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A GIBBS CONDITIONAL THEOREM UNDER EXTREME
DEVIATION

MAEVA BIRET, MICHEL BRONIATOWSKI, AND ZANGSHEN CAO

Abstract. We explore some properties of the conditional distribution of an
i.i.d. sample under large exceedances of its sum. Thresholds for the asymptotic
independence of the summands are observed, in contrast with the classical case
when the conditioning event is in the range of a large deviation. This paper
is an extension to [6]. Tools include a new Edgeworth expansion adapted to
specific triangular arrays where the rows are generated by tilted distribution
with diverging parameters, together with some Abelian type results.

1. Introduction

LetXn
1 := (X1, .., Xn) be n independent unbounded real valued random variables

and Sn1 := X1 + ..+Xn denote their sum. The purpose of this paper is to explore
the limit distribution of the generic variable X1 conditioned on extreme deviations
(ED) pertaining to Sn1 . By extreme deviation we mean that S

n
1 /n is supposed to

take values which are going to infinity as n increases. Obviously such events are
of infinitesimal probability. Our interest in this question stems from a first result
which assesses that under appropriate conditions, when the sequence an is such
that

lim
n→∞

an =∞
then there exists a sequence εn for which limn→∞ εn/an = 0 such that

(1.1) lim
n→∞

P (∩ni=1 (Xi ∈ (an − εn, an + εn))|Sn1 /n > an) = 1,

which is to say that when the empirical mean takes exceedingly large values, then all
the summands share the same behavior. This result obviously requires a number
of hypotheses, which we simply quote as "light tails" type. We refer to [6] for
this result and the connection with earlier related works; arguments stating that
such most unusual cases may be considered are presented in this latest paper, in
relation with the Erdös-Rényi law of large numbers and the formation of high level
aggregates in random sequences. Also these results have various applications in
physics; see [12] and [17] where (1.1) is considered in the extreme deviation context,
with applications to turbulence and fragmentation.
The above result is clearly to be put in relation with the so-called Gibbs condi-

tional Principle which we recall briefly in its simplest form.
Consider the case when the sequence an = a is constant with value larger than

the expectation of X1. Hence we consider the behavior of the summands when
(Sn1 /n > a), i.e. under a large deviation (LD) condition about the empirical mean.
The asymptotic conditional distribution of X1 given (Sn1 /n > a) is the well known
tilted distribution of PX with parameter t associated to a. Let us introduce some
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notation to shed some light on this. The hypotheses to be stated now together
with notation are kept throughout the entire paper. Without loss of generality it
is assumed that the generic r.v. X1 takes only non negative values.
It will be assumed that PX , which is the distribution of X1, has a density p

with respect to the Lebesgue measure on R+. The fact that X1 has a light tail is
captured in the hypothesis that X1 has a moment generating function

Φ(t) := E[exp tX1],

which is finite in a non void neighborhood N of 0 (Cramer condition).
Defined on N are the following functions:

(1.2) t→ m(t) :=
d

dt
log Φ(t)

(1.3) t→ s2(t) :=
d

dt
m(t)

(1.4) t→ µj(t) :=
dj

dtj
log Φ(t), j ≥ 3

The function m measures the expectation of the r.v. Xt with density

πt(x) :=
exp tx

Φ(t)
p(x),

the tilted density with parameter t, the function s2 measures its variance and µj
measures its j−th centered moment. When Φ is steep, meaning that

(1.5) lim
t→t±

m(t) =∞

where t+ := ess supN (resp. t− := ess infN ) thenm parametrizes the convex hull
of the support of PX ; see [3] Theorem 9.2 for those properties. As a consequence
of this fact, for all a in the support of PX , it will be convenient to define

πa = πt

where a is the unique solution of the equation m(t) = a. The function

(1.6) x→ V (x) := s2om←−(x)

is the "Variance function" of the model πt , t ∈ N and it characterizes its het-
eroscedasticity property; see for instance [15], [2] and [14]. In (1.6) m←− designates
the inverse (reciprocal) function of m.
The Gibbs conditional principle in the standard above setting can be stated as

follows.
The distribution of X1 given (Sn1 /n > a) is asymptotically Πa as n tends to

infinity, where Πa has density πa; see [8]; we first state Gibbs principle where the
conditioning event is a point condition (Sn1 /n = a). The conditional distribution of
X1 given (Sn1 /n = a) is a well defined distribution and Gibbs conditional principle
states that it converges to Πa as n tends to infinity; see [10]. Both convergences
hold in total variation norm.
For all a (depending on n or not) denote pa the density of the random vector Xk

1

conditioned upon the local event (Sn1 = na). The notation pa
(
Xk

1 = xk1
)
is used to

denote the value of the density pa at point xk1 . Similarly for a random variable or
vector Z with density f we write f(Z = z) for f(z).
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This article is organized as follows. Notation and hypotheses are stated in Section
2, along with some necessary facts from asymptotic analysis in the context of light
tailed densities. Section 4 provides a local Gibbs conditional principle under ED,
namely producing the pointwise approximation of the conditional density of X1

conditionally on (Sn1 /n = an) for sequences an which tend to infinity. We explore
two rates of growth for the sequence an, which yield two different approximating
distributions for the conditional law of X1. The first one extends the classical
approximation by the tilted one, substituting πa by πan . The second case, which
corresponds to a faster growth of an, produces an approximation of a different kind.
It may be possible to explore faster growth conditions than those considered here,
leading to a wide class of approximating distributions; this would require some
high order Edgeworth expansions for triangular arrays of variables, extending the
corresponding result of order 3 presented in Section 3; we did not move further in
this direction, in order to avoid technicalities.
For fixed k and fixed an = a > E(X1) it is known that the r.v’s X1, . . . , Xk are

asymptotically independent given (Sn1 /n = an); see [10] and [8] when the condi-
tioning event is (Sn1 /n > an) . This statement is explored when an grows to infinity
with n . It is shown that the asymptotic independence property holds for sequences
an with moderate growth, and that it fails for sequences an with fast growth.
The local approximation of the density of X1 conditionally on (Sn1 /n = an) is

further extended to typical paths under the conditional sampling scheme, which in
turn provides the approximation in variation norm for the conditional distribution;
the method used here follows closely the approach by [7]. Section 5 states similar
results in the case when the conditioning event is (Sn1 /n > an) .The relation between
(1.1) and Gibbs conditional principle under exceedance is also discussed.
The main tools to be used come from asymptotic analysis and local limit theo-

rems, developed in [11] and [4]; we also have borrowed a number of arguments from
[16]. The basic Abelian type result which is used is stated in [5]. Unless specified,
all proofs are differed to Section 6.

2. Notation and hypotheses

Thereafter we will use indifferently the notation f(t) ∼
t→∞

g(t) and f(t) =
t→∞

g(t)(1 + o(1)) to specify that f and g are asymptotically equivalent functions.

The density p is assumed to be of the form

(2.1) p(x) = exp(−(g(x)− q(x))), x ∈ R+.

The function q is assumed to be bounded, so that the asymptotic behavior of p
is captured through the function g which is assumed to be is positive, convex, four
times differentiable and which satisfies

(2.2)
g(x)

x
−→
x→∞

∞.

Define

(2.3) h(x) := g′(x).

