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Abstract: We consider the likelihood ratio test of a simple null hypothesis (with density f0) against a
simple alternative hypothesis (with density g0) in the situation that observations Xi are mismeasured
due to the presence of measurement errors. Thus instead of Xi for i = 1, . . . , n, we observe
Zi = Xi +

√
δVi with unobservable parameter δ and unobservable random variable Vi. When we

ignore the presence of measurement errors and perform the original test, the probability of type I error
becomes different from the nominal value, but the test is still the most powerful among all tests on
the modified level. Further, we derive the minimax test of some families of misspecified hypotheses
and alternatives. The test exploits the concept of pseudo-capacities elaborated by Huber and Strassen
(1973) and Buja (1986). A numerical experiment illustrates the principles and performance of the
novel test.

Keywords: measurement errors; robust testing; two-sample test; misspecified hypothesis and
alternative; 2-alternating capacities

1. Introduction

Measurement technologies are often affected by random errors; if the goal of the experiment is to
compare two probability distributions using data, then the conclusion can be distorted if the data are
affected by some measurement errors. If the data are mismeasured due to the presence of measurement
errors, the statistical inference performed with them is biased and trends or associations in the data
are deformed. This is common for a broad spectrum of applications e.g., in engineering, physics,
biomedicine, molecular genetics, chemometrics, econometrics etc. Some observations can be even
undetected, e.g., in measurements of magnetic or luminous flux in analytical chemistry when the flux
intensity falls below some flux limit. Actually, we can hardly imagine real data free of measurement
errors; the question is how severe the measurement errors are and what their influence on the data
analysis is [1–3].

A variety of functional models have been proposed for handling measurement errors in statistical
inference. Technicians, geologists, and other specialists are aware of this problem, and try to reduce
the effect of measurement errors with various ad hoc procedures. However, this effect cannot be
completely eliminated or substantially reduced unless we have some additional knowledge on the
behavior of measurement errors.

There exists a rich literature on the statistical inference in the error-in-variables (EV) models
as is evidenced by the monographs of Fuller [4], Carroll et al. [5], and Cheng and van Ness [6],
and the references therein. The monographs [4] and [6] deal mostly with classical Gaussian set up

Entropy 2018, xx, 5; doi:10.3390/exx010005 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/exx010005
http://www.mdpi.com/journal/entropy


Entropy 2018, xx, 5 2 of 9

while [5] discusses numerous inference procedure under semi-parametric set up. Nonparametric
methods in EV models are considered in [7,8] and in references therein, and in [9], among others. The
regression quantile theory in the area of EV models was started by He and Liang [10]. Arias [11] used
an instrumental variable estimator for quantile regression, considering biases arising from unmeasured
ability and measurement errors. The papers dealing with practical aspects of measurement error
models include [12–16], among others. Recent developments in treating the effect of measurement
errors on econometric models was presented in [17] or [18] The advantage of rank and signed rank
procedures in the measurement errors models was discovered recently in [19–24]. The problem of
interest in the present paper is to study how the measurement errors can affect the conclusion of the
likelihood ratio test.

The distribution function of measurement errors is considered unknown, up to zero expectation
and unit variance. When we use the the likelihood ratio test while ignoring the possible measurement
errors, we can suffer a loss in both errors of the first and second kind. However, we show that under a
small variance of measurement errors, the original likelihood ratio test is still most powerful, only on a
slightly changed significance level.

On the other hand, we may consider the situation that H0 or H1 are classes of distributions of
random variables Z +

√
δV. Hence, both hypothesis and alternative are composite as families H0

and H1; if they are bounded by alternating Choquet capacities of order 2, then we can look for a
minimax test based on the ratio of the capacities, and/over on the ratio of the pair of the least favorable
distributions of H0 and H1, respectively (cf. Huber and Strassen [25]).

2. Likelihood Ratio Test under Measurement Errors

Our primary goal is to test the null hypothesis H0 that independent observations
X = (X1, . . . , Xn)> come from a population with a density f against the alternative H1 that the true
density is g, where f and g are fixed densities of our interest. For the identifiability, we shall assume
that f and g are continuous and symmetric around 0. Although the alternative is the main concern of
the experimenter, some measurement errors or just the nature may cause the situation that the true
alternative should be considered as composite. Specifically, X1, . . . , Xn, can be affected by additive
measurement errors, what appears in numerous fields, as illustrated in Section 1.

