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In this paper, we propose a test procedure for the number of components of mixture distributions in a parametric setting. The test statistic is based on divergence estimators derived through the dual form of the divergence in parametric models. We provide a standard limit distribution for the test statistic under the null hypothesis that holds for mixtures of any number of components k ≥ 2.

Introduction

Consider a k-component parametric mixture model P θ (k ≥ 2) defined as follows:

P θ := k ∑ i=1 w i P (i) a i (1) 
where P

(1)

a 1 ; a 1 ∈ A 1 , . . . , P (k) 
a k ; a k ∈ A k are k-parametric models and A 1 , . . . , A k are k sets in R d 1 , . . . , R d k with d 1 , . . . , d k ∈ N * and 0 ≤ w i ≤ 1, ∑ w i = 1. Note that we consider an unstandard framework in which the weights are allowed to be equal to 0. Note Θ the parameter space:

θ ∈ Θ := (w 1 , . . . , w k , a 1 , . . . , a k ) T ∈ [0, 1] k × A 1 × • • • × A k such that k ∑ i=1 w i = 1 , (2) 
and assume that the model is identifiable. Let k 0 ∈ {1, . . . , k -1}.

We are willing to test if (k -k 0 ) components in [START_REF] Azais | Asymptotic distribution and local power of the loglikelihood ratio test formixtures: bounded and unbounded cases[END_REF] have null coefficients. We assume that their labels are k 0 + 1, ..., k. Denote Θ 0 the subset of Θ defined by

Θ 0 := θ ∈ Θ such that w k 0 +1 = • • • = w k = 0 .
On the basis of an i.i.d sample X 1 , . . . , X n with distribution P θ T , θ T ∈ Θ , we intend to perform tests of the hypothesis H 0 : θ T ∈ Θ 0 against the alternative H 1 : θ T ∈ Θ \Θ 0 .

(

) 3 
When considering the test [START_REF] Broniatowski | A: Parametric estimation and tests through divergences and the duality technique[END_REF], it is known that the generalized likelihood ratio test, based on the statistic 2 log λ := 2 log sup θ ∈Θ ∏ n i=1 p θ (X i )

sup θ ∈Θ 0 ∏ n i=1 p θ (X i ) , (4) 
is not valid, since the asymptotic approximation by χ 2 distribution does not hold in this case; the problem is due to the fact that the null value of θ T is not in the interior of the parameter space Θ . We clarify now this problem.

For simplicity, consider a mixture of two known densities p 0 and p 1 with p 0 = p 1 :

p θ = (1 -θ )p 0 + θ p 1 where θ ∈ Θ := [0, 1]. (5) 
Given data X 1 , . . . , X n with distribution P θ T , θ T ∈ [0, 1], consider the test problem

H 0 : θ T = 0 against the alternative H 1 : θ T > 0. ( 6 
)
The generalized likelihood ratio statistic for this test problem is

W n (0) := 2 log L( θ ) L(0) , (7) 
Under suitable regularity conditions we can prove that the limit distribution of the statistic W n in ( 7) is 0.5δ 0 + 0.5χ 2 1 , a mixture of the χ 2 -distribution and the Dirac measure at zero; see e.g [START_REF] Titterington | Statistical analysis of finite mixture distributions[END_REF] and [START_REF] Self | Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions[END_REF]. Moreover, in the case of more than two components and kk 0 ≥ 2, the limit distribution of the GLR statistic (4) under H 0 is complicate and not standard (not a χ 2 distribution) which poses some difficulty in determining the critical value that will give correct asymptotic size; see [START_REF] Self | Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions[END_REF]. Gassiat and al [START_REF] Azais | Asymptotic distribution and local power of the loglikelihood ratio test formixtures: bounded and unbounded cases[END_REF] proposes for instance a likelihood ratio approach for mixtures and give the asymptotic properties of the test, but its numerical application is extremely complicated, especially under non gaussian mixtures. On the other hand, the likelihood ratio statistic can not be used to construct asymptotic confidence region for the parameter θ T since its limit law is not the same when θ T = 0 and θ T > 0.

In the sequel, we propose a simple solution for testing the number of components of a parametric mixture model. This method consists in constructing a test statistic based on ϕ-divergences and their asymptotic properties. In the following section, we will provide the general framework that will be used to construct the test procedure, i.e the definitions, representation and properties of ϕ-divergences.

