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Cedex 06, France
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Abstract

Abstract We consider an interacting particle system which models the sterile insect technique. It is the
superposition of a generalized contact process with exchanges of particles on a finite cylinder with open
boundaries (see Kuoch et al., 2017 ). We show that when the system is in contact with reservoirs at dif-
ferent slow-down rates, the hydrodynamic limit is a set of coupled non linear reaction-diffusion equations
with mixed boundary conditions. We also prove the hydrostatic limit when the macroscopic equations
exhibit a unique attractor.
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1 Introduction

In this paper, we consider the interacting particle system which was introduced in [17] to model the sterile
insect technique. This technique was developed, among others, by E. Knipling (see [16]) to eradicate New
World screw worms in the 1950’s, a serious pest for warm blooded animals. The method is still used today,
for instance in France, to protect crops from the very invasive Mediterranean flies, and it is also being tested
to fight mosquitoes which transmit dengue in countries like Panama or Brazil. The sterile insect technique
works as follows: male insects are sterilized in captivity using gamma rays. They are then released in the wild
population, where females mate only once, giving rise to no off springs if they mate with a sterile male. When
enough sterile individuals are released, the wild population eventually becomes extinct. From a mathematical
perspective, the sterile insect technique has mainly been modeled in a deterministic way through the study
of partial differential equations (see [1]).

The sterile insect technique was studied from a probabilistic perspective in [17] and [18] using interacting
particle systems. In [17], a phase transition result is proved at the microscopic level. Recently, another proba-
bilistic model was studied in [14], also at the microscopic level. In [18], the study is carried at the macroscopic
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level (hydrodynamic limit) in finite volume with reservoirs, in order to account for the migration/immigration
mechanism.

Here, we aim at studying the hydrodynamic limit and hydrostatic limit of that interacting particle system
under the effect of slow reservoirs. The slow-down mechanism models the fact that beyond the boundary
through which insects arrive into the system or leave it, there are very few insects (the exterior of the system
might be a territory which is much less favorable to the development of these insects).

In the perspective of interacting particle systems, the sterile insect technique is modeled as follows:
insects evolve on a d-dimensional finite set BN = {−N, ..., N} × Td−1

N , where N ≥ 1, and the evolution of
the population is described by a continuous time Markov process (ηNt )t≥0 with state space EBN where E is
a countable set. The quantity of interest here is not the number of insects per site but the types of insects
present at a given site. Precisely, E = {0, 1, 2, 3} and for x in BN ,

η(x) =


0 if there are no insects in x,
1 if there are only wild insects in x,
2 if there are only sterile insects in x,
3 if there is a combination of wild and sterile insects in x.

The dynamics of the Markov process is the superposition of three Markovian jump processes:

(i) A process which models the fact that insects move in an isotropic way within BN and which is param-
eterized by a diffusivity constant D > 0. Precisely, for a configuration η and x, y two sites in BN , the
states of sites x and y in η are exchanged at rate D.

(ii) A birth and death dynamics which models births of individuals due to the mating of a wild females with
wild or sterile insects, as well as deaths of individuals. This is parameterized by a release rate r > 0
and growth rates λ1, λ2 > 0. Sterile males are injected on a site at rate r independently of everything
else. The rate at which wild males give birth (to wild males) on neighbouring sites is λ1 at sites in
state 1, and λ2 at sites in state 3. Sterile males do not give birth. We take λ2 < λ1 to reflect the fact
that fertility is reduced at sites in state 3. Deaths for each type of male insects occur independently
and at rate 1.

(iii) A boundary dynamics which models the slow migration/immigration mechanism. This is parameterized

by a function b̂ = (b1, b2, b3) : {−1, 1} × Td−1 → [0, 1]3 and two constants θ` and θr in R+. For
i ∈ {0, 1, 2, 3}, a particle of type i ∈ {0, 1, 2, 3} is injected in the system through x ∈ {−N} × Td−1

N ,

resp. x ∈ {N} × Td−1
N at rate N−θ`bi(x/N), resp. N−θrbi(x/N) and is expelled from the system

through x at rate N−θ`(1− bi(x/N)), resp. N−θr (1− bi(x/N)), with b0 = 1− b1 − b2 − b3.

The birth and death mechanism is referred to as a contact process with random slowdowns (or CPRS).
Indeed, without the presence of sterile insects, it would be a basic contact process (as defined for instance
in [20]) with parameter λ1, and the presence of sterile insects can be interpreted as a random decrease of
the fertility rate due to the presence of sites containing sterile and wild individuals. In [17], the microscopic
study of the birth and death dynamics alone leads to the following phase transition result: for certain values
of λ1 and λ2, when r is large enough, the healthy population almost surely becomes extinct and survives
otherwise. In [18], the hydrodynamic limit of the superposition of the three dynamics above, where the first
and the third one are accelerated in the diffusive scaling N2, and where θ` = θr = 0, is proven to be a system
of non linear reaction-diffusion equations with Dirichlet boundary conditions.