In the present context, due to (2.2), t+ = +∞.
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Not all positive convex functions g’s satisfying (2.2) are adapted to our purpose.
We follow the line of Juszczak and Nagaev [16] to describe the assumed regularity
conditions of h. See also [1] for somehow similar conditions.
We firstly assume that the function h, which is a positive function defined on

R+, is either regularly or rapidly varying in a neighborhood of infinity; the function
h is strictly monotone and, by (2.2), h(x)→∞ when x→∞.
RV (α) designates the class of regularly varying functions of index α defined on

R+. The function

ψ(t) := h←(t)

designates the inverse of h. Hence ψ is strictly monotone for large t and ψ(t)→∞
when t→∞.
The two cases considered for h, the regularly varying case and the rapidly varying

case, are described below.
The Regularly varying case. It will be assumed that h belongs to the subclass

of RV (β), β > 0, with

h(x) = xβl(x),

where the Karamata form of the slowly varying function l takes the form

(2.4) l(x) = c exp

∫ x

1

ε(u)

u
du

for some positive c. We assume that x 7→ ε(x) is twice differentiable and satisfies

(2.5)


ε(x) =

x→∞
o(1),

x|ε′(x)| =
x→∞

O(1),

x2|ε(2)(x)| =
x→∞

O(1).

It will also be assumed that when β 6= 1, then

(2.6) |h(2)(x)| ∈ RV (θ)

where θ is a real number such that θ ≤ β − 2.

When β = 1 and |ε′(t)| ∈ RV (γ) then it will be assumed that |h(2)(x)| ∈ RV (γ);
taking ε′(t) = 0 yields ε(t) = 0, from which h(x) = cx, which is to say that p has
Gaussian tail, when its support is R , or h(x) ∼ cx when its support is R+.

Remark 1. Under (2.4) and (2.6), when β 6= 1 then θ = β − 2. A suffi cient
condition for the last assumption (2.6) is that |ε′(t)| ∈ RV (γ), for some γ < −1.
Also in this case when β = 1, then θ = γ.

Example 1. Weibull density. Let p be a Weibull density with shape parameter
k > 1 and scale parameter 1, namely

p(x) = kxk−1 exp(−xk), x ≥ 0

= k exp(−(xk − (k − 1) log x)).

Take g(x) = xk − (k − 1) log x and q(x) = log k. Then it holds

h(x) = kxk−1 − k − 1

x
= xk−1

(
k − k − 1

xk

)
.
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Set l(x) = k − (k − 1)/xk, x ≥ 1, which verifies

l′(x) =
k(k − 1)

xk+1
=
l(x)ε(x)

x

with

ε(x) =
k(k − 1)

kxk − (k − 1)
.

The function ε(x) satisfies the three conditions in (2.5).

The Rapidly varying case. The function g in (2.1) is assumed to grow to
infinity faster than any polynomial function. This is captured through a rapid
growth condition on its derivative h = g′ which we assume to satisfy

h←(t) = ψ(t) ∈ RV (0).

Such a condition indeed characterizes the so called Rapid Variation class KR∞ (see
Theorem 2.4.7 in [4]), which is adequate for the description of the leading term of
the function log p(x) in the upper tail; additional regularity conditions are defined
assuming

(2.7) ψ(t) = c exp

∫ t

1

ε(u)

u
du,

for some positive c, and t 7→ ε(t) is twice differentiable with

(2.8)


ε(t) =

t→∞
o(1),

tε′(t)
ε(t) −→t→∞ 0,

t2ε(2)(t)
ε(t) −→

t→∞
0.

.

Example 2. A rapidly varying density. Define p through

p(x) = c exp(−ex−1), x ≥ 0.

Then g(x) = h(x) = ex−1 and q(x) = 0 for all non negative x. It holds ψ(t) =
log t+ 1. Since ψ′(t) = 1/t, let ε(t) = 1/(log t+ 1) so that ψ′(t) = ψ(t)ε(t)/t. Then
the three conditions in (2.8) are satisfied. Thus ψ(t) ∈ RV (0) and h(x) belongs to
KR∞.

Denote by R the class of functions with either regular variation or with rapid
variation defined above.
In the context of the present results the main argument which allows for the

analysis of the extreme behavior of Sn/n lies in a description of the function(
µ3/s

3
)

(t) as t tends to infinity (Corollary 1 hereunder). This will be handled
making use of a sharp Abelian result pertaining to the moment generating function
of the r.v. X with density p(x) defined in (2.1); the appropriate result (Theorem
3.1 in [5]) holds in the case when p(x) = exp (−g(x)),with the condition h ∈ R,
hence when q(x) is the null function; when q(x) is constant, it can be incorporated
in the function g. A straightforward extension holds when the bounded function
q satisfies mild regularity conditions, making p nearly log-concave in its tail. We
assume that

(2.9) |q(x)| ∈ RV (η), for some η < θ − 3β
2 −

3
2 if h ∈ RV (β)
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and

(2.10) |q(ψ(t))| ∈ RV (η), for some η < − 1
2 if h is rapidly varying.

We will make use of the following extension of Theorem 3.1 in [5].

Theorem 1. Let p(x) be defined as in (2.1) and h(x) belong to R. Assume further
(2.9) and (2.10). Denote by m(t), s2(t) and µj(t) for j = 3, 4, ... the functions
defined in (1.2), (1.3) and (1.4). Then it holds

m(t) =
t→∞

ψ(t)(1 + o(1)),

s2(t) =
t→∞

ψ′(t)(1 + o(1)),

µ3(t) =
t→∞

ψ(2)(t)(1 + o(1)),

µj(t) =
t→∞

{
Mjs

j(t)(1 + o(1)), for even j > 3
(Mj+3−3jMj−1)µ3(t)sj−3(t)

6 (1 + o(1)), for odd j > 3
,

where Mi, i > 0, denotes the ith order moment of standard normal distribution.

Corollary 1. Let p(x) be defined as in (2.1) and h(x) ∈ R. Assume further (2.9)
and (2.10). Then as t→∞

µ3(t)

s3(t)
−→ 0.

Proof. In the regularly varying case this follows from Corollaries 1 and 2 in [5],
and in the rapidly varying case from Corollary 3 and Lemma 3 in [5], with the
mentioned extension taking into account of the properties of the function q. �

Our results require an extension of the classical Edgeworth expansions to some
specific triangular arrays; this is the scope of the following section.

3. Edgeworth expansion under extreme normalizing factors

With πan defined through

πan(x) =
etxp(x)

Φ(t)
,

and t determined by m(t) = an together with s2 := s2(t) define the normalized
density of πan by

π̄an(x) = sπan(sx+ an).

Denote the n-convolution of π̄an(x) by π̄ann (x). Denote by ρn its normalized density

ρn(x) :=
√
nπ̄ann (

√
nx).

The following result extends the local Edgeworth expansion of the distribution of
normalized sums of i.i.d. r.v.’s to the present context, where the summands are
generated under the density π̄an . Therefore the setting is that of a triangular array
of row-wise independent summands; the fact that an → ∞ makes the situation
unusual. We mainly adapt Feller’s proof (Chapiter 16, Theorem 2 [11]). However
this variation on the classical Edgeworth expansion result requires some additional
regularity assumption, which meets the requirements of Theorem 1, which are ful-
filled in most models dealing with extremes and convolutions. Those are captured
in cases when the density p is log-concave, or nearly log concave in the upper tail.
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Similar conditions are considered in [6]. For notational simplicity let s := s(t) and
µ3 := µ3(t).

Theorem 2. Under the conditions stated in Corollary 1 , uniformly upon x it holds

ρn(x) = φ(x)
(

1 +
µ3

6
√
ns3

(
x3 − 3x

))
+ o
( 1√

n

)
.

where φ(x) is standard normal density.

4. Gibbs conditional principles under extreme events

4.1. A local result. Define t through

(4.1) m := m(t) := an

and set

s : = s(t)

µ3 : = µ3(t)

for brevity.
We consider two conditions pertaining to the growth of the sequence an to in-

finity. In the first case (moderate growth) we assume, making use of the Variance
function defined in (1.6) that

(4.2) lim
n→∞

an
s
√
n

= lim
n→∞

an√
nV (an)

= 0,

and in the second case (rapid growth) we consider sequences an which may grow
faster to infinity, obeying

(4.3) 0 < lim inf
n→∞

an√
nV (an)

≤ lim sup
n→∞

an√
nV (an)

<∞.

