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ABSTRACT

In this paper, we address the problem of multimodal emotion
recognition from multiple physiological signals. We demon-
strate that a Transformer-based approach is suitable for this
task. In addition, we present how such models may be pre-
trained in a multimodal scenario to improve emotion recogni-
tion performances. We evaluate the benefits of using multi-
modal inputs and pre-training with our approach on a state-of-
the-art dataset.

Keywords Affective Computing, Multimodal Emotion
Recognition, Machine Learning.

1 Introduction

The increasing availability of mass-market wearable devices
equipped with sensors for physiological signals provides new
possibilities for monitoring the emotional health and well-
being of users [1]. Although less reliable than medical-grade
sensors, signals from wearable sensors like electrocardiograms
(ECG) and electroencephalograms (EEG) can be combined to
provide estimates of the emotional state of users.

In this work, we report on experiments with a Transformer-
based approach for interpreting emotional state from different
physiological signals obtained from wearable devices. We ex-
plore the estimation of emotional state from individual sen-
sor modalities, including EEG and ECG, and show that fus-
ing the two modalities leads to better results indicating that
these modalities convey complementary information. Further-
more, we demonstrate that a Transformer-based approach can
be used to provide reliable estimates of emotional state from
such signals.

We center our work on recognizing emotions from ECG and
EEG signals. There are other works that address multimodal
emotion recognition [2–5], but the majority use signals such
as images, sound and text, and not physiological signals. Al-
though some authors have explored the use of physiological
signals for emotion recognition [6–8], such signals have re-
ceived less attention than other sensing modalities.

A common problem when addressing the task of emotion
recognition is the lack of labeled data to effectively train deep-
learning models [6]. A possible approach to address this prob-
lem is the use of unsupervised pre-training techniques [9].
However, pre-training with multiple signal modalities raises
additional challenges. In this work, we investigate the use of
a late-fusion approach, where we pre-train and fine-tune dif-
ferent single-modality models, and then combine the outputs
of the individual models to obtain a fused feature that can be
used to perform emotion prediction.

We use a Transformer [10] to process physiological signals.
The Transformer was originally developed for Natural Lan-
guage Processing (NLP) tasks, with the intent of processing
sequences of words. Given that physiological signals are se-
quences of values, the Transformer can be adapted for physio-
logical signal processing [11]. Transformers employ a learned
attention mechanism to dynamically score the relevance of
different parts of an input according to context. Attention-
based processing is appropriate for processing physiological
signals, as some parts of a signal may convey more informa-
tion than other parts depending on the task and context. An-
other advantage of using a Transformer is that we can bene-
fit from a very successful pre-training technique described in
BERT [12] and developed for NLP tasks, which we can adapt
to our needs. This pre-training strategy has been successfully
adapted to other domains like Computer Vision [13], Speech
Processing [14] and Affective Computing [15].

The main contributions of this paper are:

1. We present a technique for recognizing emotions
from multimodal physiological signals using a Trans-
former.

2. We describe a method to pre-train the Transformer for
recognizing emotions from multimodal physiological
signals.

3. We provide results from experiments that show that
a multimodal pre-training strategy is effective for im-
proving emotion recognition performances.
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2 Related Work

Contrary to traditional techniques like Gaussian naive Bayes
[16], k-Nearest Neighbours [17] and Support Vector Machines
[6], deep-learning may be used to recognize emotions directly
from sensor signals without a need to design feature descrip-
tors. This is particularly useful for the recognition of emotions
from physiological signals where there are no well-established
feature descriptors for signal encoding.

An example of a deep-learning approach is provided by the
work of Santamaria et al. [18], where they employ models
based on Convolutional Neural Networks (CNN) to perform
emotion recognition. Another example is the work of Harper
and Southern [19], who use a combination of Recurrent Neu-
ral Networks (RNN) and CNNs. The Transformer [10], which
uses stacked layers of self-attention, has recently emerged as
a powerful alternative to Convolutional and Recurrent Net-
works. In this work, we are interested in whether a Trans-
former architecture can be an effective tool to recognize emo-
tions from multiple physiological signals.

