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Recursion relation for Toeplitz determinants and the discrete
Painlevé II hierarchy

Thomas Chouteau∗, Sofia Tarricone†

Abstract
Solutions of the discrete Painlevé II hierarchy are shown to be in relation with a family of

Toeplitz determinants describing certain quantities in multicritical random partitions models, for
which the limiting behavior has been recently considered in the literature. Our proof is based
on the Riemann-Hilbert approach for the orthogonal polynomials on the unit circle related to
the Toeplitz determinants of interest. This technique allows us to construct a new Lax pair for
the discrete Painlevé II hierarchy that is then mapped to the one introduced by Cresswell and
Joshi.

1 Introduction
Let us consider the symbol φ(z) = ew(z), with

w(z) := v(z) + v(z−1) and v(z) :=
N∑

j=1

θj

j
zj , (1.1)

for θj being real constants and natural N ≥ 1. The n-th Toeplitz matrix associated to this symbol
and denoted by Tn(φ) is a square (n + 1)-dimensional matrix which entries are given by

Tn(φ)i,j := φi−j , i, j = 0, . . . , n.

Here for every k ∈ Z, φk is the k-th Fourier coefficient of φ(z), namely

φk =
∫ π

−π

e−ikθφ(eiθ) dθ

2π
,

so that
∑

k∈Z φkzk = φ(z). Notice that, even though it is not emphasized in our notation, the
functions φk and thus the Toeplitz matrix Tn(φ) explicitely depend on the natural parameter N
which enters in the definition of v(z) in equation (1.1).
In the present work, it is indeed the dependence on this parameter N that we want to study. In
particular, we show that the Toeplitz determinants associated to Tn(φ), naturally defined as

DN
n := Dn = det(Tn(φ)) (1.2)

are related to some solutions of a discrete version of the Painlevé II hierarchy, indexed over the
parameter N (the dependence on N is dropped in the rest of the paper). Our interest in these Toeplitz
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determinants comes from their appearance in the recent paper [5]. The authors there consider some
probability measures on the set of integer partitions called multicritical Schur measures, which are a
particular case of Schur measures introduced by Okounkov in [18]. These multicritical Schur measures
are generalizations of the classical Poissonized Plancherel measure and they are defined as

P ({λ}) = Z−1sλ [θ1, . . . , θN ]2 , with Z = exp
(

N∑
i=1

θ2
i

i

)
. (1.3)

Here sλ [θ1, . . . , θN ] denotes a Schur symmetric function indexed by a partition λ that can be ex-
pressed as sλ [θ1, . . . , θN ] = deti,j hλi−i+j [θ1, . . . , θN ] where

∑
k≥0 hkzk = exp

(∑N
i=1

θi

i zi
)

. In this
setting, denoting by λ = (λ1 ≥ λ2 ≥ · · · ≥ 0) a generic integer partition and by λ′ = (λ′

1 ≥ λ′
2 ≥

· · · ≥ 0) its conjugate partition (namely such that λ′
j = |i : λi ≥ j|), major quantities of interest of

the model are, for any given n ∈ N,

rn := P(λ1 ≤ n) and qn := P(λ′
1 ≤ n), (1.4)

that are often called discrete gap probabilities as random partitions have a natural interpretation
in terms of random configuration of points on the set of semi-integers. Indeed, associating the set
{λi − i + 1/2} ⊂ Z+ 1

2 to a partition λ (see [18]), rn and qn can be expressed in terms of a Fredholm
determinant of a discrete kernel which corresponds to the gap probability in the determinantal point
process defined through the same kernel.
According to Geronimo-Case/Borodin-Okounkov formula [7], there is a relation between this Fred-
holm determinant and the Toeplitz determinant Dn and this implies that rn and qn (up to a constant
factor) are Toeplitz determinants. It leads to (for instance [5], Proposition 6 and 7):

qn = e−
∑N

j=1
θ2

j /j
Dn−1. (1.5)

For rn instead, one should define θ̃i = (−1)i−1θi and by taking w̃(z) = ṽ(z) + ṽ(z−1) where ṽ(z) is
nothing than v(z) with θi replaced by θ̃i as given above, the Toeplitz determinant D̃n associated to
the symbol φ̃(z) = ew̃(z) would give the analogue formula

rn = e−
∑N

j=1
θ̃2

j /j
D̃n−1.

Notice that in the simplest case, when N = 1, the quantities rn and qn coincide. Moreover, thanks
to Schensted’s theorem [22], they are also equal to the discrete probability distribution function of the
length of the longest increasing subsequence of random permutations of size m, with m distributed
as a Poisson random variable.

In the case N = 1, the relation of these quantities with the theory of discrete Painlevé equations
was shown two decades ago independently and through very different methods by Borodin [6], Baik
[2], Adler and Van Moerbeke [1] and Forrester and Witte [16]1. In particular they all proved that
for every n ≥ 1, the following chain of equalities holds

DnDn−2

D2
n−1

= qn+1qn−1

q2
n

= rn+1rn−1

r2
n

= 1 − x2
n (1.6)

where xn solves the second order nonlinear difference equation

θ1(xn+1 + xn−1)(1 − x2
n) + nxn = 0, (1.7)

1They obtained an analogue of equation (1.6) for Toeplitz determinant associated to symbols which are not neces-
sarily positive or even real valued.
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with certain initial conditions. Equation (1.7) is a particular case of the so called discrete Painlevé
II equation [21], a discrete analogue of the classical second order ODE known as the Painlevé II
equation [19]. This means that performing some continuous limit of equation (1.7) one gets back the
Painlevé II equation.

For N > 1, Adler and van Moerbeke presented in [1], a generalization of equation (1.6) by proving
that xn satisfies some recurrence relation written in terms of the Toeplitz lattice Lax matrices. The
main result of our work is to present a recurrence relation for xn defined via a N -times iterating
discrete operator which establishes the link with the discrete Painlevé II hierarchy [10]. The precise
result is stated as below.

Theorem 1.1. For any fixed N ≥ 1, for the Toeplitz determinants Dn (1.2), n ≥ 1 associated to the
symbol φ(z) (1.1), we have

DnDn−2

D2
n−1

= 1 − x2
n (1.8)

where xn solves the 2N order nonlinear difference equation

nxn +
(
−vn − vnPermn + 2xn∆−1 (xn − (∆ + I)xnPermn)

)
LN (0) = 0 (1.9)

where L is a discrete recursion operator defined as

L(un) :=
(
xn+1

(
2∆−1 + I

)
((∆ + I) xnPermn − xn) + vn+1 (∆ + I) − xnxn+1

)
un. (1.10)

Here vn := 1 − x2
n, ∆ denotes the difference operator

∆ : un → un+1 − un

and Permn is the transformation of the space C
[
(xj)j∈[[0,2n]]

]
acting by permuting indices in the

following way
Permn : C

[
(xj)j∈[[0,2n]]

]
−→ C

[
(xj)j∈[[0,2n]]

]
P ((xn+j)−n⩽j⩽n) 7−→ P ((xn−j)−n⩽j⩽n) .

(1.11)

Remark 1.2. According to equation (1.9) and the definition of the operator L (1.10) we need
to perform discrete integrations to compute the N -th equation of the discrete Painlevé II hierar-
chy. It is always possible to accomplish this discrete integration. The operator ∆−1 is applied to
(∆ + I) xnPermn − xn and it is possible to write this operator as a derivative. Indeed

(∆ + I) xnPermn − xn = ∆xnPermn + (Permn − I)xn

The first term on the right hand side is a derivative and because of the definition of Permn, the
second term can be expressed as a derivative.

Equation (1.9), together with the definition of the recursion operator L in (1.10), of the quantity
vn and of the transformation Permn in (1.11) is indeed the N -th member of the discrete Painlevé II
hierarchy. The first equations of the hierarchy read as

N = 1 : nxn + θ1(xn+1 + xn−1)(1 − x2
n) = 0, (1.12)

N = 2 : nxn + θ1(1 − x2
n) (xn+1 + xn−1)

+ θ2(1 − x2
n)
(
xn+2(1 − x2

n+1) + xn−2(1 − x2
n−1) − xn(xn+1 + xn−1)2) = 0 (1.13)
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N = 3 : nxn + θ1(1 − x2
n) (xn+1 + xn−1) +

+ θ2(1 − x2
n)
(
xn+2(1 − x2

n+1) + xn−2(1 − x2
n−1) − xn(xn+1 + xn−1)2) (1.14)

+ θ3(1 − x2
n)
(
x2

n(xn+1 + xn−1)3 + xn+3(1 − x2
n+2)(1 − x2

n+1) + xn−3(1 − x2
n−2)(1 − x2

n−1)
)

+ θ3(1 − x2
n)
(
−2xn(xn+1 + xn−1)(xn+2(1 − x2

n+1) + xn−2(1 − x2
n−1)) − xn−1x2

n−2(1 − x2
n−1)

)
+ θ3(1 − x2

n)
(
−xn+1x2

n+2(1 − x2
n+1) − xn+1xn−1(xn+1 + xn−1)

)
= 0,

with the first one coinciding with the discrete Painlevé II equation (1.7). Computations with the
operator (1.10) introduced in Theorem 1.1 for N = 1 and 2 are done in Example 3.11.

Remark 1.3. Notice that for N = 1, 2 the above equations coincide with the ones found in [1]. Also
notice that in the physical literature, Periwal and Schewitz [20] found similar discrete equations for
N = 1, 2 (with different coefficients sign) in the context of unitary matrix models and used their
solutions to evaluate the behavior of some typical integrals in the large dimensional limit passing
through the continuous limit of their discrete equations.

