that of
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StrainNet-h5. The PoI/s is a metric introduced in [1] to estimate the number of points per

second at which a measurement is provided by the measuring system. This is a handy way to

normalize the results obtained with different techniques and different frame sizes, and to fairly

compare them. In the present case, the simplification of the original version of StrainNet-h5

to provide StrainNet-l leads to a factor of 3.3 between their PoI/s.

Finally, we estimated the metrological efficiency indicator of StrainNet-l and compared

this quantity to its counterpart estimated with DIC and the original versions of the CNN.

This indicator was introduced in [12] to compare different measurement techniques, and then

used in other comparative studies, [13] for instance. The lower this indicator, the better

the metrological performance. This quantity, denoted by α, is merely the product of the

displacement resolution denoted by σu by the spatial resolution denoted by d. σu is equal

to the standard deviation of the noise observed in the displacement maps obtained with

noisy speckle images. This quantity was calculated by subtracting the displacement maps

obtained with noisy and noiseless images. d is defined by the lowest period of a sinusoidal

displacement for which the measuring system returns a displacement amplitude affected by a

bias of 10% [22]. Is is obtained by plotting the cross-section along ∆ of the STAR displacement

field returned by the different techniques, and by searching the value of the period of the

vertical sine displacement of the STAR image for which the amplitude is affected by a bias

of 10%. Figures 15, 16 and 17 show a graphical construction leading to this quantity in each

case. This value of α for the different techniques is reported in Table 4. It can be seen that

StrainNet-l is characterized by a value of α, which is close to the one of the initial versions

of StrainNet-f (StrainNet-f4) and StrainNet-h (StrainNet-h5). It is even slightly lower, thus

better. This result means that the performance is globally equivalent between these different

CNN versions. It is also worth noting that the value of α of StrainNet-l lies between that of

DIC used with first-order subset shape functions and its counterpart obtained with second-

order ones. This tends to prove that StrainNet-l can be considered to a viable alternative to
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DIC.

3.3 Summary

In conclusion of this section, it can be said that simplifying the architecture of the CNN

and dividing by 58 the number of coefficients governing the convolutive layers (thus the

memory size) and accelerating the calculations by a factor of 3.3 does not negatively impact

the metrological performance of the measuring system, the latter being estimated by the

metrological efficiency indicator. The main consequence of removing the deepest levels of a

CNN is that this CNN progressively correctly reconstructs ever smaller details since the spatial

resolution decreases, but a negative impact is that the noise level progressively increases. The

tradeoff between the two, reflected by the value of the metrological efficiency indicator, remains

globally unchanged. Note also that it is easier to impair the spatial resolution (thus to increase

this value) and consequently to improve the measurement resolution (thus to diminish this

value) than the contrary. Indeed and for a given CNN architecture, merely spatially filtering

the raw displacement map provided by this CNN by convolving this map with a Gaussian

filter enables one to reach the first goal, while no simple operation is really available to reach

the second one.

Table 3: Comparison between the characteristics of the initial CNNs and the final version
after simplification

Network StrainNet-f4 [3] StrainNet-h5 [3] StrainNet-l

MAC/pixel 12.3E+05 3.22E+05 0.48E+05

Numb. parameters ×106 38.68 38.68 0.672

Numb. layers 23 23 11

MAE 0.0299 0.0333 0.0312

PoI/s (Jetson Xavier NX) 0.23E6 0.84E6 2.8E6
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(a) DIC, 2M+1 = 21 pixels, MAE = 0.0394 (b) StrainNet-f, MAE = 0.0299

(c) StrainNet-h, MAE = 0.0333 (d) StrainNet-l, MAE = 0.0312

Figure 12: 2M+1 = 21 pixels, second-order subset shape functions (b) StrainNet-f4 (c)
StrainNet-h5 and (d) StrainNet-l.

Figure 13: Results obtained with noisy STAR images: displacement along ∆ and mean
absolute error per column. All dimensions are in pixels.
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(a) Cross-section

(b) Absolute error

DIC StrainNet-h StrainNet-f StrainNet-l
0

0.005

0.01

0.015

0.02

M
A

E

(c) Histogram of the MAE

Figure 14: Vertical cross-section of the displacement fields shown in Figure 12 , absolute
error (absolute value of the difference between measurement and reference value), and

histogram of the MAE estimated along this column for these four curves. The curves are
plotted at x′ = 100 pixels from the left border of the green box in Figure 5
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(a) StrainNet-f (b) StrainNet-f3

(c) StrainNet-f2 (d) StrainNet-f1

Figure 15: Seeking the spatial resolution of each version of StrainNet-f. The bias given here
is a percentage of the displacement amplitude, which is equal to 0.5 pixel.

Table 4: Metrological efficiency indicator of DIC, initial CNNs and the final version after
simplification

Algo. DIC, 2M+1=11 DIC, 2M+1=21 DIC, 2M+1=21 StrainNet-f4 [3] StrainNet-h5 [3] StrainNet-l
(1st-order) (1st-order) (2nd-order)

α 0.62 0.59 0.39 0.49 0.46 0.45

4 Application to real images

Before closing the paper, we consider real images obtained during a compression test per-

formed along the vertical direction on the wood specimen shown in Figure 18-a. This test

is presented in detail in Ref. [23]. The corresponding speckle images like those shown in
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(a) StrainNet-h5 (b) StrainNet-h4

(c) StrainNet-h3 (d) StrainNet-h2

Figure 16: Seeking the spatial resolution of each version of StrainNet-h. The bias given here
is a percentage of the displacement amplitude, which is equal to 0.5 pixel.

