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(1) SNECMA***, (2) LSTA, Université Pierre et Marie
Curie, Paris, France, (∗) Corresponding author

Abstract

We explore some properties of the conditional distribution of
an i.i.d. sample under large exceedances of its sum. Thresholds
for the asymptotic independance of the summands are observed,
in contrast with the classical case when the conditioning event is
in the range of a large deviation. This paper is an extension to
[7]. Tools include a new Edgeworth expansion adapted to specific
triangular arrays where the rows are generated by tilted distribu-
tion with diverging parameters, together with some Abelian type
results.

1 Introduction

Let Xn
1 := (X1, .., Xn) be n independent unbounded real valued random

variables and Sn
1 := X1 + .. + Xn denote their sum. The purpose of

this paper is to explore the limit distribution of the generic variable X1

conditioned on extreme deviations (ED) pertaining to Sn
1 . By extreme

deviation we mean that Sn
1 /n is supposed to take values which are going

to infinity as n increases. Obviously such events are of infinitesimal
probability. Our interest in this question stems from a first result which
assesses that under appropriate conditions, when the sequence an is such
that

lim
n→∞

an = ∞
then there exists a sequence εn which tends to 0 as n tends to infinity
such that

lim
n→∞

P (∩n
i=1 (Xi ∈ (an − εn, an + εn))|Sn

1 /n > an) = 1, (1)

which is to say that when the empirical mean takes exceedingly large
values, then all the summands share the same behaviour. This result
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obviously requires a number of hypotheses, which we simply quote as
”light tails” type. We refer to [7] for this result and the connection with
earlier related works; that such most unusual cases may be considered
is argumented in this latest paper, in relation with the Erdös-Réniy law
of large numbers and the formation of high level aggregates in random
sequences.

The above result is clearly to be put in relation with the so-called
Gibbs conditional Principle which we recall briefly in its simplest form.

Consider the case when the sequence an = a is constant with value
larger than the expectation of X1. Hence we consider the behaviour of
the summands when (Sn

1 /n > a), under a large deviation (LD) condition
about the empirical mean. The asymptotic conditional distribution of
X1 given (Sn

1 /n > a) is the well known tilted distribution of PX with
parameter t associated to a. Let us introduce some notation to shed some
light on this The hypotheses to be stated now together with notation
are kept throughout the entire paper. Without loss of generality it is
assumed that the generic r.v. X1 takes only non negative values.

It will be assumed that PX , which is the distribution of X1, has a
density p with respect to the Lebesgue measure on R. The fact that
X1 has a light tail is captured in the hypothesis that X1 has a moment
generating function

Φ(t) := E[exp tX1],

which is finite in a non void neighborhood N of 0. This fact is usually
refered to as a Cramer type condition.

Defined on N are the following functions. The functions

t→ m(t) :=
d

dt
log Φ(t) (2)

t→ s2(t) :=
d

dt
m(t) (3)

t→ µj(t) :=
dj

dtj
log Φ(t), j ≥ 3 (4)

are the expectation, the variance, and the centered moments of order j
of the r.v. Xt with density

πt(x) :=
exp tx

Φ(t)
p(x)

which is defined on R and which is the tilted density with parameter t.
When Φ is steep, meaning that

lim
t→t+

m(t) = ∞
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where t+ := ess supN then m parametrizes the convex hull of the sup-
port of PX . We refer to Barndorff-Nielsen [3] for those properties. As
a consequence of this fact, for all a in the support of PX , it will be
convenient to define

πa = πt

where a is the unique solution of the equation m(t) = a.
The Gibbs conditional principle in the standard above setting can be

stated as follows.
As n tends to infinity the conditional distribution ofX1 given (Sn

1 /n > a)
is Πa, the distribution with density πa.

Indeed we prefer to state Gibbs principle in a form where the con-
ditioning event is a point condition (Sn

1 /n = a). The conditional distri-
bution of X1 given (Sn

1 /n = a) is a well defined distribution and Gibbs
conditional principle states that this conditional distribution converges
to Πa as n tends to infinity. In both settings, this convergence holds in
total variation norm. We refer to [11] for the local form of the condi-
tioning event; we will mostly be interested in the extension of this form
in the present paper.

For all α (depending on n or not) we will denote pα the density
of the random vector Xk

1 conditioned upon the local event (Sn
1 = nα).

The notation pα
(
Xk

1 = xk1
)
is sometimes used to denote the value of the

density pα at point xk1. The same notation is used when X1, . . . , Xk are
sampled under some Πα, namely πα(Xk

1 = xk1).
This article is organized as follows. Notation and hypotheses are

stated in Section 2, along with some necessary facts from asymptotic
analysis in the context of light tailed densities. Section 4 provides a local
Gibbs conditional principle under EDP, namely producing the approxi-
mation of the conditional density of X1 conditionally on (Sn

1 /n = an) for
sequences an which tend to infinity. We explore two rates of growth for
the sequence an, which yield two different approximating distributions
for the conditional law ofX1. The first one extends the classical approxi-
mation by the tilted one, substituting πa by πan . The second case, which
corresponds to a faster growth of an, produces an approximation of a
different kind. It may be possible to explore faster growth conditions
than those considered here, leading to a wide class of approximating
distributions; this would require some high order Edgeworth expansions
for triangular arrays of variables, extending the corresponding result of
order 3 presented in this paper; we did not move further in this direction,
in order to avoid too many technicalities.

For fixed k and fixed an = a > E(X1) it is known that the r.v’s
X1, . . . , Xk are asymptotically independent given (Sn

1 /n = an); see [11].
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This statement is explored when an grows to infinity with n, keeping
k fixed. It is shown that the asymtotic independence property holds
for sequences an with moderate growth, and that independence fails for
sequences an with fast growth.

The local approximation of the density ofX1 conditionally on (Sn
1 /n = an)

is further extended to typical paths under the conditional sampling
scheme, which in turn provides the approximation in variation norm
for the conditional distribution; the method used here follows closely
the approach by [8]. The differences between the Gibbs principles in
LDP and EDP are discussed. Section 5 states similar results in the case
when the conditioning event is (Sn

1 /n > an).
The main tools to be used come from asymptotic analysis and local

limit theorems, developped from [13] and [4]; we also have borrowed
a number of arguments from [16]. An Edgeworth expansion for some
special array of independent r.v’s with tilted distribution and argument
moving to infinity with the row-size is needed; its proof is differed to the
Section 6. The basic Abelian type result which is used is stated in [6].

2 Notation and hypotheses

Thereafter we will use indifferently the notation f(t) ∼
t→∞

g(t) and

f(t) =
t→∞

g(t)(1+ o(1)) to specify that f and g are asymptotically equiv-

alent functions.

The density p is assumed to be of the form

p(x) = exp(−(g(x)− q(x))), x ∈ R+. (5)

The function q is assumed to be bounded, so that the asymptotic
behaviour of p is captured through the function g. The function g is
positive, convex, four times differentiable and satisfies

g(x)

x
−→
x→∞

∞. (6)

Define
h(x) := g′(x). (7)

In the present context, due to (6) and the assumed conditions on q to
be stated hereunder, t+ = +∞.

Not all positive convex g’s satisfying (6) are adapted to our purpose.
We follow the line of Juszczak and Nagaev [16] to describe the assumed
regularity conditions of h. See also [1] for somehow similar conditions.

We firstly assume that the function h, which is a positive function
defined on R+, is either regularly or rapidly varying in a neighborhood
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of infinity; the function h is monotone and, by (6), h(x) → ∞ when
x→ ∞.

The following notation is adopted.
RV (α) designates the class of regularly varying functions of index α

defined on R+,
ψ(t) := h←(t)

designates the inverse of h. Hence ψ is monotone for large t and ψ(t) →
∞ when t → ∞, σ2(x) := 1/h′(x), x̂ := x̂(t) = ψ(t), σ̂ := σ(x̂) =
σ(ψ(t)).