Some definition and notation in relation with minimum divergence inference

Let P := {P θ , θ ∈ Θ } be an identifiable parametric model on R s where Θ is a subset of R d . All measures in P will be assumed to be measure equivalent sharing therefore the same support. The parameter space Θ does not need to be open in the present setting. It may even happen that the model includes measures which would not be probability distributions; cases of interest cover the present setting, namely models including mixtures of probability distributions; see [START_REF] Broniatowski | A: Parametric estimation and tests through divergences and the duality technique[END_REF].

Let ϕ be a proper closed convex function from ] -∞, +∞[ to [0, +∞] with ϕ(1) = 0 and such that its domain domϕ := {x ∈ R such that ϕ(x) < ∞} is an interval with endpoints a ϕ < 1 < b ϕ (which may be finite or infinite). For two measures P α and P θ in P the ϕ-divergence between the two is defined by

φ (α, θ ) := R s ϕ dP α dP θ (x) dP θ (x).
In a broader context, the ϕ-divergences were introduced by [START_REF] Csiszár | Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten[END_REF] as " f -divergences". The basic property of ϕ-divergences states that when ϕ is strictly convex on a neighborhood of x = 1, then φ (α, θ ) = 0 if and only if α = θ .

We refer to [START_REF] Liese | Convex statistical distances[END_REF] chapter 1 for a complete study of those properties.

Examples of ϕ-divergences

The Kullback-Leibler (KL), modified Kullback-Leibler (KL m ), χ 2 , modified χ 2 (χ 2 m ), Hellinger (H), and L 1 divergences are respectively associated to the convex functions

ϕ(x) = x log x -x + 1, ϕ(x) = -log x + x -1, ϕ(x) = 1 2 (x -1) 2 , ϕ(x) = 1 2 (x -1) 2 /x, ϕ(x) = 2( √ x -1) 2 and ϕ(x) = |x -1|. All these divergences except the L 1 one, belong
to the class of the so called "power divergences" introduced in [START_REF] Cressie | Multinomial goodness-of-fit tests[END_REF] (see also [START_REF] Liese | Convex statistical distances[END_REF] chapter 2), a class which takes its origin from Rényi [START_REF] Rétonyi | On measures of entropy and information[END_REF]. They are defined through the class of convex functions

x ∈]0, +∞[ → ϕ γ (x) := x γ -γx + γ -1 γ(γ -1) (8) if γ ∈ R \ {0, 1}, ϕ 0 (x) := -log x + x -1 and ϕ 1 (x) := x log x -x + 1.
So, the KLdivergence is associated to ϕ 1 , the KL m to ϕ 0 , the χ 2 to ϕ 2 , the χ 2 m to ϕ -1 and the Hellinger distance to ϕ 1/2 .

Considering any ϕ-divergence with ϕ a differentiable function but the likelihood divergence defined through the divergence function ϕ 0 , when θ T in intΘ is defined as the true parameter of the distribution of the i.i.d. sample (X 1 , .., X n ) it is convenient to assume that There exists a neighborhood U of θ T for which (A) φ (θ , θ ) is finite whatever θ and θ in U .

We will only consider divergences defined through differentiable functions ϕ, which we assume to satisfy (RC) There exists a positive δ such that for all c in

[1 -δ , 1 + δ ], we can find numbers c 1 , c 2 , c 3 such that ϕ(cx) ≤ c 1 ϕ(x) + c 2 |x| + c 3 , for all real x.
Condition (RC) holds for all power divergences including KL and KL m divergences. For all divergences considered in this paper it will be assumed that for any α and θ in U

ϕ dP θ dP α dP θ < ∞. (9) 
Note that this condition trivially holds for the likelihood divergence. Sufficient and simple conditions encompassing (9) can be assessed under standard requirements for nearly all divergences. We state the following Lemma (see [START_REF] Liese | Convex statistical distances[END_REF] [START_REF] Liese | Convex statistical distances[END_REF]) and Broniatowski and Kéziou (2006) [START_REF] Broniatowski | Minimization of φ -divergences on sets of signed measures[END_REF], Lemma 3.2).

Lemma 1. Assume that RC holds and φ (θ , α) is finite. Then (9) holds.

Dual form of the divergence and dual estimators in parametric models

The following representation is the cornerstone of parametric inference through divergence based methods.

