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Recursion relation for Toeplitz determinants and the discrete
Painlevé II hierarchy

Thomas Chouteau? Sofia Tarricone’

Abstract

Solutions of the discrete Painlevé II hierarchy are shown to be in relation with a family of
Toeplitz determinants describing certain quantities in multicritical random partitions models, for
which the limiting behavior has been recently considered in the literature. Our proof is based
on the Riemann-Hilbert approach for the orthogonal polynomials on the unit circle related to
the Toeplitz determinants of interest. This technique allows us to construct a new Lax pair for
the discrete Painlevé II hierarchy that is then mapped to the one introduced by Cresswell and
Joshi.

1 Introduction
Let us consider the symbol ¢(z) = e*(*) | with

0

N
w(z) = v(z) +v(z7!) and v(z) = Z J o, (1.1)

<L S

for 6; being real constants and natural N > 1. The n-th Toeplitz matrix associated to this symbol
and denoted by T),(¢) is a square (n + 1)-dimensional matrix which entries are given by

T.(9)ij = pi—j, 4j=0,...,n.
Here for every k € Z, ¢y, is the k-th Fourier coefficient of ¢(z), namely

"o iy 40
wk:/ e "Mop(e) —

o’

so that >, ., ¢xz" = ¢(z). Notice that, even though it is not emphasized in our notation, the
functions ¢y and thus the Toeplitz matrix T,,(¢) explicitely depend on the natural parameter N
which enters in the definition of v(z) in equation (1.1).

In the present work, it is indeed the dependence on this parameter N that we want to study. In
particular, we show that the Toeplitz determinants associated to T,,(¢), naturally defined as

D) := D, = det(T,(¢)) (1.2)

are related to some solutions of a discrete version of the Painlevé II hierarchy, indexed over the
parameter N (the dependence on N is dropped in the rest of the paper). Our interest in these Toeplitz

* Univ Angers, CNRS, LAREMA, SFR MATHSTIC, F-49000 Angers, France, thomas.chouteau@univ-angers.fr
T Institut de Physique Théorique, Université Paris-Saclay, CEA, CNRS, F-91191 Gif-sur-Yvette, France,
sofia.tarricone@ipht.fr



determinants comes from their appearance in the recent paper [5]. The authors there consider some
probability measures on the set of integer partitions called multicritical Schur measures, which are a
particular case of Schur measures introduced by Okounkov in [18]. These multicritical Schur measures
are generalizations of the classical Poissonized Plancherel measure and they are defined as

N 02
P({A\}) = Z s [b1,...,0n])°, with Z =exp (Z Z) (1.3)

i=1

Here s) [01,...,0n] denotes a Schur symmetric function indexed by a partition A that can be ex-

i\il 0721) In this

pressed as sy [01,...,0n] = det; j hx,—itj[01,...,0n] where >, o, hiz® = exp (Z
setting, denoting by A = (A\; > Ay > -+ > 0) a generic integer partition and by X' = (A} > A\, >
-++ > 0) its conjugate partition (namely such that A} = [i : A; > j|), major quantities of interest of

the model are, for any given n € N|
rp =P\ <n) and ¢, = P(\] <n), (1.4)

that are often called discrete gap probabilities as random partitions have a natural interpretation
in terms of random configuration of points on the set of semi-integers. Indeed, associating the set
{\i—i+1/2} CZ+1 to apartition A (see [18]), 7, and g,, can be expressed in terms of a Fredholm
determinant of a discrete kernel which corresponds to the gap probability in the determinantal point
process defined through the same kernel.

According to Geronimo-Case/Borodin-Okounkov formula [7], there is a relation between this Fred-
holm determinant and the Toeplitz determinant D,, and this implies that r,, and ¢, (up to a constant
factor) are Toeplitz determinants. It leads to (for instance [5], Proposition 6 and 7):

N 9.
g =e 2= %p (1.5)

For r,, instead, one should define 6; = (—1)""6; and by taking @(z) = 9(z) + (2 ') where ¥(z) is
nothing than v(z) with 6, replaced by 0, as given above, the Toeplitz determinant D,, associated to
the symbol @(2) = ¢?(*) would give the analogue formula

N .
_ 02 /i ~
Ty =e Zj:l ']/an—l-

Notice that in the simplest case, when N = 1, the quantities r,, and ¢,, coincide. Moreover, thanks
to Schensted’s theorem [22], they are also equal to the discrete probability distribution function of the
length of the longest increasing subsequence of random permutations of size m, with m distributed
as a Poisson random variable.

In the case N = 1, the relation of these quantities with the theory of discrete Painlevé equations
was shown two decades ago independently and through very different methods by Borodin [6], Baik
[2], Adler and Van Moerbeke [1] and Forrester and Witte [16]'. In particular they all proved that
for every n > 1, the following chain of equalities holds

Dnlgn—2 _ dn+149n—1 _ Tn+1Tn—1 —-1- xi (16)
Dn—l q721 r’?l
where z,, solves the second order nonlinear difference equation
01 (g1 + 2p_1)(1 —22) +nx, =0, (1.7)

IThey obtained an analogue of equation (1.6) for Toeplitz determinant associated to symbols which are not neces-
sarily positive or even real valued.



with certain initial conditions. Equation (1.7) is a particular case of the so called discrete Painlevé
IT equation [21], a discrete analogue of the classical second order ODE known as the Painlevé II
equation [19]. This means that performing some continuous limit of equation (1.7) one gets back the
Painlevé II equation.

For N > 1, Adler and van Moerbeke presented in [1], a generalization of equation (1.6) by proving
that xz,, satisfies some recurrence relation written in terms of the Toeplitz lattice Lax matrices. The
main result of our work is to present a recurrence relation for z,, defined via a N-times iterating
discrete operator which establishes the link with the discrete Painlevé II hierarchy [10]. The precise
result is stated as below.

Theorem 1.1. For any fized N > 1, for the Toeplitz determinants D,, (1.2), n > 1 associated to the
symbol o(z) (1.1), we have

Dg?:” -2 (1.8)
where x,, solves the 2N order nonlinear difference equation
na, + (—v, — vy Permy, + 22,A7" (2, — (A + )z, Permy,)) LN (0) =0 (1.9)
where L is a discrete recursion operator defined as
L(uy,) = (an (2A_1 + I) ((A+1I)x,Perm, —x,) +vpp1 (A+1) — xnxnﬂ) Uy . (1.10)

Here v, :=1— 122, A denotes the difference operator

AUy = Upp1 — Un

and Perm,, is the transformation of the space C [(xj) [0 2””} acting by permuting indices in the

je
following way
Perm,,: C [(Ij)je[[ozn]]} — C [(xj)je[[O,Qn]]} (1.11)
P((zntj)-n<j<n) > P((@n—j)-n<j<n) -

Remark 1.2. According to equation (1.9) and the definition of the operator L (1.10) we need
to perform discrete integrations to compute the N-th equation of the discrete Painlevé II hierar-
chy. It is always possible to accomplish this discrete integration. The operator A~1 is applied to
(A4 I)x,Perm, — x, and it is possible to write this operator as a derivative. Indeed

(A+ 1)z, Perm, — x, = Az, Perm, + (Perm,, — Iz,

The first term on the right hand side is a derivative and because of the definition of Perm,, the
second term can be expressed as a derivative.

Equation (1.9), together with the definition of the recursion operator L in (1.10), of the quantity
vy, and of the transformation Perm,, in (1.11) is indeed the N-th member of the discrete Painlevé IT
hierarchy. The first equations of the hierarchy read as

N=1: nz,+60(vp1 +x,1)(1—22)=0, (1.12)
N=2: nz,+6,(1- xi) (Tn+1 + Tn—1)
+02(1 — 22) (zny2(1 — 22 1) + peo(l — 25 _1) — Tn(Tpy1 +Tn-1)?) =0 (1.13)



N=3: nz,+6(1- )(a:nﬂ—l—xn 1)+

+65(1 — i) (xn+2(1—xn+1)—|—xn 2(1—])31 1) — zn(Tnae +xn_1)2) (1.14)
+03(1 = 27) (23 (@ng1 + 2n1)® + 2pps(l — 25 o) (1= a7 ) + 2 3(1 —ah_5) (1 — a5 _y))
+03(1 — ) ( 220 (Tn1 + Tn—1)(@nga(l — i-&-l) +ano(l—ap_ 1)) = wnrap_o(1 -z 1))
+ 031 — 22) (—zn120 o (1= 25 41) — Tpp1Zp—1(Tns1 + Tno1)) =0,

with the first one coinciding with the discrete Painlevé II equation (1.7). Computations with the
operator (1.10) introduced in Theorem 1.1 for N =1 and 2 are done in Example 3.11.