The two cases considered for h, the regularly varying case and the
rapidly varying case, are described below. The first one is adapted to
regularly varying functions g, whose smoothness is described through
the following condition pertaining to h.
The Regularly varying case. It will be assumed that h belongs to

the subclass of RV (β), β > 0, with

h(x) = xβl(x),

where the Karamata form of the slowly varying function l takes the form

l(x) = c exp

∫ x

1

ǫ(u)

u
du (8)

for some positive c. We assume that x 7→ ǫ(x) is twice differentiable and
satisfies 




ǫ(x) =
x→∞

o(1),

x|ǫ′(x)| =
x→∞

O(1),

x2|ǫ(2)(x)| =
x→∞

O(1).

(9)

It will also be assumed that

|h(2)(x)| ∈ RV (θ) (10)

where θ is a real number such that θ ≤ β − 2.

Remark 1 Under (8), when β 6= 1 then, under (10), θ = β − 2.
Whereas, when β = 1 then θ ≤ β − 2. A sufficient condition for the
last assumption (10) is that ǫ′(t) ∈ RV (γ), for some γ < −1. Also in
this case when β = 1, then θ = β + γ − 1.

Example 2 Weibull density. Let p be a Weibull density with shape
parameter k > 1 and scale parameter 1, namely

p(x) = kxk−1 exp(−xk), x ≥ 0

= k exp(−(xk − (k − 1) log x)).
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Take g(x) = xk − (k − 1) log x and q(x) = 0. Then it holds

h(x) = kxk−1 − k − 1

x
= xk−1

(
k − k − 1

xk

)
.

Set l(x) = k − (k − 1)/xk, x ≥ 1, which verifies

l′(x) =
k(k − 1)

xk+1
=
l(x)ǫ(x)

x

with

ǫ(x) =
k(k − 1)

kxk − (k − 1)
.

Since the function ǫ(x) satisfies the three conditions in (9), then h(x) ∈
RV (k − 1).

The Rapidly varying case. Here we have h←(t) = ψ(t) ∈ RV (0)
and

ψ(t) = c exp

∫ t

1

ǫ(u)

u
du, (11)

for some positive c, and t 7→ ǫ(t) is twice differentiable with




ǫ(t) =
t→∞

o(1),
tǫ′(t)
ǫ(t)

−→
t→∞

0,

t2ǫ(2)(t)
ǫ(t)

−→
t→∞

0.

(12)

Note that these assumptions imply that ǫ(t) ∈ RV (0).

Example 3 A rapidly varying density. Define p through

p(x) = c exp(−ex−1), x ≥ 0.

Then g(x) = h(x) = ex−1 and q(x) = 0 for all non negative x. We show
that h(x) is a rapidly varying function. It holds ψ(t) = log t + 1. Since
ψ′(t) = 1/t, let ǫ(t) = 1/(log t+1) so that ψ′(t) = ψ(t)ǫ(t)/t. Moreover,
the three conditions of (12) are satisfied. Thus ψ(t) ∈ RV (0) and h(x)
is a rapidly varying function.

Denote by R the class of functions with either regular variation de-
fined as in Case 2 or with rapid variation defined as in Case 2.

We now state hypotheses pertaining to the bounded function q in
(5). We assume that

|q(x)| ∈ RV (η), for some η < θ − 3β
2
− 3

2
if h ∈ RV (β) (13)

and

|q(ψ(t))| ∈ RV (η), for some η < −1
2
if h is rapidly varying. (14)

We will make use of the following result (see [6] Thm 3.1).
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Theorem 4 Let p(x) be defined as in (5) and h(x) belong to R. Denote
by m(t), s2(t) and µj(t) for j = 3, 4, ... the functions defined in (2), (3)
and (4). Then it holds

m(t) =
t→∞

ψ(t)(1 + o(1)),

s2(t) =
t→∞

ψ′(t)(1 + o(1)),

µ3(t) =
t→∞

ψ(2)(t)(1 + o(1)),

µj(t) =
t→∞

{
Mjs

j(t)(1 + o(1)), for even j > 3
(Mj+3−3jMj−1)µ3(t)sj−3(t)

6
(1 + o(1)), for odd j > 3

,

where Mi, i > 0, denotes the ith order moment of standard normal
distribution.

Corollary 5 Let p(x) be defined as in (5) and h(x) ∈ R. Then it holds
as t→ ∞

µ3(t)

s3(t)
−→ 0.

Proof. In the regularly varying case this follows from Corollaries 1 and
2 in [6], and in the rapidly varying case from Corollary 3 and Lemma 3
in [6].

Our results require an extension of the classical Edgeworth expan-
sions to triangular arrays of row-wise independent and identically dis-
tributed random variables, where the expectation of the generic r.v. in
the n−th row tends to infinity with n. This can be achieved under log-
concavity of p, i.e. when the function q is the null function, or when p
is nearly log-concave. This is the scope of the next Section.

3 Edgeworth expansion under extreme normalizing

factors

With πan defined through

πan(x) =
etxp(x)

Φ(t)
,

and t determined by m(t) = an together with s2 := s2(t) define the
normalized density of πan by

π̄an(x) = sπan(sx+ an),

and denote the n-convolution of π̄an(x) by π̄an
n (x). Denote by ρn its

normalized density
ρn(x) :=

√
nπ̄an

n (
√
nx).
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The following result extends the local Edgeworth expansion of the dis-
tribution of normalized sums of i.i.d. r.v.’s to the present context, where
the summands are generated under the density π̄an . Therefore the set-
ting is that of a triangular array of rowwise independent summands;
the fact that an → ∞ makes the situation unusual. We mainly adapt
Feller’s proof (Chapiter 16, Theorem 2 [13]). However this variation on
the classical Edgeworth expansion result requires some additional regu-
larity assumption, which meet the requirements of Theorem 4, which are
fulfilled in most models dealing with extremes and convolutions. Those
are captured in cases when the density p is log-concave, or nearly log
concave in the upper tail. Similar conditions are considered in [7].

Theorem 6 With the above notation, uniformly upon x it holds

ρn(x) = φ(x)
(
1 +

µ3

6
√
ns3

(
x3 − 3x

))
+ o

( 1√
n

)
.

where φ(x) is standard normal density.

The proof of this result is postponed to the Section 6.

4 Gibbs’ conditional principles under extreme events

We now explore Gibbs conditional principles under extreme events. The
first result is a pointwise approximation of the conditional density pan (y1)
on R. Two cases will be considered according to the rate of growth of
the sequence an to infinity. For ”moderate” growth our result extends
the classical one pertaining to constant an larger than E(X1), since the
approximating density of pan is the tilted distribution with parameter
an. For sequences an with fast growth, the approximating density in-
cludes a second order term which contributes to the approximation in a
similar role as the tilted term; this term also appears in the first case,
but is negligible with respect to the tilted density.

However this local approximation can be greatly improved when com-
paring pan to its approximation. We will first prove that the approxi-
mation holds when the fixed arbitrary y1 is substituted by a r.v. Y1
with distribution Pan , henceforth on a typical realization under the dis-
tribution to be approximated. The approximation therefore holds in
probability under this sampling scheme; a simple Lemma then proves
that such a statement implies that the total variation distance between
Pan and its approximation tends to 0 as n tends to infinity.

As a by-product we also address similar approximations for the case
when the conditioning event writes (Sn

1 /n > an) . The case when an
grows to infinitly fast enough overlaps with that for which (1) holds.
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Extension to the approximation of the distribution ofX1 given (Tn = an)
or (Tn > an) where

Tn :=
1

n

n∑

i=1

f(Xi)

for functions f satisfying appropriate conditions are considered.
For sake of completeness we also provide some information when the

density pan is that of the vector (X1, . . . , Xk) for fixed k. We prove that
for moderate growth of an the approximating density is the product
of corresponding marginal approximations, generalizing the well known
result by Csiszar [9] which, in the present context, assesses the limit
conditional independence of the coordinates of the vector (X1, . . . , Xk)
given (Sn > nan) for fixed an > E(X1) and fixed k. At the contrary this
property is lost when an grows quickly to infinity.

Because of the property (1) it would be of interest to consider the
joint distribution of the vector (X1, . . . , Xkn) given (Sn > nan) for se-
quences kn close to n, as done in [8] for sequences an ranging from CLT
to LDP. The extreme deviation case adds noticeable analytical difficul-
ties.