Remark 2. In the Regularly varying case, i.e. when h belongs to the subclass of
RV (β), β > 0, then V (x) = x1−β l(x) for some slowly varying function l; see [4]
and Lemma 4 in [5].

Theorem 3. When (4.2) holds then for all real number y1,

(4.4) pan(y1) := p(X1 = y1|Sn1 = nan) = πan(y1)

(
1 + o

(
1√
n

))
,

The rate of growth defined through (4.2) is the limiting case when the natural
extension of Gibbs conditional principle stated above holds. We state the following
result.

Theorem 4. Assume that the sequence an satisfies (4.3). Denote

α := t+
µ3

2(n− 1)s2

and
β := (n− 1)s2.

Then for all real number y1 ,

(4.5) p(X1 = y1|Sn1 = nan) = gan(y1)(1 + o(1))

where
gan(y1) := Cp(y1)n (αβ + an, β, y1) ;
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in the above display n
(
µ, σ2, x

)
denotes the normal density with expectation µ and

variance σ2 evaluated at point x, and C is a normalizing constant.

4.2. On conditional independence under extreme events. We now turn to
the approximation of pan(yk1 ) := pan(y1, . . . , yk) = pan(Xk

1 = yk1
∣∣Sn1 = nan). De-

note sji := yi + . . .+ yj for i ≤ j and s01 := 0.
We first consider the case when (4.2) holds. We then have

Proposition 1. When (4.2) holds then for any fixed k and all yk1 ,

pan(yk1 ) =

k∏
i=1

πmi(yi)
(
1 + o(1/

√
n)
)

where

(4.6) mi := m(ti) :=
nan − si−1

1

n− i+ 1
.

We now explore the limit conditional independence of blocks of fixed length
under extreme condition. As a consequence of the above Proposition 1 it holds

Theorem 5. Under (4.2) it holds, for all k and all yk1

(4.7) pan(yk1 ) = p(Xk
1 = yk1 |Sn1 = nan) =

(
1 + o

(
1√
n

)) k∏
i=1

πan(Xi = yi).

Remark 3. The above result shows that asymptotically the point condition (Sn1 = nan)
leaves blocks of k of the X ′is independent, with common density π

an . Obviously this
property does not hold for large values of k, close to n. A similar statement holds
in the LDP range, see [10] and [8].

We now turn to the case when an moves more quickly to infinity. With mi

defined as in (4.6), with

s2
i : = s2(ti)

µ3,i : = µ3(ti)

and following the same arguments as developed in the proof of Theorem 4 we state

Theorem 6. Assume that (4.3) holds. Then for all fixed k and all yk1 it holds

(4.8) p(Xk
1 = yk1 |Sn1 = nan) =

k∏
i=1

gi(yi) (1 + o (1))

where

gi(yi) := Cip(yi)n (αiβi + an, βi, yi)

and

(4.9) αi := ti +
µ3,i

2(n− i)s2
i

(4.10) βi := (n− i)s2
i .
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Remark 4. The following connection between Theorem 5 and Theorem 6 holds.
Under (4.2), the above result (4.8) boils down to formula (4.7). Under (4.3) and
when (4.2) does not hold, the approximations obtained in Lemma 4 in the Appendix
do not hold, and the approximating density cannot be stated as a product of den-
sities under which independence holds. In that case it follows that the conditional
independence property under extreme events does not hold any longer.

4.3. Gibbs principle in variation norm. We now turn to a stronger approxi-
mation of P an , the distribution on R with density pan .
Denote dV (Q,P ) the total variation distance between two probability measures

Q and P defined on the same space.
We put forward a principle, to be illustrated in this section. Consider two se-

quences of equivalent distributions Fn and Gn on Rk with densities fn and gn with
respect to the Lebesgue measure. Let Yn be a r.v. with distribution Fn and assume
that

(4.11) fn(Yn) = gn(Yn) (1 + oFn (εn))

for some sequence εn which tends to 0 as n tends to infinity. Then the total variation
distance between Fn and Gn tends to 0 as n tends to infinity; the reason is that
(4.11) implies that reciprocally

(4.12) gn(Yn) = fn(Yn) (1 + oGn (εn)) ,

hence with Yn distributed under Gn, from which it readily follows that

sup
C∈B(Rk)

Fn (C)−Gn (C)→ 0.

Indeed it holds

Lemma 1. Suppose that for some sequence εn which tends to 0 as n tends to
infinity, (4.11) holds. Then (4.12) holds.

Proof. Denote

An,εn := {y : (1− εn)gn (y) ≤ fn (y) ≤ gn (y) (1 + εn)} .
By (4.11) it holds

lim
n→∞

Fn (An,εn) = 1.

Write

Gn (An,εn) =

∫
1An,εn (y)

gn (y)

fn(y)
fn(y)dy.

Since
Gn (An,εn) ≥ (1− εn)Fn (An,εn)

it follows that
lim
n→∞

Gn (An,εn) = 1,

which proves the claim. �

By Lemma 1 it holds for δ > 0

(4.13) lim
n→∞

Fn (En) = lim
n→∞

Gn (En) = 1

where

En :=

{
y ∈ R :

∣∣∣∣fn (y)− gn (y)

gn (y)

∣∣∣∣ < δ

}
.
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Then

sup
C∈B(Rk)

|Fn (C ∩ En)−Gn (C ∩ En)|

≤ δ sup
C∈B(Rk)

∫
C∩En

gn (y) dy ≤ δ.

By (4.13)

sup
C∈B(Rk)

|Fn (C ∩ En)−Gn (C)| < ηn;

also

sup
C∈B(Rk)

|Gn (C ∩ En)−Gn (C)| < ηn,

for the same sequence ηn → 0; hence

sup
C∈B(Rk)

|Fn (C)−Gn (C)| < δ + 2ηn

for all positive δ. We have proved the following result

Proposition 2. Under the above assumption (4.13)

lim
n→∞

dV (Fn, Gn) = 0.

Consider Y1 a r.v. with density pan , and the random variable pan (Y1) :=
p(X1 = Y1|Sn1 = nan). Denote P an , Πan and Gan the probability measures with
respective densities pan , πan and gan .
Now local results in Theorems 3 and 4 hold as far as y1 in formulas (4.5) and

(4.4) satisfy y1 = O(an); see Remarks 7 and 8 in in Section 6. Such is also the case
for Y1 when sampled under P an , as stated below. Thus we may substitute the local
result by the present statement, with the subsequent consequences.

Making use of Theorem 3 or Theorem 4 and substituting y1 by Y in formula (

6.11) in Section 6.2, defining a sequence εn := sup

(
µ3

s3

(
an
s
√
n

)3

, 1√
n

)
which tends

to 0 under either (4.2) or (4.3) by Corollary 1 it then holds

Proposition 3. (i) When (4.2) holds then

pan (Y1) = πan (Y1) (1 + oPan (εn))

where πan is the tilted density at point an,
(ii)When (4.3) holds then, with tn such that m(tn) = an, α := αn and β := βn

pan (Y1) = gan(Y1)(1 + oPan (εn)).

Indeed it holds Y1 = OPan (an) since by Markov Inequality

P (Y1 > u|Sn1 = nan) ≤ E (Y1|Sn1 = nan)

u
=
an
u
.