Hence the alternative is H1,δ under which the observations are Zi,δ = Xi +
√

δVi, identically
distributed with continuous density gδ. Here, both under the hypothesis and under the alternative,
Vi are independent random variables, unobservable with unknown distribution, independent of
Xi; i = 1, . . . , n. The parameter δ > 0 is also unknown, only we assume that IE Vi = 0 and IEV2

i = 1,
for simplicity. The mismeasured, hence unobservable, Xi are assumed to have the density g under
the alternative. Quite analogously, the mismeasured observations lead to a composite hypothesis
H0,δ under which the density of observations Zi,δ = Xi +

√
δVi is fδ while the Xi are assumed to have

density f .
If we knew fδ and gδ, we would use the Neyman-Pearson critical region

W =

{
z :

n

∑
i=1

ln
(

gδ(zi)

fδ(zi)

)
≥ u

}
(1)

with u determined so that

Pfδ

{
n

∑
i=1

ln
(

gδ(zi)

fδ(zi)

)
≥ u

}
= α,
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with a significance level α. Evidently

∫
I

[
n

∑
i=1

ln
(

gδ(zi)

fδ(zi)

)
≥ u

]
n

∏
i=1

gδ(zi)dzi =
∫

I

[
n

∑
i=1

ln
(

g(xi)

f (xi)

)
≥ u

]
n

∏
i=1

g(xi)dxi

∫
I

[
n

∑
i=1

ln
(

gδ(zi)

fδ(zi)

)
≥ u

]
n

∏
i=1

fδ(zi)dzi =
∫

I

[
n

∑
i=1

ln
(

g(xi)

f (xi)

)
≥ u

]
n

∏
i=1

f (xi)dxi.

Indeed, notice that

IEgδ

{
I
[ n

∑
i=1

ln
( gδ(Zi)

fδ(Zi)

)
≥ u

]∣∣∣V1 = v1, . . . , Vn = vn

}

= IEg

{
I
[ n

∑
i=1

ln
( g(Xi)

f (Xi)

)
≥ u

]∣∣∣V1 = v1, . . . , Vn = vn

}
∀vi ∈ R, i = 1, . . . , n,

where the expectations are considered with respect to the conditional distribution; a similar equality
holds for fδ.

Combining the integration transmission in the conditional distribution, we obtain

∫
I

[
n

∑
i=1

ln

(
gδ(xi +

√
δVi)

fδ(xi +
√

δVi)

)
≥ u

]
n

∏
i=1

f (xi)dxi

6=
∫

I

[
n

∑
i=1

ln
(

g(xi)

f (xi)

)
≥ u

]
n

∏
i=1

f (xi)dxi = α, (2)

hence the size of the critical region W when used for testingH0 againstH1 differs from α. Then we ask
how the critical region W in (1) behaves when it is used as a test ofH0. This problem we shall try to
attack with an expansion of fδ, gδ in δ close to zero.

2.1. Approximations of Densities

Put f = f0, g = g0 the densities of X under the hypotheses and alternative, respectively. For
the identifiability, we shall assume that f0 and g0 are continuous and symmetric around 0. Denote fδ

the density of Zδ = X +
√

δV. This means that X is affected by an additive measurement error
√

δ V,
where V is independent of X and IEV = 0, IEV2 = 1, IEV4 < ∞. Notice that if densities of X and V
are strongly unimodal, then that of Z is also strongly unimodal (see [26]). Under some additional
conditions on f0, g0, we shall derive approximations of fδ and gδ for small δ > 0. More precisely, we
assume that both f0 and g0 have differentiable and integrable derivatives up to order 5. Then we have
the following expansion of fδ and a parallel result for gδ:

Theorem 1. Assume that f0 and g0 are symmetric around 0, strongly unimodal with differentiable and
integrable derivatives, up to the order 5. Then, as δ ↓ 0,

fδ(z) = f0(x +
√

δV) = f0(x) +
δ

2
d2

dz2 f0(x) +
δ2

4!
d4

dz4 f0(x)IE(V4) + o(δ2), (3)

gδ(z) = g0(x +
√

δV) = g0(x) +
δ

2
d2

dz2 g0(x) +
δ2

4!
d4

dz4 g0(x)IE(V4) + o(δ2)
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Proof. Let ϕ(u, δ) = IE{eiuZ} be the characteristic function of Z. Then

ϕ(u, δ) = IE{eiuX}IE{eiu
√

δV} = ϕ(0, 0)ϕV(u
√

δ)

= ϕ(u, 0)
[

1 +
1
2

δ(iu)2 +
1
4!