4.1 A local result

Fix yk1 := (y1, . . . , yk) in Rk and define sji := yi+. . .+yj for 1 ≤ i < j ≤ k.
Define t through

m := m(t) := an (15)

and set
s := s(t)

for brevity.
We consider two conditions pertaining to the growth of the sequence

an to infinity. In the first case we assume that

lim
n→∞

an
s
√
n
= 0, (16)

and in the second case we consider sequences an which may grow faster
to infinity, obbeying

0 < lim inf
n→∞

an
s
√
n
≤ lim sup

n→∞

an
s
√
n
<∞. (17)

Remark 7 Both conditions (16) and (17) can be expressed in terms of
an when the variance function V (x) of the distribution of X1 is known
either in closed form, or is asymptotically equivalent to some known
function. Recall that the variance function is defined on Im(X1) through

x → V (x) = s2om−1(x).
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See e.g. [2] for a description of distribution functions with polynomial
variance function and [15] for tail equivalence for the variance function
in infinitely divisible distributions. In the Regularly varying case, i.e.
when h belongs to the subclass of RV (β), β > 0, then standard operations
on smooth regularly varying functions yield V (x) = x1−β l(x) for some

slowly varying function l; see [4]; hence s(t) = a
(1−β)/2
n l(an). Assuming

that V (x) ∼ x2ρ as x → ∞, it follows that (16) writes an = o
(
n1/(1+ρ)

)

whereas (17) amounts to assume that an is of order n1/(1+ρ).

Denote

z :=
m− y1

s
√
n− 1

.

Theorem 8 When (16) holds then it holds

pan(y1) = p(X1 = y1|Sn
1 = nan) = πan(y1)

(
1 + o

( 1√
n

))
,

The proof of this result is postponed to the Section 6.

Remark 9 The above condition (16) is not sufficient to entail (1) to
hold. This yields to the study of a similar limit conditional result under
the corresponding condition (17).

Theorem 10 Assume that the sequence an satisfies (17). Denote

α := t+
µ3

2(n− 1)s2

and
β := (n− 1)s2.

Then

p(X1 = y1|Sn
1 = nan) = gan(y1) := Cp(y1)n (αβ + an, β, y1) (1 + o(1))

(18)
where n (µ, σ2, x) denotes the normal density with expectation µ and vari-
ance σ2 evaluated at point x, and C is a normalizing constant.

When (16) holds instead of (17) then

p(X1 = y1|Sn
1 = nan) = πan(y1)(1 + o(1))

for all y1 as n tends to infinity.

Proof. In contrast with the above case, the second summand in (39)
does not tend to 0 any longer and contributes to the approximating den-
sity. Standard development then yields the result. When (16) holds in-
stead of (17) then standard expansions in (18) provide gan(y1) ∼ πan(y1)
for all y1 as n tends to infinity.
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4.2 On conditional independence under extreme events

We now turn to the case when we approximate the joint conditional
density pan(y

k
1) := pan(y1, . . . , yk) = pan(X

k
1 = yk1

∣∣Sn
1 = nan). Denote

sji := yi + . . .+ yj for i ≤ j and s01 := 0.
We first consider the case when (16) holds. We then have

Proposition 11 When (16) holds then for any fixed k

pan(y
k
1) =

k∏

i=1

πmi(yi)
(
1 + o(1/

√
n)
)

where

mi := m(ti) :=
nan − si1
n− i

. (19)

The proof of this result is postponed to the Section 6.
We now explore the limit conditional independence of blocks of fixed

length under extreme condition. As a consequence of the above Propo-
sition 11 it holds

Theorem 12 Under (16) it holds

pan(y
k
1) = p(Xk

1 = yk1 |Sn
1 = nan) =

(
1 + o

(
1√
n

)) k∏

i=1

πan(Xi = yi),

The technical proof is differed to the Section 6.

Remark 13 The above result shows that asymptotically the point con-
dition (Sn

1 = nan) leaves blocks of k of the X ′is independent. Obviously
this property does not hold for large values of k, close to n. A simi-
lar statement holds in the LDP range, conditioning either on (Sn

1 = na)
(see Diaconis and Friedman [11])), or on (Sn

1 ≥ na) (see Csiszar [9] for
a general statement on asymptotic conditional independence given events
with positive probability).

We now turn to the case when an moves more quickly to infinity.
Denote

mi := m(ti) :=
nan − si−11

n− i+ 1

together with
s2i := s2(ti).
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Theorem 14 Assume that (17) holds. Then for all fixed k it holds

p(Xk
1 = yk1 |Sn

1 = nan) =
k∏

i=1

gi(yi) (1 + o (1))

where
gi(yi) := Cip(yi)n (αiβi + an, βi, yi)

and
αi := ti +

µ3

2(n− i+ 1)s2i
(20)

βi := (n− i+ 1)s2i . (21)

Remark 15 When (16) holds, the above result is a refinement of the
result in Proposition 11. Under (17) and when (16) does not hold, the
approximations obtained in Lemma 31 do not hold, and the approximat-
ing density cannot be stated as a product of densities under which inde-
pendence holds. In that case it follows that the conditional independence
property under extreme events does not hold any longer.

4.3 Strenghtening the local Gibbs conditional prin-

ciple

We now turn to a stronger approximation of pan . Consider Y1 a r.v. with
density pan , and the random variable pan (Y1) := p(X1 = Y1|Sn

1 = nan).
Denote

gan(x) := Cp(x)n (αβ + an, β, x)

where α := αn and β := βn are defined in (20) and (21), and C is a
normalizing constant, it holds

Theorem 16 (i) When (16) holds then

pan (Y1) = πan (Y1) (1 +Rn)

where the tilted density at point an, and where Rn is a function of Y1
such that Pan (|Rn| > δ

√
n) → 0 as n → ∞ for any positive δ. When

(17) holds then, with tn such that m(tn) = an, α := αn and β := βn

pan (Y1) = gan(Y1)(1 +R′n)

where Pan (|R′n| > δ) → 0 as n→ ∞ for any positive δ.
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Remark 17 This result is of much greater relevance than the previous
ones. Indeed under Pan the r.v. Y1 may take large values. On the
contrary simple approximation of pan by πan or gan on R+ only provides
some knowledge on pan on sets with smaller and smaller probability under
pan. Also it will be proved that as a consequence of the above result, the
L1 norm between pan and its approximation goes to 0 as n→ ∞, a result
out of reach through the aforementioned results.

In order to adapt the proof of Theorem 12 to the present setting it
is necessary to get some insight on the plausible values of Y1 under Pan .
It holds

Lemma 18 It holds
Y1 = OPan

(an) .

Proof. This is a consequence of Markov Inequality:

P (Y1 > u|Sn
1 = nan) ≤

E (Y1|Sn
1 = nan)

u
=
an
u

which goes to 0 for all u = un such that limn→∞ un/an = ∞.

Now making use of Lemma 18 in the proof of Theorem 8 and Theorem
10, substituting y1 with Y1, completes the proof.

Denote the probability measures Pan , Πan and Gan with respective
densities pan , π

an and gan .

4.4 Gibbs principle in variation norm

We now consider the approximation of Pan by Gan in variation norm.
The main ingredient is the fact that in the present setting approxima-

tion of pan by gan in probability plus some rate implies approximation
of the corresponding measures in variation norm. This approach has
been developped in [8]; we state a first lemma which states that wether
two densities are equivalent in probability with small relative error when
measured according to the first one, then the same holds under the sam-
pling of the second.

Let Rn and Sn denote two p.m’s on Rn with respective densities rn
and sn.

Lemma 19 Suppose that for some sequence ̟n which tends to 0 as n
tends to infinity

rn (Y
n
1 ) = sn (Y

n
1 ) (1 + oRn

(1)) (22)

as n tends to ∞. Then

sn (Y
n
1 ) = rn (Y

n
1 ) (1 + oSn

(1)) . (23)
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The proof of this result is available in [8]. Applying this Lemma to
the present setting yields

gan (Y1) = pan (Y1)
(
1 + oGan

(
1/
√
n
))

as n→ ∞, which together with Theorem 10 or Theorem 8 implies

pan (Y1) = gan (Y1)
(
1 + oPan

(
1/
√
n
))

or
pan (Y1) = πan (Y1)

(
1 + oPan

(
1/
√
n
))

This fact entails

Theorem 20 Under (17) the total variation norm between Pan and Gan

goes to 0 as n → ∞. When (16) holds then the total variation norm
between Pan and Πan goes to 0 as n→ ∞.