Theorem 1. Let θ belong to Θ and let φ (θ , θ T ) be finite. Assume that RC holds together with Condition (A) . Then

φ (θ , θ T ) = sup α∈U ϕ dP θ dP α dP θ -ϕ # dP θ dP α dP θ T = sup α∈U h(θ , α, x)dP θ T (10) 
Furthermore the sup is reached at θ T and uniqueness holds.

From [START_REF] Rétonyi | On measures of entropy and information[END_REF], simple estimators for φ (θ , θ T ) and θ T can be defined, plugging any convergent empirical measure in place of P θ T and taking the infimum in θ in the resulting estimator of φ (θ , θ T ).

In the context of simple i.i.d. sampling, introducing the empirical measure P n := 1 n ∑ n i=1 δ X i where the X i 's are i.i.d. r.v's with common unknown distribution P θ T in P, the natural estimator of φ (θ , θ T ) is

φ n (θ , θ T ) := sup α∈U h(θ , α, x) dP n (x) = sup α∈U ϕ dP θ dP α dP θ - 1 n n ∑ i=1 ϕ # dP θ dP α (X i ) when (A) holds. Under (A), since inf θ ∈U φ (θ , θ T ) = φ (θ T , θ T ) = 0 the resulting estimator of φ (θ T , θ T ) is φ n (θ T , θ T ) := inf θ ∈Θ φ n (θ , θ T ) = inf θ ∈Θ sup α∈U h(θ , α, x) dP n (x) . (11) 
And the estimator of θ T is obtained as

θ := arg inf θ ∈U sup α∈U h(θ , α, x) dP n (x) . (12) 
Also, as stated in theorem 3.2 in [3]:

Theorem 2. Under some derivability assumptions on ϕ dP θ dP α

(conditions A.0 to A.2 in [3]), If θ = θ T , then 2n 
ϕ (1) φ n (θ , θ T ) d -→ χ 2 (d) for d = dim(Θ ) (13) 
This last result of convergence of the estimated ϕ-divergence is of great interest in the problem we are taking on and serves as the basis for the test procedure that we propose.

3 A simple solution for testing finite mixture models

Testing between mixtures of fully characterized components

Let us consider a set of signed measures defined by

p θ = (1 -θ )p 0 + θ p 1 , θ ∈ R (14) 
where p 0 and p 1 are two known density (belonging or not to the same parametric family). The mixture ( 5) is obviously contained in (14) and the case θ T = 0 is in this framework an interior point of the parameter space R.

We observe a random sample X 1 , . . . , X n of distribution p T . We are willing to test:

H 0 : p T = p 0 vs H 1 : p T = p θ = p 0 ( 15 
)
which can be reduced to H 0 : θ = 0 vs H 1 : θ = 0 (16) whenever p 0 = p 1 is met. The latter condition ensures the identifiability of the model and enables to consider different parametric families for p 0 and p 1 . Conversely, Chen [START_REF] Chen | A modified likelihood ratio test for homogeneity in finite mixture models[END_REF], for instance, assumes that 0 < θ < 1, and tests the equality of the parameters of p 0 and p 1 inside a unique family F .

In the following, we will thus assume that p 0 = p 1 .

Test statistics

The choice of the test statistic is driven by the result given in Theorem 2. Accordingly, let φ be any divergence associated with convex finite functions and such that 0 is an interior point of the space parameter defined by:

Θ := α ∈ R : | ϕ dP 0 dP α | dP 0 < ∞ (17) 
Then the statistic 2nφ n (0, θ T ) can be used as a tes statistic for (20) and

2nφ n (0, θ T ) -→ χ 2 (1) when H 0 holds. ( 18 
)
Also, this (18) also holds when testing whether the true distribution is a k 0 -component mixture or a k-component mixture as in [START_REF] Broniatowski | A: Parametric estimation and tests through divergences and the duality technique[END_REF]. In this case, the test statistic 2nφ n (Θ 0 , θ T ) converges to a χ 2 (k-k 0 ) distribution when H 0 holds.

While many divergences meet the former properties, we will restrict in the sequel ourselves to two generators.