A variety of authors have explored deep-learning models for
emotion recognition using multimodal signals. Most of these
works use images, audio and/or text as inputs [2–5, 20, 21]. In
a few cases, physiological signals have been used to improve
recognition from image, audio and text [22–24]. A few authors
have described the use of multiple physiological signal modal-
ities [6–8]. These works consistently demonstrate the benefits
of exploiting multiple signal modalities to improve the perfor-
mance of emotion recognition.

Some multimodal approaches employ pre-training techniques
to improve their results. The authors of [2–5] develop models
based on Transformers, using images, audio and text to recog-
nize emotions. Rahman et al. [2] report on the use of BERT
[12], a Transformer-based model pre-trained for NLP tasks,
to process text, incorporating visual and audio modalities in a
middle-fusion process. Siriwardhana et al. [3, 4] describes the
use of pre-trained models to extract features from visual, au-
dio and text modalities, and followed by a cross-modal Trans-
former [25] to combine these different features. Khare et al.
[5] use a BERT-like approach, masking some words in the in-
put text, along with the audio and visual parts that correspond
to those words, and then pre-training the model by predicting
the masked words.

Some authors have explored pre-training approaches to rec-
ognize emotions from physiological signals. Sarkar and
Etemad [26] pre-train their CNN-based model by modifying
the input signal with different transformations, such as adding
noise or upscaling, and then pre-training the model to predict
which transformation was used on the input signal. Vazquez-
Rodriguez et al. [15] use a model based on a Transformer,
which is pre-trained by masking some values in the input
signal and trying to predict those masked values. These ap-
proaches only employ a single physiological modality.

Other works have explored pre-training for multimodal emo-
tion recognition from physiological signals. Ross et al. [8]
and Liu et al. [27] use Variational Autoencoders (VAE) for
each modality to extract representations from each physiolog-

ical signal. The representations of all signals are then concate-
nated, and a second-level classifier is trained to predict emo-
tion. Yang and Lee [28] also use a VAE, but they use a single
VAE by concatenating the different signals at the input level.
However, unlike the use of the Transformer, these approaches
do not benefit from self-attention.

We can see that there is a void in the research regarding dif-
ferent approaches for emotion recognition: multimodal pre-
training approaches are not typically used on physiological
signals; conversely, pre-training approaches for physiologi-
cal signals are usually single-modality; finally, the few mul-
timodal pre-trained approaches for physiological signals we
surveyed don’t use attention-based models. In this work, we
thus propose to investigate the use of attention-based models
like the Transformer to recognize emotions in a multimodal
physiological scenario, with the use of pre-training techniques.

3 Approach

3.1 Multimodal Emotion Recognition

When performing a classification task using multiple modali-
ties, an important problem is to determine the processing level
at which different signal modalities should be combined or
fused. One option is early-fusion, where the combination of
input features is used as input for the model. A second op-
tion is to do late-fusion, where the outputs of single-modality
models are combined and a second-level model is trained to
perform the classification. A third option is a compromise be-
tween these two extremes: middle-fusion that combines fea-
tures from intermediate layers of the models.

Early-fusion can be provided by simply concatenating the in-
put signals in the temporal dimension, to form a single (longer)
sequence. The problem with this approach is that the computa-
tional complexity of the Transformer is O(n2), where n is the
length of the input. Therefore, a late-fusion approach has the
advantage of simplifying the training process: several single-
modality models can be trained one by one on less powerful
hardware than the one required to train a single, more com-
putationally expensive multimodal model. Then, if the single-
modality models are frozen, the second-level model of the late-
fusion approach can also be easily trained without using very
powerful hardware resources. A similar reasoning can be ap-
plied to see the advantages of late-fusion over middle-fusion
in this scenario.