The proof of this theorem is also provided in [8].

Remark 21 This result is to be paralleled with Theorem 1.6 in Diaconis
and Freedman [11] and Theorem 2.15 in Dembo and Zeitouni [10] which
provide a rate for this convergence in the LDP range.

4.5 The asymptotic location of X under the condi-

tioned distribution

This paragraph intends to provide some insight on the behaviour of X1

under the condition (Sn
1 = nan); this will be extended further on to the

case when (Sn
1 ≥ nan) and to be considered in parallel with similar facts

developped in [8] for larger values of an.
Let Xt be a r.v. with density πan where m(t) = an and an satisfies

(16) or (17). Recall that EXt = an and V arXt = s2. We evaluate the
moment generating function of the normalized variable (Xt − an) /s. It
holds

logE[exp(λ (Xt − an) /s)] = −λan/s+ log Φ

(
t+

λ

s

)
− log Φ (t) .

A second order Taylor expansion in the above display yields

logE[exp(λ (Xt − an) /s)] =
λ2

2

s2
(
t+ θλ

s

)

s2

where θ = θ(t, λ) ∈ (0, 1). The proof of the following Lemma is deferred
to the Section 6. It holds

14



Lemma 22 Under the above hypotheses and notation, for any compact
set K,

lim
n→∞

sup
u∈K

s2
(
t + u

s

)

s2
= 1.

Applying the above Lemma it follows that the normalized r.v’s (Xt − an) /s
converge to a standard normal variable N(0, 1) in distribution, as n →
∞. This amounts to say that

Xt = an + sN(0, 1) + oΠan (1).

which implies that Xt concentrates around an with rate s. Due to The-
orem 20 the same holds for X1 under (Sn

1 = nan).

4.6 Conditional limit behaviour under other mean

effect events

Let X1, . . . , Xn denote n i.i.d. real valued r.v’s with distribution P
and density p and let f : R → R be a measurable function such that
Φf (λ) := E[exp(λf(X1))] is finite for λ in a non void neighborhood of 0
(the so-called Cramer condition). Denote mf (λ) and s

2
f(λ) the first and

second derivatives of log Φf (λ). Assume that the r.v. f(X1) has density
pf on R, and denote pf(f(X1) = u) its value at point u.

Denote

πa
f (y) =

exp λy

Φf (λ)
pf(y)

with λ the unique solution of the equation mf (λ) = a for all a in
Im(f(X1)) assuming that λ→ Φf (λ) is steep on its domain. Denote

F j
i := f(Xi) + . . .+ f(Xj)

for 1 ≤ i ≤ j ≤ n. We make use of the following equality

p(X1 = x|F n
1 = nan)

=
p(X1 = x)

pf(f(X1) = f(x))
×

(
pf(f(X1) = f(x))

pf(f(X1) = f(x)|F n
1 = nan)

pf(f(X1) = f(x)|F n
2 = nan − f(x))

)
.

Note that for all α in Im(f(X1)), denoting λ the solution of mf(λ) = α
and defining

fπ
α(x) :=

eλf(x)p(X = x)∫
eλf(x)p(X = x)dx

it is readily checked that

15



fπ
α(x) =

p(X1 = x)

pf (f(X1) = f(x))
πan
f (f(x)).

Denoting Pan,f the distribution of X1 given (F n
1 = nan) it results, using

Theorem 16 that the following Theorem holds.

Theorem 23 Assume that, with s substituted by sf , condition (16)
holds. Then

p(X1 = Z|F n
1 = nan) =f π

α(Z)
(
1 + oPan,f

(
1/
√
n
))

and under (17)

p(X1 = Z|F n
1 =nan)

=C
p(X1 = Z)

pf(f(X1) = f(Z))
n (αβ + an, β, f(Z)) (1 + oPan,f

(
1/
√
n
)
)

where α := αn and β := βn are defined in (20) and (21) with m and s
substituted by mf and sf .

Remark 24 The first part of the above Theorem extends the classical
Gibbs Principle under condition (16), which, for fixed a = an writes

p(X1 = x|F n
1 = na) =f π

α(x)
(
1 + o

(
1/
√
n
))

for any fixed x. See [11]. This statement does not hold any longer under
condition (17).

Remark 25 Making use of the same arguments as in Subsection 4.4 it
follows that Theorem 23 yields that the variation distance between the
conditional distribution and its approximation tends to 0 as n tends to
infinity.

Example 26 Consider for example the application of the above result
to r.v’s Y1, . . . , Yn with Yi := (Xi)

2 where the X ′is are i.i.d. and are such
that the density of the i.i.d. r.v’s Y ′i s satisfy (5), where h ∈ Rβ ∪ R∞
with β > 1. By the Gibbs conditional principle, for fixed a, condition-
ally on (

∑n
i=1 Yi = na) the generic r.v. Y1 has a non degenerate limit

distribution

p∗Y (y) :=
exp ty

E exp tY1
pY (y)

and the limit density of X1 under (
∑n

i=1X
2
i = na) is

p∗X(y) :=
exp tx2

E exp tX2
1

pX(y)

whereas, when an → ∞, Y1’s the limit conditional distribution is degen-
erate and concentrates around an. As a consequence the distribution of
X1 under the condition (

∑n
i=1X

2
i = nan) concentrates sharply at −√

an
and +

√
an.
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5 EDP under exceedance

The following proposition states the marginally conditional density un-
der condition An = {Sn

1 ≥ nan}. We denote this density by pAn
to

differentiate it from pan which is under condition {Sn
1 = nan}. For the

purpose of the proof, we need the following Lemma, based on Theo-
rem 6.2.1 of Jensen [14] in order to provide the asymptotic estimation
of the tail probability P (Sn

1 ≥ nan) and of the n-convolution density
p(Sn

1 /n = u) for u > an.
Define

I(x) := xm−1(x)− log Φ
(
m−1(x)

)
.

We make use of the following result (see Section 6 for the proof).

Lemma 27 Set m(t) = an. Suppose that an → ∞ as n → ∞. Then it
holds

P (Sn
1 ≥ nan) =

exp(−nI(an))√
2π

√
nts(t)

(
1 + o

(
1√
n

))
. (24)

Let further tτ be defined by m(tτ ) = τ with τ ≥ an, it then holds, uni-
formly upon τ

p(Sn
1 = nτ) =

√
n exp(−nI(τ))√

2πs(tτ )

(
1 + o

(
1√
n

))
. (25)

The proof of this lemma is postponed to the Section 6.

Theorem 28 Let X1, . . . , Xn be i.i.d. random variables with density
p(x) defined in (5) and h(x) ∈ R. Set m(t) = an let ηn be a positive
sequence satisfying

ηn −→ 0 and nm−1(an)ηn −→ ∞.

(i) When (16) holds

pAn
(y1) = p(X1 = y1|Sn

1 ≥ nan) = πAn
(y1)

(
1 + o

(
1√
n

))
,

with

πAn
(y1) = ts(t)enI(an)

∫ an+ηn

an

πτ (y1) exp (−nI(τ) − log s(tτ )) dτ

with tτ defined by m(tτ ) = τ .
(ii) When (17) holds

pAn
(y1) = p(X1 = y1|Sn

1 ≥ nan) = gAn
(y1)

(
1 + o

( 1√
n

))
,

17



with

gAn
(y1) = ts(t)enI(an)

∫ an+ηn

an

gτ (y1) exp (−nI(τ)− log s(tτ )) dτ,

where gτ = πτ with tτ defined by m(tτ ) = τ .

The proof is postponed to the Section 6.