The first construction of a discrete Painlevé II hierarchy in [10] used the integrability property
of the continuous one, in the following sense. It is well known that the classical Painlevé II equation
admits an entire hierarchy of higher order analogues. Indeed, this equation can be obtained as a self-
similarity reduction of the modified KdV equation. Thus, the higher order members of the Painlevé
II hierarchy are nothing than analogue self-similarity reductions of the corresponding higher order
members of the modified KdV hierarchy (see e.g. [12]). In some way, this implies that the Lax
representation of the KdV hierarchy in terms of isospectral deformations becomes for the Painlevé
II hierarchy a Lax representation in terms of isomonodromic deformations [9].

In [10] then, the discrete Painlevé II hierarchy is defined as the compatibility condition of a sort of
“discretization” of the Lax representation of the Painlevé II hierarchy. In particular, they considered
the compatibility condition of a linear 2 × 2 matrix-valued system of the following type

Φn+1(z) = Ln(z)Φn(z), ∂

∂z
Φn(z) = Mn(z)Φn(z), (1.15)

where the coefficients Ln(z), Mn(z) are explicit matrix-valued rational function in z, depending on
xℓ, ℓ = n + N, . . . , n − N, in some recursive (on N) way. This allows the authors there to compactly
write the N -th discrete Painlevé II equation using some recursion operators. The linear system that
we obtain in Proposition 2.11 and that encodes our hierarchy as written in (1.9) is mapped into the
one of [10] through an explicit transformation, as shown in Propostion 2.17, thus implying that (1.9)
is indeed the same discrete Painlevé II hierarchy.

Continuous limit The aim of this paragraph is to explain heuristically the reason why our result
given in Theorem 1.1 can be considered as the discrete analogue of the generalized Tracy–Widom
formula for higher order Airy kernels (namely the result contained in Theorem 1.1 of [8]).
For N = 1, Borodin in [6] already pointed out that formula (1.6) with (1.7) can be seen as a discrete
analogue of the classical Tracy-Widom formula for the GUE Tracy-Widom distribution [23, 24]. In
other words, he described how to pass from the left to the right in the picture below

“Discrete case”

DnDn−2 − D2
n−1

D2
n−1

= −x2
n,

with nxn + θ(1 − x2
n)(xn+1 + xn−1).

“Continuous case”

d2

dt2 log det(1 − KAi|(t,+∞)) = −u2(t),

with u′′(t) = 2u3(t) + tu(t), u(t) ∼
t→∞

Ai(t).

Baik-Deift-Johansson
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where Ai(t) denotes the classical Airy function and KAi denotes the integral operator acting on
L2(R) through the Airy kernel. This connection was achieved by using the scaling limit computed by
Baik, Deift and Johansonn in [3] for the distribution of the first part of partitions in the Poissonized
Plancherel random partition model (which is recovered in Theorem 1 of [5] for N = 1). In some
way, as emphasized by Borodin, their result not only assures the existence of a limiting function for
the Dn, in this case D(t) = det(1 − KAi|(t,+∞)), for a certain continuous variable t. It also encodes
already how the discrete function xn, should be rescaled in terms of a differentiable function u(t) to
get back, from the recursion relation for Dn, the Tracy-Widom formula.
To generalize this result for the case N > 1, we proceed by adapting the method used by Borodin in
[6] for N = 1 to the higher order cases, using the scaling proposed in [5]2 for the multicritical case
(notice that their n corresponds to our N), instead of the Baik-Deift-Johansson’s one that only holds
for N = 1.

We recall that Dn is the Toeplitz determinant associated to the symbol φ(z) (1.1) (which depends
on θi, i = 1, ..., N and thus on N). In the following discussion we write explicitly the dependence on
the family of parameters (θi), i = 1, ..., N of Dn = Dn(θi), xn = xn(θi), rn = rn(θi) and qn = qn(θi).
Consider equation (1.8) written in terms of the Toeplitz determinants Dn(θi) in this way

Dn−2(θi)Dn(θi) − D2
n−1(θi)

D2
n−1(θi)

= −x2
n(θi). (1.16)

From the equation (1.5), this previous equation can be expressed in terms of qn(θi) defined as (1.4).
It becomes

qn−1(θi)qn+1(θi) − q2
n(θi)

q2
n(θi)

= −x2
n(θi). (1.17)

According to Lemma 8 in [5], with the change of parameters θ̃i = (−1)i−1θi, we have qn(θi) = rn(θ̃i).
Thus equation (1.17) now reads as

rn−1(θ̃i)rn+1(θ̃i) − r2
n(θ̃i)

r2
n(θ̃i)

= −x2
n(θi). (1.18)

Following the scaling limit described in Theorem 1 of [5], we define the following scaling for the
discrete variable n

n = bθ + tθ
1

2N+1 d− 1
2N+1 , ⇐⇒ t = (n − bθ)θ− 1

2N+1 d
1

2N+1 (1.19)

with b, d defined as
b = N + 1

N
, d =

(
2N

N − 1

)
and choose θ̃i (respectively θi) all proportional to θ = θ̃1 = θ1 in the following way

θ̃i = (−1)i−1 (N − 1)!(N + 1)!
(N − i)!(N + i)! θ, i = 1, . . . , N.

respectively
θi = (N − 1)!(N + 1)!

(N − i)!(N + i)! θ, i = 1, . . . , N. (1.20)

Now recall the definition of rn(θ̃i) (1.4) in function of P = Pθ̃i
(see equation (1.3) for the definition of

P and the dependence on the family of parameters (θi)). From the previous scaling it is now possible
2Up to the correction of the typo d → d−1 in their statement of Theorem 1.
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to express rn(θ̃i) in function of t and θ

rn(θ̃i) = Pθ̃i

(
λ1 − bθ

(θd−1) 1
2N+1

⩽ t

)
(1.21)

and according to Theorem 1 of [5], the limiting behavior of the probability distribution function of
λ1 in this setting is given by

lim
θ→+∞

rn(θ̃i) = lim
θ→+∞

Pθ̃i

(
λ1 − bθ

(θd−1) 1
2N+1

⩽ t

)
= FN (t), with FN (t) = det(1 − KAi2N+1 |(t,∞)) (1.22)

where KAi2N+1 is the integral operator acting with higher order Airy kernel (see for instance equation
(2.7) in [5]).
As we did for rn(θ̃i) in equation (1.21), we express rn+1(θ̃i) and rn−1(θ̃i) in function of t and θ.

rn±1(θ̃i) = Pθ̃i

(
λ1 − bθ

(θd−1) 1
2N+1

⩽ t ± (θd−1)− 1
2N+1

)

With this discussion and this scaling for n, (θi) and (θ̃i), we deduce that

− lim
θ→+∞

x2
n(θi)

(θd−1)− 2
2N+1

= lim
θ→+∞

rn−1(θ̃i)rn+1(θ̃i) − r2
n(θ̃i)

(θd−1)− 2
2N+1 r2

n(θ̃i)
= d2

dt2 log FN (t)

where the first equality comes from equation (1.18) and the second from equation (1.22).

From now on we drop the dependence on θi, i = 1, . . . , N in the notation. The previous equation
suggests that, in order to be consistent with Theorem 1.1 of [8], the discrete function xn appearing
in formula (1.16) in the scaling (1.19) for n and (1.20) for (θi) limit should be

−x2
n ∼ −(θ)− 2

2N+1 d
2

2N+1 u2(t)

with u(t) solution of the N -th equation of the Painlevé II hierarchy. This can be proved directly by
computing the scaling limit of the equations of the discrete Painlevé II hierarchy we found for xn in
Theorem 1.1. Indeed, for every fixed N , we write xn as

xn = (−1)nθ− 1
2N+1 d

1
2N+1 u(t) (1.23)

with u(t) a smooth function of the variable t defined as in equation (1.19). Now recall that xn solves
the discrete equation (1.9) of order 2N for every N ≥ 1. The continuous limit of the discrete equations
of the hierarchy (1.9), under the definition of xn (1.23) and the scaling of the parameters θi as (1.20),
gives the equations of the classical Painlevé II hierarchy. For any fixed N the computation should be
done in the same way: consider the N -th discrete equation of the hierarchy (1.9) and replace each θi

with the values given in formula (1.20). Then substitute xn with the definition in (1.23) and for θ →
+∞ compute the asymptotic expansion of every term xn+K ∝ u(t+Kθ− 1

2N+1 d
1

2N+1 ), K = −N, . . . , N
appearing in the discrete equation. The coefficient of θ−1 resulting after this procedure coincides
indeed with the N -th equation of the Painlevé II hierarchy. For N = 1, 2, 3 the computations are
explicitly done in the Appendix A.
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Methodology and outline The rest of the work is devoted to prove Theorem 1.1. In order to
do so, we introduce the classical Riemann-Hilbert characterization [4] of the family of orthogonal
polynomials on the unit circle (OPUC for brevity) with respect to a measure defined by the symbol
φ(z). Classical results from orthogonal polynomials theory allow to achieve almost directly formula
(1.16) where xn is defined as the constant term of the n-th monic orthogonal polynomial of the
family. The Riemann-Hilbert problem for the OPUC is then used to deduce a linear system of the
same type of (1.15) which is proven to be in relation with the Lax pair introduced by Cresswell and
Joshi [10] for the discrete Painlevé II hierarchy. This is done in Section 2. The explicit computation
of the Lax pair together with the construction of the recursion operator and the hierarchy for xn as
written in (1.9) are done in Section 3.