Another major difficulty with early-fusion is that it hinders the
benefits of pre-training techniques. With pre-training, we seek
to use many different datasets, not necessarily related to the
task of emotion recognition, to obtain a more general represen-
tation of the information from the different modalities. How-
ever, early-fusion limits pre-training to datasets that include
all of the targeted modalities, thus severely limiting the avail-
ability of datasets that can be used. With late-fusion, one can
pre-train each single-modality model independently from one
another, with potentially different datasets.

In our case, we are interested in a multimodal approach that
allows us to use pre-training techniques to improve the per-
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formance of the model. In particular, we are interested in
attention-based models such as the Transformer [10], and in
pre-training techniques similar to the ones used in BERT [12].

In this work, we explore the use of a late fusion approach.
This allows self-supervised pre-training for individual sensor
modalities by reconstructing masked values in the input sig-
nal, similar to what is done in BERT [12]. We refer to this as
Masked Value Prediction or simply MVP.

With this approach, recognition training is performed in two
steps. In the first step, we train two single-modality models:
one to recognize emotions from electrocardiogram (ECG) sig-
nals, and one to recognize emotions from electroencephalo-
gram (EEG) signals. Both models are trained separately, us-
ing MVP pre-training. In the second step, we concatenate the
outputs of the single-modality models and use this combined
representation to train a Fully-Connected Network (FCN) to
recognize emotions. While other fusion approaches may be
possible like max or average pooling, or majority voting, con-
catenation has been found to provide a simple and effective
technique for use with Transformers.

In the rest of this section, we provide details about the ECG
and EEG single-modality models, and the fused model that
combines both signals.

3.2 ECG Single-Modality Emotion Recognition

For our ECG emotion recognizer, we employ the approach de-
scribed in [15] and depicted in Figure 1. In this approach, a
pre-training step is first used prior to fine-tuning the model to
improve its performance. We provide a brief description of
this approach in the remainder of this subsection. We refer the
reader to the original paper for further details.

The ECG single-modality emotion recognition model from
[15] is based on the Transformer [10]. The Transformer is
an architecture capable of incorporating contextualized infor-
mation thanks to its self-attention mechanisms. As shown in
Figure 1, the model first encodes ECG signals using a 1D Con-
volutional Neural Network (1D-CNN) to obtain a sequence
of features that represent the input signal. Then, similar to
BERT [12], a classification token named CLS is added to the
beginning of the sequence of features. In the next step, the
feature sequence appended with the CLS token is fed into
a Transformer, which produces contextualized representations
of the signal. Then, the process follows one of two paths, de-
pending on if we are in the pre-training phase or the fine-tuning
phase.

3.2.1 Pre-Training Phase

The pre-training task consists in using MVP, that is, masking
some points from the original signal, and then predicting those
masked points with the help of a Fully-Connected Network
(FCN) placed on top of the Transformer, as can be seen in
path A of Figure 1. Since this task is self-supervised, we do
not need labeled data for this phase.

3.2.2 Fine-Tuning Phase

After the model has been pre-trained, it is fine-tuned to rec-
ognize emotions. As depicted in path B of Figure 1, the vec-
tor CLSe, which is the representation of the CLS token, is
used as input of an FCN that functions as a classifier to predict
the emotion. Starting with the same pre-trained weights, the
model is fine-tuned twice: one to predict arousal and another
to predict valence. Thus, Predicted Emotion in Figure 1 refers
to either arousal or valence. During this phase, all the parame-
ters of the model, including the Transformer and the 1D-CNN
parameters, are fine-tuned. This phase is supervised, therefore
labeled data is employed.

3.3 EEG Single-Modality Emotion Recognition

To build our EEG single-modality emotion recognition model,
we adapt the ECG model from [15] and described in the pre-
vious subsection, to accept EEG signals.

First, we need to take into account that the ECG signal has
only one channel, while the EEG signal is typically multi-
channel. Therefore, the 1D-CNN that encodes the raw signal
has to be changed from having one-channel input to having
as many inputs as the number of channels present in the EEG
signal, while the rest of the structure of the 1D-CNN remains
the same. The shape of the output from the 1D-CNN encoder
remains similar to the original ECG model, and thus we can
keep the same Transformer architecture.