Remark 29 Conditions (17) and (16) have to be compared with the
growth condition pertaining to the sequence an for which (1) holds. Con-
sider the regularly varying case, namely assume that h(x) = xβl(x) for
some β > 0. Then making use of Theorem 4 it is readily checked that
(17) amounts to

lim inf
n→∞

an
n1/(1+β)

> 0. (26)

Now (1) holds whether for some δ > 1/ (β + 1)

lim inf
n→∞

an
nδ

> 0. (27)

Assume that (27) holds; then (26) holds for all distributions p with
h(x) = xβl(x) and β > (1− δ) /δ. This can be stated as follows: Assume
that for some 0 < η < 1 it holds

lim inf
n→∞

an
nη

> 0

then whenever β > (1− η) /η (27) and (26) simultaneously hold.

6 Appendix

6.1 Proof of Theorem 6

We state a preliminary Lemma, whose role is to provide some informa-
tion on the characteristic function of the normalised random variable
(Xt −m(t)) /s(t) with density π̃t defined by

π̃t(x) :=
s(t) exp t (s(t)x+m(t)) p(s(t)x+m(t))

φ(t)
(28)

as t → ∞. The density p satisfies the hypotheses in Section 2. Denote
ϕan(u) :=

∫
eiuxπ̃t(x)dx the characteristic function of (Xt −m(t)) /s(t).

It holds
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Lemma 30 Assume that there exists c1, c2 both positive such that for
all t

π̃t(x) > c1 for |x| < c2 (29)

then under the hypotheses stated in Section 2, for any c > 0 there exists
ρ < 1 such that

|ϕan(u)| ≤ ρ (30)

for |u| > c and all an.

Proof. The proof of this Lemma is in [14], p150; we state it for com-
pleteness. Assume (29) holds with π̃t(x) > c1 for |x| > c2 and setting
ǫ := c2/2

|ϕan(u)| ≤
∣∣∣∣
∫
eizu1 (|z| < ǫ) c1dz

∣∣∣∣ +
∫

{π̃t(z)− 1 (|z| < ǫ) c1} dz

≤ c1 (2ǫ)

∣∣∣∣
eiuǫ − e−iuǫ

2iuǫ

∣∣∣∣+ {1− 2ǫc1}

and the last expression is independent on an and is such that for any
c > 0 there exists ρ < 1 such that the expression is less than ρ for |u| > c.

For the density function p(x) Theorem 5.4 of Nagaev [16] states that
the normalized tilted density of p(x), namely, π̃t(x) has the property

lim
an→∞

sup
x∈R

|π̃t(x)− ϕ(x)| = 0 (31)

which proves (29).
We now turn to the Proof of Theorem 6.
Since the proof is based on characteristic function (c.f.) arguments,

we will use the following notation, in accordance with the common use in
this area, therefore turning from laplace transform notation to character-
istic function ones. Recall that we denote π̃t the normalized conjugate
density of p(x). Also ρn is the normalized n−fold convolution of π̃t.
Hence we consider the triangular array whose n−th row consists in n
i.i.d. copies of a r.v. with standardized density π̃t and the sum of the
row, divided by

√
n, has density ρn. The standard Gaussian density is

denoted φ. The c.f. of π̃t is denoted ϕ
an so that the c.f. of ρn is (ϕan(.))n ,

and m(t) = an.
Step 1: In this step, we will express the following formula G(x) by

its Fourier transform. Let

G(x) := ρn(x)− φ(x)− µ3

6
√
ns3n

(
x3 − 3x

)
φ(x).

From

φ(x) :=
1

2π

∫ ∞

−∞
e−iτxe−

1
2
τ2dτ,

19



it follows that

φ′′′(x) = − 1

2π

∫ ∞

−∞
(iτ)3e−iτxe−

1
2
τ2dτ.

On the other hand

φ′′′(x) = −(x3 − 3x)φ(x),

which gives

(x3 − 3x)φ(x) =
1

2π

∫ ∞

−∞
(iτ)3e−iτxe−

1
2
τ2dτ. (32)

By Fourier inversion

ρn(x) =
1

2π

∫ ∞

−∞
e−iτx

(
ϕan(τ/

√
n)
)n
dτ. (33)

Using (32) and (33), we have

G(x) =
1

2π

∫ ∞

−∞
e−iτx

(
ϕan(τ/

√
n)n − e−

1
2
τ2 − µ3

6
√
ns3

(iτ)3e−
1
2
τ2
)
dτ.

Hence it holds
∣∣∣ρn(x)− φ(x)− µ3

6
√
ns3

(
x3 − 3x

)
φ(x)

∣∣∣

≤ 1

2π

∫ ∞

−∞

∣∣∣∣
(
ϕan(τ/

√
n)
)n − e−

1
2
τ2 − µ3

6
√
ns3

(iτ)3e−
1
2
τ2
∣∣∣∣ dτ.

Step 2: In this step, we show that for large n, the characteristic function
ϕan satisfies ∫

|ϕan(τ)|2dτ <∞

By Parseval identity

∫
|ϕan(τ)|2dτ = 2π

∫
(π̃t(x))

2dx ≤ 2π sup
x∈R

π̃t(x) <∞.

Use (31) to conclude the proof.
Step 3: In this step, we complete the proof by showing that when

n→ ∞
∫ ∞

−∞

∣∣∣
(
ϕan(τ/

√
n)
)n − e−

1
2
τ2 − µ3

6
√
ns3

(iτ)3e−
1
2
τ2
∣∣∣dτ = o

( 1√
n

)
. (34)
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The LHS in (34) is splitted on |τ | > ω
√
n and on |τ | ≤ ω

√
n. It

holds

√
n

∫

|τ |>ω
√
n

∣∣∣
(
ϕan(τ/

√
n)
)n − e−

1
2
τ2 − µ3

6
√
ns3

(iτ)3e−
1
2
τ2
∣∣∣dτ

≤ √
n

∫

|τ |>ω
√
n

∣∣∣
(
ϕan(τ/

√
n)
)∣∣∣

n

dτ +
√
n

∫

|τ |>ω
√
n

∣∣∣e− 1
2
τ2 +

µ3

6
√
ns3

(iτ)3e−
1
2
τ2
∣∣∣dτ

≤ √
nρn−2

∫

|τ |>ω
√
n

∣∣∣
(
ϕan(τ/

√
n)
)∣∣∣

2

dτ +
√
n

∫

|τ |>ω
√
n

e−
1
2
τ2
(
1 +

∣∣∣ µ3τ
3

6
√
ns3

∣∣∣
)
dτ.

(35)

where we used Lemma 30 from the second line to the third one. The
first term of the last line tends to 0 when n→ ∞, since

√
nρn−2

∫

|τ |>ω
√
n

∣∣∣
(
ϕan(τ/

√
n)
)∣∣∣

2

dτ

= exp

(
1

2
logn + (n− 2) log ρ+ log

∫

|τ |>ω
√
n

(
ϕan(τ/

√
n)
)2
dτ

)
−→ 0.

By Corollary 5 when n→ ∞

√
n

∫

|τ |>ω
√
n

e−
1
2
τ2
(
1 +

∣∣∣ µ3τ
3

6
√
ns3

∣∣∣
)
dτ

≤ √
n

∫

|τ |>ω
√
n

e−
1
2
τ2 |τ |3dτ =

√
n

∫

|τ |>ω
√
n

exp
{
− 1

2
τ 2 + 3 log |τ |

}
dτ

= 2
√
n exp

(
− ω2n/2 + o(ω2n/2)

)
−→ 0,

where the second equality holds from, for example, Chapiter 4 of [4].
Summing up, when n→ ∞

∫

|τ |>ω
√
n

∣∣∣
(
ϕan(τ/

√
n)
)n − e−

1
2
τ2 − µ3

6
√
ns3

(iτ)3e−
1
2
τ2
∣∣∣dτ = o

( 1√
n

)
.

If |τ | ≤ ω
√
n, it holds

∫

|τ |≤ω√n

∣∣∣
(
ϕan(τ/

√
n)
)n − e−

1
2
τ2 − µ3

6
√
ns3

(iτ)3e−
1
2
τ2
∣∣∣dτ

=

∫

|τ |≤ω√n
e−

1
2
τ2
∣∣∣
(
ϕan(τ/

√
n)
)n
e

1
2
τ2 − 1− µ3

6
√
ns3

(iτ)3
∣∣∣dτ

=

∫

|τ |≤ω√n
e−

1
2
τ2
∣∣∣ exp

{
n logϕan(τ/

√
n) +

1

2
τ 2
}
− 1− µ3

6
√
ns3

(iτ)3
∣∣∣dτ.

