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Abstract

We introduce an approach for solving the incompressible Navier-Stokes equations on a forest of
Octree grids in a parallel environment. The methodology uses the p4est library of Burstedde et

al., SIAM J. Sci. Comput., 33(3) (2011) [15] for the construction and the handling of forests of
Octree meshes on massively parallel distributed machines and the framework of Mirzadeh et al.,
J. Comput. Phys., 322 (2016) [55] for the discretizations on Octree data structures. We introduce
relevant additional parallel algorithms and provide performance analyses for individual building
bricks and for the full solver. We demonstrate strong scaling for the solver up to 32,768 cores
for a problem involving O

�
6.1⇥ 108

�
computational cells. We illustrate the dynamic adaptive

capabilities of our approach by simulating flows past a stationary sphere, flows due to an oscillatory
sphere in a closed box and transport of a passive scalar. Without sacrificing accuracy nor spatial
resolution in regions of interest, our approach successfully reduces the number of computational
cells to (at most) a few percents of uniform grids with equivalent resolution. We also perform a
numerical simulation of the turbulent flow in a superhydrophobic channel with unparalleled wall
grid resolution in the streamwise and spanwise directions.

Keywords: Level-Set, Quad-/Oc-trees, Parallel Adaptive Mesh Refinement, Navier-Stokes,
Incompressible, Voronoi tessellation

1. Introduction

In the last decade, the democratization of the access to supercomputers has prompted the
development of massively parallel simulation techniques. The previously existing serial codes are
progressively being adapted to exploit the hundreds of thousands of cores available through the
main computing clusters. We propose a parallel implementation of the solver for the incompressible
Navier-Stokes equations introduced in [30], based on the parallel level-set framework presented in
[55]. Additional novel algorithms, necessary to solving the Navier-Stokes equations in a forest of
Quad-/Oc-trees, are presented.

Numerical simulations at the continuum scale are generally divided into two categories char-
acterized by their meshing techniques. On the one hand, the finite elements community relies on
body-fitted unstructured meshes to represent irregular domains. Given a high quality mesh, the
resulting solvers are fast and very accurate. This approach has been successfully applied to the
simulation of incompressible viscous flows [26, 70, 28]. However, the mesh generation is very costly
and impractical when tracking moving interfaces and fluid features requiring high spatial resolution.
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On the other hand, methods based on structured Cartesian grids render the mesh geometry mainly
trivial, but lead to a higher complexity for the implicit representation of irregular interfaces. We
focus here on the latter class of methods.

A common approach to represent an irregular interface in a implicit framework is to use Peskin’s
immersed boundary method [63, 43, 25] or its level-set counterpart [75]. However, these methods in-
troduce a smoothing of the interface through a delta formulation and therefore restrict the accuracy
of the solution with O(1) errors near fluid-fluid interfaces1. We therefore opt for the sharp interface
representation provided by the level-set function [60]. We use the finite-volume/cut-cell approach
of Ng et al. [59] to impose the boundary condition at the solid-fluid interface for its demonstrated
convergence in the L

1-norm.
Fluid flows are by nature multiscale, thus limiting the scope of uniform Cartesian grids. A

range of strategies have been proposed to leverage the spatial locality of the fluid information such
as stretched grids [79, 2], nested grids [11, 32, 74, 10, 71], chimera grids [9, 24] or unstructured
meshes [22, 38, 49, 50, 51]. Another approach is to use a Quadtree [27] (in two spatial dimensions)
or Octree [48] (in three spatial dimensions) data structure to store the mesh information [19, 40].
Popinet applied this idea combined with a non-compact finite volume discretization on the Marker-
And-Cell (MAC) configuration [31] to the simulation of incompressible fluid flows [65]. Losasso
et al. also proposed a compact finite volume solver on Octree for inviscid free surface flows [46],
while Min et al. presented a node-based second-order accurate viscous solver [52]. The present work
is based on the approach presented in Guittet et al. [30], which solves the viscous Navier-Stokes
equations implicitly on the MAC configuration using a Voronoi partition and where the advection
part of the momentum equation is discretized along the characteristic curves with a Backward
Di↵erentiation Formula (BDF), semi-Lagrangian scheme [73, 81]. The projection step is solved
with the second-order discretization of Losasso et al. [45] for the Poisson equation.

The extension of [30] to parallel architectures relies on the existence of an e�cient parallel Quad-
/Oc-tree structure. Possible ways to implement parallel tree structures include the replication of
the entire grid on each process. This approach, however, is not feasible when the grid size exceeds
the memory of a single compute node, which must be considered a common scenario nowadays.
Using graph partitioners such as parMETIS [39] on a tree structure would discard the mathematical
relations between neighbor and child elements that are implicit in the tree, and thus result in
additional overhead. Another option, which we find preferable, is to exploit the tree’s logical
structure using space-filling curves [1]. This approach has been shown to lead to load balanced
configurations with good information locality for a selection of space-filling curves including the
Morton (or Z-ordering) curve and the Hilbert curve [16].

Space-filling curves have been used in several ways, for example augmented by hashing [29],
tailored to PDE solvers [13], or focusing on optimized traversals [80]. Octor [78] and Dendro [68]
are two examples of parallel Octree libraries making use of this strategy that have been scaled
to 62,000 [14] and 32,000 [69] cores, operating on parent-child pointers and a linearized octant
storage, respectively. Extending the linearized storage strategy to a forest of interconnected Octrees
[72, 8], the p4est library [15] provides a publicly available implementation of the parallel algorithms
required to handle the parallel mesh, including an e�cient 2:1 balancing algorithm [34]. p4est has
been shown to scale up to over 458,000 cores [35], with applications using it successfully on 1.57M
cores [67] and 3.14M cores [58].

The algorithms pertaining to the second-order accurate level-set method on Quad-/Oc-tree
presented in Min and Gibou [54] have been extended in Mirzadeh et al. [55] parallel architecture by
leveraging the p4est library. Starting from this existing basis for the level-set function procedures,
we present the implementation of the algorithms pertaining to the simulation of incompressible
fluid flows detailed in [30]. The Voronoi tessellation that we construct over the adaptive tree mesh
requires (at least) two layers of ghost cells, whose e�cient parallel construction we describe in detail.
We report on the scalability of the algorithms presented before illustrating the full capabilities of

1Although we do not consider fluid-fluid interfaces, the present work is intended as a stepping stone toward that
case.
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the resulting solver.

2. The computational method

In this section, we present mathematical and computational components pertaining to our nu-
merical method for solving the incompressible Navier-Stokes equations on a forest of Octree grids.
The first five subsections are mainly dedicated to the mathematical description of the discretization
procedures (the interested reader may find more details in [30]). The implementation of these build-
ing bricks in a distributed computing framework reveals two grid-related requirements: access to
second-degree (or third-degree) cell neighbors and unambiguous indexing of grid faces. The last two
subsections present the computational strategies developed to address challenges related to these
requirements. Throughout this section, schematics and illustrations are presented in two dimen-
sions for the sake of clarity. Their extension to three dimensions follows the exact same principles
without any loss of generality.

2.1. Representation of the spatial information

2.1.1. The level-set method

A central desired feature of the proposed solver is to be able to handle complex, possibly moving
interfaces in a sharp fashion2. The level-set framework, first introduced by [60] and extended to
Quad-/Oc-trees in [54] is a highly suited tool for such a goal. The level-set representation of an
arbitrary contour �, separating a domain ⌦ into two subdomains ⌦� and ⌦+, is achieved by defining
a function �, called the level-set function, such that � = {x 2 Rn

|�(x) = 0}, ⌦� = {x 2 Rn
|�(x) <

0} and ⌦+ = {x 2 Rn
|�(x) > 0}.

Among all the possible candidates that satisfy these criteria, a signed distance function (i.e.,
|r�| = 1) is the most convenient one. In order to transform any function ' (x) into a signed distance
function � (x) that shares the same zero contour, one can solve the reinitialization problem

@�

@⌧
+ sign(') (|r�|� 1) = 0, � (x)|⌧=0 = ' (x)

until a steady state in the fictitious time ⌧ is found. The finite di↵erence discretization and its
corresponding parallel implementation employed to solve this equation are presented respectively
in [54] and [55].

2.1.2. Forests of Quad-/Oc-trees and the p4est library

When dealing with physical problems that exhibit a wide range of length scales, uniform Carte-
sian meshes become impractical since capturing the smallest length scales requires a very high
resolution. This is the case for high Reynolds number flows, for which the boundary layers and
any wake vortices have a length scale significantly smaller than that of the far-field flow. This
observation naturally leads to the use of adaptive Cartesian grids, including Octrees grids.

The p4est library [15] is a collection of parallel algorithms that handles a linearized tree data
structure and its manipulation methods, which were shown to collectively scale up to 458,752 cores
[35], as noted in the previous section. In p4est the domain is first divided by a coarse grid,
which we will refer to as the “macromesh”, common to all the processes. For our purpose we will
consider solely uniform Cartesian macromeshes in a brick layout, although a general macromesh
is not limited to such a configuration in p4est. This layout can be constructed at no cost using
predefined and self-contained functions. A collection of trees rooted in each cell of the macromesh
is then constructed and partitioned, and their associated (expanded) ghost layers are generated.
The refinement and coarsening criteria necessary for the construction of the trees are provided
to p4est by defining callback functions. We propose to use four criteria based on the physical
characteristics at hand. Di↵erent combinations of these criteria are used depending on the specific
problem considered.

2We consider irregular solid objects in this work; multiphase interfaces are left for future work [23].
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The first criterion, presented in [54] and [55], captures the location of the interface: coarse cells
are allowed locally, provided they are (at least) K cell diagonal(s) away from the interface, where
K � 1 is defined by the user. Specifically, a cell C is marked for refinement if

min
v2V (C)

|�(v)|  K Lip(�)diag(C), (1)

where V (C) is the set of all the vertices of cell C, Lip(�) is the Lipschitz constant of the level-set
function �, and diag(C) is the length of the diagonal of cell C. Similarly, a cell is marked for
coarsening if

min
v2V (C)

|�(v)| > 2K Lip(�)diag(C).