δ2(iu)4 IE(V4) + o(δ2)

]
= ϕ(u, 0)

[
1− δ

2
u2 +

1
4!

δ2u4 IE(V4) + o(δ2)

]
,

where ϕV denotes the characteristic function of V. Taking the inverse Fourier transform on both sides,
we obtain (3), taking the above assumptions on V into account.

Consider the problem of testing the hypothesis H0 that the observations are distributed according
to density f0 against the alternative H1 that they are distributed according to density g0. Parallelly,
we consider the hypothesis H0,δ that observations are distributed according the gδ against the
alternative H1,δ that the true density is gδ. Let Φ(x) be the likelihood ratio test with critical region

W =
{

x : ∑n
i=1 ln

(
g0(xi)
f0(xi)

)
> u

}
and the significance level α, and Φ∗ = Φ∗(z) be the test with critical

region W∗ =
{

z : ∑n
i=1 ln

(
g0(zi))
f0(zi)

)
> u

}
based on observations zi = xi +

√
δVi, i = 1, . . . , n. We know

neither δ nor V, hence the test Φ∗ is just an application of the critical region W for contaminated data
Z1, . . . , Zn. Thus, due to our lack of information, we use the test Φ even for testing H0,δ against H1,δ,
and the performance of this test is of interest. This is described in the following theorem:

Theorem 2 (Assume the conditions of Theorem 1). Then, as δ ↓ 0, the test Φ∗ is the most powerful even for
testing H0,δ against H1,δ, with a modified significance level satisfying

αδ ≤ α +
δ

2
| f ′0(0)|+

δ2

24
IEV4 | f (3)0 (0)|+O(δ).

Proof.

IE f0 Φ∗(X) =
∫

I

[
ln

(
g0(x +

√
δV)

f0(x +
√

δV)

)
> u

]
f0(x)dx

=
∫

I

[
ln

(
g0(x +

√
δV)

f0(x +
√

δV)

)
> u

]
f0(x)

f0(x +
√

δV)
f0(x +

√
δV)dx

=
∫

I
[

ln
(

g0(x)
f0(x)

)
> u

]
f0(x−

√
δV)

f0(x)
f0(x)dx.

If f0 is symmetric, then the derivative f (k)0 is symmetric for k even and skew-symmetric for k odd,

k = 1, . . . , 4. Moreover, because | f ′0(x)| and | f (3)0 (x)| are integrable, then limx→±∞ | f ′0(x)| = 0 and

limx→±∞ | f (3)0 (x)| = 0. Hence, using the expansion (3), we obtain

IE f0 Φ∗(X) = IE f0 Φ(X) +
∫

I
[

ln
(

g0(x)
f0(x)

)
> u

] (
δ

2
f ′′0 (x) +

δ2

24
IEV4 f (4)(x)dx

)
+ o(δ2)

≤ IE f0 Φ(X) +
δ

2
| f ′0(0)|+

δ2

24
IEV4 | f (3)0 (0)|+ o(δ2) = α +O(δ) as δ ↓ 0.

3. Robust Testing

If the observations are missmeasured or contaminated, we observe Zδ = Z +
√

δV with unknown
δ and unobservable V instead of Z. Hence, instead of simple f0 and g0, we are led to composite
hypothesis and alternativeH and K. Following [25], we can try to find suitable 2-alternating capacities,
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dominating H and K and to construct a pertaining minimax test. As before, we assume that Z
and V are independent, IEV = 0, IEV2 = 1, and IEV4 < ∞. Moreover, we assume that f0 and g0

are symmetric, strongly unimodal and differentiable up to order 5, with derivatives integrable and
increasing distribution functions F0 and G0, respectively. The measurement errors V are assumed
to satisfy

1 ≤ IEV4 ≤ K (4)

with a fixed K, 0 < K < ∞. Hence the distribution of V is restricted to have the tails lighter than
t-distribution with 4 degrees of freedom. We shall construct a pair of 2-alternating capacities around
specific subfamilies of f0 and g0.

