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Abstract. In this paper, we propose a test procedure for the number of compo-
nents of mixture distributions in a parametric setting. The test statistic is based
on divergence estimators derived through the dual form of the divergence in para-
metric models. We provide a standard limit distribution for the test statistic under
the null hypothesis that holds for mixtures of any number of components k ≥ 2.
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1 Introduction

Consider a k-component parametric mixture model Pθ (k ≥ 2) defined as follows:

Pθ :=
k

∑
i=1

wiP
(i)
ai (1)

where
{

P(1)
a1 ;a1 ∈ A1

}
, . . . ,

{
P(k)

ak ;ak ∈ Ak

}
are k-parametric models and A1, . . . ,Ak are

k sets in Rd1 , . . . ,Rdk with d1, . . . ,dk ∈ N∗ and 0 ≤ wi ≤ 1, ∑wi = 1. Note that we
consider an unstandard framework in which the weights are allowed to be equal to
0. Note Θ the parameter space:

θ ∈Θ :=

{
(w1, . . . ,wk,a1, . . . ,ak)

T ∈ [0,1]k×A1×·· ·×Ak such that
k

∑
i=1

wi = 1

}
,

(2)
and assume that the model is identifiable. Let k0 ∈ {1, . . . ,k−1}.

We are willing to test if (k−k0) components in (1) have null coefficients. We assume
that their labels are k0 +1, ...,k. Denote Θ0 the subset of Θ defined by

Θ0 :=
{

θ ∈Θ such that wk0+1 = · · ·= wk = 0
}
.

On the basis of an i.i.d sample X1, . . . ,Xn with distribution PθT , θT ∈Θ , we intend to
perform tests of the hypothesis

H0 : θT ∈Θ0 against the alternative H1 : θT ∈Θ \Θ0. (3)



When considering the test (3), it is known that the generalized likelihood ratio test,
based on the statistic

2 logλ := 2log
supθ∈Θ ∏

n
i=1 pθ (Xi)

supθ∈Θ0 ∏
n
i=1 pθ (Xi)

, (4)

is not valid, since the asymptotic approximation by χ2 distribution does not hold in this
case; the problem is due to the fact that the null value of θT is not in the interior of the
parameter space Θ . We clarify now this problem.

For simplicity, consider a mixture of two known densities p0 and p1 with p0 6= p1:

pθ = (1−θ)p0 +θ p1 where θ ∈Θ := [0,1]. (5)

Given data X1, . . . ,Xn with distribution PθT , θT ∈ [0,1], consider the test problem

H0 : θT = 0 against the alternative H1 : θT > 0. (6)

The generalized likelihood ratio statistic for this test problem is

Wn(0) := 2log
L(θ̂)
L(0)

, (7)

Under suitable regularity conditions we can prove that the limit distribution of the statis-
tic Wn in (7) is 0.5δ0 +0.5χ2

1 , a mixture of the χ2-distribution and the Dirac measure at
zero; see e.g [12] and [11].
Moreover, in the case of more than two components and k− k0 ≥ 2, the limit distri-
bution of the GLR statistic (4) under H0 is complicate and not standard (not a χ2

distribution) which poses some difficulty in determining the critical value that will give
correct asymptotic size; see [11]. Gassiat and al [1] proposes for instance a likelihood
ratio approach for mixtures and give the asymptotic properties of the test, but its nu-
merical application is extremely complicated, especially under non gaussian mixtures.
On the other hand, the likelihood ratio statistic can not be used to construct asymptotic
confidence region for the parameter θT since its limit law is not the same when θT = 0
and θT > 0.

In the sequel, we propose a simple solution for testing the number of components of
a parametric mixture model. This method consists in constructing a test statistic based
on ϕ−divergences and their asymptotic properties. In the following section, we will
provide the general framework that will be used to construct the test procedure, i.e the
definitions, representation and properties of ϕ−divergences.