(36)
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The integrand in the last display is bounded through

|eα − 1− β| = |(eα − eβ) + (eβ − 1− β)| ≤ (|α− β|+ 1

2
β2)eγ,

where γ ≥ max(|α|, |β|); this inequality follows replacing eα, eβ by their
power series, for real or complex α, β. Denote by

γ(τ) = logϕan(τ) +
1

2
τ 2.

Since γ′(0) = γ′′(0) = 0, the third order Taylor expansion of γ(τ) at
τ = 0 yields

γ(τ) = γ(0) + γ′(0)τ +
1

2
γ′′(0)τ 2 +

1

6
γ′′′(ξ)τ 3 =

1

6
γ′′′(ξ)τ 3,

where 0 < ξ < τ . Hence it holds

∣∣∣γ(τ)− µ3

6s3
(iτ)3

∣∣∣ =
∣∣∣γ′′′(ξ)− µ3

s3n
i3
∣∣∣τ

3

6
.

Here γ′′′ is continuous; thus we can choose ω small enough such that
|γ′′′(ξ)| < ρ for |τ | < ω. Meanwhile, for n large enough, according to
Corollary 5, we have µ3/s

3 → 0. Hence it holds for n large enough

∣∣∣γ(τ)− µ3

6s3
(iτ)3

∣∣∣ ≤
(
|γ′′′(ξ)|+ ρ

) |τ |3
6

< ρτ 3. (37)

Choose ω small enough, such that for n large enough it holds for |τ | < ω

∣∣∣ µ3

6s3
(iτ)3

∣∣∣ ≤ 1

4
τ 2, and γ(τ)| ≤ 1

4
τ 2.

For this choice of ω, when |τ | < ω we have

max
(∣∣∣ µ3

6s3
(iτ)3

∣∣∣, |γ(τ)|
)
≤ 1

4
τ 2.

Replacing τ by τ/
√
n, it holds for |τ | < ω

√
n, and using (37)

∣∣∣n logϕan(τ/
√
n) +

1

2
τ 2 − µ3

6
√
ns3

(iτ)3
∣∣∣

= n
∣∣∣ logϕan(τ/

√
n) +

1

2

( τ√
n

)2

− µ3

6s3

( iτ√
n

)3∣∣∣

= n
∣∣∣γ
( τ√

n

)
− µ3

6s3

( iτ√
n

)3∣∣∣ < ρ|τ |3√
n
.
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In a similar way, it also holds for |τ | < ω
√
n

max
(∣∣∣n logϕan(τ/

√
n) +

1

2
τ 2
∣∣∣,
∣∣∣ µ3

6
√
ns3

(iτ)3
∣∣∣
)

= nmax
(∣∣∣γ

( τ√
n

)∣∣∣,
∣∣∣ µ3

6s3

( iτ√
n

)3∣∣∣
)
≤ 1

4
τ 2.

Turn to the integrand in (36). We then for |τ | < ω
√
n

∣∣∣ exp
{
n logϕan(τ/

√
n) +

1

2
τ 2
}
− 1− µ3

6
√
ns3

(iτ)3
∣∣∣

≤
(∣∣∣n logϕan(τ/

√
n) +

1

2
τ 2 − µ3

6
√
ns3

(iτ)3
∣∣∣+ 1

2

∣∣∣ µ3

6
√
ns3

(iτ)3
∣∣∣
2)

× exp
[
max

(∣∣∣n logϕan(τ/
√
n) +

1

2
τ 2
∣∣∣,
∣∣∣ µ3

6
√
ns3

(iτ)3
∣∣∣
)]

≤
(ρ|τ |3√

n
+

1

2

∣∣∣ µ3

6
√
ns3

(iτ)3
∣∣∣
2)

exp
(τ 2
4

)

=
(ρ|τ |3√

n
+

µ2
3τ

6

72ns6

)
exp

(τ 2
4

)
.

Use this upper bound to obtain

∫

|τ |≤ω√n

∣∣∣
(
ϕan(τ/

√
n)
)n − e−

1
2
τ2 − µ3

6
√
ns3

(iτ)3e−
1
2
τ2
∣∣∣dτ

≤
∫

|τ |≤ω√n
exp

(
− τ 2

4

)(ρ|τ |3√
n

+
µ2
3τ

6

72ns6

)
dτ

=
ρ√
n

∫

|τ |≤ω√n
exp

(
− τ 2

4

)
|τ |3dτ + µ2

3

72ns6

∫

|τ |≤ω√n
exp

(
− τ 2

4

)
τ 6dτ,

where both the first integral and the second integral are finite, and ρ is
arbitrarily small; use Corollary 5, to obtain

∫

|τ |≤ω√n

∣∣∣
(
ϕan(τ/

√
n)
)n − e−

1
2
τ2 − µ3

6
√
ns3

(iτ)3e−
1
2
τ2
∣∣∣dτ = o

( 1√
n

)
.

This gives (34), and therefore we obtain

∣∣∣π̄an
n (x)− φ(x)− µ3

6
√
ns3

(
x3 − 3x

)
φ(x)

∣∣∣ = o
( 1√

n

)
,

which concludes the proof.
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6.2 Proof of Theorem 8

It is well known and easily checked that the conditional density p(Xk
1 =

yk1 |Sn
1 = nan) is invariant under any i.i.d sampling scheme in the family

of densities πα as α belongs to Im(X1) (commonly called tilting change
of measure). Namely

p(Xk
1 = yk1 |Sn

1 = nan) = πα(Xk
1 = yk1 |Sn

1 = nan)

where on the LHS the Xi’s are sampled i.i.d. under p and on the RHS
they are sampled i.i.d. under πα.

Using Bayes formula, it thus holds

p(X1 = y1|Sn
1 = nan) = πm(X1 = y1|Sn

1 = nan)

= πm(X1 = y1)
πm(Sn

2 = nan − y1)

πm(Sn
1 = nan)

=

√
n√

n− 1
πm(X1 = y1)

π̃n−1(
m−y1
s
√
n−1)

π̃n(0)
, (38)

where π̃n−1 is the normalized density of Sn
2 under i.i.d. sampling with the

density πan ; correspondingly, π̃n is the normalized density of Sn
1 under

the same sampling. Note that a r.v. with density πan has expectation m
and variance s2. Perform a third-order Edgeworth expansion of π̃n−1(z),
using Theorem 6. It follows

π̃n−1(z) = φ(z)
(
1 +

µ3

6s3
√
n− 1

(z3 − 3z)
)
+ o

( 1√
n

)
,

The approximation of π̃n(0) is

π̃n(0) = φ(0)
(
1 + o

( 1√
n

))
.

Hence (38) becomes

p(X1 = y1|Sn
1 = nan)

=

√
n√

n− 1
πm(X1 = y1)

φ(z)

φ(0)

[
1 +

µ3

6s3
√
n− 1

(z3 − 3z) + o
( 1√

n

)]
(39)

=

√
2πn√
n− 1

πm(X = y1)φ(z)
(
1 +Rn + o(1/

√
n)
)
,

where
Rn =

µ3

6s3
√
n− 1

(z3 − 3z).
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Under condition (16), by Corollary (5), µ3/s
3 → 0. This yields

Rn = o
(
1/
√
n
)
,

which gives

p(X1 = y1|Sn
1 = nan) = πm(X = y1)

(
1 + o(1/

√
n)
)

as claimed.

6.3 Proof of Proposition 11

Denote

zi :=
mi − yi+1

si
√
n− i− 1

where
s2i := s2(ti).

We first state a Lemma pertaining to the order of magnitude of zi.
The proof of this Lemma is in the next Subsection

Lemma 31 Assume that h(x) ∈ R. Let ti be defined by (19). Assume
that an → ∞ as n→ ∞ and that (16) holds. Then as n→ ∞

lim
n→∞

sup
0≤i≤k−1

zi = 0, and sup
0≤i≤k−1

z2i = o

(
1√
n

)
.

