
HAL Id: hal-03897196
https://hal.science/hal-03897196

Submitted on 13 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fragment of the necessary decisions explained by an
argument scheme in a non compensatory sorting model

Khaled Belahcene, Jérome Gaigne, Sylvain Lagrue

To cite this version:
Khaled Belahcene, Jérome Gaigne, Sylvain Lagrue. Fragment of the necessary decisions explained by
an argument scheme in a non compensatory sorting model. From Multiple-Criteria Decision Aid to
Preference Learning (DA2PL 2022), Nov 2022, Compiègne, France. �hal-03897196�

https://hal.science/hal-03897196
https://hal.archives-ouvertes.fr

Fragment of the necessary decisions explained by an
argument scheme in a non compensatory sorting model

Khaled Belahcene1 and Jérome Gaigne2 and Sylvain Lagrue3

Abstract. We focus on an argument scheme explaining a necessary
decision with respect to a jurisprudence considering the non compen-
satory sorting model. In this model, a set of candidates is sorted in two
ordered categories by a set of points of view expressing an individual
preference over the set of candidates. Candidates are ranked in the
upper category if they are accepted by a sufficient subset of points of
view. We show that the argument scheme is an approximation of this
model and share some counterintuitive results concerning the relative
performance of some well-known solvers.

1 Introduction
The accountable approval sorting problem has been introduced in [3].
It corresponds to the situation where a jury, composed of multiple
members, has to assign a set of candidates into two ordered categories.
The authors used GOOD and BAD, it could also be ACCEPTED and
REFUSED if the context is a review of job applicants. Each member of
the jury has an opinion over all the candidates as a preference relation
and approves a subset of them. Those approval sets are aggregated
with respect to sufficient coalitions in order to assign each candidate
to the right category. Therefore a candidate is assigned to the upper
category (i.e. ACCEPTED) if this candidate is approved by a sufficient
subset of the jury.

The authors named two situations of interest for accountability in
an approval sorting setting :

• being able to justify that all the decisions taken by the jury follow
the approval sorting procedure;

• being able to justify a candidate’s category.

Here, we focus on the second case where a candidate wishes a
justification to his/her ranking. Again there are two situations of
interest :

• the candidate could have been ranked in the other category;
• the candidate cannot be ranked in the other category.

In order to be accountable in this last situation, it has to be shown
that the decision taken for this candidate was necessary, namely if
the candidate is ranked in the other category, the decision would
not respect the approval sorting procedure. The authors proposed an
argument scheme, whose principle is presented by the authors of [8],
to get a justification of the necessity of the decision which is humanly

1 Heudiasyc, Université de Technologie de Compiègne et CNRS, France,
email: khaled.belahcene@hds.utc.fr

2 Heudiasyc, Université de Technologie de Compiègne et CNRS, France,
email: jerome.gaigne@hds.utc.fr

3 Heudiasyc, Université de Technologie de Compiègne et CNRS, France,
email: sylvain.lagrue@hds.utc.fr

readable. This scheme has been proven to be a sufficient condition
to determine the necessity of a decision, but, to our knowledge it
has not been proven to be a necessary condition. Furthermore, to
diminish the amount of private information about the juries’ decision,
a jurisprudence can be used as a reference case to build the argument
scheme.

In Section 2, we introduce or recall important definitions about the
non compensatory sorting model underlying the approval sorting, and
about its inverse problem. Then, Section 3 introduces the argument
scheme justifying the necessity of a decision that has been proposed
by the authors of [3]. In this section, we study the necessity of the
scheme and we prove it only covers a fragment of all the necessary
decisions, i.e. the scheme is not necessary when there is a necessary
decision. For obtaining these results, we used multiple solvers and
models to compute the scheme, so we provide a study of their relative
performances in Section 4. Lastly, Section 5 recalls our results and
provides new questions.

2 Non compensatory sorting model and inverse
NCS problem

In this section, we introduce the non compensatory sorting model
with two categories together with some of its properties. We recall
its inverse problem along with an important representation theorem
brought by the authors of [3].

2.1 Non compensatory sorting model
The approval sorting model is also called non compensatory sorting
model, NCS for short.

In order to ease the definition of the non compensatory sorting
model, we recall the definition of an upset.

Definition 1 (upset). Let A be a set and R be a binary relation
over A. The subset B ⊆ A is an upset for (A,R) iff ∀a ∈ A,∀b ∈
B, if bRa, then a ∈ B.

Definition 2 (Non compensatory sorting model, [4]). Let X be a set
of alternatives and N be a set of points of view. Let ACCEPTED and
REFUSED be two ordered categories. Each point of view i ∈ N has
a preference over the whole set of alternatives as a complete preorder
written ≿i. To stay syntactically and semantically coherent, we may
use the preorder written ≾i defined as ∀a, b ∈ X, a ≾i b iff b ≿i

a. Each point of view i ∈ N approves a subset of alternatives written
Ai such as Ai is an upset for (X,≾i). Lastly, let S be the set of all
the sufficient coalitions of points of view such as S is an upset for(
2N ,⊆

)
. A sorting process respects the NCS model if and only if each

ACCEPTED alternative has been approved by a sufficient coalition

of points of view, i.e. let α : X 7→ {ACCEPTED,REFUSED} be the
function characterizing the decision process, α corresponds to a non
compensatory sorting if and only if

∀x ∈ X, α (x) =

{
ACCEPTED, if {i ∈ N : x ∈ Ai} ∈ S

REFUSED, otherwise

In short, a sorting process respecting the NCS model takes as inputs
a set of alternatives X, a set of points of view N , the preferences of
each point of view over the alternatives ≿i, ∀i ∈ N , the approval set
of each point of view Ai, ∀i ∈ N and the set of all sufficient coali-
tions of points of view S. Its output is the sorting of the alternatives
into the two categories.