Secondly, during the pre-training of the model, we mask the
same temporal segments of the EEG signal across all the dif-
ferent channels. The size of the output layer of the FCN that
works as masked-point predictor has to be the same as the
number of input channels. This way, each predicted output
value corresponds to the (masked) value of each channel.

Aside from these changes, no other adaptation is needed for
fine-tuning the EEG model, as we employ the CLSe vector as
input for the FCN used as a classifier to predict the emotion,
as it is done in the ECG model.

3.4 Fused-Signals Emotion Recognition Model

We use late-fusion to fuse the ECG and EEG signals, using
the outputs from each of the trained single-modality emotion
recognizers. As depicted in Figure 2, we take the output of
the last hidden layer of the FCN (not from the output layer)
of each single-modality model, and we concatenate those out-
puts to form our combined features. Although other methods
might be considered to do this fusion, for example using aver-
age pooling of the outputs of the single-modality recognizers,
we employ concatenation because it allows us to have single-
modality models with outputs of different sizes. This is conve-
nient because this way we can choose without constraints the
output sizes that make the fused model perform the best.

To perform the emotion prediction from the fused modalities,
we use another FCN that we refer to as Multimodal Emotion
Classifier in Figure 2. For this step, we freeze the weights
of the single-modality emotion recognizers, and only train the
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Raw Physiological Signal
(Values masked during pre-training)

1D - CNN

Feature SequenceCLS

TRANSFORMER

Signal RepresentationsCLSe

FCN Masked Values Predictor

Predicted Masked Values

(A)
Only During Pre-Training

FCNEmotion Classifier

Predicted Emotion

(B)
Only During Fine-Tuning

Figure 1: Single-Modality Emotion Recognizer: The raw signal is encoded by a 1D-CNN and processed with a Transformer.
First, the model is pre-trained by masking some values of the unlabeled input signal and then predicting those masked values
(Part A). Then, labeled data is used to fine-tune the model in a supervised way (Part B).

top FCN. More precisely, we train two FCNs: one to predict
arousal and another to predict valence. This means that in Fig-
ure 2 Predicted Emotion refers to either arousal or valence.

4 Experiments

We evaluate our model on the task of binary emotion predic-
tion, that is to predict high and low levels of arousal and va-
lence, from multimodal physiological signals.

In this section, we describe our experimental setup, giving de-
tails about the datasets and the hyper-parameters for both EEG
and fused-based models.

4.1 Datasets

To train and evaluate our models, we used the AMIGOS
dataset [6]. This dataset includes data from 40 subjects, where
emotions were induced by making the subjects watch emo-
tional videos. A total of 37 subjects watched 20 videos, while
3 subjects watched only 16. After watching each video, the
subjects filled out a self-assessment form where they rated on
a scale of 1 to 9 their levels of arousal and valence. We use
the results of this self-assessment as labels in our experiments.
Since we are interested in binary emotion classification, we
use the average value as a threshold to obtain high and low
classes of arousal and valence. In total, there are around 65
hours of data in the AMIGOS dataset.

The AMIGOS dataset includes both ECG and EEG signals.
We treat ECG as a single-channel signal, and we use the signal
taken from the left arm. For EEG, we use 10 channels: F7, F3,
T7, P7, O1, O2, P8, T8, F4, F8. We chose those 10 channels
from the 14 available because these channels are also present
in the datasets that we use for pre-training, which we will de-
scribe shortly. We use the provided 128Hz down-sampled sig-
nals. ECG signals are filtered with a low-pass filter with a
cut-off frequency of 60Hz, and EEG signals are filtered with a
band-pass filter with frequencies between 4.0 and 45.0Hz.