2 Some definition and notation in relation with minimum
divergence inference

Let P := {Pθ ,θ ∈Θ} be an identifiable parametric model on Rs where Θ is a subset of
Rd . All measures in P will be assumed to be measure equivalent sharing therefore the
same support. The parameter space Θ does not need to be open in the present setting. It



may even happen that the model includes measures which would not be probability dis-
tributions; cases of interest cover the present setting, namely models including mixtures
of probability distributions; see [3].

Let ϕ be a proper closed convex function from ]−∞,+∞[ to [0,+∞] with ϕ(1) =
0 and such that its domain domϕ := {x ∈ R such that ϕ(x)< ∞} is an interval with
endpoints aϕ < 1 < bϕ (which may be finite or infinite). For two measures Pα and Pθ

in P the ϕ-divergence between the two is defined by

φ(α,θ) :=
∫

Rs
ϕ

(
dPα

dPθ

(x)
)

dPθ (x).

In a broader context, the ϕ-divergences were introduced by [8] as “ f -divergences”. The
basic property of ϕ− divergences states that when ϕ is strictly convex on a neighbor-
hood of x = 1, then

φ(α,θ) = 0 if and only if α = θ .

We refer to [9] chapter 1 for a complete study of those properties.

2.1 Examples of ϕ-divergences

The Kullback-Leibler (KL), modified Kullback-Leibler (KLm), χ2, modified χ2 (χ2
m),

Hellinger (H), and L1 divergences are respectively associated to the convex functions
ϕ(x) = x logx− x+ 1, ϕ(x) = − logx+ x− 1, ϕ(x) = 1

2 (x−1)2, ϕ(x) = 1
2 (x−1)2/x,

ϕ(x) = 2(
√

x−1)2 and ϕ(x) = |x−1|. All these divergences except the L1 one, belong
to the class of the so called “power divergences” introduced in [7] (see also [9] chapter
2), a class which takes its origin from Rényi [10]. They are defined through the class of
convex functions

x ∈]0,+∞[7→ ϕγ(x) :=
xγ − γx+ γ−1

γ(γ−1)
(8)

if γ ∈ R \ {0,1}, ϕ0(x) := − logx + x− 1 and ϕ1(x) := x logx− x + 1. So, the KL-
divergence is associated to ϕ1, the KLm to ϕ0, the χ2 to ϕ2, the χ2

m to ϕ−1 and the
Hellinger distance to ϕ1/2.

Considering any ϕ-divergence with ϕ a differentiable function but the likelihood
divergence defined through the divergence function ϕ0, when θT in intΘ is defined as
the true parameter of the distribution of the i.i.d. sample (X1, ..,Xn) it is convenient to
assume that

There exists a neighborhood U of θT for which (A)
φ(θ ,θ ′) is finite whatever θ and θ

′ in U .

We will only consider divergences defined through differentiable functions ϕ , which
we assume to satisfy

(RC)
There exists a positive δ such that for all c in [1−δ ,1+δ ],
we can find numbers c1,c2, c3 such that
ϕ(cx)≤ c1ϕ(x)+ c2 |x|+ c3, for all real x.



Condition (RC) holds for all power divergences including KL and KLm divergences.
For all divergences considered in this paper it will be assumed that for any α and θ

in U ∫ ∣∣∣∣ϕ ′(dPθ

dPα

)∣∣∣∣dPθ < ∞. (9)

Note that this condition trivially holds for the likelihood divergence. Sufficient and
simple conditions encompassing (9) can be assessed under standard requirements for
nearly all divergences. We state the following Lemma (see Liese and Vajda (1987)[9])
and Broniatowski and Kéziou (2006) [2], Lemma 3.2).

Lemma 1. Assume that RC holds and φ(θ ,α) is finite. Then (9) holds.

2.2 Dual form of the divergence and dual estimators in parametric models

The following representation is the cornerstone of parametric inference through diver-
gence based methods.

Theorem 1. Let θ belong to Θ and let φ(θ ,θT ) be finite. Assume that RC holds to-
gether with Condition (A) . Then

φ(θ ,θT ) = sup
α∈U

∫
ϕ
′
(

dPθ

dPα

)
dPθ −

∫
ϕ

#
(

dPθ

dPα

)
dPθT

= sup
α∈U

∫
h(θ ,α,x)dPθT

(10)

Furthermore the sup is reached at θT and uniqueness holds.