Remark 1.3. Notice that for N = 1,2 the above equations coincide with the ones found in [1]. Also
notice that in the physical literature, Periwal and Schewitz [20] found similar discrete equations for
N = 1,2 (with different coefficients sign) in the context of unitary matriz models and used their
solutions to evaluate the behavior of some typical integrals in the large dimensional limit passing
through the continuous limit of their discrete equations.

The first construction of a discrete Painlevé 1T hierarchy in [10] used the integrability property
of the continuous one, in the following sense. It is well known that the classical Painlevé I equation
admits an entire hierarchy of higher order analogues. Indeed, this equation can be obtained as a self-
similarity reduction of the modified KdV equation. Thus, the higher order members of the Painlevé
IT hierarchy are nothing than analogue self-similarity reductions of the corresponding higher order
members of the modified KdV hierarchy (see e.g. [12]). In some way, this implies that the Lax
representation of the KdV hierarchy in terms of isospectral deformations becomes for the Painlevé
IT hierarchy a Lax representation in terms of isomonodromic deformations [9].

In [10] then, the discrete Painlevé IT hierarchy is defined as the compatibility condition of a sort of
“discretization” of the Lax representation of the Painlevé II hierarchy. In particular, they considered
the compatibility condition of a linear 2 x 2 matrix-valued system of the following type

0
Pry1(2) = Ln(2)Pn(2), &fbn(z) = M, (2)®n(2), (1.15)
where the coefficients L,,(z), M,,(z) are explicit matrix-valued rational function in z, depending on
z¢,{ =n+ N,...,n— N, in some recursive (on N) way. This allows the authors there to compactly

write the N-th discrete Painlevé II equation using some recursion operators. The linear system that
we obtain in Proposition 2.11 and that encodes our hierarchy as written in (1.9) is mapped into the
one of [10] through an explicit transformation, as shown in Propostion 2.17, thus implying that (1.9)
is indeed the same discrete Painlevé II hierarchy.

Continuous limit The aim of this paragraph is to explain heuristically the reason why our result
given in Theorem 1.1 can be considered as the discrete analogue of the generalized Tracy—Widom
formula for higher order Airy kernels (namely the result contained in Theorem 1.1 of [8]).

For N = 1, Borodin in [6] already pointed out that formula (1.6) with (1.7) can be seen as a discrete
analogue of the classical Tracy-Widom formula for the GUE Tracy-Widom distribution [23, 24]. In
other words, he described how to pass from the left to the right in the picture below

“Discrete case” “Continuous case”
Baik-Deift-Johansson
D, D,,_s — D? 1 2
i nD2 o = g2, C‘f? log det(1 — Kail(t,400)) = —u?(t),
n—1
. . _ 9,3 .
with nz, +0(1 — 22)(xpi1 + Tp_1). with u”(t) = 2u’(t) + tu(t), u(t) e Ai(t).



where Ai(t) denotes the classical Airy function and Ka; denotes the integral operator acting on

L?(R) through the Airy kernel. This connection was achieved by using the scaling limit computed by
Baik, Deift and Johansonn in [3] for the distribution of the first part of partitions in the Poissonized
Plancherel random partition model (which is recovered in Theorem 1 of [5] for N = 1). In some
way, as emphasized by Borodin, their result not only assures the existence of a limiting function for
the Dy, in this case D(t) = det(1 — Kai|(,4+0)), for a certain continuous variable ¢. It also encodes
already how the discrete function z,,, should be rescaled in terms of a differentiable function u(t) to
get back, from the recursion relation for D,,, the Tracy-Widom formula.
To generalize this result for the case N > 1, we proceed by adapting the method used by Borodin in
[6] for N = 1 to the higher order cases, using the scaling proposed in [5]? for the multicritical case
(notice that their n corresponds to our N), instead of the Baik-Deift-Johansson’s one that only holds
for N =1.

We recall that D,, is the Toeplitz determinant associated to the symbol ¢(z) (1.1) (which depends
on #;,i=1,..., N and thus on N). In the following discussion we write explicitly the dependence on
the family of parameters (6;),i = 1,..., N of D,, = D,,(0;), ®r, = ©,(0;), ro = 7,(0;) and q,, = ¢ (6;).
Consider equation (1.8) written in terms of the Toeplitz determinants D, (6;) in this way

Dy—a(0:)Dn(0:) — Di_1(0:)
D26 = —x;(6;). (1.16)
From the equation (1.5), this previous equation can be expressed in terms of ¢, (6;) defined as (1.4).
It becomes o) 0 — 2(61)
An—1\Yi)qn+1\Vi) — qu\V; 2
= —I, 91 . 1.17
6 ) 1

According to Lemma 8 in [5], with the change of parameters 0; = (—1)710;, we have q,,(6;) =, (éz)
Thus equation (1.17) now reads as
ra1(6:)rni1(8:) — r2(6) 5

= = —x

UACD) !

(65)- (1.18)

Following the scaling limit described in Theorem 1 of [5], we define the following scaling for the
discrete variable n

n=b+t07"Td T, = (= (n—bh)f IWITdINTT (1.19)
with b, d defined as
N+1 2N
b=y 4= <N - 1)

and choose 6; (respectively 6;) all proportional to 6 = 6, = 6, in the following way

[N DUN 4D
(N— )N+l

6; = (—1)" i=1,...,N.

respectively

(N-DIN+D
(N— )N+l > "=

Now recall the definition of 7, (6;) (1.4) in function of P = P (see equation (1.3) for the definition of
P and the dependence on the family of parameters (6;)). From the previous scaling it is now possible

0; = N. (1.20)

2Up to the correction of the typo d — d~1 in their statement of Theorem 1.



to express 7, (6;) in function of ¢ and @

rn(0;) =Py, (N < t> (1.21)
- 2N+1

and according to Theorem 1 of [5], the limiting behavior of the probability distribution function of
A1 in this setting is given by

lim rn(éi) = lim Py, (( A — b

27 <t | = Fa(t), with Fy(t) = det(1 — Ka; ) (1.22
0—+oo 6—400 0d*1)72N1+1 t) w(t), wit n(t) = det( KAZN“'“’ ))( )

where Kaji, ., is the integral operator acting with higher order Airy kernel (see for instance equation
(2.7) in [5]). . ) .
As we did for r,,(6;) in equation (1.21), we express r,+1(6;) and r,_1(6;) in function of ¢ and 6.

With this discussion and this scaling for n, (6;) and (6;), we deduce that

2(p. 0. 0.\ _ »2(0. 2
_ im0y maaGrena () — ra(®) = L Jog F (1)
O0—+oo (9d—1)"2NF1  O—+oo  (Pd—1)TINFIy2(6;) dt

where the first equality comes from equation (1.18) and the second from equation (1.22).

From now on we drop the dependence on 6;,7 =1,..., N in the notation. The previous equation
suggests that, in order to be consistent with Theorem 1.1 of [8], the discrete function x,, appearing
in formula (1.16) in the scaling (1.19) for n and (1.20) for (6;) limit should be

—a ~ —(6) T AT A (1)

with u(t) solution of the N-th equation of the Painlevé II hierarchy. This can be proved directly by
computing the scaling limit of the equations of the discrete Painlevé II hierarchy we found for x, in
Theorem 1.1. Indeed, for every fixed N, we write x,, as

Ty = (—1)"07 T TN u(t) (1.23)

with u(t) a smooth function of the variable ¢ defined as in equation (1.19). Now recall that z,, solves
the discrete equation (1.9) of order 2N for every N > 1. The continuous limit of the discrete equations
of the hierarchy (1.9), under the definition of z,, (1.23) and the scaling of the parameters 6; as (1.20),
gives the equations of the classical Painlevé II hierarchy. For any fixed N the computation should be
done in the same way: consider the N-th discrete equation of the hierarchy (1.9) and replace each 6;
with the values given in formula (1.20). Then substitute x,, with the definition in (1.23) and for 6 —
+oo compute the asymptotic expansion of every term x,, g x u(t+K60~ TN dWlJrl), K=-N,...,N
appearing in the discrete equation. The coefficient of §~! resulting after this procedure coincides
indeed with the N-th equation of the Painlevé II hierarchy. For N = 1,2, 3 the computations are
explicitly done in the Appendix A.