We turn to the proof of Proposition 11.
It holds by Bayes formula,

pan(y
k
1) =

k−1∏

i=0

p(Xi+1 = yi+1|Sn
i+1 = nan − si1).

Using the invariance of the conditional distributions under the tilting
it holds, for any i between 1 and k − 1

p(Xi+1 = yi+1|Sn
i+1 = nan − Si

1) =

√
2π(n− i)√
n− i− 1

πmi(Xi+1 = yi+1)φ(zi)
(
1 + o(1/

√
n)
)

=

√
n− i√

n− i− 1
πmi(Xi+1 = yi+1)

(
1− z2i /2 + o(z2i )

) (
1 + o(1/

√
n)
) )
,

where we used a Taylor expansion in the second equality. Using once
more Lemma 31, under conditions (16), we have as an → ∞

z2i = o(1/
√
n).
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Hence we get

p(Xi+1 = yi+1|Sn
i+1 = nan−si1) =

√
n− i√

n− i− 1
πmi(Xi+1 = yi+1)

(
1+o(1/

√
n)
)
,

which yields

p(Xk
1 = yk1 |Sn

1 = nan) =
k−1∏

i=0

( √
n− i√

n− i− 1
πmi(Xi+1 = yi+1)

(
1 + o(1/

√
n)
))

=
k−1∏

i=0

πmi(Xi+1 = yi+1)
k−1∏

i=0

√
n− i√

n− i− 1

k−1∏

i=0

(
1 + o

(
1√
n

))

=

(
1 + o

(
1√
n

)) k−1∏

i=0

πmi(Xi+1 = yi+1),

The proof is completed.

6.4 Proof of Lemma 31

When n→ ∞, it holds
zi ∼ mi/(si

√
n).

From Theorem 4, it holds

zi ∼
ψ(ti)√
nψ′(ti)

.

Since mi ∼ mk as n→ ∞, it holds

mi ∼ ψ(tk).

Hence
ψ(ti) ∼ ψ(tk).

Case 1: if h(x) ∈ Rβ . Hence

h
′

(x) = xβ−1l0(x) (β + ǫ(x)) .

Set x = ψ(t); we get

h
′

(ψ(t)) = ψ(t)β−1l0 (ψ(t)) (β + ǫ (ψ(t))) .

Notice that ψ
′

(t) = 1/h
′

(ψ(t)); we obtain

ψ′(ti)

ψ′(tk)
=
h

′

(ψ(tk))

h′ (ψ(ti))
=

(ψ(tk))
β−1 l0 (ψ(tk)) (β + ǫ (ψ(tk)))

(ψ(ti))
β−1 l0 (ψ(ti)) (β + ǫ (ψ(ti)))

−→ 1,
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where we use the slowly varying propriety of l0. Thus it holds

ψ′(ti) ∼ ψ′(tk),

which yields

zi ∼
ψ(tk)√
nψ′(tk)

.

Hence we have under condition (16)

z2i ∼ ψ(tk)
2

nψ′(tk)
=

ψ(tk)
2

√
nψ′(tk)

1√
n
= o

(
1√
n

)
,

which implies further that zi → 0.
Case 2: if h(x) ∈ R∞. It holds m(tk) ≥ m(ti) as n→ ∞. Since the

function t→ m(t) is increasing, we have

ti ≤ tk.

The function t→ ψ
′

(t) is decreasing, since

ψ
′′

(t) = −ψ(t)
t2

ǫ(t) (1 + o(1)) < 0 as t→ ∞.

Therefore as n→ ∞
ψ′(ti) ≥ ψ′(tk) > 0,

which yields

zi ∼
ψ(ti)√
nψ′(ti)

≤ 2ψ(tk)√
nψ′(tk)

,

hence we have

z2i ≤ 4ψ(tk)
2

nψ′(tk)
=

4ψ(tk)
2

√
nψ′(tk)

1√
n
= o

(
1√
n

)
,

where the last step holds from condition (16). Further it holds zi → 0.
This closes the proof of the Lemma.

6.5 Proof of Lemma 22

Case 1: if h(t) ∈ Rβ. By Theorem 4, it holds s2 ∼ ψ′(t) with ψ(t) ∼
t1/βl1(t), where l is some slowly varying function. Consider ψ′(t) =
1/h

′
(
ψ(t)

)
, hence

1

s2
∼ h

′
(
ψ(t)

)
= ψ(t)β−1l0

(
ψ(t)

)(
β + ǫ

(
ψ(t)

))

∼ βt1−1/βl1(t)
β−1l0

(
ψ(t)

)
= o(t),

27



where l0 ∈ R0. This implies for any u ∈ K

u

s
= o(

√
t),

which yields, using (9)

s2 (t+ u/s)

s2
∼ ψ′(t + u/s)

ψ′(t)
=

ψ(t)β−1l0
(
ψ(t)

)(
β + ǫ

(
ψ(t)

))
(
ψ(t+ u/s)

)β−1
l0
(
ψ(t + u/s)

)(
β + ǫ

(
ψ(t+ u/s)

))

∼ ψ(t)β−1

ψ(t+ u/s)β−1
∼ t1−1/βl1(t)

β−1

(t+ u/s)1−1/βl1(t + u/s)β−1
−→ 1.

Case 2: if h(t) ∈ R∞. Then ψ(t) ∈ R̃0, hence it holds

1

st
∼ 1

t
√
ψ′(t)

=

√
1

tψ(t)ǫ(t)
−→ 0,

which last step holds from condition (12). Hence for any u ∈ K, we get
as n→ ∞

u

s
= o(t),

thus using the slowly varying propriety of ψ(t) we have

s2 (t+ u/s)

s2
∼ ψ′(t + u/s)

ψ′(t)
=
ψ(t+ u/s)ǫ(t+ u/s)

t+ u/s

t

ψ(t)ǫ(t)

∼ ǫ(t + u/s)

ǫ(t)
=
ǫ(t) +O

(
ǫ′(t)u/s

)

ǫ(t)
−→ 1, (40)

where we used a Taylor expansion in the second line, and where the last
step holds from condition (12). This completes the proof.

6.6 Proof of Theorem 12

Making use of

p(Xk
1 = yk1 |Sn

1 = nan) =

k−1∏

i=0

p(Xi+1 = yi+1|Sn
i+1 = nan − si1),

and using the tilted density πan instead of πmi it holds

p(Xi+1 = yi+1|Sn
i+1 = nan−si1) =

√
n− i√

n− i− 1
πan(Xi+1 = yi+1)

π̃n−i−1(
(i+1)an−si+1

1

s
√
n−i−1 )

π̃n−i

(
ian−si1
s
√
n−i

) ,

(41)
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where π̃n−i−1 is the normalized density of Sn
i+2 under i.i.d. sampling with

πan . Correspondingly, denote π̃n−i the normalized density of Sn
i+1 under

the same sampling. Write

zi =
ian − si−11

s
√
n− i+ 1

.

By Theorem 6 a third-order Edgeworth expansion yields

π̃n−i−1(zi) = φ(zi)
(
1 +Ri

n

)
+ o

(
1√
n

)
,

where
Ri

n =
µ3

6s3
√
n− i− 1

(z3i − 3zi).

Accordingly

π̃n−i(zi−1) = φ(zi−1)
(
1 +Ri−1

n

)
+ o

(
1√
n

)
.

When an → ∞, using Theorem 4, it holds

sup
0≤i≤k−1

z2i ∼ (i+ 1)2a2n
s2n

≤ 2k2a2n
s2n

=
2k2(m(t))2

s2n

∼ 2k2(ψ(t))2

ψ′(t)n
=

2k2(ψ(t))2√
nψ′(t)

1√
n
= o

(
1√
n

)
,

(42)

where the last step holds under condition (16). Hence it holds zi → 0
for 0 ≤ i ≤ k − 1 as an → ∞, and by Corollary 5, µ3/s

3 → 0; Hence

Ri
n = o

(
1/
√
n
)
and Ri−1

n = o
(
1/
√
n
)
.