4.1.1 Data for pre-training

As described in Section 3.2, the first step in training a single-
modality emotion recognizer is pre-training. To pre-train the
EEG emotion recognizer, we gathered EEG data that does not
necessarily include labels of emotion. We use the follow-
ing datasets: WAY-EEG-GAL [29], BCI2000 [30, 31], and
Large-EEG-BCI [32]. These datasets were gathered to de-
velop Brain-Computer Interfaces, so they do not include any
labels related to emotions. We also use parts of AMIGOS in
the pre-training step, taking care of not using the same sam-
ples to pre-train and evaluate the model, for each fold of cross-
validation. The quantity of data that we gathered to pre-train
the EEG model is comparable to the data used to pre-train the
ECG model in [15]: in total there are around 195 hours of
EEG data available for pre-training, while the ECG model was
pre-trained with around 230 hours of data.
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ECG Emotion
Recognizer

EEG Emotion
Recognizer
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layer outputs

Concatenation

Mulitmodal Emotion
Classifier

[FCN]

Predicted Emotion

Figure 2: Fused Model. Late-fusion is used to combine the
ECG and EEG signals. The outputs of the last layer from both
single-modality models are concatenated, and then used as in-
put to an FCN that performs the emotion prediction.

4.1.2 Signal pre-processing

Much like [15] for ECG data, we filter EEG signals using an
8th order Butterworth band-pass filter, with cut-off frequencies
of 0.8Hz and 50Hz. We also downsample signals to 128Hz.
In addition, we normalize signals with zero-mean and unit-
variance for each subject. Finally, we split each signal into
10-second segments. Each segment is used as a sample in our
experiments, as in other state-of-the-art works [6, 8, 26], [15].

4.2 ECG Emotion Recognizer

The ECG emotion recognition model follows the architecture
presented by Vazquez-Rodriguez et al. in [15]. This model
was fine-tuned and evaluated on AMIGOS as presented in Sec-
tion 4.1. This model was parameterized and pre-trained as de-
scribed in [15].

4.3 EEG Emotion Recognizer

The EEG emotion recognition model follows the architecture
described in Section 3.3. The 1D-CNN is composed of three
layers with kernel sizes (65, 33, 17), with the number of chan-
nels equal to (64, 128, 256), with stride 1 in all the layers,
and using the ReLU activation function. With this configura-
tion, the size of the receptive field is 113 input points, which is
equivalent to 0.88s. Based on preliminary studies, we believe
that this receptive field size is suitable for EEG signals. For
the Transformer, the number of layers is 2 and the number of
heads is also 2, with a hidden size of 256.

For pre-training, the FCN used to predict masked points has
one hidden layer with size 128 and ReLU activation, and an

output layer that gives 10 outputs values, where each output
value corresponds to the predicted value of each masked EEG
channel. The mean squared error between the real and the
predicted values is used as loss. We pre-train the model for
500 epochs, warming up the learning rate during the first 30
epochs up to 0.0005, and then use linear decay. We use Adam
optimization with β1 = 0.9, β2 = 0.999 and L2 weight decay
of 0.005. A dropout value of 0.1 is used in the Transformer.

For fine-tuning, the FCN that predicts binary emotions has one
hidden layer with a size of 64 and ReLU activation functions.
An output layer is used to project the output to a single value,
that corresponds to the prediction of the emotion. Two differ-
ent networks are fine-tuned, one to predict arousal and another
to predict valence. The models are fine-tuned using binary
cross-entropy loss for 100 epochs, starting with a learning rate
of 0.0001 and decreasing by a factor of 0.65 every 45 epochs.
Adam optimization is used, with β1 = 0.9, β2 = 0.999 and
L2 weight decay of 0.00001. A dropout value of 0.6 is used in
the FCN that predicts emotions.

These hyper-parameters were optimized using the Ray Tune
toolkit [33] on validation data extracted from AMIGOS, for
each fold of cross-validation.

4.4 Multimodal Emotion Recognizer

The multimodal emotion recognition model follows the archi-
tecture described in Section 3.4. The FCN has two hidden
layers of size 64 and 32, and an output layer that projects the
result to a single value used to predict the binary emotion. As
we did for the single-modality models, we train one model to
predict arousal and another to predict valence. The activation
function used is ReLU. This network is trained for 52 epochs,
starting with a learning rate of 0.00001 and decaying it every
20 epochs with a factor of 0.65. A dropout value of 0.1 is used
during the training of this network. We employ Adam opti-
mization with β1 = 0.9, β2 = 0.999 and L2 weight decay of
0.00001. We also use the Ray Tune toolkit to optimize these
hyper-parameters, as we did for the EEG emotion recognizer.