2 OPUC: the Riemann-Hilbert approach and a discrete Painlevé
II Lax pair

In this section we introduce the relevant family of orthogonal polynomials on the unit circle. We
recall some of their properties and their Riemann–Hilbert characterization. Afterward we derive a
Lax pair associated to the Riemann-Hilbert problem and establish the relation with the Lax pair for
discrete Painlevé II hierarchy (1.15) introduced by Cresswell and Joshi [10]. The proofs of the results
for orthogonal polynomials stated in here can be found in the classical reference [4].
We denote by S1 the unitary circle in C counterclockwise oriented. We consider the following positive
measure on S1 (absolutely continuous w.r.t. the Lebesgue measure there)

dµ(θ) = ew(eiθ)

2π
dθ, (2.1)

where the function w(z) for any z ∈ C is given as in equation (1.1). The family of orthogonal
polynomials on the unitary circle (OPUC) w.r.t. the measure (2.1) is defined as the collection of
polynomials {pn(z)}n∈N written as

pn(z) = κnzn + . . . κ0, κn > 0 (2.2)

and such that the following relation holds for any index k, h∫ π

−π

pk(eiθ)ph(eiθ)dµ(θ)
2π

= δk,h.

The family of monic orthogonal polynomials {πn(z)} associated to the previous ones is defined in
analogue way, so that pn(z) = κnπn(z).

2.1 Toeplitz determinants related to OPUC
We recall that φ(z) = ew(z), z ∈ S1 with w(z) defined as in (1.1) and for every k ∈ Z, we defined the
k-th Fourier coefficient

φk =
∫ π

−π

e−ikθφ(eiθ) dθ

2π

and we considered the Toeplitz matrix Tn(φ) of dimension (n + 1) given by

Tℓ(φ)i,j := φi−j , i, j = 0, . . . , n

and its determinant Dn := det(Tn(φ)) (by convention D−1 = 1). Because φ(z) is a real nonnegative
function, Dn ∈ R>0.
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Proposition 2.1. Given that φ(z) is a real nonnegative function, we have that

pℓ(z) = 1√
DℓDℓ−1

det


φ0 φ−1 . . . φ−ℓ+1 φ−ℓ

φ1 φ0 . . . φ−ℓ+2 φ−ℓ+1
...

...
. . .

...
...

φℓ−1 φℓ−2 . . . φ0 φ−1
1 z . . . zℓ−1 zℓ

 , ℓ ≥ 0. (2.3)

Proof. The proof is similar to the one for the orthogonal polynomials on the real line, that can be
found e.g. in [11], equation (3.5) and following discussion.

Corollary 2.2. The ratio of two consecutive Toeplitz determinants is expressed as

Dℓ−1

Dℓ
= κ2

ℓ , ℓ ≥ 0. (2.4)

Proof. Thanks to formula (2.3), we have that

pℓ(z) = 1√
DℓDℓ−1

det


φ0 φ−1 . . . φ−ℓ+1
φ1 φ0 . . . φ−ℓ+2
...

... . . . ...
φℓ−1 φℓ−2 . . . φ0

 zℓ + · · · =
√

Dℓ−1

Dℓ
zℓ + . . . ,

and by definition pℓ(z) = κℓπℓ(z) with the latter being the ℓ-th monic orthogonal polynomial on S1.
Thus formula (2.4) follows.

2.2 Riemann-Hilbert problem associated to OPUC
The family {πn} of orthogonal polynomials has a well known characterization in terms of a 2 × 2
dimensional Riemann-Hilbert problem, also depending on n ≥ 0.

Riemann-Hilbert Problem 2.3. The function Y (z) := Y (n, θj ; z) : C → GL(2,C) has the follow-
ing properties:

(1) Y (z) is analytic for every z ∈ C \ S1;

(2) Y (z) has continuous boundary values Y±(z) while approaching non-tangentially S1 either from
the left or from the right, and they are related for all z ∈ S1 through

Y+(z) = Y−(z)JY (z), with JY (z) =
(

1 z−new(z)

0 1

)
;

(3) Y (z) is normalized at ∞ as

Y (z) ∼

I +
∞∑

j=1

Yj(n, θj)
zj

 znσ3 , z → ∞,

where σ3 denotes the Pauli’s matrix σ3 :=
(

1 0
0 −1

)
.
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It is known from [3] that the above Riemann-Hilbert problem, for each n ≥ 0, admits a unique
solution which is explicitly written in terms of the family {πn(z)}. Before stating the result, we
introduce the following notation. For every polynomial q(z), its reverse polynomial q∗(z) is defined
as the polynomial of the same degree such that

q∗(z) := znq (z̄−1).

For every (Lp(S1)) function f(y), its Cauchy transform Cf(z) is defined for any z /∈ S1 as

(Cf(y)) (z) := 1
2πi

∫
S1

f(y)
y − z

dy.

Remark 2.4. Notice that the results in [3] for the Riemann–Hilbert characterization a family of
orthogonal polynomials on the unit circle are a sort of extension of the results known from [14, 15]
for the case of orthogonal polynomials on the real line.

Theorem 2.5. For every n ≥ 0, the Riemann-Hilbert problem 2.3 admits a unique solution Y (z)
that is written as

Y (z) =
(

πn(z) C
(
y−nπn(y)ew(y)) (z)

−κ2
n−1π∗

n−1(z) −κ2
n−1C

(
y−nπ∗

n−1(y)ew(y)) (z)

)
. (2.5)

Moreover, det(Y (z)) ≡ 1.

Proof. See Lemma 4.1 in [3].

The solution Y (z) has a symmetry which will be very useful in the following section.

Corollary 2.6. The unique solution Y (z) of the Riemann-Hilbert problem 2.3 is such that

Y (z) = σ3Y (0)−1Y (z−1)znσ3σ3, (2.6)
Y (z) = Y (z̄). (2.7)

Proof. See Proposition 5.12 in [4].

Notice that the factor Y (0) = Y (n, θj ; 0) appearing in equation (2.6) has a very explicit form, by
equation (2.5). This will be useful in the following sections.

Lemma 2.7. For every n ≥ 0 we have

Y (0) = Y (n, θj ; 0) =
(

xn κ−2
n

−κ2
n−1 xn

)
, (2.8)

where we denoted with xn := πn(0) and κn is defined as in equation (2.2). Moreover, we have

κ2
n−1
κ2

n

= 1 − x2
n (2.9)

and we have xn ∈ R.

Proof. The first column of Y (n; 0) directly follows from the evaluation in z = 0 of Y (n; z) as given
in equation (2.5). Indeed Y 11(n; 0) = πn(0) and Y 21(n; 0) = −κ2

n−1π∗
n−1(0) but we observe that

π∗
n−1(0) = zn−1πn−1(z̄−1)|z=0 = zn−1(z−(n−1) + · · · + πn−1(0))|z=0 = 1.
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Thus we conclude that Y 21(n; 0) = −κ2
n−1. For what concerns the second column of Y (n; 0), we first

find the (2, 2)-entry. This is indeed easily deduced from the symmetry given in (2.6). In the limit
for z → ∞ it gives

Y (n; 0) = σ3Y −1(n; 0)σ3,

thus Y 22(n; 0) = Y 11(n; 0) = πn(0). Finally for the entry (1, 2) of Y (n; 0), we compute it explicitly
using the orthonormality property of the polynomials pm(z)

Y 12(n; 0) = 1
2πi

∫
S1

πn(s)s−nw(s)
s

ds =
∫ π

−π

πn(eiθ)einθw(eiθ) dθ

2π
= 1

κ2
n

∫ π

−π

pn(eiθ)pn(eiθ)w(eiθ) dθ

2π

= 1
κ2

n

.

Equation (2.9) comes from the fact that det(Y (n, θj ; z)) = 1 identically in z and so in particular for
z = 0 by writing Y (n, θj ; 0) as in equation (2.8), relation (2.9) is obtained.

Finally, the fact that xn is real follows from the entry (1, 1) of equation (2.7) together with
equation (2.5).

At this point, we are already able to express the ratio of Toeplitz determinants in terms of the
costant term of the monic orthogonal polynomials, as follows.

Corollary 2.8. For every n ≥ 1, the Toeplitz determinants Dn satisfy the recursion relation

Dn−2Dn

D2
n−1

= 1 − x2
n. (2.10)

Proof. Putting together equation (2.9) with equation (2.4) (for two consecutive integers) we obtain
the recursion relation (2.10).

We emphasize again that the symbol φ(z) actually depends on the natural parameter N , so the
Toeplitz determinants Dn, n ≥ 1 (1.2) do as well as xn = πn(0), n ≥ 1 do (since it is the constant
coefficient of the n-th monic OPUC w.r.t. the N -depending measure (2.1), (1.1)). The N -dependence
of the latter will be emphasized in the following section, where xn is proved to be a solution of the
N -th higher order generalization of the discrete Painlevé II equation.

We consider now the following matrix-valued function

Ψ(n, θj ; z) :=
(

1 0
0 κ−2

n

)
Y (n, θj ; z)

(
1 0
0 zn

)
ew(z) σ3

2 . (2.11)

Thanks to the properties of Y (z; n, θj) from the RH problem 2.3 one can prove that Ψ(n, θj ; z)
satisfies the following RH problem.