From this definition, we can pull two rationality properties that this
process satisfies. Firstly, the individual rationality which states that
there is no alternative disapproved by i ∈ N that is preferred to an
alternative accepted by i, i.e. Ai is an upset for (X,≾i). Secondly,
the collective rationality states that if a subset of points of view is a
sufficient coalition, then any super set of it is also sufficient, i.e. S is
an upset for

(
2N ,⊆

)
.

Example 1. Let X = {a, b, c, d, e} be a set of alternatives, N =
{1, 2, 3} be a set of points of view. Individual preferences are as
follows:

e ≻1 a ≻1 c ≻1 b ≻1 d

b ≻2 a ≻2 c ≻2 d ≻2 e

c ≻3 b ≻3 a ≻3 d ≻3 e

Here are the approval sets of each jury. They approve their two most
preferred ones:

A1 = {a, e}
A2 = {a, b}
A3 = {b, c}

Lastly, the sufficient coalitions are as follows:

S = {{1, 2} , {2, 3} , {1, 3} , {1, 2, 3}}

This setting results in the assignment: α =
{(a,ACCEPTED) , (b,ACCEPTED) , (c,REFUSED) ,
(d,REFUSED) , (e,REFUSED)}.

2.2 Inverse NCS problem
If the process is to be inquired, it is necessary to be able from the
output to find input parameters that could have led to obtaining α
through a non compensatory sorting process. To do so, we need the
output of the sorting process, α, and some other data, the individual
preferences of the points of view. With those, we verify that it is
possible to find a set of approval sets and a set of sufficient coalitions
that allow obtaining α through a non compensatory sorting process.
In the inverse NCS problem (also written inv-NCS), we only focus on
finding the existence or the nonexistence of those parameters (i.e. it is
unnecessary to reveal their actual values).

The representation theorem is presented in [3]. This theorem is
important because it allows one to answer inv-NCS without having
to deal with the notion of sufficient coalition. By this theorem, the
sufficient coalitions do not have to be revealed.

Theorem 1 (NCS pairwise formulation, [3]). A function α mapping
the alternatives to the categories can be represented in NCS if and
only if there exists ⟨Ai⟩i∈N ⊆ (2X)N such as:

1. ∀i ∈ N ,Ai is an upset for (X,≾i).
2. ∀ ⟨g, b⟩ ∈ α−1 (ACCEPTED)× α−1 (REFUSED), ∃i ∈ N such

as g ∈ Ai and b /∈ Ai.

Theorem 1 allows one to reduce inv-NCS to SAT ([3], Section 3.4).
In [7], this formulation has been extended in case where one has more
than 2 categories, and relaxed in a MaxSAT formulation to be able to
take into account noisy data.

3 Argument scheme’s study
The authors of [3] proposed an argument scheme allowing one to build
a humanly readable justification of the necessity of a decision about
the sorting of an alternative. In this section, we recall this scheme.
Then we answer the question about the necessity of this scheme
to assess the necessity of a decision. We found out various counter
examples showing that the scheme isn’t a necessary condition.

3.1 Argument scheme justifying a necessary
decision with respect to a jurisprudence

First of all, we recall the definition of a necessary decision. Let us say
that we have a set of reference cases (a jurisprudence) α⋆ : X⋆ 7→
{ACCEPTED,REFUSED} with X⋆ ⊆ X. To show that a decision
about an alternative sorting is necessary, we can use the fact the inv-
NCS problem tells us if a decision process is a possible outcome
of a NCS process. If we prove that the other decision concerning
the alternative would not be possible (i.e. this new instance is then
negative of the inv-NCS) it results that the original decision was
necessary.

Definition 3 (Necessary decision with respect to a jurisprudence, [3]).
Let α⋆ be a positive instance of the inv-NCS problem, we say that
x ∈ X is necessarily assigned to C ∈ {ACCEPTED,REFUSED}
with respect to α⋆ if α⋆ ∪

{(
x, C̄

)}
is a negative instance of the

inv-NCS problem, with C̄ the category opposed to C.

The argument scheme below is a sufficient condition to show the
necessity of a decision. An open question is to know if it is also a
necessary condition to it.