Since Y1 = OPan (an), substituting y1 with Y1 in Theorems 3 and 4 the proof of
Proposition 3 is completed.
Making use of Lemma 1, Proposition 3 and Proposition 2 we obtain
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Theorem 7. Under (4.2), it holds

lim
n→∞

dV (P an ,Πan) = 0

When (4.3) holds then

lim
n→∞

dV (P an , Gan) = 0

Remark 5. This result is to be paralleled with Theorem 1.6 in Diaconis and Freed-
man [10] and Theorem 2.15 in Dembo and Zeitouni [9] which provide a rate for this
convergence in the LDP range.

4.4. The asymptotic location of X1 under the conditioned distribution.
This paragraph intends to provide some insight on the behavior of X1 under the
condition (Sn1 = nan). We concentrate on the growth condition (4.2) under which
the natural extension of Gibbs conditional principle holds.
Let Xt be a r.v. with density πan where m(t) = an and an satisfies (4.2). Recall

that EXt = an and V arXt = s2. The moment generating function of the normalized
variable (Xt − an) /s satisfies

logE[exp(λ (Xt − an) /s)] = −λan/s+ log Φ

(
t+

λ

s

)
− log Φ (t) .

A second order Taylor expansion in the above display yields

logE[exp(λ (Xt − an) /s)] =
λ2

2

s2
(
t+ θλ

s

)
s2

where θ = θ(t, λ) ∈ (0, 1). The proof of the following Lemma is deferred to Section
6. It holds

Lemma 2. Under the above hypotheses and notation, for any compact set K,

lim
n→∞

sup
u∈K

s2
(
t+ u

s

)
s2

= 1.

Applying the above Lemma it follows that the normalized r.v’s (Xt − an) /s
converge to a standard normal variable N(0, 1) in distribution, as n → ∞. This
amounts to say that

(4.14) Xt = an + sN(0, 1) + oΠan (1).

which implies that Xt concentrates around an with rate s. Due to Theorem 7 the
same holds for X1 under (Sn1 = nan). The behavior of the function s determines
the asymptotic order of magnitude of X1 around an. When h ∈ RV (β) ,making
use of Theorem 1 it is readily seen that when β > 1 then s(t) → 0 as t → ∞ ;
when β < 1 then s(t) → ∞; when β = 1 then s(t) may be bounded away from 0
and infinity (for example, s(t) is a constant in the Gaussian tail case), but may also
tend to 0 or infinity as t→∞ . When h ∈ KR∞ then s(t)→ 0 as t→∞.

5. ED under exceedance

5.1. Approximation of the conditional distribution under exceedance. We
now consider conditioning events of the form An = {Sn1 > nan}. We prove that
when (4.2) holds then the variation distance between the distribution of X1 given
An and Πan (resp. Gan , when (4.3) holds) tends to 0, extending the classical result
valid for fixed an = a.
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Denote pAn(y) = p(X1 = y|Sn1 > nan) and PAn the corresponding probability
measure.

Theorem 8. When h belongs to R and an satisfies (4.2) it holds

lim
n→∞

dV
(
PAn ,Πan

)
= 0;

when (4.3) holds then
lim
n→∞

dV
(
PAn , Gan

)
= 0.

Remark 6. A detailed proof of Theorem 8 under condition (4.2) is provided in the
Appendix; we omit the proof under condition (4.3) for sake of brevity.

5.2. Location property (1.1) vs Gibbs conditional result under exceedance.
Let us consider the relation between (1.1) and the Gibbs conditional principle under
exceedance in the case when (4.2) holds and h belongs to RV (β) for some positive
β. By (4.14) For all εn such that s(tn) = o(εn) as n → ∞, where m(tn) = an, it
holds

(5.1) PAn (X1 ∈ (an − εn, an + εn))→ 1,

following from Theorem 8 and (4.14). When β < 1 then s(tn) → ∞ and there
exists εn which satisfies jointly s(tn) = o(εn) and limn→∞ εn/an = 0.When β > 1 ,
then s(tn)→ 0 and we also may find εn → 0 satisfying (5.1). The case when β = 1
also yields ((5.1)) for adequate sequence εn →∞ . Therefore Theorem 8 implies a
marginal form of (1.1).
However for h ∈ RV (β) and when condition (2.9) holds, and considering se-

quences an with moderate growth (4.2) then property (1.1) and Gibbs conditional
principle under exceedance cannot coexist. Indeed standard calculation together
with the results stated in Remark 2 yields

(5.2)
an
s
√
n

=
a
β+1
2

n√
n

(1 + o(1))

which should tend to 0 in order to fulfill the Gibbs conditional result under ex-
ceedance. Now (1.1) holds with some sequence εn satisfying

lim
n→∞

εn
an

= 0

when

(5.3) lim inf
n→∞

an
nδ

> 0

for some δ > 1/(β+1). Inserting this latest requirement in (5.2) yields inconsistency.
Therefore Gibbs conditional result with approximating distribution Πan does not
yield (1.1) when an moves to infinity too slowly but only (5.1).
Consider now the more complex case when h is a function rapidly growing at

infinity. Assume that the function ψ′ belongs to RV (−1) (recall that ψ := h←− is
a slowly varying function at +∞). Consider Condition (4.2) firstly. Making use of
Theorem 1 in [6] , this latest condition is equivalent to

(5.4) anh(an)/
√
n→ 0

as n tends to infinity, which certainly holds for sequences an → ∞ with slow
increase; by Theorem 1 in [6],m(t) is slowly varying at infinity and is asymptotically
equivalent to h←−, and (6.20),(6.21) and (6.22) in Section 6 hold for some suitable
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sequence ηn. Therefore with the above assumptions pertaining to the model, Gibbs
conditional result holds. We now turn to (1.1) in this case. Conditions (10) and
(11) in [6] should be fulfilled. Now (11) in [6] holds when 1/g is a self neglecting
function at infinity. Recall that (10) in [6] writes

(5.5) nan
log g(an)

h(an)
= O(1).

With h in KR∞ it holds that x → x log g(x)
h(x) tends to 0 as x tends to infinity.

Therefore we may tune an with slow increase such that (5.4) holds. Since (5.5) is
fulfilled for slow an we may make (5.4) and (5.5) match.
Let h belong to RV (β) and an with controlled rapid growth captured by condi-

tion (4.3). Then making use of Theorem 1

(5.6) lim inf
n→∞

an
n1/(1+β)

> 0 and lim sup
n→∞

an
n1/(1+β)

<∞.

Assume that for some 0 < η < 1 it holds

lim inf
n→∞

an
nη

> 0 and lim sup
n→∞

an
nη

<∞

then whenever β > (1− η) /η both (5.3) and (5.6) hold. Condition (6.20) in Section
6 is fulfilled so that (1.1) and the Gibbs conditional principle under exceedance
simultaneously hold, with conditional distribution approximated by Gan .
As in Section 4.4 the behavior of the sequence εn relies on the function s at

infinity

6. Appendix

6.1. Proof of Theorem 2. We state a preliminary Lemma, whose role is to pro-
vide some information on the characteristic function of the normalized random
variable (Xt −m(t)) /s(t) with density π̃t defined by

(6.1) π̃t(x) :=
s(t) exp t (s(t)x+m(t)) p(s(t)x+m(t))

φ(t)

as t → ∞. The density p satisfies the hypotheses in Section 2. Denote ϕan(u) :=∫
eiuxπ̃t(x)dx the characteristic function of (Xt −m(t)) /s(t). Then

Lemma 3. Assume that there exists c1, c2 both positive such that for all t

(6.2) π̃t(x) > c1 for |x| < c2

then under the hypotheses stated in Section 2, for any c > 0 there exists ρ < 1 such
that

(6.3) |ϕan(u)| ≤ ρ
for |u| > c and all an.