We thus get

p(Xi+1 = yi+1|Sn
i+1 = nan − si1) =

√
n− i√

n− i− 1
πan(Xi+1 = yi+1)

φ(zi)

φ(zi−1)

(
1 + o(1/

√
n)
)

=

√
n− i√

n− i− 1
πan(Xi+1 = yi+1)

(
1− (z2i − z2i−1)/2 + o(z2i − z2i−1)

) (
1 + o(1/

√
n)
)
,

where we used a Taylor expansion in the second equality. Using (42),
we have as an → ∞

|z2i − z2i−1| = o(1/
√
n),

from which

p(Xi+1 = yi+1|Sn
i+1 = nan−si1) =

√
n− i√

n− i− 1
πan(Xi+1 = yi+1)

(
1 + o(1/

√
n)
)
,
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which yields

p(Xk
1 = yk1 |Sn

1 = nan) =

k−1∏

i=0

(
πan(Xi+1 = yi+1)

√
n

n− k

) k−1∏

i=0

(
1 + o

(
1√
n

))

=

(
1 + o

(
1√
n

)) k−1∏

i=0

πan(Xi+1 = yi+1).

This completes the proof.

6.7 Proof of Lemma 27

For a density p(x) defined in as in (5), we show that g(x) is a convex
function when x is large. If h(x) ∈ Rβ, for x large

g
′′

(x) = h
′

(x) =
h(x)

x
(β + ǫ(x)) > 0.

If h(x) ∈ R∞, its reciprocal function ψ(x) ∈ R̃0. Set x := ψ(v). Then

g
′′

(x) = h′(x) =
1

ψ′(v)
=

v

ψ(v)ǫ(v)
> 0,

where the inequality holds since ǫ(v) > 0 when v is large enough. Hence
g(x) is convex for large x. Therefore, the density p(x) with h(x) ∈ R
satisfies the conditions of Theorem 6.2.1 in [14]. Denote by pn the density
of X̄ = (X1+ . . .+Xn)/n. We obtain from formula (2.2.6) of [14], using
a third order Edgeworth expansion

P (Sn
1 ≥ nan) =

Φ(t)n exp(−ntan)√
nts(t)

(B0(λn)) +O

(
µ3(t)

6
√
ns3(t)

B3(λn)

)
,

where λn =
√
nts(t), B0(λn) and B3(λn) are defined by

B0(λn) =
1√
2π

(
1− 1

λ2n
+ o(

1

λ2n
)

)
, B3(λn) ∼ − 3√

2πλn
.

We show that as an → ∞

1

λ2n
= o

(
1

n

)
. (43)

Since n/λ2n = 1/(t2s2(t)), (43) is equivalent to show that

t2s2(t) −→ ∞.
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By Theorem 4, m(t) ∼ ψ(t) and s2(t) ∼ ψ′(t); combined withm(t) = an,
it holds t ∼ h(an)l1(an), where l1 is some slowly varying function. If
h ∈ Rβ, notice that

ψ′(t) =
1

h′(ψ(t))
=

ψ(t)

h (ψ(t)) (β + ǫ(ψ(t)))
∼ an
h(an) (β + ǫ(ψ(t)))

;

hence

t2s2(t) ∼ h(an)
2l1(an)

2 an
h(an) (β + ǫ(ψ(t)))

=
anh(an)l1(an)

2

β + ǫ(ψ(tn))
−→ ∞.

If h ∈ R∞, then ψ(t) ∈ R̃0, thus

t2s2(t) ∼ t2
ψ(t)ǫ(t)

t
= tψ(t)ǫ(t) −→ ∞,

Summing up we have proved that

B0(λn) =
1√
2π

(
1 + o

(
1

n

))
.

By (43), λn goes to ∞ as an → ∞; this implies further that B3(λn) → 0.
On the other hand, by Corollary 5 it holds µ3/s

3 → 0. Hence we obtain

P (Sn
1 ≥ nan) =

Φ(t)n exp(−ntan)√
2πnts(t)

(
1 + o

(
1√
n

))
,

which gives (24). By Jensen’s Theorem 6.2.1 ([14]) and formula (2.2.4)
in [14] it follows uniformly in τ

p(Sn
1 /n = τ) =

√
nΦ(tτ )

n exp(−ntτ τ)√
2πs(tτ )

(
1 + o

(
1√
n

))
,

which, together with p(Sn
1 = nτ) = (1/n)p(Sn

1 /n = τ), gives (25).

6.8 Proof of Theorem 28

It holds

pAn
(y1) =

∫ ∞

an

p(X1 = y1|Sn
1 = nτ)p(Sn

1 = nτ |Sn
1 ≥ nan)dτ

=
p(X1 = y1)

P (Sn
1 ≥ nan)

∫ ∞

an

p(Sn
2 = nτ − y1)dτ

=

(
1 +

P2

P1

)
p(X1 = y1)

P (Sn
1 ≥ nan)

∫ an+ηn

an

p(Sn
2 = nτ − y1)dτ

=

(
1 +

P2

P1

)∫ an+ηn

an

p(X1 = y1|Sn
1 = nτ)p(Sn

1 = nτ |Sn
1 ≥ nan)dτ

(44)
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where the second equality is obtained by Bayes formula, and

P1 =

∫ an+ηn

an

p(Sn
2 = nτ − y1)dτ,

P2 =

∫ ∞

an+ηn

p(Sn
2 = nτ − y1)dτ.

We show that P2 is infinitely small with respect to P1. Indeed

P2 =
1

n
P (Sn

2 ≥ n(an + ηn)− y1) =
1

n
P (Sn

2 ≥ (n− 1)cn) ,

P1 + P2 =
1

n
P (Sn

2 ≥ nan − y1) =
1

n
P (Sn

2 ≥ (n− 1)dn) ,

where cn = (n(an + ηn)− y1) /(n − 1) and dn = (nan − y1)/(n − 1).
Denote tcn = m−1(cn) and tdn = m−1(dn). Using Lemma 27, it holds

P2

P1 + P2
=

(
+o

(
1√
n

))
tdns(tdn)

tcns(tcn)
exp (−(n− 1) (I(cn)− I(dn))) .

Using the convexity of the function I, it holds

exp (−(n− 1)I(cn)− I(dn)) ≤ exp−(n− 1)(cn − dn)m
−1(dn)

= exp−nηnm−1(dn).

The function u → m−1(u) is increasing. Since dn ≥ an as an → ∞,
it holds m−1(dn) ≥ m−1(an); hence exp−(n − 1) (I(cn)− I(dn)) ≤
exp−nηnm−1(an) −→ 0. We now show that

tdns(tdn)

tcns(tcn)
−→ 1.

By definition, cn/dn → 1 as an → ∞. If h ∈ Rβ, it holds

(
tdns(tdn)

tcns(tcn)

)2

∼
(

dnh(dn)

β + ǫ (ψ(dn))

)2(
β + ǫ (ψ(cn))

cnh(cn)

)2

∼
(
h(dn)

h(cn)

)2

−→ 1.

If h ∈ R∞,
t2s2(t) ∼ tψ(t)ǫ(t),

hence

(
tdns(tdn)

tcns(tcn)

)2

∼ dnψ(dn)ǫ(dn)

cnψ(cn)ǫ(cn)
∼ ǫ(dn)

ǫ(cn)
=
ǫ (cn − nηn/(n− 1))

ǫ(cn)
−→ 1,

32



where last step holds by using the same argument as in the second line
of (40). We obtain

P2

P1
= o (1) .

Therefore pAn
(y1) can be approximated by

pAn
(y1) = (1 + o (1))

∫ an+ηn

an

p(X1 = y1|Sn
1 = nτ)p(Sn

1 = nτ |Sn
1 ≥ nan)dτ.

By Lemma 27, it follows that uniformly when τ ∈ [an, an + ηn]

p(Sn
1 = nτ |Sn

1 ≥ nan) =
p(Sn

1 = nτ)

P (Sn
1 ≥ nan)

=

(
1 + o

(
1√
n

))
ts(t)

s(tτ )
exp (−n(I(τ)− I(an))) , (45)

We now turn back to (44) and note that under the appropriate condition
(16) or (17) the corresponding approximating density πτ or gτ can be
seen to hold uniformly on τ in (an, an + ηn). Inserting (45) into (44),
we complete the proof of Theorem 28 insering the corresponding local
result.
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