Definition 4 (Necessary decision argument scheme with respect to a
jurisprudence, [3]). We say that a set {⟨g1, b1⟩ , ..., ⟨gk, bk⟩} instan-
tiates the argument scheme rejecting the function α with respect to
α⋆, with ∀j = 1, ...,

∣∣α−1 (ACCEPTED)
∣∣ , α (gj) = ACCEPTED

and ∀j = 1, ...,
∣∣α−1 (REFUSED)

∣∣ , α (bj) = REFUSED and
∀x ∈ X⋆, α(x) = α⋆(x), if :

∃B ⊆ N , |B| ≤ min (|N | , k − 1) ,

∀i /∈ B,∀u ∈ {1, ..., k} , gu ≿i bu does not hold (1)

and

∀j ∈ B,∀p, q ∈ {1, ..., k} , if p ̸= q then

∃ ⟨g, b⟩ ∈ {gp, gq} × {bp, bq} , g ≿j b does not hold (2)

This definition relies on a subset B of points of view of cardinality
lesser than the number of pairs of alternatives that we want to split
(cf. theorem 1 about the pairwise model). Condition 1 states that none
of the points of view outside of B is able to split any pair. Condition
2 says that only one pair at most at a time can be separated by each
point of view inside B.

Proof. (Sufficient condition). The fact that this scheme is a sufficient
condition to assess that an instance is negative to the inv-NCS problem
is straightforward since k, the number of pairs to split, is strictly
greater that the cardinality of B that is at most k− 1. Knowing that, it
says that at most k − 1 pairs can be separated over the k ones thanks
to condition 2 and 0 pairs can be separated by condition 1, so one
remains non-split. Thus, by theorem 1, proving that the instance is
indeed negative for inv-NCS.

This scheme allows one to keep the individual approval sets private
while justifying the decision in a humanly readable way.

Example 2. Let X = {a, b, c, d, e}, N = {1, 2}
and α = {(a,ACCEPTED) , (b,REFUSED) , (c,REFUSED) ,
(d,REFUSED) , (e,REFUSED)}.

a ≻1 c ≻1 d ≻1 b ≻1 e

e ≻2 b ≻2 d ≻2 a ≻2 c

This configuration is positive for inv-NCS. If we choose A1 = {a}
and S = {{1} , {1, 2}}, we produce α.

Now, let us say that we want a justification of b’s sorting. If we
switch b to the other category, i.e. α′ = α\ {(b,REFUSED)} ∪
{(b,ACCEPTED)}, the new function α′ is a negative instance of inv-
NCS. Searching for an argument scheme in this configuration, we can
for instance find the set B = {1} with the pairs {⟨a, d⟩ , ⟨b, e⟩}. In
other words, the point of view 1 can only split one pair at a time, while
the point of view 2 cannot split any of them since for each interesting
pair, the REFUSED alternative is preferred to the ACCEPTED one
according to ≻2.

This scheme is not unique, we can also take B = {1, 2} with
{⟨a, d⟩ , ⟨b, d⟩ , ⟨b, e⟩} for instance.

3.2 Argument scheme as a necessary condition for
necessary decision

To verify that the scheme is a necessary condition for identifying
inv-NCS negative instances, we decided to try to compute a counter-
example. To do this, we have to look for an instance satisfying the
two following conditions:

1. the instance is negative for the inv-NCS problem; and
2. there’s no scheme to be found in it.

We check the first condition using the SAT formulation of the inv-
NCS problem proposed in [3]. We then check the second condition
using a novel SAT formulation Φscheme described in the next section.

3.2.1 Argument scheme’s SAT formulation

To ease the search, we restrict the search space to preference profiles
in the form of strict total orders. In this case, the argument scheme
can be written as follows:

Definition 5 (Necessary decision argument scheme with re-
spect to a jurisprudence composed of linear orders). We say
that the set {⟨g1, b1⟩ , ..., ⟨gk, bk⟩} instantiates the argument
scheme to reject the function α with respect to α⋆, with
∀j = 1, ...,

∣∣α−1 (ACCEPTED)
∣∣ , α (gj) = ACCEPTED and

∀j = 1, ...,
∣∣α−1 (REFUSED)

∣∣ , α (bj) = REFUSED and ∀x ∈
X⋆, α(x) = α⋆(x), if :

∃B ⊆ N , |B| ≤ min (|N | , k − 1) ,

∀i /∈ B,∀u ∈ {1, ..., k} , bu ≻i gu (3)

and

∀j ∈ B,∀p, q ∈ {1, ..., k} , if p ̸= q then

∃ ⟨g, b⟩ ∈ {gp, gq} × {bp, bq} , b ≻j g (4)

In this section, we denote: m :=
∣∣α−1(ACCEPTED)

∣∣,
n :=

∣∣α−1(REFUSED)
∣∣ and A := α−1(ACCEPTED) ×

α−1(REFUSED).
We use the following propositional variables:

βi := i ∈ B
λgb := ⟨g, b⟩ ∈ {⟨g1, b1⟩ , ..., ⟨gk, bk⟩}

We seek to express the following cardinality constraint:

|{i ∈ N : βi is true }| < |{⟨g, b⟩ ∈ A : λgb is true }| (5)

To write cardinality constraints in SAT, we use Bailleux and
Boufkhad’s encoding introduced in [2] modified so as to allow us to
directly compare the cardinalities of two sets. We keep the totalizer as
is (which computes the cardinality of each set) but we modify the com-
parator (which, in its original version, sets a lower and an upper bound
to the set cardinality). The idea is to create a comparator between the
two cardinalities. To do so, we add the following rule between the
variables of both totalizers (which are a unary representation of each
set cardinality):

∃i ∈ {1, ..., n} , Sλ
i ∧ ¬Sβ

i

This rule simply says that, there is at least one less
true variable in the unary representation of the cardinal-
ity set {(g, b) ∈ A : λgb is true } than in the one of the set
{i ∈ N : βi is true }. In other words, the cardinality of the set
{⟨g, b⟩ ∈ A : λgb is true } is at least equal to |{i ∈ N : βi is true }|+
1.