Methodology and outline The rest of the work is devoted to prove Theorem 1.1. In order to
do so, we introduce the classical Riemann-Hilbert characterization [4] of the family of orthogonal
polynomials on the unit circle (OPUC for brevity) with respect to a measure defined by the symbol
©(z). Classical results from orthogonal polynomials theory allow to achieve almost directly formula
(1.16) where xz,, is defined as the constant term of the n-th monic orthogonal polynomial of the
family. The Riemann-Hilbert problem for the OPUC is then used to deduce a linear system of the
same type of (1.15) which is proven to be in relation with the Lax pair introduced by Cresswell and
Joshi [10] for the discrete Painlevé II hierarchy. This is done in Section 2. The explicit computation
of the Lax pair together with the construction of the recursion operator and the hierarchy for x,, as
written in (1.9) are done in Section 3.

2 OPUC: the Riemann-Hilbert approach and a discrete Painlevé
II Lax pair

In this section we introduce the relevant family of orthogonal polynomials on the unit circle. We
recall some of their properties and their Riemann—Hilbert characterization. Afterward we derive a
Lax pair associated to the Riemann-Hilbert problem and establish the relation with the Lax pair for
discrete Painlevé IT hierarchy (1.15) introduced by Cresswell and Joshi [10]. The proofs of the results
for orthogonal polynomials stated in here can be found in the classical reference [4].

We denote by S! the unitary circle in C counterclockwise oriented. We consider the following positive
measure on S! (absolutely continuous w.r.t. the Lebesgue measure there)

ew(eie)

du(0) = —5—do, (2.1)

where the function w(z) for any z € C is given as in equation (1.1). The family of orthogonal
polynomials on the unitary circle (OPUC) w.r.t. the measure (2.1) is defined as the collection of
polynomials {p,(2) }nen written as

Pn(2) = kpz™ + ... Ko, Kn >0 (2.2)

and such that the following relation holds for any index k, h

/7r pk(eig)ph(eie)dui(m = Ok,h

x 2m "
The family of monic orthogonal polynomials {7, (z)} associated to the previous ones is defined in

analogue way, so that p,(2) = k,m,(2).

2.1 Toeplitz determinants related to OPUC
We recall that ¢(z) = e“(*), 2 € S' with w(z) defined as in (1.1) and for every k € Z, we defined the

k-th Fourier coefficient . "
o = / e—ike(p(ew)?
o T

and we considered the Toeplitz matrix T,, () of dimension (n + 1) given by

Ty(@)ij = i—js 4,j=0,...,n

and its determinant D,, := det(T},(¢)) (by convention D_; = 1). Because ¢(z) is a real nonnegative
function, D,, € Ryy.



Proposition 2.1. Given that p(z) is a real nonnegative function, we have that

Yo  P-1 - Pyl P
1 ¥1 ¥o cee P2 Pory1
pe(z) = ———=det : : : : : , £>0. (2.3)
DDy : : . : :
! Pe—1 Pe—2 ... QZOO @21
1 z o2 z

Proof. The proof is similar to the one for the orthogonal polynomials on the real line, that can be
found e.g. in [11], equation (3.5) and following discussion. O

Corollary 2.2. The ratio of two consecutive Toeplitz determinants is expressed as

Proof. Thanks to formula (2.3), we have that

®o P-1 - Portl
1 ¥1 Yo .- Ptz |, D1
0(2) = ———=det . . ) . 2= 4.,
pe() vV DeDy 1 : : - : V' Dy,
PYe—1 Pe—2 ... ®o

and by definition p,(z) = keme(2) with the latter being the /-th monic orthogonal polynomial on S*.
Thus formula (2.4) follows. O

2.2 Riemann-Hilbert problem associated to OPUC

The family {m,} of orthogonal polynomials has a well known characterization in terms of a 2 x 2
dimensional Riemann-Hilbert problem, also depending on n > 0.

Riemann-Hilbert Problem 2.3. The function Y (z) ==Y (n,0;;2) : C — GL(2,C) has the follow-
ing properties:

(1) Y (2) is analytic for every z € C\ S*;

(2) Y (2) has continuous boundary values Y1 (z) while approaching non-tangentially S* either from
the left or from the right, and they are related for all z € S* through

1 Znew(z)> '

Yi(z) =Y_(2)Jy(2), with Jy(z)= <0 1

(3) Y(z) is normalized at 0o as

— Y;(n,6;
Y(z) ~ I+Z% 2"7 .z — o0,
j=1

where o3 denotes the Pauli’s matrix o3 = <(1) _01>



It is known from [3] that the above Riemann-Hilbert problem, for each n > 0, admits a unique
solution which is explicitly written in terms of the family {m,(z)}. Before stating the result, we
introduce the following notation. For every polynomial ¢(z), its reverse polynomial ¢*(z) is defined
as the polynomial of the same degree such that

q*(2) = 2"q(z71).
For every (LP(S')) function f(y), its Cauchy transform Cf(z) is defined for any 2 ¢ S! as

Crm) () = — [ Wy,

2w Sy — 2

Remark 2.4. Notice that the results in [3] for the Riemann—Hilbert characterization a family of
orthogonal polynomials on the unit circle are a sort of extension of the results known from [14, 15]
for the case of orthogonal polynomials on the real line.

Theorem 2.5. For every n > 0, the Riemann-Hilbert problem 2.3 admits a unique solution Y (2)
that is written as

T % "o ew(y) z
ORGP T o) (25)

Cmhoa(2) =R C (Y (m)et ™) (2)
Moreover, det(Y (2)) = 1.
Proof. See Lemma 4.1 in [3]. O
The solution Y (z) has a symmetry which will be very useful in the following section.

Corollary 2.6. The unique solution Y (z) of the Riemann-Hilbert problem 2.3 is such that

Y (2) = a3V (0) 'Y (2712 %5 03, 2.6
Y(z)=Y(2) 2.7
Proof. See Proposition 5.12 in [4]. O

Notice that the factor Y'(0) = Y (n, 6;;0) appearing in equation (2.6) has a very explicit form, by
equation (2.5). This will be useful in the following sections.

Lemma 2.7. For every n > 0 we have

W@ZW%%®=<Q? “#) (2.8)

—Kp—1  Tn

where we denoted with x,, = 7,(0) and k,, is defined as in equation (2.2). Moreover, we have

2
’{nfl _ 2
L =1-22 (2.9)

K
and we have z,, € R.

Proof. The first column of Y(n;0) directly follows from the evaluation in z = 0 of Y'(n; z) as given
in equation (2.5). Indeed Y!'(n;0) = 7,(0) and Y?'(n;0) = —k2_,7%_,(0) but we observe that

T vp—1

2 (0) =" (F ) o = 2" e e 7, 1(0)) o = 1



Thus we conclude that Y2 (n;0) = —x2_,. For what concerns the second column of Y (n;0), we first
find the (2,2)-entry. This is indeed easily deduced from the symmetry given in (2.6). In the limit
for z — oo it gives

Y (n;0) = 03Y ! (n;0)03,
thus Y22(n;0) = Y!1(n;0) = 7,(0). Finally for the entry (1,2) of Y (n;0), we compute it explicitly
using the orthonormality property of the polynomials p,(z)
1 Tn(8)s M w(s) T o——5 0, dO 1 (7 o ———< . d0
12/,.. _ _ 10\ in 70 _ 160 B 20
Vo) = g [ T [ e ) = [ el )
1

—-
Kn

—T —T

Equation (2.9) comes from the fact that det(Y (n,0;;2)) = 1 identically in z and so in particular for
z = 0 by writing Y'(n,6;;0) as in equation (2.8), relation (2.9) is obtained.

Finally, the fact that x, is real follows from the entry (1,1) of equation (2.7) together with
equation (2.5). O

At this point, we are already able to express the ratio of Toeplitz determinants in terms of the
costant term of the monic orthogonal polynomials, as follows.

Corollary 2.8. For every n > 1, the Toeplitz determinants D,, satisfy the recursion relation

Dp_2D,,
DTQ =1—22. (2.10)

n—1

Proof. Putting together equation (2.9) with equation (2.4) (for two consecutive integers) we obtain
the recursion relation (2.10). O

We emphasize again that the symbol ¢(z) actually depends on the natural parameter N, so the
Toeplitz determinants D,,,n > 1 (1.2) do as well as x,, = m,(0),n > 1 do (since it is the constant
coefficient of the n-th monic OPUC w.r.t. the N-depending measure (2.1), (1.1)). The N-dependence
of the latter will be emphasized in the following section, where x,, is proved to be a solution of the
N-th higher order generalization of the discrete Painlevé II equation.