Figure 18-b were also processed by a CNN in Ref. [3]. Interestingly, the stiffness of the speci-

men changes along the vertical direction because of the annual rings which are clearly visible

in Figure 18-a along the horizontal direction. Here, the vertical displacement is greater than

1 pixel while the CNN is trained on a dataset containing images deformed with a displacement

lower or equal to one pixel only, as justified in Section 2.2.1. As in Ref. [3], the images are

therefore processed sub-domain by sub-domain. These sub-domains are such that the round

value of the displacement is the same within each sub-domain. This round value for the dis-

placement can easily be found by cross-correlation or by applying a rough DIC for instance.
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Figure 17: Seeking the spatial resolution of the simplified CNN. The bias given here is a
percentage of the displacement amplitude, which is equal to 0.5 pixel.

The second option was adopted here. Figures 18-c and -d show first the results obtained by

DIC performed with a shift equal to one pixel between subsets of size 21 × 21 pixels, the

subset shape functions being here bilinear. The strain maps are obtained by convolving the

displacement maps with a derivative kernel defined by the y-derivative of a Gaussian window

of standard deviation equal to 6 pixels. The results obtained with StrainNet-h5 are shown in

Figures 18-e and -f, and those obtained with StrainNet-l in Figures 18-g and -h. The main re-

mark is that the global aspect of the maps is the same, in particular for the displacement maps

where no difference can be detected to the naked eye. Derivation increasing the differences

between the results obtained with different tools, they are more visible in the strain maps.

It can be seen that the strain map is the smoothest with DIC. Details are more pronounced

on the map obtained with StrainNet-h5, which is due to the fact that the highest frequencies

are more easily detected with this tool. This trend is reinforced with StrainNet-l. This is

logical since as mentioned above, the spatial resolution characterizing the maps obtained with

StrainNet-l is smaller (thus better) than its counterpart characterizing the maps obtained

with StrainNet-h5.
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5 Conclusion

In this paper, it is shown that lightweight CNNs can be used to retrieve displacement maps

from pairs of reference/deformed images.“Lightweight” means here that a reasonable number

of levels as well as a small number of filters per level can be potentially be used. We showed

first that it was possible to simplify a CNN proposed in a recent study by using only 4 levels

instead of 6, and that a better global metrological performance (estimated with the MAE)

was obtained with these 4 levels instead of the 6 initial ones. Further simplification was

then performed by reducing the number of filters in the 4 remaining levels, leading to a final

simplified CNN version characterized by 0.67 millions coefficients instead of 38.68 millions for

the initial version. An interesting conclusion is that the performance of this ultimate version

of the CNN is not really affected by this second simplification. This performance globally

lies between that of DIC used with first-order subset shape functions and DIC used with

second-order subset shape functions, which tends to prove that the final lightweight CNN

obtained in this study constitutes a viable alternative to DIC. The main visible effect of these

two successive simplifications of the CNN is to improve the ability of the CNN to detect high

spatial frequencies (thus to improve the spatial resolution) because the deepest layers which

were removed mainly concern low spatial frequencies. The counterpart is that a higher noise

level affects the displacement and strain maps. Another point is that the classic tradeoff

between spatial resolution and measurement resolution can also be tailored by changing the

version of the CNN, a general trend being that the lower the number of levels, the smaller

(thus the better) the spatial resolution and the higher (thus the worse) the measurement

resolution.

As a general remark, the experience on CNNs to measure displacement and strain fields

is currently limited and developing specific CNNs to carry out this task is still a fledgling

activity. Having a clear view on the causal relationship between the numerous factors that

characterize CNNs and the quality of the maps they provide still necessitates additional
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studies, for instance aimed to test other architectures, to change the content of the dataset

used to train them for this specific task, to adjust the way this training is performed, or to

enrich the pool of reference displacement fields used to assess the metrological performance.

This will help bolster the use of CNNs to perform this task, better understand the pros

and cons of CNNs for this type of application and provide important insights on optimizing

their architecture. Another perspective is that considering lightweight CNNs for in-plane

displacement measurement like the one studied in the present study paves the way for future

applications, like the embedment of such CNNs in smart cameras. Such a camera would for

instance be composed of a power-efficient compact GPU linked to a classic dedicated camera.

Such a smart camera would directly provide nearly real-time displacement maps instead of

images of speckle patterns.

Data Availability

https://github.com/DreamIP/StrainNet.
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[15] P. L. Reu, B. Blaysat, E. Andó, K. Bhattacharya, C. Couture, V. Couty, D. Deb, S. S.

Fayad, M. A. Iadicola, S. Jaminion, M. Klein, A. K. Landauer, P. Lava, M. Liu, L. K.
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(a) Specimen before spray-painting, after [23]
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(b) Speckled surface of the specimen after spray
painting, after [23]

(c) DIC, 2M + 1 = 21 pixels (d) DIC, 2M + 1 = 21 pixels

(e) StrainNet-h5 (f) StrainNet-h5

(g) StrainNet-l (h) StrainNet-l

Figure 18: Results obtained by processing real images. Left: v displacement field in pixels.
Right: εyy strain map. All dimensions are in pixels.

42


	Introduction
	StrainNet: how it works
	Architecture
	A reminder about StrainNet 
	Architecture of StrainNet-f
	Architecture of StrainNet-h

	Dataset and training strategy
	Datasets
	Training strategy

	STAR displacement field

	Toward lightweight CNNs
	First step: removing the deepest levels
	Qualitative illustration of the contribution of the deepest levels
	Effect of removing the deepest levels

	Second step: reducing the number of filters per layer
	Summary

	Application to real images
	Conclusion