Riemann-Hilbert Problem 2.9. The function Ψ(z) := Ψ(n, θj ; z) : C → GL(2,C) has the follow-
ing properties:

(1) Ψ(z) is analytic for every z ∈ C \ {S1 ∪ {0}};

(2) Ψ(z) has continuous boundary values Ψ±(z) while approaching non-tangentially S1 either from
the left or from the right, and they are related for all z ∈ S1 through

Ψ+(z) = Ψ−(z)J0, J0 =
(

1 1
0 1

)
. (2.12)
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(3) Ψ(z) has asymptotic behavior near 0 given by

Ψ(z) ∼
(

1 0
0 κ−2

n

)
Y (0)

I +
∞∑

j=1
zj Ỹj(n)

(1 0
0 zn

)
ew(z) σ3

2 , z → 0. (2.13)

(4) Ψ(z) has asymptotic behavior near ∞ given by

Ψ(z) ∼
(

1 0
0 κ−2

n

)I +
∞∑

j=1

Yj(n)
zj

(zn 0
0 1

)
ew(z) σ3

2 , |z| → ∞. (2.14)

Proposition 2.10. The function Ψ(n, θj ; z) defined in (2.11) solves the Riemann–Hilbert problem
2.9.

Proof. The analyticity condition and the asymptotic expansions at 0, ∞ given in (2.13), (2.14) follows
directly from the definition (2.11) and the fact that Y (z) solves the RH problem 2.3. Condition (2.12)
follows from direct computation

Ψ(z)+ =
(

1 0
0 κ−2

n

)
Y+(z)

(
1 0
0 zn

)
ew(z) σ3

2 =
(

1 0
0 κ−2

n

)
Y−(z)JY (z)

(
1 0
0 zn

)
ew(z) σ3

2

= Ψ−(z)
(

1 0
0 z−n

)
e−w(z) σ3

2

(
1 z−new(z)

0 1

)(
1 0
0 zn

)
ew(z) σ3

2

= Ψ−(z)
(

1 1
0 1

)
.

2.3 A linear differential system for Ψ(z)
From the solution of the Riemann-Hilbert problem 2.9 we deduce the following equations (in the
following we omit in Ψ the dependence on θj that should be considered only as parameters and not
actual variables as n, z).

Proposition 2.11. We have

Ψ(n + 1, z) = U(n, z)Ψ(n, z), ∂zΨ(n, z) = T (n, z)Ψ(n, z) (2.15)

with
U(n, z) :=

(
z + xnxn+1 −xn+1

−(1 − x2
n+1)xn 1 − x2

n+1

)
= σ+z + U0(n) (2.16)

and

T (n, z) := T1(n)zN−1 + T2(n)zN−2 + ... + T2N+1(n)z−N−1 =
2N+1∑
k=1

TkzN−k, (2.17)

where
T1(n) = θN

2 σ3. (2.18)
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Proof. We first prove the first equation. We start by defining the quantity U(n, z) := Ψ(n +
1, z)Ψ−1(n, z). Since the jump condition for Ψ(z) (2.12) is independent of n, U(n, z) is analytic
everywhere. Plugging in equation (2.14) we have the expansion at ∞

U(n, z) =
(

1 0
0 κ−2

n+1

)(
I + Y1(n + 1)

z
+ O(z−2)

)
z(n+1)σ3

(
1 0
0 z

)
z−nσ3

(
I − Y1(n)

z
+ O(z−2)

)(
1 0
0 κ2

n

)
,

from which we deduce that U(n, z) is a polynomial in z of degree 1, by Liouville theorem. Moreover
its matrix-valued coefficient are written as

U(n, z) = z

(
1 0
0 0

)
+
(

1 0
0 κ−2

n+1

)
Y (n + 1; 0)

(
1 0
0 0

)
Y −1(n; 0)

(
1 0
0 κ2

n

)
=U0(n)

.

Doing the computation and using equation (2.8) we obtain

U0(n) =
(

Y 11(n + 1; 0)Y 22(n; 0) −κ2
nY 11(n + 1; 0)Y 12(n; 0)

κ−2
n+1Y 21(n + 1; 0)Y 22(n, 0) −Y 21(n + 1; 0)Y 12(n; 0)

)
=
(

xn+1xn −xn+1
−(1 − x2

n+1)xn 1 − x2
n+1

)
.

For what concerns the second equation, we define T (n, z) := ∂zΨ(n; z)Ψ−1(n; z). From the asymp-
totic behavior of Ψ(n; z) at 0 and ∞ we can deduce that T (n; z) is a meromorphic function in z with
behavior at ∞ described by

T (n; z) ∼
(

1 0
0 κ−2

n

)(
I + Y1(n)

z
+ O(z−2)

)
V ′(z)

2 σ3

(
I − Y1(n)

z
+ O(z−2)

)(
1 0
0 κ2

n

)
(polynomial behavior of degree N − 1) while at 0 its behavior is described by

T (n; z) ∼
(

1 0
0 κ−2

n

)
Y (n, 0)

(
I + Ỹ1(n)z + O(z2)

) −V ′(z−1)
2z2 σ3

(
I − Ỹ1(n)z + O(z2)

)(1 0
0 κ2

n

)
,

i.e. there is a pole of order N + 1. In conclusion we can write

T (n; z) = θN

2 σ3zN−1 + T2(n)zN−2 + · · · + T2N+1(n)z−N−1.

Moreover, thanks to the symmetry for the solution of the Riemann–Hilbert problem Y (z) stated
in (2.6), we have that the coefficient matrix T (n, z) satisfies a symmetry property.

Proposition 2.12. T (n, z) has the following symmetry

T (n, z−1) = −z2 (K(n)T (n, z)K(n)−1 − nz−1I2
)

, (2.19)

with K(n) :=
(

1 0
0 κ−2

n

)
Y (n; 0)σ3

(
1 0
0 κ2

n

)
.

Remark 2.13. Notice that for all n, the matrix K(n) is s.t. K(n)−1 = K(n) since we have the
identity x2

n + κ2
n−1
κ2

n
= 1.

Proof. On the one hand,
∂z(Ψ(n, z−1)) = − 1

z2 T (n, z−1)Ψ(n, z−1)
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On the other hand, using the symmetry (2.6) for Y we deduce the following symmetry for Ψ:

Ψ(n, z−1) = z−n

(
1 0
0 κ−2

n

)
Y (0)σ3

(
1 0
0 κ2

n

)
Ψ(n, z)σ3.

This previous equation leads to

∂z(Ψ(n, z−1)) = z−n

(
1 0
0 κ−2

n

)
Y (0)σ3

(
1 0
0 κ2

n

)
∂zΨ(n, z)σ3 − nz−1Ψ(n, z−1).

Then

T (n, z−1) = −z2
((

1 0
0 κ−2

n

)
Y (0)σ3

(
1 0
0 κ2

n

)
T (n, z)

(
1 0
0 κ−2

n

)
σ3Y (0)−1

(
1 0
0 κ2

n

)
− nz−1I2

)
.

The symmetry (2.19) reflects on the coefficients Tk(n), k = 1, . . . , 2N + 1 as written below.
Corollary 2.14. The coefficients Tk(n), k = 1, . . . , 2N + 1 satisfy

Tj(n) = −K(n)T2N+2−j(n)K(n)−1, j = 1, . . . , N (2.20)
TN+1(n) = −K(n)TN+1(n)K(n)−1 + nI2. (2.21)

Proof. Indeed, by replacing the exact shape of T (n, z) in equation (2.19) we have
2N+1∑
k=1

Tk(n)z−N+k = T (n, z−1) = −z2

(2N+1∑
k=1

KTk(n)K−1zN−k − nz−1I2

)

= −
2N+1∑
k=1

KTk(n)K−1zN+2−k + nzI2

= −
2N+1∑
j=1

KT2N+2−j(n)K−1z−N+j + nzI2

so looking at the powers z−N+j for j = 1, . . . , N we get equation (2.20) and for j = N + 1 we get
equation (2.21).

Notice first that from equations (2.20) if the first N + 1 coefficients of T (n, z) are known, then
we can obtain the remaining ones. Second, notice that the coefficient TN+1(n) plays an important
role since it solves an equation, the one given in (2.21).

2.4 Relation with the Cresswell-Joshi Lax pair
To conclude this section, we describe how the Lax pair (2.15) is related with the one of the discrete
Painlevé II hierarchy (1.15) originally introduced by Cresswell and Joshi in [10]. More precisly, they
considered the following system
Definition 2.15. Let Φ(n, z) be a 2 × 2 matrix satisfying

Φ(n + 1, z) =
(

z xn

xn 1/z

)
Φ(n, z) = Ln(z)Φ(n, z) (2.22)

∂

∂z
Φ(n, z) = M(n, z)Φ(n, z)

where M(n, z) =
(

An(z) Bn(z)
Cn(z) −An(z)

)
with An, Bn and Cn rational in z (and depending also on N).

(Ln(z), Mn(z)) is the Lax pair for the discrete Painlevé II hierarchy.
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Remark 2.16. Specifically, in section 3.1 of [10], the authors proved that the compatibility condition
of the system (2.22) defines the coefficients of the matrix M(n, z), leaving in turns only one discrete
equation of order 2N for xn. This is defined as the N -th member of the discrete Painlevé II hierarchy.

We establish now a link between this Lax Pair and the system (2.15) we obtained starting from
the OPUC. We define

Φ(n, z) := σ3

(
z−n+3/2 0

0 z−n+1/2

)(
1 0

−xn−1 1

)
Ψ(n − 1, z2)

Proposition 2.17. Φ(n, z) defined as above satisfies (2.22).

Proof. First we compute the discrete equation for Φ(n, z).