Let us determine the capacity around g0; that for f0 is analogous. By Theorem 1 we have

gδ(z) = g0(z) +
δ

2
d2

dz2 g0(z) +
δ2

4!
d4

dz4 g0(z)IE(V4) + o(δ2), as δ ↓ 0.

We shall concentrate on the following family K∗ of densities (similarly for f0):

K∗ =
{

g∗δ,κ : g∗δ,κ(z) = g0(z) +
δ

2
g′′0 (z) + κ

δ2

24
g(4)0 (z)

∣∣∣ δ ≤ ∆, 1 ≤ κ ≤ K
}

(5)

with fixed suitable ∆, K > 0.
Indeed, under our assumptions, each g∗δ,κ ∈ K∗ is a positive and symmetric density satisfying

sup
δ≤∆,κ≤K

sup
z∈{R

∣∣g∗δ,κ(z)− g0(z)
∣∣ ≤ CK∆2 + o(∆2)

for some C, 0 < C < ∞.
Let G∗δ,κ(B), B ∈ B, be the probability distribution induced by density g∗δ,κ ∈ K∗, with B being

the Borel σ-algebra. Then the set function

w(B) =


sup {G∗(B) : G∗ ∈ K∗} if B 6= ∅

0 if B = ∅
(6)

is a pseudo-capacity in the sense of Buja [27], i.e., satisfying

(a) w(∅) = 0, w(Ω) = 1
(b) w(A) ≤ w(B) ∀A ⊂ B
(c) w(An) ↑ w(A) ∀An ↑ A
(d) w(An) ↓ w(A) ∀An ↓ A 6= ∅
(e) w(A ∪ B) + w(A ∩ B) ≤ w(A) + w(B).

Analogously, consider a density f0, symmetric around 0 and satisfying the assumptions of Theorem 1 as
a simple hypothesis. Construct the familyH∗ of densities and the corresponding family of distributions{

F∗δ,κ(·), δ ≤ ∆, κ ≤ K
}

similarly as above. Then the set function

v(B) =


sup {F∗(B) : F∗ ∈ H∗} if B 6= ∅

0 if B = ∅
(7)

is a pseudo-capacity in the sense of Buja [27].
Buja [27] showed that on any Polish space exists a (possibly different) topology which generates

the same Borel algebra and on which every pseudo-capacity is a 2-alternating capacity in the sense
of [25].



Entropy 2018, xx, 5 6 of 9

Let us now consider the problem of testing the hypothesisH = {F∗ ∈ H∗|F∗(·) ≤ v(·)} against
the alternative K = {G∗ ∈ K∗|G∗(·) ≤ w(·)} , based on an independent random sample Z1, . . . , Zn.
Assume thatH∗ and K∗ satisfy (5). Then, following [27] and [25], we have the main theorem providing
the minimax test ofH against K with significance level α ∈ (0, 1) :

Theorem 3. The test

φ(z1, . . . , zn) =

1 if ∏n
i=1 π(zi) > C

γ if ∏n
i=1 π(zi) = C

0 if ∏n
i=1 π(zi) < C

where π(·) is a version of dw
dv (·) and C and γ are chosen so that IEvφ(Z) = α, is a minimax test ofH against K

of level α.

4. Numerical Illustration

We assume to observe independent observations Z1,δ, . . . , Zn,δ for i = 1, . . . , n, where
Zi,δ = Xi +

√
δVi as described in Section 3, where X1, . . . , Xn are independent identically distributed

(with a distribution function F) but unobserved. Let us further denote by Φ the distribution
function of N(0, 1) and by Φ∗σ the distribution function of N(0, σ2). The primary task here is to
testH0 : F ≡ Φ against

H1 : F(x) = (1− λ)Φ(x) + λΦ∗σ(x), x ∈ IR,

with a fixed σ > 1 and λ ∈ (0, 1). We perform all the computations using the R software [28].
To describe our approach to computing the test, we will need the notation for the set of

pseudo-distribution functions corresponding to the set of pseudo-densitiesH∗ denotes as

H̃∗ =
{

F∗δ,κ : F∗δ,κ(z) = Φ(z) +
δ

2
f ′0(z) + κ

δ2

24
f (3)0 (z)

∣∣∣ δ ≤ ∆, 1 ≤ κ ≤ K
}

,

where Φ denotes the distribution function of N(0, 1) distribution. Under the alternative, the set
analogous to K∗ is defined as

K̃∗ =
{

G∗δ,κ : G∗δ,κ(z) = G0(z) +
δ

2
g′0(z) + κ

δ2

24
g(3)0 (z)

∣∣∣ 0 ≤ δ ≤ ∆, 1 ≤ κ ≤ K
}

.