We denote by nλ :=
∣∣α−1(ACCEPTED)

∣∣ ×∣∣α−1(REFUSED)
∣∣ the upper bound of the cardinality of the

set {⟨g, b⟩ ∈ A : λgb is true }, and by nβ := |N | the upper bound of
the cardinality of the set {i ∈ N : βi is true }.

In order to represent this rule, we can create l := max (nβ , nλ)
new variables noted Wi, i ∈ {1, ..., l} which represent the previous
rule as it follows :

Sλ
i ∧ ¬Sβ

i ↔ Wi∨
i=1...l

Wi

The unary representation with the least number of variables has
to be completed to get to the same amount as the largest one, i.e.
l. All these new variables have to be set to false. In other words,
S⋆ with ⋆ = argminx∈{λ,β} (nx) :

Ext :
∧

i=n⋆+1...l

¬S⋆
i

Thus the cardinality representation is as follows :

• Totalizers: Totalizer (λgb) ∧ Totalizer (βi)
• Cardinalities’ comparator :

Comp1 :
∧

i=1...l ¬S
λ
i ∨ Sβ

i ∨Wi

Comp2 :
∧

i=1...l S
λ
i ∨ ¬Wi

Comp3 :
∧

i=1...l ¬S
β
i ∨ ¬Wi

Comp4 :
∨

i=1...l Wi

The other constraints of the scheme are almost straightforwardly
translated to SAT as follow:

C1 :
∧

∀i∈N ,
∀⟨g,b⟩∈A,

g≻ib

βi ∨ ¬λgb

C2 :
∧

∀i∈N ,
∀p̸=q=1,...,mn,

∀⟨g,b⟩∈{bp,bq}×{gp,gq},
g≻ib

¬βi ∨ ¬λgpbp ∨ ¬λgqbq

This cardinality comparison encoding is useful so that we can call
the solver only once to solve the problem and not once per each
cardinality value. The total formula is then:

ϕscheme : Ext ∧ Totalizers ∧
4∧

i=1

Compi ∧ C1 ∧ C2

Theorem 2. Let a preference profile be composed of linear orders
and α a negative instance of inv-NCS. There is an argument scheme
explaining why α is rejected iff ϕscheme is satisfiable.

3.2.2 Counterexample search

Using this SAT representation and the inv-NCS SAT representation,
we found out that there are negative inv-NCS instances which do not
have argument schemes. To do so, we exhaustively search all instances
for various parameters’ settings: number of alternatives, number of
points of view and number of ACCEPTED (thus REFUSED) alterna-
tives.

To reduce the search space and avoid a rather good number of
symmetries, we used the following procedure to generate all instances:

• Set the following parameters : number of alternatives (nalternatives),
number of points of view (nPOVs), number of ACCEPTED alterna-
tives (nACCEPTED and thus nREFUSED = nalternatives − nACCEPTED).

• Generate a preference profile:

– For the first point of view, compute a permutation of the mul-
tiset containing two types of items, g, the ACCEPTED alter-
natives, and b, the REFUSED alternatives. g has a multiplic-
ity of nACCEPTED and b has a multiplicity of nREFUSED. This
point of view sets the name of each alternative, i.e. for the AC-
CEPTED alternatives: g1, ..., gnACCEPTED by adding an index to
the g items in the obtained permutation starting from the most
preferred to the least preferred and for the REFUSED alterna-
tives: b1, ..., bnREFUSED in the same manner.

– For every other points of view, compute a permutation over the
alternatives.

• The function α is easily generated by taking α−1 (ACCEPTED) =
{g1, ..., gnACCEPTED} and α−1 (REFUSED) = {b1, ..., bnREFUSED}.

• Compute a hash for each point of view.
• Sort this hash in the increasing order and store this sorted tuple in

a table.
• If this tuple is already in the table then generate a new profile.
• Otherwise, solve the inv-NCS problem using the SAT formulation

from Section 3.4 of [3].
• If it is unsatisfiable, then use ϕscheme presented in Section 3.2.1

to search for any scheme.
• If there is none, then store this instance as a counterexample.

In both inv-NCS and the argument scheme, we only care about the
(ACCEPTED,REFUSED) pairs of alternatives and the positions of
the alternatives in each preference. Thus we can avoid the symmetries

consisting of swapping gi and gj by generating the first point of view’s
preference using the permutation of the multiset containing nACCEPTED

times a g item and nREFUSED times a b item. Using this point of view
to set the name of the alternatives allows us to remove this type of
symmetry.