Φ(n + 1, z) = σ3

(
z−n+1/2 0

0 z−n−1/2

)(
1 0

−xn 1

)
Ψ(n, z2)

According to equation (2.15)

Φ(n + 1, z) = σ3

(
z−n+1/2 0

0 z−n−1/2

)(
1 0

−xn 1

)
U(n − 1, z2)Ψ(n − 1, z2)

= σ3

(
z−n+1/2 0

0 z−n−1/2

)(
1 0

−xn 1

)
U(n − 1, z2)

(
1 0

xn−1 1

)(
zn−3/2 0

0 zn−1/2

)
σ3Φ(n, z)

=
(

z xn

xn 1/z

)
Φ(n, z)

Now we compute the derivative with respect to z.
Defining M(n, z) :=

(
∂

∂z
Φ(n, z)

)
Φ(n, z)−1, similar computations lead to

M(n, z) = z−1σ3

(
−n + 3/2 0

0 −n + 1/2

)
σ3+2zσ3

(
z 0
0 1

)(
1 0

−xn−1 1

)
T (n−1, z2)

(
1 0

xn−1 1

)(
z−1 0
0 1

)
σ3

(2.23)
We need to prove two things: first the trace of M(n, z) is null and then entries of M(n, z) are rational
in z.
For the trace of M(n, z) we use the fact that Tr(T (n, z)) = nz−1. Then

Tr(M(n, z)) = (−2n + 2)z−1 + 2zTr(T (n − 1, z2)) = 0

From the expression of T (n, z) (2.17) and the equation (2.23) we conclude entries of M(n, z) are
rational in z.

3 From the Lax Pair to the discrete Painlevé II hierarchy
In this section we study the compatibility condition associated to the linear system (2.15). This
first allows us to reconstruct completely the matrix T (n, z) and then to obtain an explicit 2N order
discrete equation for xn which corresponds to equation (1.9).
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3.1 The symmetry in the compatibility condition
We study the consequences of the symmetry (2.19) for the matrix T (n, z) on the compatibility
condition for the Lax pair introduced in Proposition 2.11. More precisely we show that, thanks to
the symmetry (2.19) the compatibility condition contains an overdetermined system of equations.
We recall that the compatibility condition reads as

σ+ − T (n + 1, z)U(n, z) + U(n, z)T (n, z) = 0 (3.1)

where we have to replace U(n, z) as in (2.16) and T (n, z) as

T (n, z) =
N+1∑
k=1

Tk(n)zN−k +
2N+1∑

k=N+2
−K(n)T2N+2−k(n)K(n)−1zN−k, (3.2)

and with the coefficient TN+1(n) satisfying equation (2.21).

Lemma 3.1. The compatibility condition (3.1), for U(n, z), T (n, z) as described above, corresponds
to the following system

T1(n + 1)σ+ − σ+T1(n) = 0
Tj+1(n + 1)σ+ − σ+Tj+1(n) + Tj(n + 1)U0(n) − U0(n)Tj(n) = σ+δj,N , j = 1, . . . , N,

TN+1(n) = −K(n)TN+1(n)K(n)−1 + nI2.

Proof. The compatibility condition (3.1), after replacing U(n, z), T (n, z) of the prescribed form,
involves powers of z from N to −N − 1. Imposing that the coefficients of each of these powers of z
is identically zero, we obtain the following equations

zN : T1(n + 1)σ+ − σ+T1(n) = 0 (3.3)

zN−j , j = 1, . . . , N :
Tj+1(n + 1)σ+ − σ+Tj+1(n) + Tj(n + 1)U0(n) − U0(n)Tj(n) = σ+δj,N (3.4)

z−1 : TN+1(n + 1)U0(n) − U0(n)TN+1(n) − K(n + 1)TN (n + 1)K(n + 1)−1σ+

+ σ+K(n)TN (n)K(n)−1 = 0 (3.5)

zN−j , j = N + 2, . . . , 2N :
− K(n + 1)T2N+1−j(n + 1)K(n + 1)−1σ+ + σ+K(n)T2N+1−j(n)K(n)−1 + U0(n)K(n)T2N+2−j(n)K(n)−1

− K(n + 1)T2N+2−j(n + 1)K(n + 1)−1U0(n) = 0 (3.6)

z−N−1 : −K(n + 1)T1(n + 1)K(n + 1)−1U0(n) + U0(n)K(n)T1(n)K(n)−1 = 0. (3.7)

With the change of indices 2N + 1 − j = k, ⇐⇒ k = 2N + 1 − j = N − 1, . . . , 1, the equation (3.6)
becomes:

− K(n + 1)Tk(n + 1)K(n + 1)−1σ+ + σ+K(n)Tk(n)K(n)−1 − K(n + 1)Tk+1(n + 1)K(n + 1)−1U0(n)

+ U0(n)K(n)Tk+1(n)K(n)−1 = 0. (3.8)
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We now show that equations (3.5), (3.6), (3.7) are equivalent to the first ones (3.3), (3.4) thanks
to the symmetry of the coefficients Tk(n) given in (2.20) together with the equation for TN+1(n),
already obtained in (2.21).

To start with, we notice the following relations

Ũ0(n) := K(n + 1)−1U0(n)K(n) = σ+,

and
σ̃(n) := K(n + 1)−1σ+K(n) = U0(n),

deduced by using multiple times relation (2.9), namely x2
n + κ2

n−1
κ2

n
= 1.

1) Let us consider first the equation (3.7) obtained from the coefficient of the term z−N−1. Mul-
tiplying by K(n + 1)−1 to the left and by K(n) to the right, we obtain

−T1(n + 1)Ũ0(n) + Ũ0(n)T1(n) = 0

that is exactly (3.3).

2) Let us consider now equations (3.8), obtained from the coefficients of the term zN−j , j =
N + 2, . . . , 2N . By multiplying by K(n + 1)−1 to the left and by K(n) to the right as before,
we obtain the equations for k = N − 1, . . . 1

−Tk(n + 1)σ̃(n) + σ̃(n)Tk(n) − Tk+1(n + 1)Ũ0(n) + Ũ0(n)Tk+1(n) = 0

which is exactly equation (3.4) for j = 1, . . . , N − 1.

3) The last equation is (3.5) obtained from the coefficient of the term z−1. We multiply, again,
by K(n + 1)−1 to the left and by K(n) to the right, and we get

K(n+1)−1TN+1(n+1)K(n+1)Ũ0(n)−Ũ0(n)K(n)−1TN+1(n)K(n)−TN (n+1)σ̃(n)+σ̃(n)TN (n) = 0,

and then we replace the symmetry for the term TN+1(n) namely the equation (2.21) (that
indeed it has not be used until now)

−TN+1(n + 1)Ũ0(n) + Ũ0(n)TN+1(n) + Ũ0(n) − TN (n + 1)σ̃(n) + σ̃(n)TN (n) = 0.

And this is again exactly equation (3.4), for j = N .

Thus the compatibility condition (3.1) is reduced to the equations in the statement, namely equations
(3.3), (3.4), (2.21).

Now, we use equations (3.3), (3.4) together with the initial condition for T1(n) given in (2.18), to
recursively find the coefficients Tk(n), for k = 1, . . . , N + 1, in terms of the xn±j , j = 1, . . . , N . With
the coefficients Tk(n) computed in such a way, the symmetry for TN+1(n), i.e. equation (2.21), once
TN+1(n) is determined, provides an actual discrete equation for xn of order 2N , that is what we call
the higher order analogue of the discrete Painlevé II equation (that coincide for N = 1, 2 to the ones
already appeared in literature [1, 6, 10]).
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3.2 The recursion
In this subsection we explain how equations (3.3), (3.4) resulting from the compatibility condition
(3.1) can be used to find recursively (in k) all the coefficients Tk(n), k = 1, . . . , N + 1 of T (n, z).

Lemma 3.2. For every i = 1, . . . , N , starting from the initial condition (2.18) T1(n) = θN

2 σ3, we
have

Ti+1,12(n) = xn+1(2∆−1 + I)
(

xn+1

vn+1
Ti,21(n + 1) − xnTi,12(n)

)
+ vn+1Ti,12(n + 1) − xnxn+1Ti,12(n)

Ti+1,21(n + 1) = xnvn+1(2∆−1 + I)
(

xn+1

vn+1
Ti,21(n + 1) − xnTi,12(n)

)
+ vn+1Ti,21(n) − xnxn+1Ti,21(n + 1)

Ti+1,11(n) = −Ti+1,22(n) + nδi,N = ∆−1
(

−xn+1

vn+1
Ti+1,21(n + 1) + xnTi+1,12(n)

)
+ nδi,N ,

where

∆ : Ti(n) → Ti(n + 1) − Ti(n), (3.9)
vn := 1 − x2

n, (3.10)

Proof. We rewrite equations (3.3), (3.4) for i = 1, . . . , N , entry by entry. For the first one, we have{
T1,11(n + 1) − T1,11(n) = 0
T1,12(n) = T1,21(n + 1) = 0

This is satisfied by T1(n) given in (2.18). For the second one, for any 1 ⩽ i ⩽ N we have the four
equations:

Ti+1,11(n + 1) − Ti+1,11(n) = −Ti,11(n + 1)xnxn+1 + Ti,12(n + 1)(1 − x2
n+1)xn

+xnxn+1Ti,11(n) − xn+1Ti,21(n) + δi,N

Ti+1,12(n) = −xn+1Ti,11(n + 1) + Ti,12(n + 1)(1 − x2
n+1) − xnxn+1Ti,12(n) + xn+1Ti,22(n)

Ti+1,21(n+1) = −Ti,21(n+1)xnxn+1+Ti,22(n+1)xn(1−x2
n+1)−Ti,11(n)xn(1−x2

n+1)+(1−x2
n+1)Ti,21(n)