The second criterion, introduced for Quad-/Oc-trees in [65] and used in [52] and [30], is based on
the vorticity of the fluid. High vorticity corresponds to small length scales and therefore necessitates
a high mesh resolution. We mark a cell C for refinement if

hmax
maxv2V (C)kr ⇥ u(v)k2

max⌦kuk2
� �, (2)

where hmax is the largest edge length of cell C and � is a parameter controlling the level of refinement.
Analogously, a cell C is marked for coarsening if

2hmax
maxv2V (C)kr ⇥ u(v)k2

max⌦kuk2
< �.

Another criterion enforces a band of b grid cells of highest desired resolution around the irregular
interface. We mark for refinement every cell such that

min
v2V (C)

dist (v, �) < b max (�xfinest, �yfinest, �zfinest) ,

where �xfinest, �yfinest and �zfinest are the cell sizes along cartesian directions for the finest cells
to be found in the domain.

Finally, the solver was augmented with the optional capability of advecting a passive scalar for
visualization purposes (this is illustrated in section 4.4). For enhanced graphical results, we propose
to refine the mesh where the density of the marker exceeds a threshold. Given a density � 2 [0, 1]
for the advected passive scalar, a cell C is marked for refinement (resp. coarsening) if

max
v2V (C)

�(v) � �, (resp. max
v2V (C)

�(v) < �), (3)

where � is a parameter controlling the level of refinement.

2.1.3. The Marker-And-Cell layout

The standard data layout used to simulate incompressible viscous flows on uniform grids is the
Marker-And-Cell (MAC)[31] layout. The analogous layout for Quadtrees is presented in figure 1
and leads to complications in the discretizations compared to uniform grids. However, second order
accuracy is achievable for the elliptic and advection-di↵usion problems that appear in our discretiza-
tion of the Navier-Stokes equations. Two possible corresponding discretizations are presented for
the data located at the center of the cells (the leaves of the trees) and at their faces in sections 2.4
and 2.3.2 respectively.

2.2. The projection method

Consider the incompressible Navier-Stokes equations for a fluid with velocity u, pressure p,
density ⇢ and dynamic viscosity µ, with a force per unit mass f

⇢

✓
@u

@t
+ u ·ru

◆
= �rp + ⇢f + µr

2u, (4)

r · u = 0. (5)
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Figure 1: Representation of the Marker-And-Cell (MAC) data layout on a Quadtree structure with the location of
the x-velocity ( ), the y-velocity ( ), the Hodge variable ( ) and the level-set values ( ).

The standard approach to solve this system is the projection method introduced by Chorin [18].
We refer the reader to [12] for a review of the variations of the projection method. The system is
decomposed into two distinct steps, identified as the viscosity step and the projection step. The
first step consists in solving the momentum equation (4) without the pressure term,

⇢

✓
@u

@t
+ u ·ru

◆
= ⇢f + µr

2u, (6)

to find an intermediate velocity field u⇤. Since this field does not satisfy the incompressibility
condition (5), it is then projected on the divergence-free subspace to obtain un+1, the solution at
time t

n+1, via
un+1 = u⇤

�r� (7)

where � is referred to as the Hodge variable and satisfies

r
2� = r · u⇤

. (8)

The two following sections describe the discretization applied to solve steps (6) and (8) respectively.

2.3. Implicit discretization of the viscosity step

The viscosity step (6) contains two distinct terms besides the possible bulk force: the advection
term on the left-hand side and the viscous term on the right-hand side. In order to prevent stringent
time step restrictions due to the latter, we opt for a second order backward di↵erentiation method
to advance (6) in time. This integration scheme can address sti↵ problems without theoretical
stability-related constraints on the time step.

2.3.1. Discretization of the advection term with a semi-Lagrangian approach

We discretize the advection part of the viscosity step using a semi-Lagrangian approach [21, 73].
This method relies on the fact that the solution u (x, t) of the advection equation

@u

@t
+ u ·ru = 0 (9)
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is constant along the characteristics of the equation, i.e., along material trajectories (x(s), t(s))

such that
dt

ds
= 1 and

dx

ds
= u (x, t). Using this parameterization, equation (9) is equivalent to

du

ds
= 0,

which we integrate with respect to s using a second-order BDF [81].
Given the location x⇤ where the solution u⇤ is sought at time tn+1, the local material trajectory

passing through x⇤ at time t
n+1 is traced back in time to find the points xn

d and xn�1
d through which

it passed at times t
n and t

n�1 respectively. The values un
d = u (xn

d , tn) and un�1
d = u

�
xn�1
d , tn�1

�

are then calculated using quadratic interpolation and the application of the second order BDF (note
that �s = �t) leads to

@u

@t
+ u ·ru ⇡

↵

�tn
u⇤ +

✓
�

�tn�1
�

↵

�tn

◆
un
d �

�

�tn�1
un�1
d ,

where

�tn = tn+1� tn, �tn�1 = tn� tn�1, ↵ =
2�tn + �tn�1

�tn + �tn�1
and � = �

�tn

�tn + �tn�1
.

We refer the reader to [30] for further details.

2.3.2. Discretization of face-centered Laplace operators

Since we consider constant-viscosity incompressible flows of Newtonian fluids, the velocity com-
ponents are e↵ectively decoupled in the viscous terms. This allows us to solve for the individual
components of u⇤ separately when advancing (6). In that context, we require appropriate dis-
cretizations for the Laplace operators associated with degrees of freedom sampled at faces of sim-
ilar orientations, i.e., at faces where similar velocity components are sampled. We obtain these
discretized operators by applying a finite volume approach to Voronoi tessellations. We present a
summary of the approach and refer the reader to [30] for further details.

Given a set of points in space, called seeds, we define the Voronoi cell of a seed as the region of
space that is closer to that seed than to any other seed. The union of all the Voronoi cells forms a
tessellation of the domain, i.e., a non-overlapping gap-free tiling of the domain. By placing these
seeds at the centers of faces of the computational mesh sharing the same cartesian orientation, one
obtains a new computational grid for the corresponding velocity component that is sampled at those
faces. A Two-dimensional examples of Voronoi tessellation for the velocity component u = ex · u
is are presented in figure 2 for a Quadtree grids.

Considering a di↵usion equation for the unknown u with constant di↵usion coe�cient µ

µr
2
u = r,

it is discretized on the Voronoi tessellation with a finite volume approach where the control volume
for each degree of freedom i is its Voronoi cell Ci. This leads to

Z

Ci

µr
2
u =

Z

@Ci

µ ru · n ⇡
X

j2ngbd(i)

µ sij
uj � ui

dij
,

where ngbd(i) is the set of neighbors for the degree of freedom i, n is the vector normal to @Ci

(pointing outwards), dij is the length between degrees of freedom i and j, and sij is the area —or
the length, in 2D— of the face between them, as illustrated in figure 2. This discretization provides
a second-order accurate solution [56].
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Figure 2: Top left: nomenclature for the discretization of the Laplace operator on a Voronoi diagram (illustrated
for a vertical face). The degree of freedom circled in green can potentially belong to a second-degree neighbor cell,
i.e., a cell with data needed in the discretization that is not adjacent to the current cell but adjacent to one of the
current cell’s immediate neighbor. Top right: example of a Quadtree mesh (top) and its Voronoi tessellation for
the vertical faces (bottom). Bottom: illustration of a two-dimensional Voronoi cell for a horizontal face which may
require knowledge of a face associated with a third-degree neighbor cell, in case of stretched computational grids
(aspect ratio much di↵erent from 1). The face circled in pink is indexed by a third-degree neighbor quadrant of the
top quadrant indexing the center seed.

2.3.3. General discretization for the viscosity step

Combining the discretizations presented in the two previous sections, we obtain the general
discretization formula. Considering the x-component of the velocity field u, for the ith face with
normal ex and associated Voronoi cell Ci, we have

Vol(Ci)⇢
↵

�tn
u
⇤
i+µ

X

j2ngbd(i)

sij

u
⇤
i � u

⇤
j

dij
= Vol(Ci)⇢

✓
↵

�tn
�

�

�tn�1

◆
u
n
i,d +

�

�tn�1
u
n�1
i,d + ex · f i

�
,

where Vol(Ci) is the volume of Ci. The very same approach is then used for the y- and z-components
of the velocity, i.e., v and w.

This produces a symmetric positive definite linear system that we solve using the BiConjugate
Gradient stabilized iterative solver and the successive over-relaxation preconditioner provided by
the PETSc library [5, 4, 6].

A note on the boundary conditions. The boundary conditions to consider when solving the viscosity
step are to be imposed on u⇤. As a consequence, the type of boundary condition that is desired for
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u is used for u⇤ as well, but the enforced boundary value is corrected in order to take into account
the correction from the projection step (7), given the current best estimate of r�.

2.4. A stable projection

The projection step consists in solving the Poisson equation (8) with the data located at the
center of the leaves of the tree. Stability and accuracy constraints result in the discretization
presented in [45]. The method relies on a finite volume approach with a leaf being the control
volume for the degree of freedom located at its center. Using the notations defined in figure 3, we
now explain the discretization of the flux of the Hodge variable � on the right face of C2. For the
sake of clarity, we assume that all other neighbor cells of C2 in Cartesian directions are of the same
size as C2; if not, the reasoning presented here below needs to be applied for all variables sampled
on faces shared between cells of di↵erent sizes.

The first step is to define the weighted average distance � between �0 and its neighboring small
leaves on the left side,

Figure 3: Nomenclature for the discretization of the flux of the Hodge variable at cell faces and the discretization of
the divergence of the velocity field.

� =
X

i2N

si

s0
�i,

where N is the set of leaves whose right neighbor leaf is C0. We then define the partial derivative
of � with respect to x on the right face of C2 as

@�

@x
=
X

i2N

si

s0

�0 � �i

�
.