We consider now the following matrix-valued function

1 0 1 0\ e
U(n,0;;z2) = (0 HQ) Y (n,8;;2) (O z”) w3 (2.11)

n

Thanks to the properties of Y (z;n,6;) from the RH problem 2.3 one can prove that ¥(n,0;;z2)
satisfies the following RH problem.

Riemann-Hilbert Problem 2.9. The function ¥(z) = ¥(n,0;;2) : C = GL(2,C) has the follow-
ing properties:

(1) V(z) is analytic for every z € C\ {ST U{0}};

(2) W(2) has continuous boundary values V() while approaching non-tangentially S* either from
the left or from the right, and they are related for all z € S* through

Uo(2) = U_(2)Jo, Jo— ((1) }) . (2.12)
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(8) V(z) has asymptotic behavior near 0 given by

1 0 — i 10wz
U(z) ~ (0 %2) Y (0) 1+lefyj(n) (0 z”> T 2 0. (2.13)
=
(4) ¥ (z) has asymptotic behavior near oo given by
U(z) ~ (O HJQ) I+z:17 0 1)¢ 2, |z| = o0 (2.14)
=

Proposition 2.10. The function ¥(n,0;;z) defined in (2.11) solves the Riemann-Hilbert problem
2.9.

Proof. The analyticity condition and the asymptotic expansions at 0, co given in (2.13), (2.14) follows
directly from the definition (2.11) and the fact that Y(z) solves the RH problem 2.3. Condition (2.12)
follows from direct computation

¥(2)4 = (é ﬁ02> Yi(z) <é z0”> VT = (é KQQ) Y_(2)Jy () (é 3%) ()%

n

o 1 0 —w(z)Z3 1 zmew(®) 1 0 w(z)ZE
=7-(2) <0 z_")e ’ <0 1 0 z)°¢ ’
1 1

0 1)°

2.3 A linear differential system for U(z)

From the solution of the Riemann-Hilbert problem 2.9 we deduce the following equations (in the
following we omit in ¥ the dependence on 6; that should be considered only as parameters and not
actual variables as n, z).

Proposition 2.11. We have

U(n+1,2)=U(n,2)¥(n,2), 0,¥(n,z)="T(n,z2)¥(n,z) (2.15)
with
L z+ TnLn+1 —Tn+1 _
U(n,z) := (_(1 S22 e 1 x%+1> =042+ Up(n) (2.16)
and
2IN+1
T(n,z):=Ti(n)zN "1+ To(n)N 2+ .+ Toya(n)z V1 = Z TNk, (2.17)
k=1
where 0
Ti(n) = o, (2.18)
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Proof. We first prove the first equation. We start by defining the quantity U(n,z) = ¥(n +
1,2)¥~1(n,z). Since the jump condition for W(z) (2.12) is independent of n, U(n, z) is analytic
everywhere. Plugging in equation (2.14) we have the expansion at oo

Uln,2) = ((1) ,%92 ) (I PR CURSY O(z2)> 2+ <(1) 2) PR (I _hl (’)(22)) (é

n+1 z z

from which we deduce that U(n, z) is a polynomial in z of degree 1, by Liouville theorem. Moreover
its matrix-valued coefficient are written as

Un,z) =z (é 8) + (é Kfil) Y (n + 1;0) (é 8) Y ~1(n;0) (é %) .

=Uo(n)
Doing the computation and using equation (2.8) we obtain
Uo(n) = Y (n+1;0)Y?(n;0) —k2Y N (n+1;0)Y2(n;0)\ Tpy1Ty —Tpa1
0N/ = H;_?_1Y21(n +1;0)Y%2(n,0) Y (n+10Y2(n;0) ) \-(1-22 )z, 1-22,,)"

For what concerns the second equation, we define T'(n, z) = 9,V (n; 2)¥~1(n;2). From the asymp-
totic behavior of ¥(n; z) at 0 and co we can deduce that T'(n; z) is a meromorphic function in z with
behavior at oo described by

T(n;z) ~ (é Hg2) (I + %n) + 0(2_2)> @0’3 <I — @ + 0(2_2)> <(1) HO%)

(polynomial behavior of degree N — 1) while at 0 its behavior is described by

0

T(n;z) ~ <(1) ’%2) Y(n,0) (I +Yi(n)z+0(z%)) V')

o (1= Tim=+01) (53 ).

i.e. there is a pole of order N + 1. In conclusion we can write
0
T(n;z) = 7NO'3ZN71 + To(n)zN 2 4+ -+ Tonya(n)2 V7L

O

Moreover, thanks to the symmetry for the solution of the Riemann—Hilbert problem Y (z) stated
in (2.6), we have that the coefficient matrix T'(n, z) satisfies a symmetry property.

Proposition 2.12. T'(n, z) has the following symmetry

T(n,z7') = —2* (K(n)T(n,z)K(n) "' —nz"'L), (2.19)

with K(n) = <é K(_Z) Y (n: 0)os <é %)

n

Remark 2.13. Notice that for all n, the matriz K(n) is s.t. K(n)~' = K(n) since we have the

2
identity x2 + K;L—gl =1.

Proof. On the one hand,



On the other hand, using the symmetry ) for Y we deduce the following symmetry for ¥:

(2.6
U(n,z7t)y=2" ((1) KSQ> ( > n,z)os.

This previous equation leads to

0.(U(n, = 1)) = 2" (é 592) Y(0)os ((1) %) 0.U(n, 2)o5 — nz""W(n, 1),

o K
Then
T(n,z!) = —22 ((3 ﬁ;) Y(0)os (é £3> T(n,z) ((1) H;) o3 (0)"! ((1) %) - n21[2) .
O
The symmetry (2.19) reflects on the coefficients Ty (n),k = 1,...,2N + 1 as written below.

Corollary 2.14. The coefficients Ty (n),k =1,...,2N + 1 satisfy
Ti(n) = —K(n)Tonto—j(n)K(n)™*, j=1,...,N (2.20)
Tni1(n) = —K(n)Tni1(n)K(n) ™' + nly. (2.21)

Proof. Indeed, by replacing the exact shape of T'(n, z) in equation (2.19) we have

IN+1 2N+1
Z Tp(n)z=NTF =T(n,z71) = 22 < Z KTy (n)K 12Nk nz_1[2>
k=1 k=1
2N+1
= Z KTy (n)K 12N T2k ozl

2N+1 )
= — Z KTQNJrQ,j(TL)K_lZ_N-H + nzls
J=1

so looking at the powers z~V*J for j = 1,..., N we get equation (2.20) and for j = N + 1 we get
equation (2.21). O

Notice first that from equations (2.20) if the first N + 1 coefficients of T'(n, z) are known, then
we can obtain the remaining ones. Second, notice that the coefficient T 41(n) plays an important
role since it solves an equation, the one given in (2.21).

2.4 Relation with the Cresswell-Joshi Lax pair

To conclude this section, we describe how the Lax pair (2.15) is related with the one of the discrete
Painlevé II hierarchy (1.15) originally introduced by Cresswell and Joshi in [10]. More precisly, they
considered the following system

Definition 2.15. Let ®(n,z) be a 2 x 2 matrix satisfying

P(n+1,2) = (m 1/2) ®(n, z) = L, (2)®(n, 2) (2.22)

n

0
D o0, 2) = M(n, )0 (n. )

where M (n, z) = (é:gi; —BXL,E(ZQ)) with A,,, By, and C,, rational in z (and depending also on N).

(Ln(2), M, (2)) is the Lax pair for the discrete Painlevé II hierarchy.
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Remark 2.16. Specifically, in section 3.1 of [10], the authors proved that the compatibility condition
of the system (2.22) defines the coefficients of the matriz M(n, z), leaving in turns only one discrete
equation of order 2N for x,. This is defined as the N-th member of the discrete Painlevé II hierarchy.

We establish now a link between this Lax Pair and the system (2.15) we obtained starting from
the OPUC. We define

an+3/2 0 1 0
®(n,z) =03 < 0 z‘”“/Q) ( 1> U(n — 1,22)

—Tn-1
Proposition 2.17. ®(n, z) defined as above satisfies (2.22).

Proof. First we compute the discrete equation for ®(n, z).