0 = Ti,21(n + 1)xn+1 − Ti,22(n + 1)(1 − x2
n+1) − xn(1 − x2

n+1)Ti,12(n) + Ti,22(n)(1 − x2
n+1)

Using the notations introduced in (3.9), (3.10), the previous equations become: 1 ⩽ i ⩽ N :

∆Ti+1,11(n) = −xnxn+1∆Ti,11(n) + xnvn+1Ti,12(n + 1) − xn+1Ti,21(n) + δi,N (3.11)
Ti+1,12(n) = −xn+1Ti,11(n + 1) + vn+1Ti,12(n + 1) − xnxn+1Ti,12(n) + xn+1Ti,22(n) (3.12)

Ti+1,21(n + 1) = −xnxn+1Ti,21(n + 1) + xnvn+1Ti,22(n + 1) − xnvn+1Ti,11(n) + vn+1Ti,21(n) (3.13)

vn+1∆Ti,22(n) = xn+1Ti,21(n + 1) − xnvn+1Ti,12(n) (3.14)
From these equations, we see that in order to obtain the diagonal terms, there is a “discrete inte-
gration” to perform, while the off-diagonal terms are directly determined from the previous ones.
Moreover, we can rewrite the four equation as only two equations involving only the off-diagonal
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terms. Indeed, because of Tr(T (n, z)) = nz−1, Ti,11(n, z) = −Ti,22(n, z) for 1 ⩽ i ⩽ N . Thus (3.14)
can be written as

vn+1∆Ti,11(n) = −xn+1Ti,21(n + 1) + xnvn+1Ti,12(n)
Formally, 1 ⩽ i ⩽ N

Ti,11(n) = −Ti,22(n) = ∆−1
(

−xn+1

vn+1
Ti,21(n + 1) + xnTi,12(n)

)
, (3.15)

which still holds for i = N + 1 up to adding the “constant” n on the right hand side. Using this in
(3.12) and (3.13), we obtain:

Ti+1,12(n) = xn+1(2∆−1+I)
(

xn+1

vn+1
Ti,21(n + 1) − xnTi,12(n)

)
+vn+1Ti,12(n+1)−xnxn+1Ti,12(n),

Ti+1,21(n+1) = xnvn+1(2∆−1+I)
(

xn+1

vn+1
Ti,21(n + 1) − xnTi,12(n)

)
+vn+1Ti,21(n)−xnxn+1Ti,21(n+1).

We notice that, defining the discrete recursion operator

L
(

un

yn

)
=

 xn+1(2∆−1 + I)
(

xn+1

vn+1
yn − xnun

)
+ (vn+1(∆ + I) − xnxn+1)un

xnvn+1(2∆−1 + I)
(

xn+1

vn+1
yn − xnun

)
+ (vn+1(∆ + I)−1 − xnxn+1)yn

 , (3.16)

we can rewrite the two equations for the off-diagonal entries of Ti(n) obtained above as(
Ti+1,12(n)

Ti+1,21(n + 1)

)
= L

(
Ti,12(n)

Ti,21(n + 1)

)
, 1 ⩽ i ⩽ N (3.17)

And, recursively we obtain (
TN+1,12(n)

TN+1,21(n + 1)

)
= LN

(
0
0

)
(3.18)

This procedure allows to construct the all matrix T (n, z), starting from the initial condition T1(n) =
θN

2 σ3 and iterating the operator L we obtain off diagonal terms of T (n, z) and compute diagonal one
with equation (3.15). Below we implemented this method to find the matrix T (n, z) in the first few
cases N = 1, 2.

Example 3.3. In the case N = 1, the matrix T (n, z) = T1(n)+T2(n)z−1+T3(n)z−2. Knowing T1(n),
we only have to find T2(n) using the recurrence relation given from the compatibility i.e. equations
(3.11), (3.12), (3.13) for i = 1. Since: T1,12(n) = T1,21(n) = 0, and T1,11(n) = θN /2 = −T1,22(n) we
have

T2,11(n) = n

T2,12(n) = −xn+1(T1,11(n + 1) + T1,11(n)) = −θ1xn+1,

T2,21(n + 1) = xnvn+1(T1,22(n + 1) + T1,22(n)) = −θ1xnvn+1,

and T2,22(n) = n − T2,11(n) = 0. Moreover the symmetry which reflects terms of T (n, z) two by two
gives T3(n) = −K(n)T1(n)K(n). Thus the Lax matrix for N = 1 is

T (n, z) = θ1

2

(
1 0
0 −1

)
+ 1

z

(
n −θ1xn+1

−θ1vnxn−1 0

)
+ θ1

z2

( 1
2 − x2

n xn

vnxn x2
n − 1

2

)
.
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Example 3.4. In the case N = 2, the matrix T (n, z) = T1(n)z + T2(n) + T3(n)z−1 + T4(n)z−2 +
T5(n)z−3. This time we have to find T2(n) (that will be almost the same as before) and also T3(n)
using the recurrence relation given from the compatibility i.e. equations (3.11), (3.12), (3.13) for
i = 1 and 2. First we find T2(n) (i = 1 above), we have

T2,11(n) = θ1

2
T2,12(n) = −xn+1(T1,11(n + 1) + T1,11(n)) = −θ2xn+1,

T2,21(n + 1) = xnvn+1(T1,22(n + 1) + T1,22(n)) = −θ2xnvn+1,

and T2,22(n) = −T2,11 = − θ1
2 . Then we consider the equation for i = 2 and we find T3(n). We have

∆T3,11(n) = xnvn+1(−θ2xn+2) − xn+1(−θ2xn−1vn) + 1 =⇒ T3,11(n) = n − θ2xn−1xn+1vn

T3,12(n) = −θ1xn+1 − θ2(vn+1xn+2 − xnx2
n+1),

T3,21(n + 1) = (−θ1xn − θ2(vnxn−1 − x2
nxn+1))vn+1,

and T3,22(n) = n − T3,11(n) = θ2xn−1xn+1vn. Finally, we take T4(n) = −K(n)T2(n)K(n) and
T5(n) = −K(n)T1(n)K(n). Thus the Lax matrix for N = 2 is

T (n, z) = z
θ2

2

(
1 0
0 −1

)
+
(

θ1
2 −θ2xn+1

−θ2xn−1vn − θ1
2

)
+

1
z

(
n − θ2xn−1xn+1vn −θ1xn+1 − θ2(vn+1xn+2 − xnx2

n+1)(
−θ1xn−1 − θ2(vn−1xn−2 − xnx2

n−1)
)

vn θ2xn−1xn+1vn

)
+ 1

z2

(
−θ2vn(xnxn−1 + xnxn+1) + θ1

2 (vn − x2
n) −θ2(vnxn−1 + x2

nxn+1)
−θ2(vnxn+1 + x2

nxn−1)vn θ2vn(xnxn−1 + xnxn+1) − θ1
2 (vn − x2

n)

)
+ θ2

z3

( 1
2 − x2

n xn

vnxn x2
n − 1

2

)
.

Now that we have reconstructed the all matrix T (n, z) in terms of xn±j , j = −N, . . . , N we are
left with the equation that TN+1(n) has to satisfy, namely (2.21). We now show that actually this
coincide with only one scalar equation in TN+1,12 and TN+1,21. Indeed, entry by entry it reads as the
following system of four equations. From the off-diagonal entries

vnTN+1,12(n) = xn (TN+1,11(n) − TN+1,22(n)) − TN+1,21(n), (3.19)
vnTN+1,21(n) = xnvn (TN+1,11(n) − TN+1,22(n)) − v2

nTN+1,12(n).

and from the diagonal entries

n − (1 + x2
n)TN+1,11(n) − vnTN+1,22(n) + xnTN+1,21(n) + xnvnTN+1,12(n) = 0,

n − (1 + x2
n)TN+1,22(n) − vnTN+1,11(n) − xnTN+1,21(n) − xnvnTN+1,12(n) = 0.

We notice first that the four above equations are all the same. The first and the second equations are
the same up to a multiplication by vn. Using the relation TN+1,11(n)+TN+1,22(n) = n we can rewrite
the third and the forth equations and obtain the same equation up to a sign. Finally multiplying by
xn the first equation and using the relation TN+1,11(n) + TN+1,22(n) = n we obtain the third one.
Thus from now on we will refer only to (3.19), as for the remaining equation.

Using equation (3.14) and Tr(T (n, z)) = nz−1, we express equation (3.19) in function of TN+1,12(n)
and TN+1,21(n). Consider equation (3.19), with the identity Tr(TN+1(n)) = n, it is rewritten as

vnTN+1,12(n) = xn (n − 2TN+1,22(n)) − TN+1,21(n).
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Equation (3.14) holds also for i = N +1. It means it is possible to replace TN+1,22(n) in the previous
equation and obtain

nxn − vnTN+1,12(n) − TN+1,21(n) − 2xn∆−1
(

−xnTN+1,12(n) + xn+1

vn+1
(∆ + I)TN+1,21(n)

)
= 0.