This discretization collapses to the standard central finite di↵erence discretization in case of (locally)
uniform grids. The other components ofr� are defined analogously and stored at the corresponding
faces. We then define the divergence of u at the center of the leaf containing �2 as

r · u =
1

�x

 
X

i2N

si

s0
u
+
i � u

�
2

!
+

1

�y

�
v
+
2 � v

�
2

�
.

Both the divergence and the gradient operators involve all small leaves having C0 as a right
neighbor. The cell-centered Laplace operator in eq. (8) is obtained by chaining the above divergence
and gradient operator, i.e., r2� = r · (r�). This produces a second-order accurate discretization
for cell-centered Poisson equations. The correspondence between the two operators defined here
above ensures that the gradient is the negative adjoint of the divergence in a well-defined face-
weighted norm, ensuring the stability of the projection step [30]. The linear system resulting from
this approach is symmetric positive definite, and it is solved using a (possibly preconditioned)
conjugate gradient method.
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2.5. Typical flowchart of the solver

As detailed in subsection 2.3, boundary conditions to be enforced on the intermediate velocity
field u⇤ require the knowledge of r�. Yet, � itself is defined as the solution of an elliptic problem
that requires r · u⇤ (see (8)).

In order to best enforce the desired boundary conditions on u, the solver addresses this circular
dependency between u⇤ and r� through a fixed-point iteration. The solver determines a sequence
u⇤,k and �k, with k � 1: the intermediate velocity field u⇤,k is the solution of the viscosity step
(6) with boundary condition values defined using the known field �k�1 (see subsection 2.3 - note
that �0 is defined as the scalar field � obtained at the end of the previous time step, or as 0 for
the very first time step). The scalar field �k is determined in turn as the solution of the projection
equation (8) using r · u⇤,k as the right-hand side. Figure 4 illustrates this iterative procedure.

This process is repeated for increasing k until convergence is reached or until a user-defined
maximum number of iterations kmax is reached. Note that the standard, approximate projection
method corresponds to kmax = 1 (the computational cost and the relevance of additional inner-
loop iterations are estimated and discussed for some relevant applications within section 4). The
convergence criterion we use is

���k
� �k�1

��
1 < "�, where "� is a user-defined threshold. Two

di↵erent convergence criteria may be used: the user may choose to enforce

• either
���k
� �k�1

��
1 < "�, where "� is a user-defined threshold (most relevant if the pressure

is a primary variable of interest and is well-defined everywhere);

• or

����
@�k

@⇣
�

@�k�1

@⇣

����
1

< "r�, where "r� is a user-defined threshold and ⇣ is any (or all)

of x, y, z (most relevant to ensure strict wall and/or interface no-slip boundary boundary
conditions).

The structure and internal logic of the solver is designed so as to minimize the cost of such extra
iterations when 1 < k  kmax: relevant computation-intensive data pertaining to the construction
of the discretized linear systems is kept in memory (to avoid re-computing), as well as discretization
matrices, possible preconditioners, etc.

2.6. Expansion of the ghost layer

Several building bricks of the solver require second-degree (or even third-degree) neighbor cells
to ensure robust behavior and properly defined operators. For instance, the construction of Voronoi
cells based on face-collocated seeds requires to connect neighboring face-sampled degrees of freedom.
As illustrated in figure 2, such neighboring seeds may lie on a face that is shared between a (large)
first-degree neighbor cell and a (small) second-degree neighbor cell. In such a case, only the (small)
second-degree neighbor cell indexes the queried face. Therefore, second-degree neighbors need to
be accessible from every locally owned face degree of freedom. Besides, when using stretched grids,
more remote neighbors may be involved in the construction of a local Voronoi cell (see figure 2).
Similarly, the cell-centered operators defined in section 2.4 require second-degree neighbors in case
of non-graded grids. As depicted in figure 5, the ability to access second-degree neighbor cells is
also desirable regarding the accuracy and the inter-processor smoothness of the moving least-square
interpolation procedure used to define the node-sampled velocity fields based on the face-sampled
components [30]. The ability to construct deep ghost layers is a recent extension to the p4est

interface, which we briefly describe here.
The algorithm used by p4est to construct a single layer of ghosts ([15, Algorithm 19]) is able

to maximize the overlap of computation and communication because each process can determine
for itself which other processes are adjacent to it. This is because the “shape” of each process’s
subdomain (determined by the interval of the space-filling curve assigned to it) is known to every
other process. As a consequence, the communication pattern is symmetric and no sender-receiver
handshake is required.

9



read user’s input(s)
initialize all solver parameters.

Set t0, �t0 = t1 � t0 and n  0

is tn equal to
tend?

is n > 0? get �tn = tn+1 � tn

update grid.

solve for u?,k

(BC ⇠ r�k�1)
see subsection 2.3

k  1

k  k + 1

solve for �k

(r2�k = r · u?,k)
see subsection 2.4

converged or
k = kmax

Inner loop

project un+1 = u⇤
� r�

interpolate un+1 at nodes

Update tn  tn + �tn

and n  n + 1
free memory
and return

noyes yes

no

no

yes

Figure 4: Typical flow chart for the presented incompressible Navier-Stokes solver.

Ci
⇥(x, y)

Figure 5: The stencil used to interpolate the velocity at (x, y) in cell Ci does not only require the data in ngbd(Ci)
(red), but also in ngbd2(Ci) (blue), a set of cells including second-degree (indirect) neighbors.
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Figure 6: Two meshes with the same partition shapes, but with di↵erent two-deep ghost layers. For each mesh we
show the first and second layers of the ghost layer of process p (red). In the first mesh, the second layer includes
cells from process q (blue), but in the second it does not.

p

q

r

Figure 7: We show the preimages of process q’s and process r’s ghost layers in the leaves of process p. The solid red
area represent the cells at the “front” of the preimage for q (preimage front[q] in algorithm 1), while the solid and
dashed together form the whole preimage (preimage[q]).

As a first extension, when creating the send bu↵ers we remember their entries, since they identify
the subset of local cells that are ghosts to one or more remote processes. We store these pre-image
cells or “mirrors” in ascending order with respect to the space filling curve, and create one separate
index list per remote processor into this array. This data is accommodated inside the ghost layer
data structure and proves useful for many purposes, the most common being the local processor
needing to iterate through the pre-image to define and fill send bu↵ers with application-dependent
numerical data.

The communication pattern of a deeper ghost layer, on the other hand, depends not just on
the shapes of the subdomains, but the leaves within them, as illustrated in figure 6. Rather than
complicating the existing ghost layer construction algorithm to accommodate deep ghost layers, a
function that adds an additional layer to an existing ghost layer has been added to p4est. This
function is called p4est ghost expand() and adds to both the ghosts and the pre-images. Thus, as
a second extension to the data structure, we also identify those local leaves that are on the inward-
facing front of each preimage, in other words the most recently added mirrors. This is illustrated
in figure 7.

When process p expands its portion of process q, it loops over the leaves in the front of the
pre-image for process q and adds any neighbors that are not already in the ghost layer. Sometimes
this will include a leaf from a third process r: process p will also send such leaves to process q,
because it may be that r is not yet represented in q’s ghost layer, and so communication between
q and r is not yet expected. The basic structure of this algorithm is outlined in algorithm 1.

11



1: for q 2 ghost neighbors do . processes that contribute to ghost layer
2: initialize empty sets send forward[q], send back[q], and new front[q]
3: end for
4: for q 2 ghost neighbors do
5: for l 2 preimage front[q] do
6: for each neighbor n of l in local leaves do . n found by search
7: if n 62 preimage[q] then
8: add n to send forward[q], preimage[q], and new front[q]
9: end if

10: end for
11: for each neighbor n of l in ghost layer do . n found by search
12: if n belongs to process r 6= q then
13: add n to send forward[q] and (n, q) to send back[r]
14: end if
15: end for
16: end for
17: replace preimage front[q] with new front[q]
18: end for
19: for q 2 ghost neighbors do
20: send send forward[q] and send back[q] and receive recv forward[q] and recv back[q]
21: add all of recv forward[q] to ghost layer

22: for (l, r) 2 recv back[q] do
23: if r 62 ghost neighbors or l 62 preimage[r] then
24: add l to preimage[r] and preimage front[r] . new lists if r 62 ghost neighbors

25: end if
26: end for
27: end for
28: recompute ghost neighbors from leaves in ghost layer

Algorithm 1: Process p’s algorithm for expanding other processes’ ghost layers, and receiving expansions to its
own ghost layer. Note that finding a neighbor of a leaf l entails a fixed number of binary searches through the
local leaves, which are sorted by the space-filling curve induced total ordering.

12
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Figure 8: Illustration of the ghost layer of x-faces of depth 2 and of the global indexing procedure for process 2. The
numbers in the leaves correspond to the indices of the processes owning them. After the first step, the remote index
for the circled face is known to process 2, and after the second step the remote indices for the faces in a square are
known to process 2. Note that a single step would not be su�cient for process 2 to gain knowledge of the remote
index of the two faces belonging to process 0.

2.7. Indexing the faces

Although the p4est library provides a global numbering for the faces of the leaves, its numbering
di↵ers from our needs because it does not number the small faces on a coarse-fine interface, where
we have degrees of freedom in our MAC scheme. Therefore, we implement a procedure to distribute
the faces of the leaves across the processes and to generate a unique global index for each face. Since
some faces are shared between two processes, we chose to attribute a shared face to the process
with the smaller index. With this rule, each face belongs to a unique process and after broadcasting
the local number of faces a global index can be generated for all the local faces. The second step is
to update the remote index of the faces located in the ghost layer so that their global index can be
constructed easily by simply adding the o↵set of the process each face belongs to. We do so in two
steps, represented in figure 8. First, the indices of the ghost faces of the local leaves are synchronized,
then the indices of the faces of the ghost layer of leaves are updated. This has some similarities to
the two-pass node numbering from [7], here extended to two layers of ghosts. Algorithm 2 details
the steps of our implementation and makes use of the Notify collective algorithm described in [34]
to reverse the asymmetric communication pattern.