5 Results
In this section, we discuss the results of the different experi-
ments we performed to evaluate our model for emotion recog-
nition on the AMIGOS dataset. We use the mean accuracy and
F1 score between the two predicted classes as metrics, aver-
aged across 10 folds of cross-validation. We also report a two-
sided 95% confidence interval, calculated with a t-distribution
with 9 degrees of freedom.

5.1 EEG single-modality Emotion Recognition

We first report in Table 1 the performances of our single-
modality emotion recognizer on EEG signals, using the pre-
training strategy described in section 3.2.1, and without us-
ing pre-training. We see that the pre-training strategy im-
proves emotion recognition performances for all metrics, for
both arousal and valence. For example, the F1 score for va-
lence goes from 0.7±6.8e−3 when not using pre-training, to
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Table 1: Emotion recognition performances for the EEG
model.

Pre-
train

Arousal
Acc.

Arousal
F1

Valence
Acc.

Valence
F1

No 0.76±7.3e−3 0.75±8.3e−3 0.7±6.4e−3 0.7±6.8e−3

Yes 0.81±10.7e−3 0.80±9.4e−3 0.77±9.3e−3 0.77±9.1e−3

Table 2: Emotion recognition performances of single-modality
models and of the fused model.

Arousal
Acc.

Arousal
F1

Valence
Acc.

Valence
F1

ECG [15]0.88±5.4e−3 0.87±5.4e−3 0.83±7.8e−3 0.83±7.4e−3

EEG 0.81±10.7e−3 0.80±9.4e−3 0.77±9.3e−3 0.77±9.1e−3

Fused 0.89±5.0e−3 0.89±5.0e−3 0.85±3.8e−3 0.85±3.9e−3

0.77±9.1e−3 when pre-training is used. This confirms that
the pre-training strategy we employ is useful when processing
EEG signals, and helps the Transformer learn better represen-
tations that in turn produce better results when predicting emo-
tion. The comparisons of all metrics shown in Table 1 have a
two-tailed P value less than 1e−5, thus the difference between
them can be considered to be statistically significant.

5.2 Fused Model Results

In Table 2 we present the performances of our fused model,
along with the performances of the single-modality models.
Pre-training was used in the single-modality models, and the
fused model employs those single-modality models as part of
the fusion strategy, as described in Section 3.4. We see that
our late-fusion approach improves performance over single-
modality models. For example, we obtain a valence accuracy
in the fused model of 0.85±3.8e−3 compared to 0.83±7.8e−3

and 0.77±9.3e−3 when using only EEC and EEG signals
respectively. Moreover, when comparing the results of the
single-modality models with the fused strategy, the two-tailed
P values are less than 1e−3, thus the difference is statistically
significant.

Figures 3 and 4 show two different samples used in our ex-
periments. Figure 3(a) and Figure 4(a) show the ECG signals,
and Figure 3(b) and 4(b) show channels F7 and F3 of the EEG
signal. For the sample of Figure 3, the ECG model predicts
the wrong class, while the EEG model predicts the correct
class. We can see that the fused model is helpful when the
ECG modality makes a wrong prediction, relying on the infor-
mation from the EEG signal to do the classification correctly.
In Figure 4, we present the same channels as in the previous
example, but for a sample that is classified correctly by the
ECG model and misclassified by the EEG model. Now the
fused model is capable of relying on the information from the
ECG signal to classify correctly this sample. Therefore, our
fusion model is capable of paying attention to the right modal-
ity when one is informative and the other leads to incorrect
predictions. Looking at the signals for these 2 samples, it is
not obvious why misclassifications occur for one modality or

0 200 400 600 800 1,000 1,200 1,400

−5

0

5

(a)

−2

0

2

0 200 400 600 800 1,000 1,200 1,400

0

5

(b)

Figure 3: Sample correctly classified by the Fused Model and
the EEG model, but incorrectly classified by the ECG model.
Figure (a) shows the ECG signal, and Figure (b) shows chan-
nels F7 and F3 of the EEG signal.