—n+1/2 0 1 0
(I>(n + 1, Z) = 03 (Z 0 n1/2) ( 1) \I}<n7 22)

z Tn

According to equation (2.15)

—n+1/2
w1 =0 (70 00) (L D) v - -1

z Tn

z—nt1/2 0 1 0 9 1 0\ [z 32 0
=03 ( 0 Z_n_1/2) <_xn 1) U(n o 1’Z ) (xnl 1) ( 0 Zn_1/2) 0-3(b(n72)

= (;ﬂ f/"z) ®(n, 2)

Now we compute the derivative with respect to z.

0
Defining M (n, z) := (ad)(n, z)) ®(n,z)~!, similar computations lead to
z

L [-n+3)2 0 20 L0\ a1 0\ (! 0
M(n,z) =z 03( 0 —n+1/2 o3+2293 | o g —Zp-1 1 T(n=1,2") Tp-1 1 0o 1)%
(2.23)

We need to prove two things: first the trace of M (n, z) is null and then entries of M (n, z) are rational
in z.
For the trace of M (n,z) we use the fact that Tr(T(n, z)) = nz~1. Then

Tr(M(n,z)) = (—=2n+2)z" " +22Tr(T(n — 1,2%)) =0
From the expression of T'(n,z) (2.17) and the equation (2.23) we conclude entries of M(n,z) are
rational in z. 0
3 From the Lax Pair to the discrete Painlevé II hierarchy

In this section we study the compatibility condition associated to the linear system (2.15). This
first allows us to reconstruct completely the matrix T'(n, z) and then to obtain an explicit 2N order
discrete equation for x,, which corresponds to equation (1.9).
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3.1 The symmetry in the compatibility condition

We study the consequences of the symmetry (2.19) for the matrix T(n,z) on the compatibility
condition for the Lax pair introduced in Proposition 2.11. More precisely we show that, thanks to
the symmetry (2.19) the compatibility condition contains an overdetermined system of equations.
We recall that the compatibility condition reads as

oy —Tn+1,2)Un,z)+U(n,z)T(n,z) =0 (3.1)

where we have to replace U(n, z) as in (2.16) and T'(n, z) as

N+1 2N+1
T(n,z) = Z Ti(n)zN=F 4 Z —K(n)Tonyo2_r(n)K(n) 22Nk, (3.2)
k=1 k=N-+2

and with the coefficient T 11(n) satisfying equation (2.21).

Lemma 3.1. The compatibility condition (3.1), for U(n, z),T(n,z) as described above, corresponds
to the following system

Tiin+1)or —o:Ti(n) =0
Titi(n+ 1oy —o04Tj41(n) + Tj(n+ 1)Up(n) — Up(n)Tj(n) = o4djn, j=1,...,N,
Tni1(n) = —K(n)Tyy1(n)K(n)~" + nls.

Proof. The compatibility condition (3.1), after replacing U(n,z),T(n,z) of the prescribed form,
involves powers of z from N to —N — 1. Imposing that the coefficients of each of these powers of z
is identically zero, we obtain the following equations

N Ti(n+ 1oy — o, Ti(n) =0 (3.3)

NI j=1,...,N:
Tjyr(n+1)oy — 04 Tjpa(n) + Tj(n+ 1)Uo(n) — Up(n)Tj(n) = 0405 N (3.4)

z7h Tnyi(n+ D)Upg(n) — Up(n)Tny1(n) — K(n+ 1D)Tx(n+ 1)K(n+1)" oy
+ 0o, K(n)Tn(n)K(n)™' =0 (3.5)

NI j=N+2...2N:

— K(n+1)Taonp—j(n+ DE(n+1) "oy + o K(n)Tonv1—;(n) K (n) ™" + Up(n) K (n)Ten2—j(n) K (n) ™!
— K(n+ DTanio—j(n+ 1)K+ 1)"'Uy(n) =0 (3.6)
2N K+ DTi(n+ 1)K (n+1)"Us(n) + Up(n) K (n)Ty(n)K(n)~t = 0. (3.7)

With the change of indices 2N +1—j =k, < k=2N+1—j=N—1,...,1, the equation (3.6)
becomes:

—Kn+1)Tin+1D)Kn+1) "oy + o, K(n)Tr(n)K(n) ™" — K(n+ DThyq(n+ DK (n+ 1)Uy (n)
+ Up(n)K(n)Thy1(n) K (n) ™' = 0. (3.8)
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We now show that equations (3.5), (3.6), (3.7) are equivalent to the first ones (3.3), (3.4) thanks
to the symmetry of the coefficients Ty (n) given in (2.20) together with the equation for Tn1(n),
already obtained in (2.21).

To start with, we notice the following relations

and

Us(n) == K(n+1)"'Us(n)K(n) = o4,

(n) = K(n+1)"to, K(n) =Uy(n),

2
deduced by using multiple times relation (2.9), namely z2 + K;—gl =1.

1)

Let us consider first the equation (3.7) obtained from the coefficient of the term z~~~!. Mul-
tiplying by K(n + 1)~! to the left and by K(n) to the right, we obtain

~Ty(n+ 1)Us(n) + Up(n)Ty(n) =0
that is exactly (3.3).

Let us consider now equations (3.8), obtained from the coefficients of the term zV=7 j =

N +2,...,2N. By multiplying by K (n + 1)~! to the left and by K(n) to the right as before,
we obtain the equations for k=N —1,...1

~Tiu(n + 1)5(n) + &(n)Ti(n) — Tis1(n + 1)Uo(n) + Up(n)Trp1(n) = 0
which is exactly equation (3.4) for j=1,...,N — 1.

The last equation is (3.5) obtained from the coefficient of the term z~!. We multiply, again,
by K(n+ 1)~ to the left and by K(n) to the right, and we get

K(n4+1) " Ty 41 (n+1) K (n+1) Uy (n)—Up(n) K (n) " Ty +1(n) K (n)—Tn (n+1)5(n)+5(n) Ty (n) = 0,

and then we replace the symmetry for the term Txn41(n) namely the equation (2.21) (that
indeed it has not be used until now)

~Tn1(n + DUo(n) + Uy(n)Tns1(n) + Ug(n) — Ty (n + 1)5(n) + & (n) T (n) = 0.

And this is again exactly equation (3.4), for j = N.

Thus the compatibility condition (3.1) is reduced to the equations in the statement, namely equations

(3.3),

(3.4), (2.21). O

Now, we use equations (3.3), (3.4) together with the initial condition for T} (n) given in (2.18), to
recursively find the coefficients Tj(n), for k =1,..., N +1, in terms of the z,,+;,7 = 1,..., N. With
the coefficients Ty (n) computed in such a way, the symmetry for T 41(n), i.e. equation (2.21), once
Txn+1(n) is determined, provides an actual discrete equation for x,, of order 2N, that is what we call
the higher order analogue of the discrete Painlevé II equation (that coincide for N = 1,2 to the ones
already appeared in literature [1, 6, 10]).
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3.2 The recursion

In this subsection we explain how equations (3.3), (3.4) resulting from the compatibility condition
(3.1) can be used to find recursively (in k) all the coefficients Ty (n), k =1,...,N + 1 of T'(n, z).

Lemma 3.2. For every i = 1,...,N, starting from the initial condition (2.18) Ty(n) = %"03, we
have

_ Tn
Tiv112(n) = 2001 (2A7 1) <v s Tio1(n+1)— $nTi,12(n)> + o1 Ti2(n+ 1) — 2p2ng1T512(0)
n+1

_ x
Tiv101(n+1) = 20,41 (2A7 4+ 1) < ntl Tio1(n+1)— ani,lz(n)) + vpt1T521(n) — Tp&pi1Ti01(n + 1)

UnJrl
_ —Tn
Tiv111(n) = —Tiqy1,20(n) + nd; v = A1 (v?TiH,zl(n +1)+ ani+1,12(n)> +nd; N,
n+
where
A:Ti(n) = Ti;(n+ 1) — T;(n), (3.9)
Vp =1 — a2, (3.10)

Proof. We rewrite equations (3.3), (3.4) for ¢ = 1,..., N, entry by entry. For the first one, we have

Tii(n+1) =Ti11(n) =0
Tl’lg(n) = T1721(7”L + ].) = 0

This is satisfied by T4 (n) given in (2.18). For the second one, for any 1 < ¢ < N we have the four
equations:

Tiyin(n+1) = Tii101(n) = —Tinn(n+1Dzpzpir + Taa(n+1)(1 — 22 ),
+ 2 Zn1T511(0) — 1T 21(n) + 65 N