(3.20)

3.3 The relation between Ti,12(n) and Ti,21(n)
The previous equation (3.20) depends on TN+1,12(n) and TN+1,21(n). The aim of this part is to
establish a connection between Ti,12(n) and Ti,21(n) to rewrite equation (3.20) just in function of
TN+1,12(n).
To accomplish this, we study the compatibility condition of C(n, z) := T (n, z)2 and U(n, z).
C(n, z) is rational in z with a pole of order −2N − 2 at 0. We write C(n, z) as:

C(n, z) =
4N+1∑

i=1
Ci(n)z2N−1−i (3.21)

with

Ci(n) :=
i∑

j=1
Tj(n)Ti+1−j(n) (3.22)

where C1(n) = θ2
N

4 I2.
In what follows we will need this lemma:

Lemma 3.5. Diagonal coefficients of Ci(n) defined as in (3.22) satisfy the following equation:

∀1 ⩽ i ⩽ N, Ci,11(n) = Ci,22(n)

CN+1,11(n) = nθN + CN+1,22(n)

Proof. We express Ci,11(n) in function of Ti,kj(n). With the equation (3.22)

Ci,11(n) =
i∑

j=1
Tj,11(n)Ti+1−j,11(n) + Tj,12(n)Ti+1−j,21(n).

Then, the sum index change j = i − k + 1 leads to

Ci,11(n) =
i∑

k=1
Ti−k+1,11(n)Tk,11(n) + Ti−k+1,12(n)Tk,21(n).

Finally with the relation Tr(T (n, z)) = nz−1

• if 1 ⩽ i ⩽ N ,

Ci,11(n) =
i∑

k=1
Ti−k+1,22(n)Tk,22(n) + Tk,21(n)Ti−k+1,12(n) = Ci,22(n).

• if i = N + 1,

CN+1,11(n) = −2nT1,22(n)+
N+1∑
k=1

TN−k+2,22(n)Tk,22(n)+Tk,21(n)TN−k+2,12(n) = nθN +CN+1,22(n).
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We deduce the compatibility condition for C and U from the one for T and U .

Lemma 3.6. C(n, z) (3.21) and U(n, z) (2.16) satisfy the following compatibility condition:

C(n + 1, z)U(n, z) − U(n, z)C(n, z) = T (n + 1, z)σ+ + σ+T (n, z) (3.23)

Proof. Multiplying on the left (respectively on the right) equation (3.1) by T (n + 1, z) (respectively
T (n, z)) and summing these two equations leads to the result.

The left (respectively right) hand side of the equation in the previous lemma is an expression
in powers of z from z2N−1 to z−2N−2 (respectively from zN−1 to z−N−1). This equation leads to
recursive equation for Ci(n). We consider only expression in powers of z from z2N−1 to zN−1.
According to (3.1) and (3.23), ∀1 ⩽ i ⩽ N , Ci(n) and Ti(n) satisfy the same recursive equation (see
equations (3.11),...,(3.14)). For i = N + 1, the equation is a bit different. The term with δi,N is now
multiplied by θN .
From these equations we deduce the following result.

Proposition 3.7. Let Ci(n) be as in (3.22). Then ∀1 ⩽ i ⩽ N , Ci(n) = αiI2 and
CN+1(n) = θN nσ+ + αN+1I2

Proof. We prove Proposition 3.7 by induction.

For i = 1, we already know C1(n) = θ2
N

4 .
Suppose Ci(n) = αiI2 for i ⩽ N − 1.
Ci+1(n) satisfies the following equations:

∆Ci+1,11(n) = −xnxn+1∆Ci,11(n) + xnvn+1Ci,12(n + 1) − xn+1Ci,21(n) + θN δi,N

Ci+1,12(n) = −xn+1Ci,11(n + 1) + vn+1Ci,12(n + 1) − xnxn+1Ci,12(n) + xn+1Ci,22(n)
Ci+1,21(n + 1) = −xnxn+1Ci,21(n + 1) + xnvn+1Ci,22(n + 1) − xnvn+1Ci,11(n) + vn+1Ci,21(n)

Using induction hypothesis,

∆Ci+1,11(n) = −xnxn+1 ∗ 0 + xnvn+1 ∗ 0 − xn+1 ∗ 0 + θN δi,N = θN δi,N

Ci+1,12(n) = −xn+1αi + vn+1 ∗ 0 − xnxn+1 ∗ 0 + xn+1αi = 0
Ci+1,21(n + 1) = −xnxn+1 ∗ 0 + xnvn+1αi − xnvn+1αi + vn+1 ∗ 0 = 0

From the first equation we conclude Ci+1,11(n) = αi+1 if i ⩽ N −1 (respectively CN+1,11(n) = θN n+
αN+1 if i = N) and according to Lemma 3.5 Ci+1,22(n) = αi+1 (respectively CN+1,22(n) = αN+1)
which concludes the proof.

From equation (3.22) and Proposition 3.7, we obtain

θN Ti,11(n) = αi −
i−1∑
j=2

Tj,11(n)Ti−j+1,11(n) + Tj,12(n)Ti−j+1,21(n) (3.24)

θN TN+1,11(n) = nθN + αN+1 −
N∑

j=2
Tj,11(n)TN−j+2,11(n) + Tj,12(n)TN−j+2,21(n) (3.25)

With all this discussion on C(n, z) it is now possible to prove the following proposition.
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Proposition 3.8. The following holds: ∀1 ⩽ i ⩽ N +1, Ti,11(n), Ti,12(n) and Ti,21(n) are polynomi-
als in xn+j’s. Moreover the following symmetries hold: ∃ (Qi,n ((un+j)1−i⩽j⩽i−1) , Pi,n ((un+j)1−i⩽j⩽i−1))
polynomials in un+j’s such that,

Ti,11(n) = Qi,n ((xn+j)1−i⩽j⩽i−1) = Qi,n ((xn−j)1−i⩽j⩽i−1) ,

Ti,12(n) = Pi,n ((xn+j)1−i⩽j⩽i−1)

and
Ti,21(n) = vnPi,n ((xn−j)1−i⩽j⩽i−1) .

Proof. We prove this proposition by strong induction.
For i = 1, T1(n) = θN

2 σ3, then defining Q1,n (un) := θN

2 , P1,n (un) := 0; T1,11(n) = Q1,n (xn),
T1,12(n) = P1,n (xn) and T1,21(n) = vnP1,n (xn).
Now suppose the property true for all j ∈ [[1, i]] with i ⩽ N and let (Qj,n, Pj,n)j⩽i be polynomials
in xn+j ’s satisfying the property.
According to (3.24) (and (3.25) for i = N) and strong induction hypothesis, Ti+1(n) is a polynomial
in xn+j ’s and the invariance when you exchange xn+j by xn−j holds.
Because of equation (3.12) (respectively equation (3.13)) and of induction hypothesis, there exists
Pi+1,n ((un+j)−i⩽j⩽i) (respectively P̃i+1,n ((un+j)−i⩽j⩽i)) a polynomial such that

Ti+1,12(n) = Pi+1,n ((xn+j)−i⩽j⩽i)

respectively
Ti+1,21(n) = P̃i+1,n ((xn+j)−i⩽j⩽i)

Now we establish the link between Pi+1,n and P̃i+1,n. According to equation (3.12) and the relation
Tr(T (n, z)) = nz−1:

Pi+1,n

(
(xn+j)i

j=−i

)
= −xn+1Qi,n+1

(
(xn+j)i−2

j=−i

)
+vn+1Pi,n+1

(
(xn+j)i−2

j=−i

)
−xnxn+1Pi,n

(
(xn+j)i−1

j=1−i

)
− xn+1Qi,n

(
(xn+j)i−1

j=1−i

)
Then

vnPi+1,n

(
(xn−j)i

j=−i

)
= vn

(
−xn−1Qi,n−1

(
(xn−j)i−2

j=−i

)
+ vn−1Pi,n−1

(
(xn−j)i−2

j=−i

)
−xnxn−1Pi,n

(
(xn−j)i−1

j=1−i

)
− xn−1Qi,n

(
(xn−j)i−1

j=1−i

))
From induction hypothesis and Tr(T (n, z)) = nz−1:

vnPi+1,n

(
(xn−j)i

j=−i

)
= −xn−1vnTi,11(n−1)+vnTi,21(n−1)+xn−1xnTi,21(n)+xn−1vnTi,22(n)

According to equation (3.13),

vnPi+1,n

(
(xn−j)i

j=−i

)
= Ti+1,21(n + 1)

Then
vnPi+1,n

(
(xn−j)i

j=−i

)
= P̃i+1,n ((xn+j)−i⩽j⩽i)

and this concludes the proof.
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Define C
[
(xj)j∈[[0,2n]]

]
and the transformation

Permn : C
[
(xj)j∈[[0,2n]]

]
−→ C

[
(xj)j∈[[0,2n]]

]
P ((xn+j)−n⩽j⩽n) 7−→ P ((xn−j)−n⩽j⩽n)

From the previous proposition

Ti,21(n) = vnPermn (Ti,12(n)) (3.26)

Remark 3.9. As a consequence of the Proposition 3.8 the equation (3.19) is a polynomial in xn+j’s
and is invariant when you apply Permn to this equation because Perm2

n = Id and
Permnvn = vnPermn.

We use the link we established in Proposition 3.8 between Ti,12(n) and Ti,21(n) to rewrite the
operator L (3.16) as a scalar operator:

L(un) :=
(
xn+1

(
2∆−1 + I

)
((∆ + I) xnPermn − xn) + vn+1 (∆ + I) − xnxn+1

)
un. (3.27)

Finally, collecting all the results from the previous sections, we state and proof the following theorem.

Theorem 3.10. The system (2.15), with T (n, z) of the form (3.2) and coefficient TN+1(n) satisfying
the symmetry condition (2.21), is a Lax pair for the N -th higher order discrete Painlevé II equation
and the equation is given by the expression:

nxn +
(
2xn∆−1 (xn − (∆ + I)xnPermn) − vn − vnPermn

)
TN+1,12(n) = 0, (3.28)

where TN+1,12(n) = LN (0) with L as in (3.27).