Table 3: Fused Model: Pre-Training vs No Pre-Training

Pre-
train

Arousal
Acc.

Arousal
F1

Valence
Acc.

Valence
F1

No 0.86±4.9e−3 0.85±5.1e−3 0.82±6.5e−3 0.81±6.8e−3

Yes 0.89±5.0e−3 0.89±5.0e−3 0.85±3.8e−3 0.85±3.9e−3

the other, compared to other signals. This showcases that our
model is capable of extracting meaningful hidden features in
both modalities.

5.3 Effectiveness of Pre-training in the Fused Model

In Table 3, we compare the performances of our fused model,
depending on whether it uses pre-trained single-modality mod-
els, or single-modality models with no pre-training. We see
that the pre-trained fused model achieves superior perfor-
mance compared to the fused model with no pre-training. For
example, the arousal F1 score improves from 0.85±5.1e−3 to
0.89±5.0e−3. The results shown in Table 2 have two-tailed
P values less than 1e−4, thus the difference between them is
extremely statistically significant. These results indicate that
the benefits obtained from pre-training single-modality mod-
els are carried over when combining them with our late-fusion
strategy.
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Figure 4: Sample correctly classified by the Fused Model and
the ECG model, but incorrectly classified by the EEG model.
The ECG signal is shown in Figure (a) and channels F7 and F3
of the EEG signal are shown in Figure (b).

Table 4: Comparison with the AMIGOS Dataset Baseline

Arousal F1 Valence F1

EEG [6] 0.577 0.564
EEG (ours) 0.80±9.4e−3 0.77±9.1e−3

Fused: EEG+ECG+GRS [6] 0.564 0.560
Fused: EEG+ECG (ours) 0.89±5.0e−3 0.85±3.9e−3

5.4 Comparison with some baselines on AMIGOS
dataset

We report in Table 4 the performance of our models and the re-
sults reported by the authors of the AMIGOS dataset [6], that
we consider as a baseline. We should note that the experimen-
tal protocol used in the baseline is different than our protocol,
for example the length of their segments is 20s, thus their and
our results are not directly comparable. In any case, we present
those results to showcase results obtained by other works, and
to see if our approach has acceptable performance. We see
that our performances are much higher than the baseline, both
using only EEG and also in the fused approach. The fused
approach in the baseline uses Galvanic Skin Response (GSR)
in addition to EEG and ECG. Our approach is performing at
much higher F1 scores with one less modality, which further
validates that our approach is promising.

6 Conclusion and Perspectives
In this work, we presented a new Transformer-based architec-
ture with pre-training for emotion recognition on multimodal

physiological signals. We experimentally showed, using the
AMIGOS dataset, that our approach can predict valence and
arousal with significant accuracy. In addition, we demon-
strated that our late-fusion multimodal approach improves per-
formances over single-modality. Finally, we compared the
benefits of our pre-training strategy for multimodal situations.
Overall, our architecture is capable of reaching state-of-the-art
performance for emotion recognition.

Future works include investigating new ways to perform pre-
training in multimodal situations: instead of pre-training indi-
vidual modalities in independent Transformers, we can expect
that using a single multimodal Transformer could lead to better
performances. Indeed, this way, the model could start to incor-
porate information from different modalities as early as in the
pre-training phase. In general, new ways of combining dif-
ferent modalities in a pre-trainable Transformer architecture,
be it early-fusion, middle-fusion, or late-fusion, are valuable
avenues of research to improve emotion recognition perfor-
mances of such models. Moreover, the combination of phys-
iological signals with more traditional modalities such as im-
ages and audio may help to better understand how pre-training
and Transformer-based models behave for multimodal emo-
tion recognition.
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