Tit112(n) = =21 Ty (n+ 1) + Tiaa(n+ 1)(1 — 22 1) — 2p2n41T512(n) + 21T 22(n)
Tit121(n+1) = =T o1 (n+1)2n @41+ s 22 (n+ 1)z (122 ) =T 11 (n)zn (1—22 1) +(1—22 )T} 21(n)
0="Tiai(n+Dans1 — Tioa(n+1)(1 — a5y y) — za(l — 22, ) Tia2(n) + Tiga(n)(1 — 25, 1)

Using the notations introduced in (3.9), (3.10), the previous equations become: 1 < i < N:

ATi1,11(n) = =22y 1 AT 11(0) + 2nvnp1 Ti2(n+ 1) — 21 D01 (n) + 658 (3.11)
Tiy1,12(n) = —zppiTini(n+ 1) + v Tiio(n+ 1) — 221 T512(0) + 2175 22(n) (3.12)

Tivi21(n+1) = —zpxn1Tio1(n+ 1) + 200415 22(n + 1) — 20417511 (0) + V1 Ti21(n) (3.13)

Un1AT; 29(n) = xp1 T 01(n 4+ 1) — 2pvp41T512(n) (3.14)

From these equations, we see that in order to obtain the diagonal terms, there is a “discrete inte-
gration” to perform, while the off-diagonal terms are directly determined from the previous ones.
Moreover, we can rewrite the four equation as only two equations involving only the off-diagonal
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terms. Indeed, because of Tr(T(n, 2)) = nz~t, T; 11(n,2) = —Ti22(n, 2) for 1 <i < N. Thus (3.14)
can be written as
Un1AT; 11(n) = =1 Tio1(n+ 1) + 204175 12(0)

Formally, 1 <i < N

—z,
Tia1(n) = —Tia(n) = A1 ( s Tio1(n+1)+ ﬂchz‘,u(n)) , (3.15)

Un+41

which still holds for ¢ = N 4+ 1 up to adding the “constant” n on the right hand side. Using this in
(3.12) and (3.13), we obtain:

_ Tn
Tiv112(n) = Tpy1 (2A71+1) <v +1Ti,21(n +1)— InTylz(n)> +vp41Ti12(n+1) —2pzni1Ti2(n),
n+1

_ x
Tiv1.01(n+1) = 20,41 (2A7 1) < ntl Tion(n+1)— ani,m(n)) +n4+1T5,21(n) —TpTr41T5 21 (n+1).

Un+1
O
We notice that, defining the discrete recursion operator
1 Tn+1
" Tt A7+ D) ( —==yn = ntin | + (Ung1 (A + 1) = ZnZni1 )un
() - e
_ 1 _
Yn TpUni1 (2071 + 1) Un;yn —Xptpn |+ Wn1 (A 4+ D7 — 2020 01)Yn
n+1

we can rewrite the two equations for the off-diagonal entries of T;(n) obtained above as

Tit1,12(n) ) < T;12(n) > )
; =L , 1<i<N 3.17
<Ti+1,21(n +1) Tio1t(n+1))’ ¢ (3.17)

And, recursively we obtain
Tnt1,12(n) N (0O
’ =L 3.18
(TN+1721(7”L +1) 0 (3.18)
This procedure allows to construct the all matrix T'(n, z), starting from the initial condition T;(n) =
(%Ncrg and iterating the operator £ we obtain off diagonal terms of T'(n, z) and compute diagonal one

with equation (3.15). Below we implemented this method to find the matrix T'(n, z) in the first few
cases N =1,2.

Example 3.3. In the case N = 1, the matriz T'(n, 2) = T1(n)+T2(n)z~1+T3(n)z=2. Knowing T} (n),
we only have to find To(n) using the recurrence relation given from the compatibility i.e. equations
(3.11), (3.12), (3.13) fori = 1. Since: T112(n) = T121(n) =0, and Ty 11(n) = On/2 = =T 22(n) we
have
T2711(T7/) =n
Tr12(n) = —2pp1(Tri(n+ 1) + T 11(n) = —012041,
Too1(n+1) = 2pvpt1(Th22(n + 1) + Th 22(n)) = —012,Vn41,

and T 22(n) = n — Tz 11(n) = 0. Moreover the symmetry which reflects terms of T'(n, z) two by two
gives T5(n) = =K (n)T1(n)K(n). Thus the Laz matriz for N =1 is

. 0, /1 0 1 n —01T041 01 % — CL‘,QZ Ty
T(n72) a 5 (O _1) + z <_61'Unxn—1 0 * ? UnTn xZ - % .
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Example 3.4. In the case N = 2, the matriz T(n,z) = T1(n)z + To(n) + T3(n)z=1 + Ty(n)z=2 +
Ts(n)z=3. This time we have to find Ta(n) (that will be almost the same as before) and also T3(n)
using the recurrence relation given from the compatibility i.e. equations (3.11), (3.12), (3.13) for
it =1 and 2. First we find To(n) (i = 1 above), we have

0
Ty 11(n) = 51
Tr12(n) = —2pp1 (Th11(n+ 1) + Th11(n)) = 022541,

T2721(’I7/ —+ ].) = xnanrl(Tl,gg(n —+ ].) —+ TLQQ(TL)) = —02$n0n+1,
and Th 22(n) = =T 11 = —%. Then we consider the equation for i =2 and we find T3(n). We have

A113,11(7/7/) - xnv7z+1(_02-rn+2) - xn-‘rl(_Gan—lvn) +1 = T3,11(n) =n— 02xn—1xn+lvn

T312(n) = 01241 — O2(Vpt1Tng2 — xnxi+1)7
Ts1(n+1) = (=012, — O2(vyTp—1 — T2 11))Vns1,

and T592(n) = n — T311(n) = baxp_1Tp410,. Finally, we take Ty(n) = —K(n)Tz(n)K(n) and
T5(n) = —K(n)T1(n)K(n). Thus the Lax matriz for N = 2 is

02 (1 0 %1 —02T 41
T(n7Z) - Z? <O _1> + <02xn_1vn 79?1 +

2
1 n— 92$n—1$n+1vn —91$n+1 - 92(Un+133n+2 - $n$n+1)
- 2
2 \(=012p—1 — O2(Vn—1Tp—2 — o722 _1)) vy 022 —1Tn 4100
0 2 2
+ 1 _QQUn('xnxn—l + xnxn-i-l) + i(vn - an) _92(Un$n—1 + -Tnxn-&-l)
- 2 %) 2
22 —02(VnTni1 + Ty Tn—1)Un O20n (TnTrn—1 + TnTpi1) — G- (vn — 2;,)
+ 972 % - LE% Tn
23\ UnTn l’% - % .
Now that we have reconstructed the all matrix T'(n, z) in terms of z,4,,j = —N,..., N we are

left with the equation that T 11(n) has to satisfy, namely (2.21). We now show that actually this
coincide with only one scalar equation in Tn 41,12 and Tn41,21. Indeed, entry by entry it reads as the
following system of four equations. From the off-diagonal entries

(Tnt1.11(n) — Tns1,22(n)) — Tvgr,21(n), (3.19)

U (Tn1.11(n) — Tvy1.22(n)) — 02Ty 1.12(n).

v ITNy1,12(n) = 2y
UpTNy1,21(n) = 2p
and from the diagonal entries

n—(1+22)Tny111(n) — UnTNy1,22(n) + 2 Tvg1,21(n) + 2pvnTvgi,12(n) =0,
n—(1+22)Tn+1,2:(n) — v Tns1.11(n) — 2, T 41.21(n) — 2,0, T 11,12(n) = 0.

We notice first that the four above equations are all the same. The first and the second equations are
the same up to a multiplication by v,. Using the relation Tn41,11(n) +Tn+1,22(n) = n we can rewrite
the third and the forth equations and obtain the same equation up to a sign. Finally multiplying by
x,, the first equation and using the relation Tn41,11(n) + Tn+1,22(n) = n we obtain the third one.
Thus from now on we will refer only to (3.19), as for the remaining equation.