Furthermore, to avoid the symmetries coming from the permuta-
tions of the points of view, we store a sorted tuple of hash (one hash
per point of view computed with the point of view’s preference) in a
table that is checked every time a new profile is created.

There is at least one other type of symmetry that we ignore. For
instance, the one consisting in swapping the categories of all alterna-
tives. Despite this, we were able to exhaustively search the space for
several parameters values. The results can be found in Table 1 and
Table 2.

alternatives # points of view # counterexamples
3 2 0
4 2 0
4 3 0
5 2 0
5 3 0
5 4 0
6 2 0
6 3 898

Table 1. Number of counterexamples with respect to the number of
alternatives and the number of points of view

The number of counterexamples for 6 alternatives and 3 points of
view is very small considering the number of tested configurations.
Without the hash table, we have

∑5
k=1

(
Ck

6

)
× 6!× 6! = 32 140 800

configurations, which can be shrunk to 15 785 210 by using the hash
table. In this, 8 387 380 are negative for the inv-NCS problem. Thus
leading us to a frequency of 898

15 785 210
≃ 5.69× 10−5 over all config-

urations (positive and negative ones) and a ratio of negative instances
not covered by the scheme of 898

8 387 380
≃ 1.07× 10−4.

ACCEPTED alternatives # counterexamples
1 0
2 12
3 874
4 12
5 0

Table 2. Number of counterexamples with respect to the number of
ACCEPTED alternatives when there are 6 alternatives and 3 points of view

The symmetrical aspect of Table 2 can be explained by the re-
maining symmetry between the role of ACCEPTED and REFUSED
alternatives.

We found out that there are counterexamples, however, it is impor-
tant to note that the ratio of counterexamples over the total number
of instances or even the number of negative instances is really small
knowing there are 6 alternatives and 3 points of view and all prefer-
ences are strict total orders.

Here is one of the counterexamples found by this process with 6
alternatives and 3 points of view:

Example 3. This example is a continuation of Exam-
ple 2 adding one point of view and one alternative. Let
us take X = {a, b, c, d, e, x}, N = {1, 2, 3} and
α = {(a,ACCEPTED) , (b,ACCEPTED) , (x,ACCEPTED) ,

(c,REFUSED) , (d,REFUSED) , (e,REFUSED)}

x ≻1 c ≻1 a ≻1 b ≻1 d ≻1 e

a ≻2 c ≻2 x ≻2 d ≻2 b ≻2 e

e ≻3 b ≻3 d ≻3 a ≻3 c ≻3 x

This configuration does not satisfy the inv-NCS problem neither
does it contain an argument scheme (i.e. there is no way of se-
lecting pairs of alternatives with one ACCEPTED and one RE-
FUSED, so that we could create a subset B of points of view re-
specting the conditions of the argument scheme). However, if we con-
sider α′ = {(a,ACCEPTED) , (b,ACCEPTED) , (x,REFUSED) ,
(c,REFUSED) , (d,REFUSED) , (e,REFUSED)} where x is now
in the REFUSED category, then it is a positive instance for the inv-
NCS problem because:

A1 = {a, b, c, x}
A2 = {a}
A3 = {b, e}

and
S = {{2} , {1, 3} , {1, 2} , {2, 3} , {1, 2, 3}}

leads to α′. Thus there is a necessary condition not covered by the
argument scheme.

3.2.3 Other formulations

The definition of an argument scheme naturally translates into a
pseudo boolean representation, because it mixes logical constraints
and cardinality constraints.

Card1PB :
∑

(g,b)∈A λgb = k

Card2PB :
∑

i∈N βi = k − 1

C1PB : ∀i ∈ N , ∀ ⟨g, b⟩ ∈ A, g ≻i b, βi + ¬λgb ≥ 1

C2PB : ∀i ∈ N ,∀p ̸= q = 1, ...,mn,

∀ ⟨g, b⟩ ∈ {gp, gq} × {bp, bq} , g ≻i b,

¬βi + ¬λgpbp + ¬λgqbq ≥ 1

The reader can note that this formulation is not a perfect translation
of the scheme’s definition since, here, the number of pairs and the
number of points of view in B are constants. However, we are able to
use this formulation because it does not impact the decision problem
result, i.e. ”is there an argument scheme?”. Indeed, if we consider a
scheme with k+n pairs to be split, with n > 0, and only k−1 points
of view able to split at most one pair at a time, removing n pairs will
not change the result since we still have more pairs to split than points
of view to split them. This is possible because as it is defined, all pairs
are two-by-two disjoints on all B’s points of view meaning that for
each pair of pairs of alternatives there is at least one of the REFUSED
alternatives that is preferred to an ACCEPTED one, implying that for
each pair of pairs, only one can be split at a time by a point of view
in B. By removing n pairs, we still have k pairs two-by-two disjoint
on each of the k − 1 points of view, resulting in having k pairs to be
split and only k− 1 points of view capable to split at most one pair at
a time. On all other points of view, the pairs are still non-splittable.
Thus, we still have our deadlock leading to have one pair that is not
splittable. The decision problem is then solved by this formulation
but it cannot be used to enumerate all the schemes a configuration

can contain. In other words, every scheme with a lot more pairs than
points of view in B is subsumed by a scheme with only k pairs and
k − 1 points of view.