From (10), simple estimators for φ(θ ,θT ) and θT can be defined, plugging any con-
vergent empirical measure in place of PθT and taking the infimum in θ in the resulting
estimator of φ(θ ,θT ).

In the context of simple i.i.d. sampling, introducing the empirical measure Pn :=
1
n ∑

n
i=1 δXiwhere the Xi’s are i.i.d. r.v’s with common unknown distribution PθT in P,

the natural estimator of φ(θ ,θT ) is

φn(θ ,θT ) := sup
α∈U

{∫
h(θ ,α,x) dPn(x)

}
= sup

α∈U

∫
ϕ
′
(

dPθ

dPα

)
dPθ −

1
n

n

∑
i=1

ϕ
#
(

dPθ

dPα

(Xi)

)
when (A) holds.

Under (A), since
inf

θ∈U
φ(θ ,θT ) = φ(θT ,θT ) = 0

the resulting estimator of φ(θT ,θT ) is

φn(θT ,θT ) := inf
θ∈Θ

φn(θ ,θT ) = inf
θ∈Θ

sup
α∈U

{∫
h(θ ,α,x) dPn(x)

}
. (11)



And the estimator of θT is obtained as

θ̂ := arg inf
θ∈U

sup
α∈U

{∫
h(θ ,α,x) dPn(x)

}
. (12)

Also, as stated in theorem 3.2 in [3]:

Theorem 2. Under some derivability assumptions on ϕ

(
dPθ

dPα

)
(conditions A.0 to A.2

in [3]),

If θ = θT , then
2n

ϕ ′′(1)
φn(θ ,θT )

d−→ χ
2
(d) for d = dim(Θ) (13)

This last result of convergence of the estimated ϕ−divergence is of great interest in the
problem we are taking on and serves as the basis for the test procedure that we propose.

3 A simple solution for testing finite mixture models

3.1 Testing between mixtures of fully characterized components

Let us consider a set of signed measures defined by

pθ = (1−θ)p0 +θ p1, θ ∈ R (14)

where p0 and p1 are two known density (belonging or not to the same parametric fam-
ily).

The mixture (5) is obviously contained in (14) and the case θT = 0 is in this frame-
work an interior point of the parameter space R.

We observe a random sample X1, . . . ,Xn of distribution pT . We are willing to test:

H0 : pT = p0 vs H1 : pT = pθ 6= p0 (15)

which can be reduced to
H0 : θ = 0 vs H1 : θ 6= 0 (16)

whenever p0 6= p1 is met. The latter condition ensures the identifiability of the model
and enables to consider different parametric families for p0 and p1. Conversely, Chen
[6], for instance, assumes that 0 < θ < 1, and tests the equality of the parameters of p0
and p1 inside a unique family F .

In the following, we will thus assume that p0 6= p1.

3.2 Test statistics

The choice of the test statistic is driven by the result given in Theorem 2. Accordingly,
let φ be any divergence associated with convex finite functions and such that 0 is an
interior point of the space parameter defined by:

Θ :=
{

α ∈ R :
∫
| ϕ ′
(

dP0

dPα

)
| dP0 < ∞

}
(17)



Then the statistic 2nφn(0,θT ) can be used as a tes statistic for (20) and

2nφn(0,θT )−→ χ
2
(1) when H0 holds. (18)

Also, this (18) also holds when testing whether the true distribution is a k0−component
mixture or a k−component mixture as in (3). In this case, the test statistic 2nφn(Θ0,θT )
converges to a χ2

(k−k0)
distribution when H0 holds.

While many divergences meet the former properties, we will restrict in the sequel
ourselves to two generators.

Chi-square divergence
The first divergence that we consider is the χ2-divergence. The corresponding ϕ func-

tion ϕ2(x) := 1
2 (x− 1)2 is defined and convex on whole R; an example when P may

contain signed finite measures and not be restricted to probability measures is consid-
ered in [2] in relation with a two components mixture model defined in (14) and where
θ is allowed to assume values in an open neighborhood Θ of 0, in order to provide a
test for (20), with θ an interior point of Θ .