3. Scalability

In this section, we present an analysis of the scaling performance of our implementation. We de-
fine the parallel e�ciency as e = s (P0/P )� where s = t0/tp is the speed-up, � is the optimal parallel
scaling coe�cient (� = 1 for linear scaling), P0 is the smallest considered number of processes with
its associated runtime t0 and P is the number of processes with its associated runtime tp. All the
results were obtained on the “Knights Landing” Intel Xeon Phi 7250 (KNL) compute nodes of the
Stampede2 supercomputer at the Texas Advanced Computing Center (TACC), at The University
of Texas at Austin, and on the Comet supercomputer at the San Diego Supercomputer Center,
at the University of California at San Diego. Those resources are available through the Extreme
Science and Engineering Discovery Environment (XSEDE) [77]. The strong scaling performance
was analyzed up to 32,768 cores on Stampede2.
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1: for l 2 (local|ghost) leaves do
2: for f 2 remote faces(l) do
3: add proc(f) to receivers

4: add f to buffer[proc(f)]

5: end for
6: end for
7: Notify(receivers,senders) . reverse communication pattern
8: for p 2 receivers do . send requests
9: MPI Isend(buffer[p]) . send request to process p

10: end for
11: for p 2 senders do . process remote requests
12: MPI Recv(req) . receive request from process p
13: assemble answer with local indices requested
14: MPI Isend(ans) . send answer to process p
15: end for
16: for p 2 receivers do . process answers
17: MPI Recv(p) . receive answer from process p
18: update faces information
19: end for

Algorithm 2: Communication algorithm to generate a global indexing of the faces. The Notify collective algorithm
is used to reverse the communication pattern, described in more detail in [34].

3.1. Expansion of the ghost layer

We present both weak and strong scaling results for the algorithm used to expand the ghost
layer of cells for each process in figure 9. The associated e�ciency is presented in table 1. The
strong scaling consists in choosing a problem and solving it with increasing number of processes.
Ideally, for an algorithm with a workload increasing linearly with the problem size (i.e., with parallel
scaling coe�cient � = 1), doubling the amount of resources spent on solving a problem should half
the runtime. However, in the case of the ghost layer expansion, the amount of work depends on

the size of the ghost layers, as explained in [35]. For a well behaved partition, we expect O(N
(d�1)

d )
of the leaves to be in the ghost layer, where d is the number of spatial dimensions. We therefore
consider a parallel scaling coe�cient � = 2/3 to be optimal for a three dimensional problem, i.e.,
O((N/P )2/3) is the ideal scaling, with P the number of processes and N the problem size. The
results presented in figure 9 were obtained on Stampede2 for a mesh of level 9/13, corresponding to
588,548,472 leaves, and on Comet for a mesh of level 10/13, corresponding to 1,595,058,088 leaves.
The computed parallel e�ciency between the smallest and the largest run is 66% for Stampede2
and 59% for Comet.

The idea behind the weak scaling is to keep the problem size constant for each process while
increasing the number of processes. The right graph of figure 9 presents the results obtained on
Stampede2 for two problems of sizes 30,248 leaves per process and 473,768 leaves per process, and
for a number of processes ranging from 27 to 4,096. The runtime increases by 16% between the
smallest and the largest run for the small problem and by 6% for the large problem.

3.2. Indexing the faces

The scaling procedure presented in the previous section is repeated for Algorithm 2 and the
results are presented in figure 10. Even though the workload for this procedure increases slightly
as the number of processes increases and the number of leaves in the ghost layers increases, we
compare our results to an ideal linear scaling � = 1. The corresponding e�ciency is computed
in table 2. The parallel e�ciency e computed between the smallest and the largest run from the

14
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Figure 9: Scaling results for the expansion of the layer of ghost cells (see section 3.1). The strong scaling results
are presented in the left figure together with the optimal reference scaling for a parallel scaling coe�cient � = 2/3
(dashed lines) while the weak scaling results are shown on the right figure. The increases in runtime observed for
the weak scaling are of 16% for the small problem and 6% for the large problem.

Stampede2
Number of processes P 128 256 512 1024 2048 4096
E�ciency e 100% 79% 70% 69% 66% 66%

Comet
Number of processes P 96 192 384 672 1152 1728
E�ciency e 100% 82% 81% 71% 67% 59%

Table 1: E�ciency of the procedure for expanding the ghost layer of leaves.
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Figure 10: Scaling results for the indexing of the faces with Algorithm 2. The strong scaling results are presented in
the left figure together with the reference ideal linear scaling (dash lines) while the weak scaling results are shown on
the right figure. The strong scaling problem shown for Comet is three times larger than the one for Stampede2. The
increases in runtime observed for the weak scaling are of 71% for the small problem and 14% for the large problem.

strong scaling results is 44% for Stampede2 and 70% for Comet. The weak scaling results show an
increase in runtime of 71% for the small problem and of 14% for the large problem.
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Stampede2
Number of processes P 128 256 512 1024 2048 4096
E�ciency e 100% 94% 87% 76% 63% 44%

Comet
Number of processes P 96 192 384 672 1152 1728
E�ciency e 100% 96% 88% 82% 77% 70%

Table 2: E�ciency of Algorithm 2 producing a global index for the faces.

3.3. Scalability of the full solver

We now analyze the scaling performance of the full incompressible Navier-Stokes solver, break-
ing its execution time down into its four main fundamental components: the viscosity step (see
subsection 2.3), the projection step (see subsection 2.4), the moving least-square interpolation of
the velocity components from cell faces to the grid nodes and the re-meshing step (denoted as grid
update). We intend to show satisfactory strong scaling on large numbers of processors, so this scal-
ing analysis was conducted on Stampede2 only since we do not have access to the same resources
on other supercomputers.

For this purpose, the solver is restarted from a physically relevant and computationally chal-
lenging simulation state, defined as the inception of vortex shedding for the flow past a sphere at
Re = 500, as illustrated in figure 11. A macromesh of size 8 ⇥ 4 ⇥ 4 is used with two di↵erent
refinement criteria. In the first case, the Octrees are refined with a minimum level 6 and a max-
imum level 11 with a vorticity threshold � = 0.02 (see (2)), leading to a total of about 270⇥ 106

grid computational cells. In the second case, the Octrees are refined with a minimum level 7 and a
maximum level 11 with a vorticity threshold � = 0.015, leading to a total of about 610⇥ 106 grid
cells. The grids for the initial states of the two scenarios are illustrated in figure 12. The three
successive linear systems of the viscosity steps are solved using a BiConjugate Gradient Stabilized
solver, while a Conjugate Gradient solver is used for the (symmetric positive definite) projection
step.

In the first case, the wall-clock execution time is measured and averaged over 10 full time steps,
while only 5 time steps are considered for the second larger case (to limit the cost of these runs).
A minimum of 64 (resp. 90) KNL nodes were required for the problem to fit in memory in the
first (resp. second) case. Therefore, the first two data points in the left (resp. right) graph from
figure 13 used less than 68 cores per node (maximum available). In either case, the solver performs
two subiterations of the inner loop per time step (see figure 4): for each time step,

���k
� �k�1

��
1

drops by 4 orders of magnitude between k = 1 and k = 2.
The results are presented in figure 13 and table 3. As expected, the projection step is the

most challenging part, thus determining the strong scalability limits of the solver: no significant
speed-up is observed when the number of cells per process falls under 10, 0003. In comparison, the
scaling behavior of the grid update procedure is not impeded yet around that limit, which shows
the extremely good performance of all p4est’s grid management operations that are in play: grid
refinement and/or grid coarsening, grid partitioning, ghost layer creation and ghost layer expansion.

Given that the global solver makes use of various separate routines having di↵erent (theoretical)
ideal scaling coe�cients �, it is expected that the strong scaling performance of the solver is less than
ideal. In fact, some of the operations at play cannot even be attributed such a theoretical scaling
coe�cients: when considering a very large number of processes, several of them will be associated
with regions of the computational domain that are (very) far away from the interface and will
end up stalling during the geometric extrapolation tasks of primary face- and cell-sampled fields,
for instance. Though these extrapolations represent a small portion of the overall workload when
using a small number of processes, they do contribute to less than ideal scaling on large numbers

3This is consistent with PETSc scaling performance reported in their documentation.
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Figure 11: Physically relevant initial state considered for the scaling analysis on large number of cores. This figure
illustrates the inception of vortex shedding for the flow past a sphere at Re = 500 (the full description of the
computational set-up can be found in section 4.2). The vertical slice has equation z = �0.5 and it is colored by
vorticity. The static sphere is colored in red and the translucent white surface represents the isocontour of vorticity
kr ⇥ uk = 0.6u0/r.

Figure 12: Grid illustrations for the scaling analyses from section 3.3. A grid slice in the computational domain is
illustrated and its edges are colored by vorticity intensity. The Octrees are refined with a minimum level 7 and a
maximum level 11 with a vorticity threshold � = 0.015 (total of about 610⇥ 106 grid cells).

of processes in such an application. Therefore, regarding several aspects, this analysis may be
considered a “worst case” scenario, which aims to produce insightful information when it comes to
estimating a lower bound for the (e↵ective) scaling coe�cient � to consider when estimating the
computational cost of future large-scale simulations and/or when assessing the limits of accessible
simulations for the solver. As illustrated in figure 13, the solver’s scaling behavior seems to follow
an asymptotic law of � ' 0.78, in such a symptomatic case; Table 3 also indicates an e�ciency
above 80% (in the relevant range of P ) when considering � ' 0.85 (almost all calculated e�ciencies
are 100% or higher when considering � = 0.78).

4. Numerical validation and illustrations

In this section, we present a series of numerical examples to validate the implementation as well
as to demonstrate the potential of the approach.
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Figure 13: Scaling results on large number of cores on Stampede2 for the two grids considered. Left: scaling results
for Octrees refined with a minimum level 6 and a maximum level 11 with a vorticity threshold � = 0.02 (total of
about 270⇥ 106 grid cells). Right: scaling results for Octrees refined with a minimum level 7 and a maximum level
11 with a vorticity threshold � = 0.015 (total of about 610⇥ 106 grid cells).