There exists a SAT counterpart of this formulation:

Card1SAT : |{⟨g, b⟩ ∈ A : λgb is true }| = k
Card2SAT : |{i ∈ N : βi is true }| = k − 1

C1SAT :
∧

∀i∈N
∀⟨g,b⟩∈A,

g≻ib

βi ∨ ¬λgb

C2SAT : ∧
∀i∈N

∀p̸=q=1,...,mn

∀⟨g,b⟩∈{gp,gq}×{bp,bq},
g≻ib

¬βi ∨ ¬λgpbp ∨ ¬λgqbq

Resulting to the formula:

Φ2 : Card1SAT ∧ Card2SAT ∧ C1SAT ∧ C2SAT

3.2.4 Explainable fragments

The fact that we found instances that both are negative to the inv-NCS
problem and do not contain any argument scheme means that the
scheme is not a complete representation of inv-NCS. However, it is
too early to say that it lost all its value because its goal is to build a
humanly readable explanation of a complex combinatorial problem,
and so it does. Thus the question of how well it approximates the
inv-NCS problem opens up.

To further investigate this question, we can see what happens if
we fix the scheme’s maximum length (i.e. the number of points of
view in the set B). Its goal, as said before, is to build a humanly
readable justification for a necessary decision and thus fixing the
maximum size of the scheme can be interesting since the smaller, the
clearer it is. This new model allows us to create nested explainable
fragments that grow with the upper bound we place on the length. For
instance, if we only consider schemes of size 1, we obtain a Pareto
dominance characterization. If we increase the maximum size, we
keep the fragment but add new deadlock characterizations with it.
This is interesting because:

• The search for schemes of a given length can be implemented in
polynomial time w.r.t the number of pairs in the assignment. This
opens the question of the practical efficiency of this algorithm,
compared to the SAT-based modeling and solving approach we
used.

• Increasing the size of the scheme may push the border of the uncov-
ered necessary decision meanwhile it also reduces the readability
of the explanation. Thus the purpose of simplifying a complicated
combinatorial model is less and less respected, the longer the
scheme is. The question of setting the value of the upper bound so
as to achieve a good trade-off between the expressiveness of the
scheme and its intelligibility is an interesting question, lying at the
edge between decision theory and cognitive psychology.

This nesting opens up several research questions like quantifying
the proportion that each maximum size model can explain.

Knowing that the original scheme is not complete, it can be in-
teresting to see if there are remarkable structures that can be added
into it that do not increase the complexity of the explanation. See for
example the structure of example 3 where we added one point of view
and one alternative to example 2 resulting into a counterexample.

4 Performance comparison
Searching for counterexamples, we compare various argument
scheme’s formulations’ and multiple solvers’ efficiency. To imple-
ment these experimentations we used an ASUS G551J computer with
an Intel® Core™ i7-4750HQ CPU @ 2.00GHz × 8 and 8 GiB of
DDR3 clocked at 1600 MHz RAM. All execution times have been
recorded using the user time of /usr/bin/time command on an
Ubuntu 20.04.4 LTS OS.

Considering that the argument scheme contains cardinality con-
straints, we tried to use a pseudo boolean formulation. To solve both
the SAT and pseudo boolean formulations we used Gophersat ver-
sion 1.2 [5] which can solve both types of problems and has a useful
API that helps us perform quick experiments. We compared the SAT
resolution time by using Glucose version 4.0 [1] which is based on
Minisat [6].

We first introduce the process we followed to compare the perfor-
mances between formulations and solvers. We compared a SAT and
an equivalent pseudo boolean formulation using Gophersat solver.
Finally, we compared the efficiency of Gophersat and Glucose on
finding an argument scheme.

On this last part, we expected to have at least better performances
with Glucose. However this assumption has been proven wrong on
most of the instances. We have to note that we used the default pa-
rameters of each solver, without trying to fit them to the task at hand,
which might seem more penalizing for Glucose, which offers many
options.

4.1 Process
In this subsection we introduce the process used to compare the
influence of various parameters on the solving time. We still focus on
the case where all preferences are strict total orders.

The parameters we studied are the following:

• The number of alternatives: n
• The number of points of view: m
• The rate of ACCEPTED alternatives: p
• The minimal scheme’s size (the number of pairs concerned): s

We generated the test samples using the algorithm of Listing 1
To test each parameter’s influence, we generated the following set

of configurations.
The default value for each configuration is:

• number of alternatives: 20
• number of points of view: 5
• rate of ACCEPTED alternatives: 35%
• minimal scheme’s size: 2

Here are the various values tested for each parameter (only one
parameter is tested at a time, the others take there default value):

• number of alternatives : 10, 20, 30, 40, 50
• number of points of view : 3, 4, 5, 7, 10
• rate of ACCEPTED alternatives : 10%, 35%, 50%, 75%, 90%
• minimal scheme’s size : −1 (no scheme), 1, 2, 3, 4, 5, 6

100 instances were generated for each setting.