Modified Kullback-Leibler divergence
The second divergence that we retain is generated by a function described below,

namely

ϕc(x) := (x+ ec−1) · log(x+ ec−1)+1− (x+ ec−1)+(1− c) · (ec−1)− c · x ≥ 0
x ∈]1− ec,∞[ , c ∈ R ,

(19)

which has been derived within the recent general framework of Broniatowski and Stum-
mer [5]. It is straightforward to see that ϕc is strictly convex and satisfies ϕc(1) = 0 =
ϕ ′c(1). For the special choice c = 0, (19) reduces to the omnipresent Kullback-Leibler
divergence generator

ϕ0(x) := x logx− x+1 ≥ 0 , x ∈]0,∞[ .

According to (19), in case of c > 0 the domain ]1− ec,∞[ of ϕc covers also negative
numbers (see [4] for insights on divergence-generators with general real-valued do-
main); thus, the same facts holds for the new generator than for the χ2 and this opens
the gate to considerable comfort in testing mixture-type hypotheses against correspond-
ing marginal-type alternatives, as we derive in the following. We denote KLc the cor-
responding divergence functional for which KLc(Q,P) is well defined whenever P is a
probability measure and Q is a signed measure.

It can be noted that, depending on the type of model considered, the validity of
the test can be subject to constraints over the parameters of the densities. Indeed, the
convergence of I =

∫
| φ ′
(

p0
pθ

)
| dP0 is not always guaranteed. This kind of consider-

ations may guide the choice of the test statistic. For instance, in some cases, including



scaling models, conditions that are required for the χ2−divergence, do not apply to the
KLc−divergence.

For instance, consider a Gaussian mixture model with different variances:

p0 ∼N (µ,σ2
0 ), p1 ∼N (µ,σ2

1 )

The convergence of I with the χ2 requires either σ2
1 > σ2

0 or σ2
0 > σ2

1 > 1
2 σ2

0 . On the
other hand, the convergence is always ensured with the KLc−divergence.

The same observations can be made for lognormal, exponential and Weibull densi-
ties.

3.3 Generalization to parametric distributions with unknown parameters

In the previous section, the densities of each component were supposed to be known.
We will now generalize to the case where the components belong to parametric families
with unknown parameter. For the sake of simplicity, we will present the generalization
for a two component mixture, but is is valid as well for more k−component mixtures
with k ≥ 2.

Let us assume p0 ∈F0 = {p0(. | λ0) : λ0 ∈Λ0} and p1 ∈F1 = {p1(. | λ1) : λ1 ∈Λ1},
with Λ0 and Λ1 compact subsets of Rd , d ≥ 1.

We will consider aggregated tests of composite hypotheses. Indeed the null hy-
pothesis of homogeneity of the population is rejected when there exists at least one
couple of parameters (λ ∗0 ,λ

∗
1 ) ∈ Λ0×Λ1 with λ ∗1 6= λ ∗0 for which the simple hypothe-

sis H0(λ
∗
0 ,λ

∗
1 ) is rejected. The condition {λ ∗1 6= λ ∗0 } is only required when p0 and p1

belong t the same parametric family.
The test (15) can be reformulated as follows:

H0 = ∩λ0∈Λ0H0(λ0,Λ1) vs H1 = ∪λ0∈Λ0H1(λ0,Λ1) (20)

where

∀λ0 ∈Λ0, H0(λ0,Λ1) : pT = p0(. | λ0)

vs H1(λ0,Λ1) : ∪λ1∈Λ1\λ0 {pT = pθ (. | λ0,λ1) 6= p0(. | λ0)}
(21)

Let φn(0,λT | λ0,λ1) be the estimated divergence used to construct the test statistic
for (15) for fixed λ0 and λ1. The test statistic for (20) is derived from:

sup
λ0∈Λ0

sup
λ1∈Λ1\λ0

φn(0,λT | λ0,λ1)

where the parameter spaces Λ0 and Λ1 can be discretized in Λ0,n and Λ1,n for the sake
of computational complexity.