Stampede2 (270⇥ 106 grid cells)
# of processes P 1,024 2,048 4,096 5,800 8,192 11,590 16,384 23,170 32,768
e (� = 1) 100% 92.1% 77.9% 75.4% 65.9% 60.9% 56.9% 50.3% 39.6%
e (� = 0.85) 100% 102.2% 95.8% 97.7% 90.0% 87.7% 86.2% 80.36% 66.6%

Stampede2 (610⇥ 106 grid cells)
# of processes P 2,048 4,096 5,900 8,192 11,590 16,384 23,170 32,768
e (� = 1) 100% 82.7 % 82.7 % 77 % 69.2 % 64.1 % 59.4 % 54.2 %
e (� = 0.85) 100% 91.8 % 96.6 % 94.8 % 89.8 % 87.6 % 85.5 % 82.2 %

Table 3: E�ciencies e of the full solver proposed for the incompressible Navier-Stokes equations on Stampede2, when
considering an ideal linear scaling (i.e., � = 1) or a scaling coe�cient of 85%.

4.1. Validation with an analytical solution

The first application aims at validating the implementation by monitoring the convergence of
the solver using the analytical solution presented in [59]. Consider the irregular domain ⌦ =
{(x, y, z)|� cos(x) cos(y) cos(z) � 0.4 and ⇡

2  x, y, z 
3⇡
2 } and the exact solution

u(x, y, z) = cos(x) sin(y) sin(z) cos(t),

v(x, y, z) = sin(x) cos(y) sin(z) cos(t),

w(x, y, z) = �2 sin(x) sin(y) cos(z) cos(t),

p(x, y, z) = 0.

The exact velocity is prescribed at the domain’s boundary and homogeneous Neumann boundary
conditions are enforced on the Hodge variable. The corresponding forcing term is applied to the
viscosity step. We take a final time of ⇡

3 and monitor the error on the velocity field and on
the Hodge variable as the mesh resolution increases. The computational grid is not dynamically
adapted for this accuracy analysis, so the grid-parameter � (see (2)) is irrelevant in this case. The
first computational grid is built to satisfy the distance-based criterion from section 2.1.2 using
� (x, y, z) = cos (x) cos (y) cos (z) + .4, K = 1.2 and b = 5. The successive resolutions are then
obtained by splitting every cell from the previous resolution. The results are presented in table
4 and indicate first-order accuracy for the velocity field and second order accuracy for the Hodge
variable in the L

1 norm.

4.2. Vortex shedding of a flow past a sphere

In order to further assess the performance of the solver, we also address the flow past a sphere.
Related properties like drag and lift forces as well as vortex shedding frequency (if applicable) are
calculated and compared to available data for this canonical problem.
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u, v w Hodge variable
level (min/max) L

1 error order L
1 error order L

1 error order
4/6 4.65 · 10�3 - 3.50 · 10�3 - 8.96 · 10�4 -
5/7 3.27 · 10�3 0.50 2.11 · 10�3 0.73 2.85 · 10�4 1.65
6/8 1.67 · 10�3 0.97 1.16 · 10�3 0.86 8.07 · 10�5 1.82
7/9 8.42 · 10�4 0.99 5.52 · 10�4 1.07 2.27 · 10�5 1.83

Table 4: Convergence of the solver for the analytical solution presented in section 4.1. First-order accuracy is observed
for the velocity field and second order accuracy for the Hodge variable.

We consider a static sphere of radius r = 1, located at (8, 0, 0) in the domain ⌦ = [0, 32] ⇥
[�8, 8]⇥ [�8, 8]. An inflow velocity u0 = u0ex is imposed on the x = 0 face of the domain as well
as on the the side walls, homogeneous Neumann boundary conditions are imposed on the velocity
field at the outlet x = 32 and no-slip conditions are imposed on the sphere. The pressure is set to
zero at the outlet and is subject to homogeneous Neumann boundary conditions on the other walls
as well as on the sphere. We set u0 = 1, the density of the fluid to ⇢ = 1 and vary the viscosity

µ to match the desired Reynolds number Re =
2 ⇢u0r

µ
, set by the user. Eight Reynolds numbers

ranging from 50 to 500 are considered.
The Octree mesh is refined around the sphere and according to the vorticity criterion (2) of

section 2.1.2: we use � (x) = r �

q
(x� 8)2 + y2 + z2, K = 1.2, b = 16, with a vorticity-based

threshold of � = 0.01. All the results were obtained with a macromesh 8 ⇥ 4 ⇥ 4 and with trees
of levels 4/7, leading to approximately 6 million leaves and corresponding to an equivalent uniform

grid resolution of 268,435,456 cells. The time step �t is set such that
max⌦kuk�t

�xmin
 1 at all times.

Figure 14 shows a snapshot of the unsteady flow for Re = 300 at t = 221 r/u0.
The nondimensional force F applied onto the static sphere is monitored over time. The force is

evaluated by geometric integration [53] of the stress vector (including viscous and pressure contri-
butions) on the surface of the sphere �, i.e.,

F =
1

1
2⇢u2

0⇡r2

Z

�

�
�pI + 2µD

�
· n d�, (10)

where I is the identity tensor, D is the symmetric strain-rate tensor and n is the outward normal
to the sphere. Figure 16 shows the evolution of the streamwise force component. Figure 15 shows
the evolution of the pressure and azimuthal vorticity on the sphere surface, at steady state for
Re = 100. Figure 17 illustrates the transverse force components with respect to time for Re � 250.
Time-averaged drag and lift coe�cients CD and CL are then calculated as

CD =
1

(tend � tstart)

Z tend

tstart

F · ex dt, CL =
1

(tend � tstart)

Z tend

tstart

⇣
(F · ey)

2 + (F · ez)
2
⌘1/2

dt,

(11)
where tstart is chosen to disregard the initial transient due to the chosen (uniform) initial condition
and tend is the final simulation time.

For Re � 275 ± 5, the flow is unsteady and vortices shed from the static sphere [57, 3]. Simi-
larly to [3], we evaluate the vortex shedding frequency f and the corresponding Strouhal number
St = 2rf

u0
by calculating an averaged period between successive peak values in the transverse force

components4. A main vortex shedding frequency cannot be reliably defined using this methodol-
ogy for Re = 500: as it can be seen from figure 17, the time variations in the transverse force
components do not reveal a well-defined periodic pattern for Re = 500. In fact, a Fourier decompo-
sition of (pseudoperiodic portions of) the signals actually reveals a broad frequency spectrum with
significant contributions up to St ' 0.17 in that case.

4Note that the analysis from [57] is di↵erent in that it is based on time variations of the pressure in the wake.
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Our results are summarized and presented in tables 5 and 6 along with available data from
various publications from the literature.

Re = 50 Re = 100 Re = 150 Re = 215 Re = 250
CD CD CD CD CD CL

Kim et al. [42] - 1.09 - - 0.70 0.059
Johnson et al. [37] 1.57 1.08 0.90 - 0.70 0.062
Constantinescu et al. [20] - - - - 0.70 0.062
Choi et al. [17] - 1.09 - - 0.70 0.052
Bagchi et al. [3] 1.57 1.09 - - 0.70 -
Marella et al. [47] 1.56 1.06 0.85 0.70 - -
Guittet et al. [30] - 1.11 - - 0.784- -
Present 1.61 1.11 0.91 0.76 0.72 0.062

Table 5: Drag coe�cient (and lift coe�cient, if relevant) for the steady flow past a sphere. The time averages were
obtained with tstart = 50 r/u0 and tend = 200 r/u0 for Re  215 and with tstart = 275 r/u0 and tend = 400 r/u0 for
Re = 250 (see (11)).

Re = 300 Re = 350 Re = 500
CD CL St CD St CD

Kim et al. [41] 0.657 0.067 0.134 - - -
Johnson et al. [37] 0.656 0.069 0.137 - - -
Constantinescu et al. [20] 0.655 0.065 0.136 - - -
Choi et al. [17] 0.658 0.068 0.134 - - -
Marella et al. [47] 0.621 - 0.133 - - -
Bagchi et al. [3] - - - 0.62 0.135 0.555
Mittal et al. [57] 0.64 - 0.135 0.625 0.142 -
Guittet et al. [30] 0.659 - 0.137 0.627 0.141 -
Present 0.673 0.068 0.134 0.633 0.132±0.002 0.558

Table 6: Drag coe�cients for the unsteady flow past a sphere. If relevant, the lift coe�cient and the Strouhal number
are presented as well. The time averages were obtained with tstart = 200 r/u0 and tend = 400 r/u0 (see (11)).

For all the simulations from this section, we have used the inner-loop convergence criterion��r�k
�r�k�1

�� < 10�4
u0 (see section 2.5) in order to ensure a proper and accurate enforcement

of the no-slip boundary condition on the surface of the sphere and to investigate the relevance of
such a procedure in this specific case. Figure 18 shows relevant information pertaining to that
analysis. As illustrated in that figure, the solver converges most of the time in two iterations and
the correction brought by the second iteration is 3 to 4 orders of magnitude smaller than for the
approximate projection step, in this case. Although the added computational cost is limited (around
30%), the accuracy of the results would most likely not have su↵ered from using an approximate
projection in this context.

4.3. Oscillating sphere in a viscous fluid

The solver presented in this article is able to handle moving geometries. We illustrate this
capacity by computing the drag force developed by the flow of a viscous fluid due to the oscillatory
motion of a rigid sphere in a closed box.
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Figure 14: Visualization of the unsteady flow past a sphere for Re = 300. The trees are level 4/7 rooted in a
8 ⇥ 4 ⇥ 4 macromesh, leading to approximately 6 million leaves. The snapshot is taken at time t = 221 r/u0. The
colors correspond to the process ranks and the surface is an isocontour of the Q-criterion [33] for Q = 0.006. This
simulation was run on the Stampede2 supercomputer with 1024 processes.