Proof. See [13], p150. �

We now turn to the Proof of Theorem 2.
We denote π̃t the normalized conjugate density of p(x) and ρn is the normalized

n−fold convolution of π̃t.We consider the triangular array whose n−th row consists
in n i.i.d. copies of a r.v. with standardized density π̃t and the sum of the row,
divided by

√
n, has density ρn. The standard Gaussian density is denoted φ. The

c.f. of π̃t is denoted ϕan so that the c.f. of ρn is (ϕan(.))
n
, and m(t) = an.



14 MAEVA BIRET, MICHEL BRONIATOWSKI, AND ZANGSHEN CAO

Step 1: Let

G(x) := ρn(x)− φ(x)− µ3

6
√
ns3

n

(
x3 − 3x

)
φ(x),

for which we provide an upper bound.
It holds

φ′′′(x) = −(x3 − 3x)φ(x),

which gives

(6.4) (x3 − 3x)φ(x) =
1

2π

∫ ∞
−∞

(iτ)3e−iτxe−
1
2 τ

2

dτ.

By Fourier inversion

(6.5) ρn(x) =
1

2π

∫ ∞
−∞

e−iτx
(
ϕan(τ/

√
n)
)n
dτ.

Using (6.4) and (6.5), we have

|G(x)| ≤ 1

2π

∫ ∞
−∞

∣∣∣∣(ϕan(τ/
√
n)
)n − e− 1

2 τ
2

− µ3

6
√
ns3

(iτ)3e−
1
2 τ

2

∣∣∣∣ dτ.
Step 2: In this step, we show that for large n, the characteristic function ϕan

satisfies ∫
|ϕan(τ)|2dτ <∞.

Indeed by Parseval identity∫
|ϕan(τ)|2dτ = 2π

∫
(π̃t(x))2dx ≤ 2π sup

x∈R
π̃t(x) <∞

where we used Theorem 5.4 of Nagaev [16] which states that π̃t(x) satisfies

lim
an→∞

sup
x∈R
|π̃t(x)− ϕ(x)| = 0.

Step 3: In this step, we complete the proof by showing that when n→∞

(6.6)
∫ ∞
−∞

∣∣∣(ϕan(τ/
√
n)
)n − e− 1

2 τ
2

− µ3

6
√
ns3

(iτ)3e−
1
2 τ

2
∣∣∣dτ = o

( 1√
n

)
.

The LHS in (6.6) is splited on |τ | > ω
√
n and on |τ | ≤ ω

√
n. It holds

√
n

∫
|τ |>ω

√
n

∣∣∣(ϕan(τ/
√
n)
)n − e− 1

2 τ
2

− µ3

6
√
ns3

(iτ)3e−
1
2 τ

2
∣∣∣dτ

≤
√
n

∫
|τ |>ω

√
n

∣∣∣(ϕan(τ/
√
n)
)∣∣∣ndτ +

√
n

∫
|τ |>ω

√
n

∣∣∣e− 1
2 τ

2

+
µ3

6
√
ns3

(iτ)3e−
1
2 τ

2
∣∣∣dτ

≤
√
nρn−2

∫
|τ |>ω

√
n

∣∣∣(ϕan(τ/
√
n)
)∣∣∣2dτ +

√
n

∫
|τ |>ω

√
n

e−
1
2 τ

2
(

1 +
∣∣∣ µ3τ

3

6
√
ns3

∣∣∣)dτ
(6.7)

=: A+B.

where we used Lemma 3 from the second line to the third one. Now

A = exp

(
1

2
log n+ (n− 2) log ρ+ log

∫
|τ |>ω

√
n

(
ϕan(τ/

√
n)
)2
dτ

)
−→ 0.
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By Corollary 1 when n→∞

B ≤
√
n

∫
|τ |>ω

√
n

e−
1
2 τ

2

|τ |3dτ =
√
n

∫
|τ |>ω

√
n

exp
{
− 1

2
τ2 + 3 log |τ |

}
dτ

= 2
√
n exp

(
− ω2n/2 + o(ω2n/2)

)
−→ 0,

where the second equality holds from, for example, Chapiter 4 of [4]. Summing up,
when n→∞∫

|τ |>ω
√
n

∣∣∣(ϕan(τ/
√
n)
)n − e− 1

2 τ
2

− µ3

6
√
ns3

(iτ)3e−
1
2 τ

2
∣∣∣dτ = o

( 1√
n

)
.

If |τ | ≤ ω
√
n, it holds∫

|τ |≤ω
√
n

∣∣∣(ϕan(τ/
√
n)
)n − e− 1

2 τ
2

− µ3

6
√
ns3

(iτ)3e−
1
2 τ

2
∣∣∣dτ

=

∫
|τ |≤ω

√
n

e−
1
2 τ

2
∣∣∣ exp

{
n logϕan(τ/

√
n) +

1

2
τ2
}
− 1− µ3

6
√
ns3

(iτ)3
∣∣∣dτ.(6.8)

We make use of the Inequality

|eα − 1− β| = |(eα − eβ) + (eβ − 1− β)| ≤ (|α− β|+ 1

2
β2)eγ ,

where γ ≥ max(|α|, |β|) in the integrand in the last display. Denote

γ(τ) = logϕan(τ) +
1

2
τ2.

Since γ′(0) = γ′′(0) = 0, the third order Taylor expansion of γ(τ) at τ = 0 yields

γ(τ) = γ(0) + γ′(0)τ +
1

2
γ′′(0)τ2 +

1

6
γ′′′(ξ)τ3 =

1

6
γ′′′(ξ)τ3,

where 0 < ξ < τ . Hence it holds∣∣∣γ(τ)− µ3

6s3
(iτ)3

∣∣∣ =
∣∣∣γ′′′(ξ)− µ3

s3
n

i3
∣∣∣τ3

6
.

Here γ′′′ is continuous; also as n → ∞ , making use of Corollary 1 |γ′′′(0)| → 0.
Thus for any small η > 0, we can choose ω small enough such that |γ′′′(ξ)| < η for
|τ | < ω. Making use of Corollary 1 again, for n large enough

(6.9)
∣∣∣γ(τ)− µ3

6s3
(iτ)3

∣∣∣ ≤ (|γ′′′(ξ)|+ η
) |τ |3

6
< ητ3.

Choose ω small enough, such that for n large enough it holds for |τ | < ω

max
(∣∣∣ µ3

6s3
(iτ)3

∣∣∣, |γ(τ)|
)
≤ 1

4
τ2.

Replacing τ by τ/
√
n, it holds for |τ | < ω

√
n, and using (6.9)∣∣∣n logϕan(τ/

√
n) +

1

2
τ2 − µ3

6
√
ns3

(iτ)3
∣∣∣

= n
∣∣∣γ( τ√

n

)
− µ3

6s3

( iτ√
n

)3∣∣∣ < η|τ |3√
n
.
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In a similar way, it also holds for |τ | < ω
√
n

max
(∣∣∣n logϕan(τ/

√
n) +

1

2
τ2
∣∣∣, ∣∣∣ µ3

6
√
ns3

(iτ)3
∣∣∣)

= nmax
(∣∣∣γ( τ√

n

)∣∣∣, ∣∣∣ µ3

6s3

( iτ√
n

)3∣∣∣) ≤ 1

4
τ2.

Turn to the integrand in (6.8). We then for |τ | < ω
√
n∣∣∣ exp

{
n logϕan(τ/

√
n) +

1

2
τ2
}
− 1− µ3

6
√
ns3

(iτ)3
∣∣∣

≤
(∣∣∣n logϕan(τ/

√
n) +

1

2
τ2 − µ3

6
√
ns3

(iτ)3
∣∣∣+

1

2

∣∣∣ µ3

6
√
ns3

(iτ)3
∣∣∣2)

× exp
[

max
(∣∣∣n logϕan(τ/

√
n) +

1

2
τ2
∣∣∣, ∣∣∣ µ3

6
√
ns3

(iτ)3
∣∣∣)]

≤
(η|τ |3√

n
+

1

2

∣∣∣ µ3

6
√
ns3

(iτ)3
∣∣∣2) exp

(τ2

4

)
=
( |τ |3√

n
+

µ2
3τ

6

72ns6

)
exp

(τ2

4

)
.