In order to facilitate the computation of the test statistic, the statistic 3.3 will be
computed as follows:

sup
α∈Θ

{
sup

λ0∈Λ0

sup
λ1∈Λ1\λ0

∫
ϕ
′

(
dP0,λ0

dPα,(λ0,λ1)

)
dP0,λ0 −

1
n

n

∑
i=1

ϕ
#

(
dP0,λ0

dPα,(λ0,λ1)
(Xi)

)}



4 Numerical example

We here present the performances of the test procedure on different kinds of two-
component mixtures. In each case, the distributions of the components as such that
the mixture is not bimodal.

4.1 Lognormal mixture

We first consider a Lognormal mixture. The two components belonging to the same
parametric family, we can compare the performances of the divergence based test with
the modified likelihood ratio test proposed by Chen [6].

The alternate hypotheses are the following:

H0 : pT = p0 ∼ lN(λ0,1) vs H0 : pT = pθ ∼ (1−θ)lN(λ0,1)+θ lN(λ1,1),

where λ0 ∈Λ0 = [0.4,1.6] and λ1 ∈Λ1 = [1.4,2.6].
The critical region is computed numerically through Monte Carlo simulations under

H0. The power of the test is also computed numerically when the realizations are drawn
from the mixture model with θ = 0.2,λ0 = 1 and λ1 = 2 for the χ2 and KLc test statistics
and Chen’s modified likelihood ratio.

The results in table 3 show that both χ2 and KLc outperform the modified likelihood
ratio test and the test based on the KLc divergence achieves in this case the greatest
power.

Lognormal Mixture lN(1,1) vs 0.8lN(1,1)+0.2lN(2,1)

n=250 observations

χ2 test statistic KLc test statistic Chen’s modified lik ratio
First kind risk 0.05 0.10 0.05 0.10 0.05 0.10

Power 0.22 0.41 0.50 0.65 0.12 0.18
Table 1: Power of the test for a two-component logNormal mixure

4.2 Gamma mixture

We test the following hypothesis

H0 : pT = p0 ∼ G (λ0,1) vs H0 : pT = pθ ∼ (1−θ)G (λ0,1)+θG (λ1,2),

where λ0 ∈Λ0 = [1.4,2.6] and λ1 ∈Λ1 = [4.4,5.6]. The realizations are drawn from the
mixture model with θ = 0.2,λ0 = 2 and λ1 = 5

Here again, both divergence based statistics achieves higher power than the modified
likelihood ratio test.



Gamma Mixture G (2,1) vs 0.8G (2,1)+0.2G (5,2)

n=250 observations

χ2 test statistic KLc test statistic Chen’s modified lik ratio
First kind risk 0.05 0.10 0.05 0.10 0.05 0.10

Power 0.31 0.46 0.35 0.45 0.13 0.22
Table 2: Power of the test for a two-component Gamma mixure

4.3 Weibull and Lognormal mixture

We here consider the case where the two components are from different parametric
families. We want to test

H0 : pT = p0 ∼ lN(λ0,0.2) vs H0 : pT = pθ ∼ (1−θ)lN(λ0,0.2)+θW (λ1,2),

where λ0 ∈Λ0 = [0.4,1.6] and λ1 ∈Λ1 = [2.4,3.6]. The realizations are drawn from the
mixture model with θ = 1,λ0 = 1 and λ1 = 3

The results in the following table show that the test based on the KLc divergence
performs better than the χ2 statistic.

Lognormal and Weibull Mixture lN(λ0,0.2) vs 0.8lN(λ0,0.2)+0.2W (λ1,2))

n=250 observations

χ2 test statistic KLc test statistic
First kind risk 0.05 0.10 0.05 0.10

Power 0.28 0.47 0.34 0.57
Table 3: Power of the test for the mixure of a lognormal and a Weibull distribution

Concerning the choice of the test statistic, we might note that the KLc performs
better when the two alternate distributions differ mainly in their central tendency, while
the χ2 might be prefered when the difference lays in the tails.
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