Figure 15: Evolution of relevant surface quantities on the surface of the static sphere for Re = 100, as a function of the

inclination angle ✓ measured from the front point (�r, 0, 0). Left: non-dimensional local pressure cp = p/

✓
1

2
⇢u2

0

◆

as a function of the inclination angle. Right: non-dimensional azimuthal vorticity !̂� =
�2r

u0
e� · (r⇥ u), where

e� = er ⇥ e✓, using spherical coordinates centered at the sphere’s center along with the defintion of ✓ given here
above. These results are in good agreement with [41].

We consider a sphere of radius r = 0.1 in a domain ⌦ = [�1, 1]3. The kinematics of the center
of the sphere c (t) is dictated by

c (t) = �X0 cos (2⇡f0t) ex, (12)

and we use the (time-varying) levelset function � (x, t) = r � kx� c (t)k with the corresponding
grid-construction parameters K = 1.2, b = 4 and � = 0.1. The motion of the sphere is set to be
purely translational (no rotation) so that its kinematics is fully described by (12). The dynamics
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Figure 16: Drag coe�cient on a sphere for axisymmetric steady flows (left) and for non-axisymmetric or unsteady
flows (right), corresponding to Reynolds numbers ranging from 50 to 500.
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Figure 17: Nondimensional transverse force components for non-axisymmetric and/or unsteady flows.
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Figure 18: Illustration of the computational cost and convergence rate associated with the fixed point iteration from
section 2.5, when ensuring a stringent user-defined control on u at all time steps, for the simulation of the flow past a
sphere with Re = 500. Left: ratio(s) of the computational costs per time step for the main tasks at play, normalized
to the raw computational cost of an approximate projection method (which would correspond to kmax = 1). Right:
measures of interest considered by the inner loop criterion (only a few time steps required 3 inner iterations hence
the partial blue curve).

of the surrounding fluid is dictated by no-slip boundary conditions enforced onto the surface of the
oscillatory sphere, i.e.,

u (x, t) = 2⇡f0X0 sin (2⇡f0t) ex, 8x 2 ⌦ : kx� c (t)k = r. (13)

No-slip boundary conditions are also enforced on the (static) borders of the computational domain.
This setup naturally defines a characteristic velocity scale u0 = 2⇡f0X0, a characteristic fre-
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quency f0 and a characteristic length scale r leading to two nondimensional numbers

r

X0
and Re =

⇢ 2⇡f0X0 2r

µ
. (14)

We set the first nondimensional number to 4 by assigning X0 = r/4. The density is set to 1 and
the dynamic viscosity µ is determined to match the desired Reynolds number set by the user based
on (14).

For this example, we choose the fixed time step �t =
1

200f0
and the simulations are run

for three full oscillation cycles for 7 di↵erent Reynolds numbers ranging from 10 to 300. The
iterative procedure explained in section 2.5 is necessary in this case of moving boundary in order
to correctly enforce the desired no-slip condition (13). Since we are interested in the overall forces
applied onto the sphere as a result of its motion, the inner iterative technique is carried on until���k
� �k�1

��
1 < "� = 2 " (⇡f0X0)

2 �t where " = 0.1 for all time steps. This corresponds to
limiting the di↵erence in pressure between successive iterates to 10% at most of the maximum
dynamic pressure resulting from the motion of the sphere. The fixed point method seems more
relevant in this context compared to what was observed in section 4.2: the number of iterations
required to ensure this convergence condition grows with Re: for every time step, the solver performs
3 to 4 inner iterations to enforce the desired boundary conditions correctly , as illustrated in figure 21
for Re = 300. A mesh of resolution 5/10 rooted in a single macromesh cell is used, resulting in about
500,000 leaves. A uniform grid with similar finest resolution would have 230 ' 109 computational
cells. Every simulation completed in about 8 hours using 40 MPI tasks on a local workstation
running a Dual Intel Xeon Gold 6148 processor with 64GB of RAM.

As for the flow past a sphere, the nondimensional force applied onto the oscillating sphere is
monitored over time, according to equation (10). The results are presented in figure 19. As expected,
we observe that the amplitude of the drag coe�cient increases as the Reynolds number decreases.
Furthermore, we observe a lag in the response as the Reynolds number decreases. Indeed, as the
viscous forces become more important, the information takes longer to propagate in the fluid. In
contrast, the forces in a system dominated by inertia come mainly from the pressure term and the
incompressibility condition enforces instantaneous propagation of the information. Figure 20 shows
some visual representations of the computational grid for Re = 50 at t = 2.4/f0.
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Figure 19: Evolution of the x�component of the nondimensional force applied onto the periodically oscillating sphere
in a closed box for a range of Reynolds numbers. The magnitude of the force increases and the peaks appear at later
times as the Reynolds number decreases and the viscous forces become dominant.
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Figure 20: Left: illustration of one fourth of the computational domain and part of the Octree computational grid

colored with the pressure (nondimensionalized by
1

2
⇢⇡r2f2

0 ), along with the solid sphere (Re = 50, t = 2.4/f0).

Right: zoom-in on the sphere, illustration of the local adaptivity of the computational grid and representation of
some streamlines near the moving interface.
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Figure 21: Illustration of the computational cost and convergence rate associated with the fixed point iteration
from section 2.5, when ensuring point-wise convergence on the Hodge variable within bounds corresponding to a
pressure threshold of 10% of the maximum dynamic pressure resulting from the kinematics of the oscillating sphere,
as considered in section 4.3, for Re = 300. Left: ratio(s) of the computational costs per time step for the main tasks
at play, normalized to the raw computational cost of an approximate projection method (which would correspond to
kmax = 1). Right: measures of interest considered by the inner loop criterion.

4.4. Transport of a scalar quantity in a flow

In this section, we provide two examples to qualitatively illustrate the ability of the solver to
track scalar fields advected by the flow and to capture the resulting complex structures using high
spatial resolution in the required regions. The (non-dimensional) node-sampled scalar concentration
� (x, t) 2 [0, 1] is determined by solving the governing equation

@�

@t
+ u ·r� = 0 (15)

using a semi-Lagrangian approach, as described in 2.3.1. Since this numerical example is intended
to only illustrate an additional refinement capability of our adaptive-grid strategy, the di↵usion
terms were discarded in the lastabove equations in order to make the simulation cheaper. In
fact, numerical di↵usion comes into play through the approximation errors of the semi-Lagrangian
approach and the successive interpolation steps, so that � (x, t) is numerically smoothened over
time.
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In this section, the refinement criterion (3) is activated using a refinement threshold set to
� = 0.05 in the mesh construction, along with criteria (1) and (2). We illustrate this capability
with the flow past a sphere. The simulation setup is the same as in section 4.2 and the solver’s
parameters were set to match a Reynolds number of Re = 5, 000 using an 8⇥4⇥4 macromesh with
trees of level 2/8, leading to around 34⇥ 106 leaves for a fully developed flow. Figure 22 presents

a visualization after 48
r

u0
where r and u0 are defined as in section 4.2, which corresponds to 857

time steps. The entire simulation took 20 hours on 1,024 cores of the Stampede2 supercomputer.

Figure 22: Visualization of a passively advected smoke marker in a flow past a sphere for a Reynolds number
Re = 5, 000.

As a second illustration, we consider a buoyancy-driven flow. In a cubic box of side length L,
we consider the motion of a fluid of dynamic viscosity µ due to buoyancy with gravity acceleration
g = �gez. A relative scalar concentration � 2 [0, 1] is passively advected by the flow according to

(15) and the local fluid density depends linearly on � as ⇢0+��⇢ with
�⇢

⇢0
⌧ 1. Using Boussinesq

approximation, the momentum equation reads

⇢0

✓
@u

@t
+ u ·ru

◆
= �rp��⇢g�ez + µr

2u. (16)

The simulation is initialized with a flow at rest, � = 1 in a ball of radius r = 0.1L centered at

(L/2, L/2, 3L/4) and � = 0 outside that ball. Using L as a characteristic length scale and
gr

2�⇢

µ

as a characteristic velocity scale, (16) takes the non-dimensional form

@u

@t
+ u ·ru = �rp�

L
2

r2Ar
�ez +

1

Ar
r

2u (17)

where the Archimedes number is defined as Ar =
⇢0gr

2�⇢L

µ2
. In figure 23, we show three snapshots

of a simulation obtained with Ar = 2.4525⇥ 106, using a 2⇥2⇥2 macromesh with trees of resolution
4/8, leading to about 20 million leaves. Here again, this simulation intends to show the capabilities
of our parallel adaptive refinement approach, accurate results would require much finer and much
more computationally intensive runs. The simulation took 20 hours on 256 cores of the Stampede2
supercomputer for 603 time iterations steps.

4.5. Turbulent superhydrophobic channel

As detailed and illustrated above, the solver is designed to allow dynamic grid adaptation
over time. This feature is especially relevant and appealing when the complex flow dynamics
to be captured are bounded to a (small) evolving portion of the computational domain, as it
dramatically reduces the global number of computational cells compared to a regular uniform
grid. Indeed, in such cases, the computational overhead associated with dynamically adapting the

25



Figure 23: Visualization of a drop of high density smoke falling under gravity at the initial state (left), after

nondimensional times of 367.88 (center) and 760.28 (right), where the nondimensional time is defined as
gr2�⇢t

µL
.

computational grid, with setting new operators and new linear solvers is small compared to the
prohibitive computational cost of using a uniform grid of equivalent finest resolution throughout
the domain.

However, while local mesh refinement remains valuable, dynamic re-meshing may not be most
desirable in applications requiring (almost) static, dense regions of fine grid cells, as extra operations
associated with dynamic grid adaptation would significantly increase the overall computational cost,
without any significant reduction of the overall number of computational cells to consider. We have
alleviated this issue by allowing the solver to store all possible data structures5 (linear solvers,
possible preconditioners, interpolation operators, etc.) in memory and use them as long as they are
valid, i.e., as long as the grid is not modified.