Using equation (3.14) and Tr(T'(n, z)) = nz~!, we express equation (3.19) in function of Ty 41 12(n)
and Tny1.21(n). Consider equation (3.19), with the identity Tr(Tn41(n)) = n, it is rewritten as

U TNt112(n) = 2y (0 — 2T N41,20(n)) — Tivg121(n).
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Equation (3.14) holds also for ¢« = N +1. It means it is possible to replace Tn41,22(n) in the previous
equation and obtain

_ Tn
NT, — ’UnTNJrl’lQ(n) — TN+1’21(7’L) — 2z, A 1 (_.’L‘nTN+1’12(n) + " +i (A =+ I)TN+1’21(77,)> = 0.
n+
(3.20)

3.3 The relation between T; 15(n) and 7} 9 (n)

The previous equation (3.20) depends on Tyy112(n) and Tni1,21(n). The aim of this part is to
establish a connection between T; 12(n) and T; 21(n) to rewrite equation (3.20) just in function of

Tn+1,12(n).
To accomplish this, we study the compatibility condition of C(n,z) := T'(n,2)? and U(n, 2).
C(n, z) is rational in z with a pole of order —2N — 2 at 0. We write C(n, z) as:

4N+1

C(n,z)= Y Ci(n)z*N 17" (3.21)

i=1

with

ZT Tis1-5(n) (3.22)

O
where Cy(n) = TIQ.

In what follows we will need this lemma:
Lemma 3.5. Diagonal coefficients of C;(n) defined as in (3.22) satisfy the following equation:
V1 <i< N,Cii(n) = Cia2(n)

Cn+1,11(n) = nOn + Cni,22(n)

Proof. We express C; 11(n) in function of T; y;(n). With the equation (3.22)

Cia( Z Ti11(n)Tip1—j11(n) + Tja2(n)Tip1—j,21(n).
Then, the sum index change j =7 — k 4 1 leads to
Ciai( ZTZ k1,11 (M) T 11 (n) + Ti—pg1,12(n) T 21 (n).

Finally with the relation Tr(T(n, z)) = nz~!
e if1<i<N

)

Cin( Z T gt1,22(n) T 22(n) + T 21 (N) Ti—gt1,12(n) = C; 22(n).
o ifi=N+1,
N+1
Cn+1,11(n) = —2nT1,22(n)+Z TN —k+42,22(n)Th,22(n)+Th,21 (M) TN —py2,12(n) = NON+Cni1,22(n).
k=1
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We deduce the compatibility condition for C' and U from the one for T and U.

Lemma 3.6. C(n,z) (3.21) and U(n, z) (2.16) satisfy the following compatibility condition:
Cn+1,2)U(n,z) —U(n,z)C(n,z) =T(n+1,2)04 + 0.T(n,z2) (3.23)

Proof. Multiplying on the left (respectively on the right) equation (3.1) by T'(n + 1, z) (respectively
T(n,z)) and summing these two equations leads to the result. O

The left (respectively right) hand side of the equation in the previous lemma is an expression
in powers of z from z2N~1 to z 72N -2 (respectively from 2N-1 to z_N_l). This equation leads to
recursive equation for C;(n). We consider only expression in powers of z from 22V =1 to zN~1.
According to (3.1) and (3.23), V1 < i < N, C;(n) and T;(n) satisfy the same recursive equation (see
equations (3.11),...,(3.14)). For ¢ = N + 1, the equation is a bit different. The term with ¢; y is now
multiplied by 6.

From these equations we deduce the following result.
Proposition 3.7. Let C;(n) be as in (3.22). Then V1 <i < N, Ci(n) = a;12 and
CN_H(TL) = 9]\77104. —+ aN+1IQ
Proof. We prove Proposition 3.7 by induction.
92
For i = 1, we already know Cj(n) = TN

Suppose C;(n) = a;I5 for i < N — 1.
Ci11(n) satisfies the following equations:

ACit1,11(n) = =22y 11 AC; 11(0) + 2nvp+1Ci12(n + 1) — p41Ci21(n) + On6s N
Cit1,12(n) = =25 41C511(n + 1) + v,41Ci 12(n + 1) — 2y 2n11Ci12(0) + 511 C 22(0)
Ciyio21n+1) = —zp2p41Ci21(n + 1) + 25,0 41C 22(n + 1) — 2,0,41Ci 11 (N) + V11 C 21 (1)

Using induction hypothesis,

ACit111(n) = —2nTpi1 %0+ Tpvpp1 *0 — 2y 0+ On0; v = ONOi N
Ciy1,12(n) = —2pq105 + Vpg1 %0 — TpZpp1 ¥ 0+ 25105 =0
Civi21(n+1) = —2,&pt1 * 0+ TpUnp104 — TpUnp10; + Upp1 0 =0

From the first equation we conclude Cj11,11(n) = a;41 if ¢ < N —1 (respectively Cy+1,11(n) = Onn+
an41 if i = N) and according to Lemma 3.5 Cjy1,22(n) = a;11 (respectively Cni1,22(n) = any1)
which concludes the proof.

O
From equation (3.22) and Proposition 3.7, we obtain
i—1
ONTi11(n) = a; — ZT‘,M(N)Ti—jH,n(n) +Tj12(n)Ti—j11,21(n) (3.24)
=2
N
ONTNt+1,11(n) =nN + ang1 — Z Ti11(n)Tn—jr2,11(n) + Tj12(n)Tn—jy2,21(n) (3.25)
j=2

With all this discussion on C(n, 2) it is now possible to prove the following proposition.
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Proposition 3.8. The following holds: ¥1 < i < N+1, T; 11(n), T;12(n) and T; 21(n) are polynomi-
als in x4 ;’s. Moreover the following symmetries hold: 3(Q;n ((Un+j)1—i<j<i—1) > Pipn ((Un4j)1-i<i<i—1))
polynomials in u,;’s such that,

Ti,ll(n) = Qi,n (("En+j)1fz<j<i71) = Qi,n ((xnfj)lfigjgifl) y

Tii2(n) = Pin (Tntj)1-i<i<i-1)
and
Ti21(n) = v Pin (Tn—j)1-igj<i-1) -
Proof. We prove this proposition by strong induction.

0
Fori = 1, Ti(n) = %Vag, then defining Q1 (u,) = 7N’ Py (up) == 0; Th11(n) = Q1. (xn),

Ti,12(n) = P1y (z5) and Th21(n) = v Pin (20).

Now suppose the property true for all j € [[1,4]] with ¢ < N and let (Q;n, Pjn);j<i be polynomials
in x,4;’s satisfying the property.

According to (3.24) (and (3.25) for i = N) and strong induction hypothesis, T;11(n) is a polynomial
in x,4;’s and the invariance when you exchange ,4; by x,—; holds.

Because of equation (3.12) (respectively equation (3.13)) and of induction hypothesis, there exists
Pit1n ((Unts)—igj<i) (respectively Pitqpn ((Un+j)—i<j<i)) @ polynomial such that

Tiv112(n) = Piy1n (Tngg)—i<i<i)

respectively 3
Tiv1,21(n) = Piy1n (Tngg)—i<i<i)

Now we establish the link between P4, and ]3”1,”. According to equation (3.12) and the relation
Tr(T(n,z)) =nz"h:

Piin ((@n4)ie i) = =2n11Qins1 (@nri)i22) Fons1 Pyt (ns)i22) —2ntni1 Pin ((@ng5)21 )
— Tpt1Qin ((xn+j)§;11—i)
Then
vnPrttn (@ng)ie1) = Vn (=01 Qinot (@ )i=2) + vt P (@0-3)22)
—xnmnflpiﬂ—,‘ ((l’nfj);;ll_z) - I'nlei,n ((xnfj);;ll—z))

From induction hypothesis and Tr(T'(n, z)) = nz~%:

UnPit1n ((-Tn—j);:_i) = -1 L1 (n—1)+ v, T o1(n—1) +2p_12,T5 21 (n) + Tp—10, 5 22(0)

According to equation (3.13),
UnPigim (tn—j)i=—;) = Tiy11(n+ 1)

Then . R
OnPiyin (Tn—j)i=—i) = Piv1n (Znrj)—igji<i)

and this concludes the proof. O
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Define C [(zj)

je[[o,zn]]] and the transformation

Perm,, : [(xj)je[[O,Qn]]} — C [(xj)je[[O,Qn]]}
—

C
P ((Tp+5)—n<j<n) P ((xn—j)-n<j<n)
From the previous proposition
T 21(n) = v Permy, (T;,12(n)) (3.26)

Remark 3.9. As a consequence of the Proposition 3.8 the equation (3.19) is a polynomial in x,;’s
and is invariant when you apply Permy, to this equation because Perm?2 = Id and
Perm,v,, = v,Perm,,.