Proof. Replacing TN+1,21(n) with the relation (3.26), equation (3.20) now reads as

nxn +
(
2xn∆−1 (xn − (∆ + I)xnPermn) − vn − vnPermn

)
TN+1,12(n) = 0.

Equations (3.17) and (3.18) with the relation (3.26) reduce to

Ti+1,12(n) = L(Ti,12(n)) and TN+1,12(n) = LN (0),

which concludes the proof.

The next two examples explain for N = 1, 2 how to compute explicitely equation (3.28).

Example 3.11. Using the expression defined in Theorem 3.10, we compute the first equation (1.12)
and the second (1.13).
For N = 1: First we compute T2,12(n) with the operator L (3.27).

T2,12(n) = 2xn+1∆−1(0) = −θ1xn+1

where −θ1/2 is the integration constant.
Replacing T2,12(n) in equation (3.28),

nxn + vnθ1(xn+1 + xn−1) + 2xn∆−1(θ1xnxn+1 − θ1xnxn+1) = 0

Then
(n + α)xn + θ1vn(xn+1 + xn−1) = 0.
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This equation is the same as equation (1.12) if we choose the integration constant α to be zero.
For N = 2: We compute T3,12(n). Computations are the same for T2,12(n) except for the integration
constant, T2,12(n) = −θ2xn+1.

T3,12(n) = L(T2,12(n)) =
(
xnx2

n+1 − vn+1xn+2
)

θ2 + xn+1
(
2∆−1 + I

)
(−θ2xnxn+1 + θ2xnxn+1)

Then T3,12(n) = θ2
(
xnx2

n+1 − vn+1xn+2
)

− θ1xn+1.
Replacing T3,12(n) in equation (3.28),

(n + α)xn + θ2vn

(
vn+1xn+2 + vn−1xn−2 − xn(xn+1 + xn−1)2)+ θ1vn(xn+1 + xn1) = 0

which is the same equation as (1.13).

We finally conclude the work by noticing that Theorem 3.10 together with Corollary 2.8 give the
proof of Theorem 1.1.

A The continuous limit
This appendix contains further computations for the continuous limit of the equations of the discrete
Painlevé II hierarchy (1.9) in the first cases N = 1, 2, 3. To obtain it, we follow the scaling limit
given in Theorem 1 of [5] as already recalled in the Introduction.

The case N = 1. Notice that in this case we recover the same computation done in [6], Chapter
9. We consider equation (1.12) written as

xn+1 + xn−1 + nxn

θ1(1 − x2
n) = 0

in which the only parameter appearing is θ1 = θ. Following the scaling limit of Theorem 1 [5], in the
case N = 1, we have

b = 2, d = 1 and xn = (−1)nθ− 1
3 u(t) with t = (n − 2θ)θ− 1

3 .

Now, for θ → +∞ we compute

xn±1 ∼ (−1)n+1θ− 1
3 u(t ± θ− 1

3 )

∼ (−1)n+1θ− 1
3

(
u(t) ± θ− 1

3 u′(t) + θ− 2
3

2 u′′(t) + O(θ−1)
)

that gives
xn+1 + xn−1 ∼ (−1)n+12θ− 1

3 u(t) + (−1)n+1θ−1u′′(t) + O(θ−1).
The other term appearing in the discrete Painlevé II equation gives instead

nxn

θ1(1 − x2
n) ∼ (2θ + tθ

1
3 )(−1)nθ− 1

3 u(t)θ−1
(

1 + θ− 2
3 u2(t) + O(θ−1)

)
∼ (−1)n2θ− 1

3 u(t) + (−1)nθ−1 (tu(t) + 2u3(t)
)

+ O(θ−1)

Thus equation (1.7) in this scaling limit gives at the first order (coefficient of θ−1) the second order
differential equation

u′′(t) − tu(t) − 2u3(t) = 0,

which coincides indeed with the Painlevé II equation.
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The case N = 2. We consider equation (1.13), with the parameters θ1, θ2 rescaled as θ1 = θ, θ2 =
θ
4 . It reads as

nxn

(1 − x2
n) +θ (xn+1 + xn−1)+ θ

4
(
xn+2(1 − x2

n+1) + xn−2(1 − x2
n−1) − xn(xn+1 + xn−1)2) = 0 (A.1)

and this time we consider the following scaling limit (case N = 2 of Theorem 1 in [5])

b = 3
2 , d = 4 and xn = (−1)nθ− 1

5 4 1
5 u(t), with t =

(
n − 3

2θ

)
θ− 1

5 4 1
5 .

For θ → +∞, similar computations gives the fourth order differential equation

tu(t) + 6u(t)5 − 10u(t)u′(t)2 − 10u(t)2u′′(t) + u′′′′(t) = 0

which corresponds to the second equation of the Painlevé II hierarchy. Detailed computations to
obtain certain terms from the previous equation are given below. We begin with the expansion of
the first term in equation (A.1):

nxn

(1 − x2
n) ∼

(
3
2θ + 4− 1

5 θ
1
5 t

)
(−1)nθ− 1

5 4 1
5 u(t)

(
1 + 4 2

5 θ− 2
5 u2(t) + 4 4

5 θ− 4
5 u4(t) + O(θ−1)

)
∼ (−1)n

(
3
24 1

5 θ
4
5 u(t) + 3

24 3
5 θ

2
5 u(t)3 + tu(t) + 6u(t)5 + O

(
θ− 1

5

))
Computing expansions of xn±1, xn±2 as θ → ∞, we obtain:

xn±1 ∼ (−1)n+14 1
5 θ− 1

5 u(t ± θ− 1
5 )

∼ (−1)n+14 1
5 θ− 1

5

(
u(t) ± 4 1

5 θ− 1
5 u′(t) + 4 2

5 θ− 2
5

2 u′′(t) ± 4 3
5 θ− 3

5

6 u′′′(t) + 4 4
5 θ− 4

5

24 u′′′′(t) + O(θ−1)
)

xn±2 ∼ (−1)n4 1
5 θ− 1

5 u(t ± 2θ− 1
5 )

∼ (−1)n4 1
5 θ− 1

5

(
u(t) ± 4 1

5 2θ− 1
5 u′(t) + 4 7

5 θ− 2
5 u′′(t) ± 4 8

5 2θ− 3
5

3 u′′′(t) + 4 9
5 θ− 4

5

3 u′′′′(t) + O(θ−1)
)

that gives for the second term of equation (A.1)

θ(xn+1 + xn−1) ∼ (−1)n+1
(

4 1
5 2θ

4
5 u(t) + 4 3

5 θ
2
5 u′′(t) + 1

3u′′′′(t) + O
(

θ− 1
5

))
.

Some linear and non linear terms appear with the expansion of the third term of equation (A.1).
The linear one is:

θ

4(xn+2 + xn−2) ∼ (−1)n

(
4 1

5 θ
4
5

1
2u(t) + 4 3

5 θ
2
5 u′′(t) + 4

3u′′′′(t) + O
(

θ− 1
5

))
.

Non linear ones are:
θ

4xn(xn+1 + xn−1)2 ∼ (−1)nu(t)
(

4 3
5 θ

2
5 u(t)2 + 4u(t)u′′(t) + O

(
θ− 1

5

))
θ

4xn±2x2
n±1 ∼ (−1)n

(
4− 2

5 θ
2
5 u(t)3 ± 4 4

5 θ
1
5 u(t)2u′(t) + 3u(t)2u′′(t) + 5u(t)u′(t)2

)
From these computations, we see that we recover exactly

tu(t) + 6u(t)5 − 10u(t)u′(t)2 − 10u(t)2u′′(t) + u′′′′(t) = 0.
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The case N = 3. We consider equation (1.14) with the parameters θ1, θ2, θ3 rescaled as θ1 =
θ, θ2 = 2θ

5 , θ3 = θ
15 and rewritten as

nxn

θ(1 − x2
n) + (xn+1 + xn−1) + 2

5
(
xn+2(1 − x2

n+1) + xn−2(1 − x2
n−1) − xn(xn+1 + xn−1)2)

+ 1
15
(
x2

n(xn+1 + xn−1)3 + xn+3(1 − x2
n+2)(1 − x2

n+1) + xn−3(1 − x2
n−2)(1 − x2

n−1)
)

+ 1
15
(
−2xn(xn+1 + xn−1)(xn+2(1 − x2

n+1) + xn−2(1 − x2
n−1)) − xn−1x2

n−2(1 − x2
n−1)

)
+ 1

15
(
−xn+1x2

n+2(1 − x2
n+1) − xn+1xn−1(xn+1 + xn−1)

)
= 0

Finally, we consider the following scaling limit (case N = 3 of Theorem 1 in [5])

b = 4
3 , d = 15 and xn = (−1)nθ− 1

7 15 1
7 u(t) with t =

(
n − 4

3θ

)
θ− 1

7 15 1
7 .

Again, for θ → +∞ the asymptotic expansion of the equation above results at the first order (coef-
ficient of θ−1) into the sixth order differential equation

tu(t) + 20u(t)7 − 140u(t)3u′(t)2 − 70u(t)4u′′(t) + 70u′(t)2u′′(t) + 42u(t)u′′(t)2 + 56u(t)u′(t)u′′′(t)
+ 14u(t)4u′′(t) − u′′′′′′(t) = 0

which corresponds to the third equation in the Painlevé II hierarchy.

Remark A.1. Computations for N = 2 and N = 3 were performed with Maple/Mathematica. Files
are available on demand.
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