4.2 Formulation comparison (pseudo boolean
versus SAT)

In order to perform a comparison between a pseudo-boolean formu-
lation and a SAT formulation, we cannot use the SAT formulation

INPUT :
n: number of alternatives
m: number of points of view
p: rate of ACCEPTED alternatives
s: minimal scheme's size
OUTPUT :
- The preferences
- The sorting
GENERATE(n,m,p,s):

alternatives := [1..n]
accepted := [1..floor(n*p)]
refused := [floor(n*p)+1..n]
do
preferences := []
for i from 0 to m-1
preferences[i] := copy(alternatives)
preferences[i] = shuffle(preferences[i])

done
formula := formulate(preferences,

accepted, refused)
min_size := resolveInc(formula)

while min_size != s
return (preferences, (accepted, refused))

Listing 1: Sample generation process. shuffle() use the Fisher-Yates
shuffle to ensure equiprobability to all permutations. formulate() use
the SAT formulation presented in Section 3.2.3. resolveInc(formula)
is a function that incrementally solves the formula using Gophersat
by increasing the size of the scheme on each iteration.

presented in Section 3.2.1. The reason is that this formulation allows
us to call only once on the solver whereas the pseudo-boolean ne-
cessitate multiple calls (one for each possible value of k). Thus, we
will compare the pseudo-boolean formulation and its SAT counterpart
proposed in Section 3.2.3

Figure 1. Scatter plot comparing the solving time (in seconds) with
Gophersat of each instance in SAT to its equivalent pseudo boolean instance

Using Gophersat to solve equivalent SAT and pseudo-boolean
equivalent instances with all generated instances, we obtain the scatter
plot of Figure 1. This figure focuses only on the reading and solving

time of either a SAT or pseudo-boolean instance. In this setting, one
can see that the SAT solving time is most of the time faster than its
equivalent pseudo-boolean instance.

Name 1 2 3 4 5 6 7
nAlt 2/1 14/61 0/95 0/100 0/99 x x

nPOV 10/61 8/52 8/62 8/53 5/62 x x
%Acc 7/29 13/50 14/52 6/54 10/18 x x

min sol 0/100 16/42 10/50 12/67 9/69 15/74 6/92

Table 3. Comparing pseudo boolean (PB) and SAT relative performances on
Gophersat with respect to all parameters. Each entry shows the number of
instances where PB is faster/the number of instances where SAT is faster.

nAlt line shows the results with 1: 10, 2: 20, 3: 30, 4: 40, 5: 50 alternatives.
nPOV line shows the results with 1: 3, 2: 4, 3: 5, 4: 7, 5: 10 points of view.

%Acc line shows the results with 1: 10%, 2: 35%, 3: 50%, 4: 75%, 5: 90% of
ACCEPTED alternatives.

min sol line shows the results with scheme of minimal size equal to 1: -1, 2: 1,
3: 2, 4: 3, 5: 4, 6: 5, 7: 6, with -1 meaning that there is no scheme in the

instance.

Table 3 shows the relative performances of pseudo-boolean and
SAT instances with respect to each parameter. We can easily see that
the more alternatives there are, the more SAT solving outperforms
pseudo boolean solving. If we focus on the impact of the number
of points of view, we can see that there seems to have two effects.
Firstly, we can note that the more points of view there are, the less
pseudo-boolean instances are faster than the equivalent SAT instances.
Secondly, we can see that the parity of the number of points of view
impacts the number of SAT instances that are faster that the equivalent
pseudo-boolean instances. The rate of ACCEPTED alternatives seems
to slow down the SAT solving more than the pseudo-boolean solving
when this rate tends to extreme values. Finally, we can see that the size
of the smallest scheme present in the instance has a strong influence
on the relative performances. In particular, we can note that the greater
the smallest size is, the more the SAT solving outperforms the pseudo-
boolean solving. Considering the extreme case where there are no
schemes, SAT is faster on every instance.

Figure 2. Line 1 : Scatter plot comparing the formulation time (in seconds)
of each SAT instance to its equivalent pseudo boolean instance. Line 2 :
Scatter plot comparing the formulation+solving time (in seconds) with

Gophersat of each SAT instance to its equivalent pseudo boolean instance.

We saw that solving SAT instances is generally faster with Gopher-
sat than its pseudo boolean equivalent when considering our problem.
This holds when we focus on solving time, but if we take into account

the formulation time, which is mostly faster with pseudo boolean out-
put, the pseudo boolean instances become faster to solve as Figure 2
show us. We can note that this difference is less important than the
one when considering only the solving time.

4.3 Solver comparison (Gophersat versus Glucose)
This subsection shares some results concerning the relative perfor-
mances of Gophersat 1.2 and Glucose 4.0 SAT solvers on finding
argument scheme. It is important to note that no tweaking has been
done on the solvers’ settings.

We compared the efficiency of the two previously presented SAT
formulations. We will note SAT the one using a constant k explained
in Section 3.2.3 and SATNoK the one without any constant introduced
in Section 3.2.1.

We expected to find out that Glucose is more efficient than Gopher-
sat, however Figure 3 shows us that for both formulations (SAT and
SATNoK), Gophersat is at best equivalent or at worst outperforms
Glucose.