Statistically steady physical problems align perfectly with the above solver features, since they
require fixed regions of specified spatial resolution by nature, and the results need to be accumulated
over a (very) large number of time steps to ensure their statistical convergence. In order to illustrate
the capability of the solver to address such problems, we consider the fully developed turbulent flow
in a superhydrophobic channel as previously simulated in [61, 62]. We use a computational domain
of dimensions 6�⇥2�⇥3�, where � is half of the channel height, with periodic boundary conditions
along the streamwise and spanwise directions, as illustrated in figure 24. The coordinates are chosen
such that x points downstream, y is normal to the walls and z is in the spanwise direction. The
flow is driven in the positive streamwise direction by a spatially uniform and constant force per unit
mass f = fxex. By analogy with canonical channel flows, we define the friction velocity u⌧ =

p
fx�.

We consider gratings oriented parallel to the flow on both walls y = ±�. The superhydrophobic
nature of these surfaces enables them to entrap pockets of air, such that parts of he walls are
replaced by a liquid-air interface, which is assumed to be shear-free. We assume the liquid-air
interface to be and remain flat at all times (deflections of the interface are neglected). We therefore
model the air-liquid interface regions using no-penetration, free-slip boundary conditions6

v|y=±� = 0,
@u

@y

����
y=±�

= 0 and
@w

@y

����
y=±�

= 0, (18)

while the rest of wall surfaces use no-slip boundary conditions,

u|y=±� = 0.

5For the linear solvers associated with the viscosity step, only diagonal terms are a↵ected by a new value of �t
(see subsection 2.3). Therefore, only diagonal terms are updated when the computational grid is not modified.

6Note that
@v

@x

����
y=±�

=
@v

@z

����
y=±�

= 0 since v|y=±� = 0 on the entire wall surfaces.
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Figure 24: Schematic of the superhydrophobic surface and corresponding notations considered in section 4.5: we
denote the pitch by L and the gas fraction by ⇠. The variable z̃ is used to average over corresponding spanwise
locations.

Eight longitudinal grates giving a gas fraction of 50% are used, i.e., the pitch length L is set
to 3�/8 and the gas fraction ⇠ is set to 0.5 (see figure 24). The fluid properties and other control

parameters are set such that the canonical friction Reynolds number Re⌧ =
⇢u⌧�

µ
is equal to 143.

The computational domain is meshed with one single Octree of minimum level 7 and maximum
level 9. This choice of macromesh results in computational cells with an aspect ratio so di↵erent
from 1 that third-degree neighbor cells are required for the reliable construction of face-seeded
Voronoi cells (see figure 2 for a two-dimensional illustration). Therefore, this simulation setup
makes an extensive use of the capability to fetch third-degree ghost neighbor cells, which is enabled
by the algorithms from section 2.6. The capability of the solver to address such problems even with
stretched computational cells is discussed in Appendix A using a known analytical solution in the
laminar case.

In order to ensure su�cient grid resolution for regions close to the no-slip parts of the walls, we
define the level-set function7

� (x) = �dist (x, no-slip region of the wall)

to be used with the refinement criterion (1) setting K = 10. This choice of K and maximum
refinement level ensures that the walls are entirely covered by the finest computational cells over
a thickness of 0.1�. Except for the thickness of four grid cells layering the walls, the local grid
resolution is equivalent to, or finer than, the resolution from [61, 62] everywhere. In [61, 62], a
stretched grid was used with constant mesh size in the streamwise and spanwise directions while
the cell thickness was distributed using a hyperbolic tangent profile in the wall-normal direction.
The main di↵erence between such a stretched grid and our Octree approach lies in the fact that
the aspect ratio of our computational cells is constant. As cells get thinner when approaching the
wall regions, they also get shorter and narrower: the spatial resolution close to the walls for the
Octree grid is four times finer than for the stretched grid in the spanwise and streamwise directions,
hence producing more accurate results in those directions than stretched grids do. This however
significantly increases the total number of computational cells to be used in our approach, since
we need more than 21.8⇥ 106 cells, as opposed to about 2.1⇥ 106 in the case of a stretched grid.
Dynamic grid adaptation based on local vorticity is less useful in this example, since the background
grid already captures enough details (� is thus irrelevant in this case), which enables us to reduce
time execution. The conjugate gradient method is used for solving the projection step along with
an algebraic multigrid preconditioner (from the HYPRE distribution).

A thorough analysis of the analytical solution known in the laminar cases shows that the viscous

7Note that � is negative everywhere so no interface is defined within the domain.
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stress is singular at the edges of the walls transitioning between free-slip and no-slip boundary
conditions (see Appendix A and references therein for more details). Early numerical tests revealed
that setting the inner loop convergence criterion (see section 2.5) to ensure

���k
� �k�1

��
1 < "�

would fail because the (floating-value) Hodge variable � would grow unbounded in the cells layering
these transition edges. However, the velocity field must be bounded everywhere, and therefore, so
must be kr�k1. As a matter of fact, setting the inner loop convergence criterion (see section
2.5) to ensure max⌦

��r�k
�r�k�1

��
1 < 10�6

Ub, wherein Ub is the mean, bulk velocity in the
streamwise direction through the channel, resulted in fully controlled simulations. For most time
steps, the solver required three inner iterations to converge (the value of the convergence measure
for the first iterate, i.e., max⌦

��r�1
�r�0

��
1, was observed to be of the order of 10�4

Ub).
The simulation is initialized to the known laminar solution and executes until flow instabilities

amplify and a fully-developed turbulent state is eventually reached. The bulk Reynolds number

Reb =
⇢Ub�

µ
, where Ub =

1

6�2

Z �

��

Z 1.5�

�1.5�
u · ex dz dy

and the nondimensional viscous forces from the no-slip regions of the walls

Fwall, visc. =
1

⇢fx 36�3

X

ky={�1,1}

3X

kz=�4

Z 3�

�3�

Z (kz+1)L

(kz+⇠)L
�ky

h
µ

⇣
ru+ (ru)T

⌘
· ey
i���

y=ky�
dz dx

are monitored over time. Their evolution is illustrated in figure 25.
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Figure 25: Macroscopic variables monitored over the course of the simulation of a turbulent flow through a superhy-
drophobic channel. Left: evolution of Reb = ⇢Ub�/µ; right: evolution of the nondimensional viscous forces from the

no-slip regions of the walls. In these graphs, the nondimensional time t̂ is defined as t̂ =
u⌧ t

�
.

From the evolution of the monitored macroscopic quantities of interest illustrated in figure 25, we

consider the time window from t̂start =
u⌧ t

�
= 80 until the end of the simulation, t̂end = 133.1, which

we use for time-averaging results associated with the fully-developed regime (which corresponds
to about 300,000 time steps). An illustrative snapshot of the simulation in this time window is
presented in figure 27.

We obtain an average bulk Reynolds number of 2541; we also consider the time-and-slice-
averaged velocity profile, i.e.,

⌧
u

u⌧

�

x,z,t

=
1

18�2
�
t̂end � t̂start

�
Z t̂end

t̂start

Z 3�

�3�

Z 1.5�

�1.5�

u

u⌧
dz dx dt̂

as a function of y/�, as well as the time-and-line-averaged velocity profile, i.e.,
⌧

u

u⌧

�

x,t

=
1

6�
�
t̂end � t̂start

�
Z t̂end

t̂start

Z 3�

�3�

u

u⌧
dx dt̂,
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which is built by also averaging corresponding locations over the air-interface and over the ridges
in the spanwise direction. Formally, this results in a function of y/� and of the grate-normalized
spanwise coordinate z̃ defined as

z̃ =

8
>><

>>:

����(z (mod L))�
L⇠

2

���� if z (mod L)  L⇠,

L

2
�

����(z (mod L))�
L (1 + ⇠)

2

���� otherwise,
(19)

(see illustration in figure 24). These time-averaged velocity profiles are illustrated in figure 26.
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Figure 26: Top: time-and-slice-averaged velocity profile. Bottom left: time-and-line-averaged velocity profiles.
Notice the sharpness of the transition between no-slip and free-slip line-averaged profiles. A significant portion of

the transition (74%) takes place over a distance of
3�

128
in the spanwise direction. While this distance corresponds

to the width of one single computational cell in the stretched grid approach of [62], our octree grid uses 4 narrower
computational cells over that region. Bottom right: illustration of how the time-and-line-averaged profiles become
z̃-independent far enough from the walls; in this case, time-and-line-averaged velocity profiles are essentially all
equivalent (within 1% of the mean velocity to be found in the center of the channel) farther than 0.14� from the
walls.

As illustrated in figure 26, the mean fluid velocity at the air interface can reach up to 50% of the
maximum mean velocity (found at the center of the channel). This figure also illustrates how sharp
the change is: 74% of the variation from the no-slip ridge to the maximum air interface velocity
(found above the center line of the interface) occurs over a distance of 3�/128 in the spanwise
direction, which corresponds to 4 computational cells in our setup (versus 1 cell in [62]).

When averaging velocity profiles across entire planar sections of the channel, the existence of
such free-slip regions results in a nonzero slip velocity Us at the wall. This slip velocity is a quantity
of primary relevance in the context of Navier’s slip model, along with the slip length b which relates

the slip velocity to the mean wall shear via Us = ±b
@

@y
huix,z,t

����
y=⌥�

. The slip parameters Us and

b were evaluated by least-square fitting the linear profiles
Us

u⌧

✓
1 +

� ± y

b

◆
(+ and � correspond
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to bottom and top walls, respectively) to our results for

⌧
u

u⌧

�

x,z,t

over the 5 finest grid cells

layering the walls, which corresponds to a thickness of about 2.8�⌧ , where �⌧ =
µ

⇢u⌧
is the viscous

lengthscale. The two sets of fitting parameters yield b = (0.0302± 0.0002) � = (4.320± 0.025) �⌧

and Us = (4.255± 0.040)u⌧ .

Figure 27: Visualization of a snapshot for the simulation of the turbulent superhydrophobic channel flow. The half

of the domain corresponding to z < 0 is colored by
kuk
u⌧

; the quarter of the domain corresponding to z > 0 and x > 0

is colored by
p

⇢u2
⌧

. A slice of the computational grid, streamlines and isocontours of �2 = �0.3

✓
Ub

�

◆2

(using the

�2-criterion from [36]) are also shown.