Use this upper bound to obtain∫
|τ |≤ω

√
n

∣∣∣(ϕan(τ/
√
n)
)n − e− 1

2 τ
2

− µ3

6
√
ns3

(iτ)3e−
1
2 τ

2
∣∣∣dτ

≤
∫
|τ |≤ω

√
n

exp
(
− τ2

4

)(η|τ |3√
n

+
µ2

3τ
6

72ns6

)
dτ

=
η√
n

∫
|τ |≤ω

√
n

exp
(
− τ2

4

)
|τ |3dτ +

µ2
3

72ns6

∫
|τ |≤ω

√
n

exp
(
− τ2

4

)
τ6dτ,

and Corollary 1, which yields∫
|τ |≤ω

√
n

∣∣∣(ϕan(τ/
√
n)
)n − e− 1

2 τ
2

− µ3

6
√
ns3

(iτ)3e−
1
2 τ

2
∣∣∣dτ = o

( 1√
n

)
.

This gives (6.6), and therefore we obtain∣∣∣π̄ann (x)− φ(x)− µ3

6
√
ns3

(
x3 − 3x

)
φ(x)

∣∣∣ = o
( 1√

n

)
,

which concludes the proof.

6.2. Proof of Theorem 3. It is well known and easily checked that the conditional
density p(Xk

1 = yk1 |Sn1 = nan) is invariant under any i.i.d sampling scheme in the
family of densities πα as α belongs to Im(X1) (commonly called tilting change of
measure). Namely

p(Xk
1 = yk1 |Sn1 = nan) = πα(Xk

1 = yk1 |Sn1 = nan)

where on the LHS the Xi’s are sampled i.i.d. under p and on the RHS they are
sampled i.i.d. under πα.
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Using Bayes formula, it thus holds

p(X1 = y1|Sn1 = nan) = πm(X1 = y1|Sn1 = nan)

= πm(X1 = y1)
πm(Sn2 = nan − y1)

πm(Sn1 = nan)

=

√
n√

n− 1
πm(X1 = y1)

π̃n−1( m−y1
s
√
n−1

)

π̃n(0)
,(6.10)

where π̃n−1 is the normalized density of Sn2 under i.i.d. sampling with density
πan ; correspondingly, π̃n is the normalized density of Sn1 under the same sampling.
Note that a r.v. with density πan has expectation m and variance s2. Perform a
third-order Edgeworth expansion of π̃n−1(z), using Theorem 2. Setting

z :=
m− y1

s
√
n− 1

it follows that

π̃n−1(z) = φ(z)
(

1 +
µ3

6s3
√
n− 1

(z3 − 3z)
)

+ o
( 1√

n

)
,

The approximation of π̃n(0) is

π̃n(0) = φ(0)
(

1 + o
( 1√

n

))
.

Hence (6.10) becomes

p(X1 = y1|Sn1 = nan)

=

√
n√

n− 1
πm(X1 = y1)

φ(z)

φ(0)

[
1 +

µ3

6s3
√
n− 1

(z3 − 3z) + o
( 1√

n

)]
=

√
2πn√
n− 1

πm(X = y1)φ(z)
(
1 +Rn + o(1/

√
n)
)
,(6.11)

where
Rn =

µ3

6s3
√
n− 1

(z3 − 3z).

Under condition (4.2), by Corollary 1, µ3/s
3 → 0. This yields

(6.12) Rn = o
(
1/
√
n
)
,

which gives

p(X1 = y1|Sn1 = nan) = πm(X = y1)
(
1 + o(1/

√
n)
)

as claimed.

Remark 7. The rate given in (6.12) holds also when y1 = O(an), due to (4.2).

6.3. Proof of Theorem 4. In contrast with the above proof of Theorem 3, the
second summand in (6.11) does not tend to 0 any longer and contributes to the
approximating density. Standard development then yields the result. When (4.2)
holds instead of (4.3) then standard expansions in (4.5) provide gan(y1) ∼ πan(y1)
for all y1 as n tends to infinity.

Remark 8. The same fact as quoted in Remark 7 holds under (4.3).
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6.4. Proof of Proposition 1. Denote

zi :=
mi − yi+1

si
√
n− i− 1

where
s2
i := s2(ti).

We first state a Lemma pertaining to the order of magnitude of zi. The proof of
this Lemma is in the next Subsection

Lemma 4. Assume that h(x) ∈ R. Let ti be defined by (4.6). Assume that an →∞
as n→∞ and that (4.2) holds. Then as n→∞

lim
n→∞

sup
0≤i≤k−1

zi = 0, and sup
0≤i≤k−1

z2
i = o

(
1√
n

)
.

We turn to the proof of Proposition 1.
It holds by Bayes formula,

(6.13) pan(yk1 ) =

k−1∏
i=0

p(Xi+1 = yi+1|Sni+1 = nan − si1).

Making use of the same arguments as in the proof of Theorem 3 for all i we get

p(Xi+1 = yi+1|Sni+1 = nan−si1) ==

√
n− i√

n− i− 1
πmi(Xi+1 = yi+1)

(
1− z2

i /2 + o(z2
i )
) (

1 + o(1/
√
n)
) )
,

Making use of Lemma 4 in each of the factors in (6.13) completes the proof.

6.5. Proof of Lemma 4. By Theorem 1, when n→∞, it holds

zi ∼ mi/(si
√
n) ∼ ψ(ti)√

nψ
′
(ti)

as n→∞. Since mi ∼ mk as n→∞, it holds mi ∼ ψ(tk); hence ψ(ti) ∼ ψ(tk).
Case 1: if h(x) ∈ RV (β)

h
′
(x) = xβ−1l0(x) (β + ε(x)) .

Set x = ψ(t); we get

h
′
(ψ(t)) = ψ(t)β−1l0 (ψ(t)) (β + ε (ψ(t))) .

Since ψ
′
(t) = 1/h

′
(ψ(t)) we obtain

ψ′(ti)

ψ′(tk)
=
h
′
(ψ(tk))

h′ (ψ(ti))
=

(ψ(tk))
β−1

l0 (ψ(tk)) (β + ε (ψ(tk)))

(ψ(ti))
β−1

l0 (ψ(ti)) (β + ε (ψ(ti)))
−→ 1,

by the slowly varying property of l0. Thus

ψ′(ti) ∼ ψ′(tk),

which yields

zi ∼
ψ(tk)√
nψ
′
(tk)

.

Hence we have under condition (4.2)

z2
i ∼

ψ(tk)2

nψ
′
(tk)

=
ψ(tk)2

√
nψ
′
(tk)

1√
n

= o

(
1√
n

)
.
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Case 2: Assume that h(x) ∈ KR∞ . Since m is increasing and m(tk) ≥ m(ti),

it holds ti ≤ tk. The function t→ ψ
′
(t) is decreasing, since

ψ
′′
(t) = −ψ(t)

t2
ε(t) (1 + o(1)) < 0 as t→∞.

Therefore as n→∞, it holds ψ′(ti) ≥ ψ′(tk) > 0, which yields

zi ∼
ψ(ti)√
nψ′(ti)

≤ 2ψ(tk)√
nψ′(tk)

.