We use the link we established in Proposition 3.8 between T; 12(n) and T; 21(n) to rewrite the
operator £ (3.16) as a scalar operator:

L(up) = (pt1 (A7 + 1) (A + 1) 2, Permy, — 25) + Ung1 (A + 1) — 2pTpg1) Up. (3.27)
Finally, collecting all the results from the previous sections, we state and proof the following theorem.

Theorem 3.10. The system (2.15), with T'(n, z) of the form (3.2) and coefficient Tn11(n) satisfying
the symmetry condition (2.21), is a Lax pair for the N-th higher order discrete Painlevé II equation
and the equation is given by the expression:

n, + (20,A7" (2, — (A + DanPermy,) — v, — vaPermy,) Ty 41,12(n) = 0, (3.28)
where T 1 12(n) = LN (0) with L as in (3.27).
Proof. Replacing Tn+1,21(n) with the relation (3.26), equation (3.20) now reads as

nT, + (anAfl (xn, — (A + Iz, Permy,) — v, — vnPermn) Tni1,12(n) =0.
Equations (3.17) and (3.18) with the relation (3.26) reduce to

Tit112(n) = L(Ti12(n)) and Tyi112(n) = LY(0),
which concludes the proof. O
The next two examples explain for N = 1,2 how to compute explicitely equation (3.28).

Example 3.11. Using the expression defined in Theorem 3.10, we compute the first equation (1.12)
and the second (1.13).
For N = 1: First we compute Tz 12(n) with the operator L (3.27).

Tgﬁlg(n) = 2$n+1A_1(0) = —91,’L‘n+1

where —01 /2 is the integration constant.
Replacing Tz 12(n) in equation (3.28),

nTy + 01 (Tpi1 + Tpo1) + 22, AN (01208041 — 0120 Tp41) =0
Then
(n+ @)z, + 01vp(Tpi1 + p—1) = 0.
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This equation is the same as equation (1.12) if we choose the integration constant v to be zero.
For N = 2: We compute T3 12(n). Computations are the same for T 12(n) except for the integration
constant, To 12(n) = —02%p41.

T512(n) = L(T212(n)) = (@0} 11 — Vpi1Zn2) 02 + Tpgr (2071 + 1) (—0220Tn41 + 02Tn2pt1)

Then T3712(n) = 92 (xnx%H — Un+1l‘n+2) — 91$n+1.
Replacing T3 12(n) in equation (3.28),

(n+ &)z + 020y (Vn1Znt2 + Vno1Tn—2 — Tp(Tns1 + Tp—1)?) + 0100 (Tpgr + Ty ) =0
which is the same equation as (1.13).

We finally conclude the work by noticing that Theorem 3.10 together with Corollary 2.8 give the
proof of Theorem 1.1.

A  The continuous limit

This appendix contains further computations for the continuous limit of the equations of the discrete
Painlevé II hierarchy (1.9) in the first cases N = 1,2,3. To obtain it, we follow the scaling limit
given in Theorem 1 of [5] as already recalled in the Introduction.

The case N = 1. Notice that in this case we recover the same computation done in [6], Chapter
9. We consider equation (1.12) written as

nT,

AT

xn+1 + Tn—1 +

in which the only parameter appearing is ; = 0. Following the scaling limit of Theorem 1 [5], in the
case N =1, we have

b=2, d=1and z, = (—1)"0 5u(t) with t = (n — 29)9_%.
Now, for § — +00 we compute

Tpar ~ (=1)" 10" 5u(t £ 675)

~ (=1)"t1g s (u(t) + 07354 (t) + 2' u”’(t) + 0(9_1)>

that gives )
Tpy1 + p1 ~ (=1)"T20730(t) + (=1)" o1 (t) + O(07Y).

The other term appearing in the discrete Painlevé I equation gives instead

NnTy,

(1 —22) "~ (26 +10%)(=1)"0” Tu(t)0 ™! (1 0 5u(t) + 0(9—1))

~ (=1)"207 5 u(t) + (—1)"07 (tu(t) + 2u°(1)) + O(67)

Thus equation (1.7) in this scaling limit gives at the first order (coefficient of 1) the second order

differential equation
o (t) — tu(t) — 2u3(t) = 0,

which coincides indeed with the Painlevé 1T equation.
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The case N =2. We consider equation (1.13), with the parameters 61, 05 rescaled as 6; = 0, 05 =
%. It reads as

nTy, 0
m +0 (anrl + xnfl) + Z (xn+2(1 - xELJrl) + fL'an(l - {L‘ifl) - xn(anrl + xnfl)Q) =0 (Al)
n
and this time we consider the following scaling limit (case N = 2 of Theorem 1 in [5])

b= ;, d=4and x, = (—1)"9*%4%u(t), with ¢t = <n — 29) 0~

il
il

45,

For 8 — 400, similar computations gives the fourth order differential equation
tu(t) + 6u(t)® — 10u(t)u’ (t)* — 10u(t)?u” (t) +u""(t) = 0

which corresponds to the second equation of the Painlevé II hierarchy. Detailed computations to
obtain certain terms from the previous equation are given below. We begin with the expansion of
the first term in equation (A.1):

nT,
(L—a3)

m\p

~ (;9+4%(9%t> (—1)"0 545 u(t) (1 + 4307503 (t) + 456 3ul () + O(6 ))

~ (=1)" (24ée§u(t) + 24%9%(15)3 + tu(t) + 6u(t)® + O (9*

[SUE
N—
N—

Computing expansions of z,+1,T,+2 as § — 0o, we obtain:

Tng1 ~ (—1)"TH4F0 S u(t £ 07F)

1 1 1 1 4% -3 4§ -3 4% -3
N(_l)n+14g9—g <U(t):|:459_5u’(t)—|- g su”(t):lz 52 5u///(t)+ 294 5 ////( )+ 06~ ))
Tnas ~ (—1)"450 5u(t +£2075)
L g 482038 4303
N(_1)n4se—< (t) £ 432073/ (t) + 4503 "()i%u”’(t)—&— Z " () + 00~ ))

that gives for the second term of equation (A.1)
1
O(Lni1 + Tn1) ~ (—1)"+1 (4 20%u(t) + 43630 (t) + Su”(t) + O (e—é)> .

Some linear and non linear terms appear with the expansion of the third term of equation (A.1).
The linear one is:

0 1
Z(xn+2 +xp ) ~ (—=1)" (459

4
5

%u(t) +4R0R (1) + gu"”(t) +0 (e—é)> .
Non linear ones are:
Zmn(xnﬂ Fan1)? ~ (—1)u(t) (4%9%u(t)2 +du(t)d () + O (a—%))

anﬂxiﬂ ~ (1) (47 B0t u(t)? £ 4205 u(t) (1) + Bu(t)u" (£) + Su(t)u' ()?)
From these computations, we see that we recover exactly

tu(t) + 6u(t)® — 10u(t)u’ ()% — 10u(t)?u” (t) + v (t) = 0.
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The case N = 3. We consider equation (1.14) with the parameters 601,65, 03 rescaled as 67 =

0, Oy = 25—‘9793 = 1% and rewritten as

ﬁ + (Tps1 + Tp_1) + % (@nta2(l = 250) + Tl = 25 1) = T (Tnp1 + Tn1)?)
+ % (@7 (Tns1 +2n1)® + angs(1 — 2] o) (1 — 20 40) + 2ns(l — 27 ) (1 — a5 _y))

+ % (=225 (Tnt1 + Tp—1) (@ng2(1 = 25 41) + Tpoa(l — 27 1)) — Tprzp_o(1 —z)_4))
+ % (—znt1@hpo(1 =25 11) = Tps1Zp1(Tng1 + Tp1)) =0

Finally, we consider the following scaling limit (case N = 3 of Theorem 1 in [5])

4 4
b=, d=15andz, = (—=1)"0 7157 u(t) with t = <n — 39) 9~ 7157.

Again, for § — +oo the asymptotic expansion of the equation above results at the first order (coef-
ficient of #~1) into the sixth order differential equation

tu(t) + 20u(t)” — 140u(t)>u’ (1) — T0u(t)*u” (t) 4 700’ ()% () + 42u(t)u” (t)% + 56u(t)u’ (t)u’ (t)
+ 14u(t)4u”(t) . u//////(t) =0

which corresponds to the third equation in the Painlevé II hierarchy.

Remark A.1. Computations for N = 2 and N = 3 were performed with Maple/Mathematica. Files
are available on demand.
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