Chi-square divergence

The first divergence that we consider is the χ 2 -divergence. The corresponding ϕ function ϕ 2 (x) := 1 2 (x -1) 2 is defined and convex on whole R; an example when P may contain signed finite measures and not be restricted to probability measures is considered in [START_REF] Broniatowski | Minimization of φ -divergences on sets of signed measures[END_REF] in relation with a two components mixture model defined in ( 14) and where θ is allowed to assume values in an open neighborhood Θ of 0, in order to provide a test for (20), with θ an interior point of Θ .

Modified Kullback-Leibler divergence

The second divergence that we retain is generated by a function described below, namely

ϕ c (x) := (x + e c -1) • log(x + e c -1) + 1 -(x + e c -1)+(1 -c) • (e c -1) -c • x ≥ 0 x ∈]1 -e c , ∞[ , c ∈ R , (19) 
which has been derived within the recent general framework of Broniatowski and Stummer [START_REF] Broniatowski | A bare simulation approach to finding minimum distances[END_REF]. It is straightforward to see that ϕ c is strictly convex and satisfies ϕ c (1) = 0 = ϕ c (1). For the special choice c = 0, (19) reduces to the omnipresent Kullback-Leibler divergence generator

ϕ 0 (x) := x log x -x + 1 ≥ 0 , x ∈]0, ∞[ .
According to (19), in case of c > 0 the domain ]1e c , ∞[ of ϕ c covers also negative numbers (see [START_REF] Broniatowski | Some universal insights on divergences for statistics, machine learning and artificial intelligence[END_REF] for insights on divergence-generators with general real-valued domain); thus, the same facts holds for the new generator than for the χ 2 and this opens the gate to considerable comfort in testing mixture-type hypotheses against corresponding marginal-type alternatives, as we derive in the following. We denote KL c the corresponding divergence functional for which KL c (Q, P) is well defined whenever P is a probability measure and Q is a signed measure.

It can be noted that, depending on the type of model considered, the validity of the test can be subject to constraints over the parameters of the densities. Indeed, the convergence of I = | φ p 0 p θ | dP 0 is not always guaranteed. This kind of considerations may guide the choice of the test statistic. For instance, in some cases, including scaling models, conditions that are required for the χ 2 -divergence, do not apply to the KL c -divergence.

For instance, consider a Gaussian mixture model with different variances:

p 0 ∼ N (µ, σ 2 0 ), p 1 ∼ N (µ, σ 2 1 ) 
The convergence of I with the χ 2 requires either σ 2 1 > σ 2 0 or σ 2 0 > σ 2 1 > 1 2 σ 2 0 . On the other hand, the convergence is always ensured with the KL c -divergence.

The same observations can be made for lognormal, exponential and Weibull densities.

Generalization to parametric distributions with unknown parameters

In the previous section, the densities of each component were supposed to be known. We will now generalize to the case where the components belong to parametric families with unknown parameter. For the sake of simplicity, we will present the generalization for a two component mixture, but is is valid as well for more k-component mixtures with k ≥ 2.

Let us assume

p 0 ∈ F 0 = {p 0 (. | λ 0 ) : λ 0 ∈ Λ 0 } and p 1 ∈ F 1 = {p 1 (. | λ 1 ) : λ 1 ∈ Λ 1 }, with Λ 0 and Λ 1 compact subsets of R d , d ≥ 1.
We will consider aggregated tests of composite hypotheses. Indeed the null hypothesis of homogeneity of the population is rejected when there exists at least one couple of parameters (λ * 0 , λ * 1 ) ∈ Λ 0 × Λ 1 with λ * 1 = λ * 0 for which the simple hypothesis H 0 (λ * 0 , λ * 1 ) is rejected. The condition {λ * 1 = λ * 0 } is only required when p 0 and p 1 belong t the same parametric family.

The test (15) can be reformulated as follows:

H 0 = ∩ λ 0 ∈Λ 0 H 0 (λ 0 ,Λ 1 ) vs H 1 = ∪ λ 0 ∈Λ 0 H 1 (λ 0 ,Λ 1) (20) 
where

∀λ 0 ∈ Λ 0 , H 0 (λ 0 ,Λ 1 ) : p T = p 0 (. | λ 0 ) vs H 1 (λ 0 ,Λ 1 ) : ∪ λ 1 ∈Λ 1 \λ 0 {p T = p θ (. | λ 0 , λ 1 ) = p 0 (. | λ 0 )} (21) 
Let φ n (0, λ T | λ 0 , λ 1 ) be the estimated divergence used to construct the test statistic for (15) for fixed λ 0 and λ 1 . The test statistic for (20) is derived from:

sup λ 0 ∈Λ 0 sup λ 1 ∈Λ 1 \λ 0 φ n (0, λ T | λ 0 , λ 1 )
where the parameter spaces Λ 0 and Λ 1 can be discretized in Λ 0,n and Λ 1,n for the sake of computational complexity.