Our task is to approximate

v ((−∞, z)) = sup{F∗δ,κ(z); F∗δ,κ ∈ H̃∗}, z ∈ IR, (8)

and
w ((−∞, z)) = sup{G∗δ,κ(z); G∗δ,κ ∈ K̃∗}, z ∈ IR. (9)

Here, the functions F∗δ,κ(z) and G∗δ,κ(z) are evaluated over a grid with step 0.05. Then, the maximization
in (8) and (9) is performed for values of z over the grid and over four boundary values of (δ, κ)T ,
which are equal to (0, 0)T , (0, K)T , (∆, 0)T , and (∆, K)T . Additional computations with 10 randomly
selected pairs of (δ, κ)T over δ ∈ [0, ∆] and κ ∈ [0, K] revealed that the optimum is attained in one of
the boundary values. Further, the Radon-Nikodym derivatives of V and W are estimated by a finite
difference approximation in order to compute the test statistic.

The test rejects H0 if the test statistics ∏n
i=1 π(zi) exceeds a critical value, which (as well as the

p-value) can be approximated by a Monte Carlo simulation, i.e., by a repeated random generating
random variables X1, . . . , Xn underH0, and we generate them 10,000 times here.
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We perform the following particular numerical study. We compute the critical value of the α-test
for n = 20 (or n = 40), λ = 0.25, σ2 = 3, ∆ = 0.2, K = 1.1, and α = 0.05. Further, we are interested in
evaluating the probability of rejecting this test for data generated from

F(x) = (1− λ̃)Φ(x) + λ̃Φ∗σ̃(x), x ∈ IR, (10)

with different values of λ̃ and σ̃2. Its values are shown in Table 1 (for n = 20) and Table 2 (for n = 40),
which are approximated using (again) 10,000 randomly generated variables from (10). The boldface
numbers are equal to the power of the test (under the simple H1). The proposed test seems meaningful,
while its power is increased for n = 40 compared to n = 20; in addition, the power increases with an
increasing λ̃ if σ̃2 is retained; and the power also increases with an increasing σ̃2 if λ̃ is retained.

Table 1. Probability of rejecting the test in the simulation with n = 20.

Value of λ̃
Value of σ̃2

3 4 5 6

0.25 0.39 0.52 0.61 0.67
0.35 0.50 0.67 0.75 0.81
0.45 0.61 0.76 0.85 0.89

Table 2. Probability of rejecting the test in the simulation with n = 40.

Value of λ̃
Value of σ̃2

3 4 5 6

0.25 0.55 0.73 0.82 0.87
0.35 0.72 0.86 0.93 0.96
0.45 0.82 0.94 0.97 0.99

5. Conclusion

The likelihood ratio test of f0 against g0 is considered in the situation that observations Xi are
mismeasured due to the presence of measurement errors. Thus instead of Xi for i = 1, . . . , n, we
observe Zi = Xi +

√
δVi with unobservable parameter δ and unobservable random variable Vi. When

we ignore the presence of measurement errors and perform the original test, the probability of type I
error becomes different from the nominal value, but the test is still the most powerful among all tests
on the modified level.

Under some assumptions on f0 and g0 and for δ < ∆, IEV4 ≤ K, we further construct a minimax
likelihood ratio test of some families of distributions of the Zi = Xi +

√
δVi, based on the capacities

of the Huber-Strassen type. The test treats the composite null and alternative hypotheses, which
cover all possible measurement errors satisfying the assumptions. The advantage of the novel test
is that it keeps the probability of type I error below the desired value (α = 0.05) across all possible
measurement errors. The test is performed in a straightforward way, while the user must specify
particular (not excessively large) values of ∆ and K. We do not consider this a limiting requirement,
because parameters corresponding to the severity of measurement errors are commonly chosen in a
similar way in numerous measurement error models [5,23] or robust optimization procedures [29]. The
critical value of the test can be approximated by a simulation. The numerical experiment in Section 4
illustrates the principles and performance of the novel test.
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