Hence

z2
i ≤

4ψ(tk)2

nψ′(tk)
=

4ψ(tk)2

√
nψ′(tk)

1√
n

= o

(
1√
n

)
,

where the last step holds from condition (4.2).
This closes the proof of the Lemma.

6.6. Proof of Lemma 2. Case 1: if h(t) ∈ RV (β). By Theorem 1, s2 ∼ ψ′(t)
with ψ(t) ∼ t1/βl1(t), where l is some slowly varying function. Since ψ′(t) =

1/h
′(
ψ(t)

)
,

1

s2
∼ h

′(
ψ(t)

)
= ψ(t)β−1l0

(
ψ(t)

)(
β + ε

(
ψ(t)

))
∼ βt1−1/βl1(t)β−1l0

(
ψ(t)

)
= o(t),

where l0 ∈ RV (0). This implies for any u ∈ K it holds u/s = o(
√
t),which using

(2.5) yields

s2 (t+ u/s)

s2
∼ ψ′(t+ u/s)

ψ′(t)
=

ψ(t)β−1l0
(
ψ(t)

)(
β + ε

(
ψ(t)

))(
ψ(t+ u/s)

)β−1
l0
(
ψ(t+ u/s)

)(
β + ε

(
ψ(t+ u/s)

))
∼ ψ(t)β−1

ψ(t+ u/s)β−1
∼ t1−1/βl1(t)β−1

(t+ u/s)1−1/βl1(t+ u/s)β−1
−→ 1.

Case 2: if h(t) ∈ KR∞, then

1

st
∼ 1

t
√
ψ′(t)

=

√
1

tψ(t)ε(t)
−→ 0,

making use of condition (2.8). Hence for any u ∈ K, we get as n→∞
u

s
= o(t).

Thus using the slowly varying property of ψ(t) we have

s2 (t+ u/s)

s2
∼ ψ′(t+ u/s)

ψ′(t)
=
ψ(t+ u/s)ε(t+ u/s)

t+ u/s

t

ψ(t)ε(t)

∼ ε(t+ u/s)

ε(t)
=
ε(t) +O

(
ε′(t)u/s

)
ε(t)

−→ 1,(6.14)

where we used a Taylor expansion in the second line, and where the last step holds
from condition (2.8). This completes the proof.
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6.7. Proof of Theorem 5. Making use of

p(Xk
1 = yk1 |Sn1 = nan) =

k−1∏
i=0

p(Xi+1 = yi+1|Sni+1 = nan − si1),

and using the tilted density πan instead of πmi it holds
(6.15)

p(Xi+1 = yi+1|Sni+1 = nan−si1) =

√
n− i√

n− i− 1
πan(Xi+1 = yi+1)

π̃n−i−1(
(i+1)an−si+11

s
√
n−i−1

)

π̃n−i

(
ian−si1
s
√
n−i

) ,

where π̃n−i−1 is the normalized density of Sni+2 under i.i.d. sampling with π
an . Cor-

respondingly, denote π̃n−i the normalized density of Sni+1 under the same sampling.
Write

zi =
ian − si−1

1

s
√
n− i+ 1

.

By Theorem 2 a third-order Edgeworth expansion yields

π̃n−i−1(zi) = φ(zi)
(
1 +Rin

)
+ o

(
1√
n

)
,

where
Rin =

µ3

6s3
√
n− i− 1

(z3
i − 3zi).

Accordingly

π̃n−i(zi−1) = φ(zi−1)
(
1 +Ri−1

n

)
+ o

(
1√
n

)
.

When an →∞, using Theorem 1, it holds

sup
0≤i≤k−1

z2
i ∼

(i+ 1)2a2
n

s2n
≤ 2k2a2

n

s2n
=

2k2(m(t))2

s2n

∼ 2k2(ψ(t))2

ψ′(t)n
=

2k2(ψ(t))2

√
nψ′(t)

1√
n

= o

(
1√
n

)
,(6.16)

where the last step holds under condition (4.2). Hence zi → 0 for 0 ≤ i ≤ k − 1 as
an →∞. By Corollary 1

Rin = o
(
1/
√
n
)
and Ri−1

n = o
(
1/
√
n
)
.

We thus get

p(Xi+1 = yi+1|Sni+1 = nan − si1) =

√
n− i√

n− i− 1
πan(Xi+1 = yi+1)

φ(zi)

φ(zi−1)

(
1 + o(1/

√
n)
)

=

√
n− i√

n− i− 1
πan(Xi+1 = yi+1)

(
1− (z2

i − z2
i−1)/2 + o(z2

i − z2
i−1)

) (
1 + o(1/

√
n)
)
,

where we used a Taylor expansion in the second equality. Using (6.16), we have as
an →∞

|z2
i − z2

i−1| = o(1/
√
n),

which yields

p(Xk
1 = yk1 |Sn1 = nan) =

(
1 + o

(
1√
n

)) k−1∏
i=0

πan(Xi+1 = yi+1).

This completes the proof.
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6.8. Proof of Theorem 8. We first establish some asymptotics for the distribution
of Sn1 . It holds, denoting

I(x) := xm←(x)− log Φ (m←(x))

and recall that the Variance function V (x) has been defined in (1.6).

Lemma 5. Set m(t) = an. Suppose that an →∞ as n→∞. Then

(6.17) P (Sn1 > nan) =
exp(−nI(an))√

2π
√
nm←(an)V (an)

(
1 + o

(
1√
n

))
.

Let further tτ be defined by m(tτ ) = τ with τ ≥ an. Then uniformly upon τ

(6.18) p(Sn1 = nτ) =
exp(−nI(τ))√

2π
√
nV (τ)

(
1 + o

(
1√
n

))
.

Proof. For a density p(x) defined in as in (2.1), we show that g(x) is a convex
function when x is large. If h(x) ∈ Rβ , for x large

g
′′
(x) = h

′
(x) =

h(x)

x
(β + ε(x)) > 0.

If h(x) ∈ KR∞, set x := ψ(v). Then

g
′′
(x) = h′(x) =

1

ψ′(v)
=

v

ψ(v)ε(v)
> 0,

where the inequality holds since ε(v) > 0 when v is large enough. Hence g(x) is
convex for large x. Therefore, the density p(x) with h(x) ∈ R satisfies the conditions
of Theorem 6.2.1 in [13]. Denote by pn the density of X̄ = (X1 + . . .+Xn)/n. We
obtain from formula (2.2.6) of [13], using a third order Edgeworth expansion

P (Sn1 ≥ nan) =
Φ(t)n exp(−ntan)√

nts(t)
(B0(λn)) +O

(
µ3(t)

6
√
ns3(t)

B3(λn)

)
,

where λn =
√
nts(t); B0(λn) and B3(λn) are defined by

B0(λn) =
1√
2π

(
1− 1

λ2
n

+ o

(
1

λ2
n

))
, B3(λn) ∼ − 3√

2πλn
.

We show that as an →∞

(6.19)
1

λ2
n

= o

(
1

n

)
.

Since n/λ2
n = 1/(t2s2(t)), (6.19) is equivalent to

t2s2(t) −→∞.

By Theorem 1, m(t) ∼ ψ(t) and s2(t) ∼ ψ′(t); combined with m(t) = an, it holds
t ∼ h(an)l1(an), where l1 is some slowly varying function. If h ∈ RV (β), notice
that

ψ′(t) =
1

h′(ψ(t))
=

ψ(t)

h (ψ(t)) (β + ε(ψ(t)))
∼ an
h(an) (β + ε(ψ(t)))

;

hence

t2s2(t) ∼ h(an)2l1(an)2 an
h(an) (β + ε(ψ(t)))

=
anh(an)l1(an)2

β + ε(ψ(tn))
−→∞.
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If h ∈ KR∞, then

t2s2(t) ∼ t2ψ(t)ε(t)

t
= tψ(t)ε(t) −→∞;

we have proved (6.19) and, summing up, that

B0(λn) =
1√
2π

(
1 + o

(
1

n

))
.