Our setup value of Re⌧ was chosen for comparison purposes with one of the simulations from
[62, 61], which reports a (mean) value of Re⌧ = 143 using a simulation setup enforcing a (constant)
mass flow corresponding to Reb = 2, 800 for the same channel geometry. Under these conditions,
[62, 61] reports b = 0.0366 � = 5.17 �⌧ and Us = 5.26u⌧ . Therefore, when compared to those results,
our simulation leads to a reduced flow rate for a comparable driving force (about 10% less) and to
a smaller slip velocity as well as a smaller slip length. Besides the di↵erence in simulation setup
(constant driving force as opposed to constant mass flow rate), such deviations may also originate
from numerical and/or modeling di↵erences to be found between the two approaches. To assess
this, we also compare our results to the simulations of [66], who used a lattice-Boltzmann method.
We select their simulation whose value of L/�⌧ is closest to ours, since [62] established that L/�⌧

is the single most important parameter that determines slip length (at fixed gas fraction). We
therefore compare our simulation, which has L/�⌧ = 53.6, to the L/�⌧ = 56.2 case of [66], who
found b/�⌧ = 4.23. This value is appreciably smaller than the result of 5.17 of [62], but matches
closely our b/�⌧ = 4.32.

In terms of modeling, [62, 61] opted for a simplified wall-treatment for the spanwise velocity
component w, by setting w|y=±� = 0 instead of the stress-free condition (18) above the free-slip
wall regions. Enforcing w|y=±� = 0 above the air pockets does not rely on physical grounds,
and may result in simplified near-wall flow structures that artificially promote streamwise velocity.

Indeed, this simplified condition results in
@w

@z
= 0, which in turn simplifies the incompressibility

condition, at the walls, into
@u

@x
+

@v

@y
= 0. At the wall-located air interfaces, this latter equation

stands as an artificial constraint, within z-orthogonal planes, enabling transfer of kinetic energy
only between wall-normal and streamwise velocity components. This constraint could lead, in turn,
to an overestimation of the slip velocity and/or of the total mass flow across the channel, which
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could help explain the di↵erence between the results of [62] and those of subsequent simulations.
In terms of numerical methods, we emphasize that the use of a semi-Lagrangian scheme for the

advection terms comes with a significant amount of numerical dissipation, which may in turn lead
to overestimated viscous dissipation. While this cannot be excluded, we also want to point out that
our simulation setup makes use of a spatial resolution that is 4 times finer than the resolution from
[62], in both the streamwise and spanwise directions. Firstly, such a fine resolution in the streamwise
direction is expected to alleviate the numerical dissipation associated with our advection scheme.
Secondly, such a resolution in the spanwise direction may actually stand as a requirement in order
to capture the sharp variation in velocity profiles between free-slip and no-slip wall regions. Indeed,

figure 26 illustrates that
@

@z
huix,t

����
y=±�

is the largest near the boundaries transitioning from free-

slip to no-slip regions; therefore, using a coarse spanwise resolution in that area may lead to an
underestimation of the overall viscous dissipation.

In order to quantify the relative importance of this term, we estimate its contribution to the
viscous dissipation taking place in near-wall layers and compare it to the contribution of the mean,
slice-averaged streamwise shear term (i.e., as if we were dealing with a regular channel). Assuming

that
@

@z
huix,t

����
y=±�

is not negligible within bands of 3�/128 around solid ridges only (in our case,

we have 16 such bands on either wall), our comparative estimate is
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where we estimated
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3�/128
based on the results illustrated in figure 26 to produce

a fair measure in comparison with the grid resolution from [62], although
@

@z
huix,t

����
y=��

becomes

almost twice as large as we approach the edge in our computational setting. Although wall viscous
shear dissipation may be smaller than the overall (bulk) turbulent dissipation, we expect it to be
non-negligible nonetheless, in particular when considering a relatively low friction Reynolds number
as it is the case here8; in this context, the above comparative estimation indicates that spanwise wall
shear, though not evenly distributed on the walls, is not a negligible factor to the overall viscous
dissipation.

8In fact, if we consider an equivalent canonical channel with a mean, streamwise wall shear of Us/b that we assume

constant over layers of at least 3
µ

⇢u⌧
, the viscous dissipation in these layers amounts for
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which represents about 1/6 of the energy injection rate 36�3⇢fxUb in our simulation setup.
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5. Conclusion

We have described a Navier-Stokes solver for simulating incompressible flows in irregular do-
mains on a forest of Octrees in a distributed computing framework. The parallel implementation
of the solver requires the ability to access second- (or third-)degree cell neighbors, which led to the
need for an expanded ghost layer of cells. We have introduced an algorithm to address that compu-
tational challenge on distributed forest of octree grids. We also have introduced parallel algorithms
for the unambiguous definition and synchronization of global faces indices as required in a standard
MAC arrangement. The performance of these individual algorithms has been assessed in terms of
strong and weak scaling analyses. The strong scaling behavior of the entire solver has been verified
up to more than 32,000 cores using a problem on a grid of 6.1⇥ 108 grid cells. The performance
of the solver has been assessed on several large-scale three-dimensional problems: accurate results
for the flow past sphere at various Reynolds numbers have been shown, several illustrations of the
capabilities of our adaptive refinement approach have been provided and a simulation of the tur-
bulent flow through a superhydrophobic channel has been performed with unparalleled spanwise
(and streamwise) spatial resolution over regions of interest. When flow structures have a limited
lifetime and/or are bounded to relatively small regions in the computational domain, our adaptive
grid refinement approach was shown to successfully simulate the problems of interest using only a
few percent of the number of grid cells that a uniform grid of equivalent finest resolution would
require. The encapsulation of such a feature in a distributed computing framework allows for very-
large scale simulations to be considered tractable from a computational standpoint and, therefore,
to address increasingly complex multiscale and/or multiphysics problems.
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Appendix A. Validation test in laminar cases superhydrophobic channel flows

Given the numerical di�culties typically associated with this kind of mixed boundary-value
problems [44], we assess the performance of the solver for the simpler laminar steady case, in
which the flow is unidirectional and exact solutions exist (see [64, 76]). In this context, we consider
longitudinal gratings, i.e., aligned with the flow direction, on both the upper and lower walls. The
analytical solution can be expressed as the following series
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is the canonical friction Reynolds number, L is the pitch (that is the dis-

tance between consecutive gratings), and z̃ 2 [0, L/2] is the normalized spanwise coordinate that
parametrizes each periodic unit as defined in (19) (see figure 24 for a detailed illustration of all
parameters).

Due to the mixed boundary conditions, the coe�cients cn must be determined numerically by
enforcing the dual cosine series conditions [76]
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where 0 < ⇠ < 1 is the gas fraction. We truncate the above series up to N terms and solve the
(dense) N ⇥N linear system derived from the resulting algebraic conditions
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Even in this simplified laminar case, the velocity gradient components
@u

@y
and

@u

@z
display

singularities at the edges between the no-slip and free-slip wall regions that may compromise the
point-wise convergence of the numerical solution. We thus explore the performance of the solver,
setting simulations of increasing spatial resolution for Re⌧ = 10, using 2 grates with pitch L = �

and gas fraction ⇠ = 0.875. We use N = 2500 terms in the above series, which ensures that all the
coe�cients in the exact solution are computed to machine precision for this particular setup.

In order to assess the validity of the face-seeded Voronoi diagrams associated with stretched
computational cells, we also investigate how the accuracy is a↵ected by the aspect ratio of the
computational cells by replicating the same simulation runs in two macromeshes of di↵erent aspect
ratios. This is especially relevant to anticipate the validity of our results in the turbulent simulations,
since in those cases the cells must be stretched in the streamwise direction to result in a feasible
computational cost. The solver is then executed until a steady state is reached, and the resulting
numerical errors for the streamwise velocity component are measured. We present them in Table
A.7.

u/u⌧

Domain dimensions: � ⇥ 2� ⇥ 2� Domain dimensions: 6� ⇥ 2� ⇥ 2�
Macromesh: 1⇥ 2⇥ 2 root trees Macromesh: 1⇥ 1⇥ 1 root tree

Cubic cells (�x/�y = �x/�z = 1) Stretched cells (�x/�y = �x/�z = 3)
levels L

1 error order L
1 error order L

1 error order L
1 error order

4/6 9.63 · 10�2 - 3.09 · 10�1 - 2.02 · 10�1 - 4.67 · 10�1 -
5/7 2.67 · 10�2 1.85 1.69 · 10�1 0.87 9.75 · 10�2 1.05 2.99 · 10�1 0.64
6/8 6.20 · 10�3 2.11 1.39 · 10�1 0.29 3.84 · 10�2 1.34 1.67 · 10�1 0.84

Table A.7: Convergence of the solver for the case of laminar flow over a superhydrophobic surface, with Re⌧ = 10.
The pitch is L = � and the gas fraction is ⇠ = 0.875.

As expected from Section 4.1, the accuracy is close to, or even exceeds, first order in the L
1

norm9 for all cases. Moreover, the errors are comparable for similar �y and �z between cubic cells
and stretched cells: we set �y = �z in both cases, but we use twice as many root trees along y

and z in the case of cubic cells, which e↵ectively doubles the wall-normal and spanwise resolutions
compared to stretched cells.

On the other hand, the L
1 error does not display a clean first-order convergence. Indeed, a

closer analysis of the spatial distribution of the error reveals that, unsurprisingly, its maximum is
located at the transitions between no-slip and free-slip regions at the walls, and that the convergence
in these areas is slower than in the rest of the domain. This drop in the convergence rate is expected
in mixed boundary-value problems [44], although we still observe that in all cases the maximum
error is monotonically decreasing with refinement.

9Here, the L1 error is already normalized with the domain volume for a straightforward comparison with the L1

error. Specifically, we define the L1 error as the discrete equivalent of
R
⌦ |unum. � uexact| d⌦ / vol(⌦).
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