Figure 3. Line 1 : Scatter plot comparing the resolution time of a SAT
instance on Gophersat and on Glucose. Line 2 : Scatter plot comparing the

resolution time of a SATNoK instance on Gophersat and on Glucose.

To seek more details about those differences, Table 4 and Table 5
report the details about the parameters’ influence.

We can see that the higher the number of alternatives is, the more
Gophersat outperforms Glucose. However, the high number of points
of view seems to be beneficial to Glucose. The ACCEPTED alterna-
tive rate is favorable to Glucose when it is set to an extreme value and
to Gophersat when it is near 50%. The scheme size has a different
influence with each of the formulations. With SAT the greater it is,
the more Gophersat outperforms Glucose whereas it is the contrary if
we use SATNoK.

We did not dig deeper on those results. We think that even if
Gophersat is based on Glucose, the fact that we did not tweak any of
the settings on either of them may influence the solving process to
this point.

5 Conclusion
We considered the problem of explaining the results of a non com-
pensatory model that are necessary w.r.t. a given jurisprudence, using

Name 1 2 3 4 5 6 7
nAlt 2/0 5/62 0/100 0/100 0/100 x x

nPOV 0/74 1/73 7/66 4/63 6/57 x x
%Acc 10/0 5/70 1/60 2/60 12/0 x x

min sol 10/82 4/64 4/69 1/93 0/97 3/90 11/79

Table 4. Comparing SAT instances relative performances when solved on
Glucose and Gophersat with respect to all parameters. Each entry shows the
number of instances where Glucose is faster/the number of instances where

Gophersat is faster.
nAlt line shows the results with 1: 10, 2: 20, 3: 30, 4: 40, 5: 50 alternatives.
nPOV line shows the results with 1: 3, 2: 4, 3: 5, 4: 7, 5: 10 points of view.

%Acc line shows the results with 1: 10%, 2: 35%, 3: 50%, 4: 75%, 5: 90% of
ACCEPTED alternatives.

min sol line shows the results with scheme of minimal size equal to 1: -1, 2: 1,
3: 2, 4: 3, 5: 4, 6: 5, 7: 6, with -1 meaning that there is no scheme in the

instance.

Name 1 2 3 4 5 6 7
nAlt 2/0 19/31 2/98 0/100 0/100 x x

nPOV 15/35 23/28 27/29 37/32 64/22 x x
%Acc 44/0 24/31 11/32 26/16 40/1 x x

min sol 96/0 0/61 22/28 37/35 48/23 50/25 59/11

Table 5. Comparing SATNoK instances relative performances when solved
on Glucose and Gophersat with respect to all parameters. Each entry shows

the number of instances where Glucose is faster/the number of instances
where Gophersat is faster.

nAlt line shows the results with 1: 10, 2: 20, 3: 30, 4: 40, 5: 50 alternatives.
nPOV line shows the results with 1: 3, 2: 4, 3: 5, 4: 7, 5: 10 points of view.

%Acc line shows the results with 1: 10%, 2: 35%, 3: 50%, 4: 75%, 5: 90% of
ACCEPTED alternatives.

min sol line shows the results with scheme of minimal size equal to 1: -1, 2: 1,
3: 2, 4: 3, 5: 4, 6: 5, 7: 6, with -1 meaning that there is no scheme in the

instance.

an argument scheme found in the literature. Contrarily to what has
been conjectured, we show this scheme does not allow to explain all
necessary decisions. This opens the question of assessing the size of
the explainable fragment. During our experimentation, we found out
that with preferences modeled as strict total orders and 6 alternatives
and 3 points of view, the unexplainable fragment is extremely small.
Furthermore, since the purpose of the scheme is to build a humanly
readable explanation, it can be interesting to study a bounded version
of the scheme where we fix an upper bound for the number of pairs or
the number of points of view that are not trivially irrelevant. We found
an interesting structure to extend the scheme to catch a part of the
decision not covered by the scheme. The question of characterizing
the decisions not covered by the scheme is left open.

REFERENCES
[1] G. Audemard and L. Simon. Glucose.
[2] O. Bailleux and Y. Boufkhad, ‘Efficient cnf encoding of boolean cardinal-

ity constraints’, in CP2003.
[3] K. Belahcene, Y. Chevaleyre, C. Labreuche, N. Maudet, V. Mousseau,

and W. Ouerdane, ‘Accountable approval sorting’, in 2018 International
Joint Conference on Artificial Intelligence (IJCAI).

[4] Denis Bouyssou and Thierry Marchant, ‘An axiomatic approach to non-
compensatory sorting methods in MCDM, I: the case of two categories’,
Eur. J. Oper. Res., 178(1), 217–245, (2007).

[5] Centre de Recherche en informatique de Lens. Gophersat.
[6] N. Eén and N. Sörensson. Minisat.
[7] A. Tlili, K. Belahcène, O. Khaled, V. Mousseau, and W. Ouerdane, ‘Learn-

ing non-compensatory sorting models using efficient sat/maxsat formula-
tions.’, 979–1006.

[8] Douglas Walton, Christopher Reed, and Fabrizio Macagno, Argumenta-
tion schemes, Cambridge University Press, 2008.