By (6.19), λn goes to ∞ as an →∞; this implies further that B3(λn)→ 0. On the
other hand, by Corollary 1 it holds µ3/s

3 → 0. Hence we obtain

P (Sn1 ≥ nan) =
Φ(t)n exp(−ntan)√

2πnts(t)

(
1 + o

(
1√
n

))
,

which gives (6.17). By Jensen’s Theorem 6.2.1 ([13]) and formula (2.2.4) in [13] it
follows that uniformly in τ

p(Sn1 /n = τ) =

√
nΦ(tτ )n exp(−ntττ)√

2πs(tτ )

(
1 + o

(
1√
n

))
,

which, together with p(Sn1 = nτ) = (1/n)p(Sn1 /n = τ), gives (6.18). �

We now turn to the pointwise approximation of pAn(y1). Let ηn be a positive
sequence and denote

(6.20) ηn/an −→ 0

(6.21) nm←(an)ηn −→∞

and

(6.22) η2/V (an)→ 0.

It holds

pAn(y1) =

∫ ∞
an

p(X1 = y1|Sn1 = nτ)p(Sn1 = nτ |Sn1 ≥ nan)dτ

=
p(X1 = y1)

P (Sn1 ≥ nan)

∫ ∞
an

p(Sn2 = nτ − y1)dτ

=

(
1 +

P2

P1

)
p(X1 = y1)

P (Sn1 ≥ nan)

∫ an+ηn

an

p(Sn2 = nτ − y1)dτ

=

(
1 +

P2

P1

)∫ an+ηn

an

p(X1 = y1|Sn1 = nτ)p(Sn1 = nτ |Sn1 ≥ nan)dτ(6.23)

where the second equality is obtained by Bayes formula, and

P1 =

∫ an+ηn

an

p(Sn2 = nτ − y1)dτ,

P2 =

∫ ∞
an+ηn

p(Sn2 = nτ − y1)dτ.
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Lemma 6. Whenever h belongs to R, with ηn satisfying (6.20) and (6.21) it holds

lim
n→∞

P2

P1
= 0.

Proof. Indeed

P2 =
1

n
P (Sn2 ≥ n(an + ηn)− y1) =

1

n
P (Sn2 ≥ (n− 1)cn) ,

P1 + P2 =
1

n
P (Sn2 ≥ nan − y1) =

1

n
P (Sn2 ≥ (n− 1)dn) ,

where cn = (n(an + ηn)− y1) /(n − 1) and dn = (nan − y1)/(n − 1). Denote
tcn = m←(cn) and tdn = m←(dn). Using Lemma 5, it holds

P2

P1 + P2
=

(
1 + o

(
1√
n

))
tdns(tdn)

tcns(tcn)
exp (−(n− 1) (I(cn)− I(dn))) .

Using the convexity of the function I and a first order Taylor expansion it holds

exp (−(n− 1)I(cn)− I(dn)) ≤ exp−nηnm←(an)

which tends to 0 by (6.21). We now show that

tdns(tdn)

tcns(tcn)
−→ 1.

By (6.20), cn/dn → 1 as an →∞. If h ∈ RV (β), it holds(
tdns(tdn)

tcns(tcn)

)2

∼
(

dnh(dn)

β + ε (ψ(dn))

)2(
β + ε (ψ(cn))

cnh(cn)

)2

∼
(
h(dn)

h(cn)

)2

−→ 1.

If h ∈ KR∞,
t2s2(t) ∼ tψ(t)ε(t),

hence (
tdns(tdn)

tcns(tcn)

)2

∼ dnψ(dn)ε(dn)

cnψ(cn)ε(cn)
∼ ε(dn)

ε(cn)
=
ε (cn − nηn/(n− 1))

ε(cn)
−→ 1,

where the last step holds by using the same argument as in the second line of (6.14).
We obtain

(6.24)
P2

P1
= o (1) .

�

Now turning back to (6.23) under (4.2) and making use of Lemma 6

pAn(y1) ∼
∫ an+ηn

an

(
p(X1 = y1|Sn1 = nτ)− πτ (y1)

πτ (y1)

)
p(Sn1 = nτ |Sn1 ≥ nan)πτ (y1)dτ

= (1 + o(1))
(
1 + o

(
1/
√
n
))
πa
∗
n(y1) = (1 + rn)πa

∗
n(y1)

with limn→∞ rn = 0 is independent on y1. The second equality follows from (4.2)
making use of Theorem 3; we also used that fact that that the mapping τ → πτ (y1)
is decreasing for τ > y1, hence for n large enough; also a∗n := an + θnηn with
0 < θn < 1 and we made use of the version of the mean value theorem for product
of integrands.
We now prove that when Y is drawn under pAn , then Y = OPAn (an).
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By linearity of the expectation and integration by parts, E (Y |Sn1 > nan) =
an+ 1

P(Sn1 /n>an)

∫∞
an
P (Sn1 /n > u) du ; now by Markov Inequality and convexity of

I, ∫ ∞
an

P (Sn1 /n > u) du ≤
∫ ∞
an

exp (−nI(u)) du

≤ (expnI(an))

∫ ∞
an

exp (−n (I(u)− I(an))) du

≤ (expnI(an)) /nI ′(an).

Making use of (6.17) to handle P (Sn1 /n > an) it results that E (Y |Sn1 > nan) =
an + (1 + o(1/

√
n))s(t)/

√
n; now s(t)/

√
n = o(an) whenever h ∈ RV (β) for some

β > 0 or when h ∈ KR∞, for any sequence an bounded away from 0. Therefore
E (Y |Sn1 > nan) = an + o(an) and Y = OPAn (an) follows by Markov Inequality.

It follows that, similarly as in Theorem 7, limn→∞ dV
(
PAn ,Πa∗n

)
= 0. Now by

Kemperman Inequality, dV
(
Πan ,Πa∗n

)
≤
√

2K (Πa∗n ,Πan).

We prove that K
(
Πa∗n ,Πan

)
= (t∗ − t) an + log Φ (t∗) − log Φ(t) tends to 0 as

n tends to infinity, where m(t∗) = a∗n. By Taylor expansion K
(
Πa∗n ,Πan

)
=

(t∗ − t) (m(t∗∗)−an) for some t∗∗ such thatm(t∗∗) belongs to (an, an + ηn) . There-
fore, through a second Taylor expansion

K
(

Πa∗n ,Πan
)
≤ η2

n

infα∈(an,an+ηn) V (α)
.

Now V (α) = s2(m←(α)) = ψ′ (m←(α)))o(1)).

In the case when h belongs to RV (β) for some β > 0 it holds denoting α :=
an + θnηn for some θn in (0, 1), under (6.20)

V (α) ∼ ψ′
(
ψ−1(an (1 + θnηn)

)
∼ ψ′

(
ψ−1(an)

)
Therefore under (6.20) and (6.22) K

(
Πa∗n ,Πan

)
tends to 0.

In the case when h belongs to KR∞, making use of Condition (2.8) proves that
ψ′ is ultimately decreasing, which in turn proves that infα∈(an,an+ηn) V (α) can be
substituted by V (an), Therefore under (6.22), K

(
Πa∗n ,Πan

)
tends to 0.

All conditions (6.20), (6.21) and (6.22) are fulfilled by adequate sequence ηn
when h belongs to R, hence limn→∞ dV

(
PAn ,Πan

)
≤ limn→∞ dV

(
PAn ,Πa∗n

)
+

dV
(
Πan ,Πa∗n

)
= 0 as sought.
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