In order to facilitate the computation of the test statistic, the statistic 3.3 will be computed as follows:

sup α∈Θ sup λ 0 ∈Λ 0 sup λ 1 ∈Λ 1 \λ 0 ϕ dP 0,λ 0 dP α,(λ 0 ,λ 1 ) dP 0,λ 0 - 1 n n ∑ i=1 ϕ # dP 0,λ 0 dP α,(λ 0 ,λ 1 ) (X i )
We here present the performances of the test procedure on different kinds of twocomponent mixtures. In each case, the distributions of the components as such that the mixture is not bimodal.

Lognormal mixture

We first consider a Lognormal mixture. The two components belonging to the same parametric family, we can compare the performances of the divergence based test with the modified likelihood ratio test proposed by Chen [START_REF] Chen | A modified likelihood ratio test for homogeneity in finite mixture models[END_REF].

The alternate hypotheses are the following:

H 0 : p T = p 0 ∼ lN(λ 0 , 1) vs H 0 : p T = p θ ∼ (1 -θ )lN(λ 0 , 1) + θ lN(λ 1 , 1), where λ 0 ∈ Λ 0 = [0.4, 1.6] and λ 1 ∈ Λ 1 = [1.4, 2.6].
The critical region is computed numerically through Monte Carlo simulations under H 0 . The power of the test is also computed numerically when the realizations are drawn from the mixture model with θ = 0.2, λ 0 = 1 and λ 1 = 2 for the χ 2 and KL c test statistics and Chen's modified likelihood ratio.

The results in table 3 show that both χ 2 and KL c outperform the modified likelihood ratio test and the test based on the KL c divergence achieves in this case the greatest power.

Lognormal Mixture lN(1, 1) vs 0.8lN ( Here again, both divergence based statistics achieves higher power than the modified likelihood ratio test. Concerning the choice of the test statistic, we might note that the KL c performs better when the two alternate distributions differ mainly in their central tendency, while the χ 2 might be prefered when the difference lays in the tails.

H 0 : p T = p 0 ∼ G (λ 0 , 1) vs H 0 : p T = p θ ∼ (1 -θ )G (λ 0 , 1) + θ G (λ 1 , 2 

  ), where λ 0 ∈ Λ 0 = [1.4, 2.6] and λ 1 ∈ Λ 1 = [4.4, 5.6]. The realizations are drawn from the mixture model with θ = 0.2, λ 0 = 2 and λ 1 = 5

Table 1 :

 1 Power of the test for a two-component logNormal mixure

	1, 1) + 0.2lN(2, 1)

Table 2 :

 2 Gamma Mixture G (2, 1) vs 0.8G (2, 1) + 0.2G (5, 2) Power of the test for a two-component Gamma mixure4.3 Weibull and Lognormal mixtureWe here consider the case where the two components are from different parametric families. We want to testH 0 : p T = p 0 ∼ lN(λ 0 , 0.2) vs H 0 : p T = p θ ∼ (1θ )lN(λ 0 , 0.2) + θ W (λ 1 , 2), where λ 0 ∈ Λ 0 = [0.4, 1.6] and λ 1 ∈ Λ 1 = [2.4, 3.6]. The realizations are drawn from the mixture model with θ = 1, λ 0 = 1 and λ 1 = 3The results in the following table show that the test based on the KL c divergence performs better than the χ 2 statistic. and Weibull Mixture lN(λ 0 , 0.2) vs 0.8lN(λ 0 , 0.2) + 0.2W (λ 1 , 2))

	n=250 observations						
			χ 2 test statistic		KL c test statistic	Chen's modified lik ratio
	First kind risk	0.05	0.10	0.05	0.10	0.05	0.10
	Power	0.31	0.46	0.35	0.45	0.13	0.22

Table 3 :

 3 Power of the test for the mixure of a lognormal and a Weibull distribution