In this paper, we prove the finite volume hydrodynamic limit of this interacting particle system for any
values of θ`, θr ≥ 0. The hydrodynamic equation obtained has mixed boundary conditions which depend
on the values of θ`, resp. θr. Precisely, for θ` ∈ [0, 1), resp. θr ∈ [0, 1), we get a Dirichlet type boundary
condition at the left hand side, resp. right hand side of the system. For θ` = 1, resp. θr = 1, we get a Robin
type boundary condition at the left hand side, resp. right hand side of the system. For θ` > 1, resp. θr > 1,
we get a Neumann type boundary condition at the left hand side, resp. right hand side of the system.

We then prove the finite volume hydrostatic limit of the interacting particle system for a specific class of
parameters regarding the dynamics. Within that class of parameters, the sequence of invariant measures of
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the interacting particle system is associated to a profile which is the stationary solution of the hydrodynamic
equation with corresponding mixed boundary conditions.

Our paper is, up to our knowledge, the first one regarding the effect of mixed reservoirs in and out of
equilibrium (hydrodynamic and hydrostatic limit) for a multi species process in finite volume. The effect
of reservoirs on a one dimensional conservative system has been widely studied in finite volume (see for
instance [5], [8]). Much is now known both at the microscopic and macroscopic level. Recently, the effect of
slow reservoirs has aroused much interest for the symmetric simple exclusion process in one dimension (see
for instance [2], [10], [11], [12] and references therein). In [9], authors proved a hydrostatic principle for a
boundary driven gradient symmetric exclusion process using the fact that the stationary profile is a global
attractor for the hydrodynamic equation. This method inspired our proof for the hydrostatic limit. However,
the coupled equations obtained for the hydrodynamic limit, and the fact that we work in any dimension make
the analysis more subtle.

The proof of the hydrodynamic limit for each of these regime is established in Section 3 via the Entropy
Method. Among other things, as we work in arbitrary dimension, some care must be taken to define and
characterize the solution of the hydrodynamic limit at the boundary, through the use of the Trace Operator
(see subsection 3.4). The proof of the hydrostatic limit, established in Section 4 and inspired by [9] relies on
the use of a change of coordinates for the coupled equations. Under this change of coordinates (inspired by
some simulations see Appendix B ), a comparison principle holds. It allows us to find a unique attractor when
some conditions on the parameters are satisfied. Outside that class of parameters, although uniqueness of the
invariant measure holds, we do not even know whether there is uniqueness of the stationary solution of the
hydrodynamic equation and simulations show (see Appendix B) that for Neumann type boundary conditions
there are several stationary profiles. However, we believe that a more general hydrostatic principle in the
spirit of the one proved in [19] is valid.

2 Notations and results

2.1 The microscopic model

The dynamics of our interacting particle system is given by three generators, one for the diffusive dynam-
ics, one for the contact dynamics and one for the boundary dynamics. In order to explicit each one of
those generators, let us give a few notations. Let N ∈ N. Denote BN = {−N, ..., N} × Td−1

N the bulk and

ΓN = {−N,N}×Td−1
N , resp. Γ+

N = {N}×Td−1
N , resp. Γ−N = {−N}×Td−1

N the boundary, resp. left hand side
boundary, resp. right hand side boundary of the bulk. Denote B = (−1, 1) × Td−1 the continuous counter
part of the bulk, B = [−1, 1]×Td−1 its closure, Γ = {−1, 1}×Td−1, Γ− = {−1}×Td−1 and Γ+ = {1}×Td−1.

The microscopic state space is denoted ΩN := {0, 1, 2, 3}BN and its elements, also called configurations,
are denoted η. Therefore, for x ∈ BN , η(x) ∈ {0, 1, 2, 3}. To describe the dynamics of our model, we will use

the correspondence introduced in [18] between the state space ΩN and Σ̂N := ({0, 1} × {0, 1})BN where the

correspondence between an element (ξ, ω) ∈ Σ̂N and η ∈ ΩN is given as follows: for x ∈ BN ,

η(x) = 0 ⇐⇒ (1− ξ(x))(1− ω(x)) = 1,

η(x) = 1 ⇐⇒ ξ(x)(1− ω(x)) = 1,

η(x) = 2 ⇐⇒ (1− ξ(x))ω(x) = 1,

η(x) = 3 ⇐⇒ ξ(x)ω(x) = 1.

(2.1)

In other words, (ξ(x), ω(x)) = (0, 0) if x is in state 0, (1, 0) if it is in state 1, (0, 1) if it is in state 2 and (1, 1)
if it is in state 3. Also, in order to describe the evolution of the density of sites in state 1, resp. 2, resp 3,
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resp 0, we define for x in BN and a configuration η ∈ ΩN with associated configuration (ξ, ω) ∈ Σ̂N ,
η1(x) := 1η(x)=1 = ξ(x)(1− ω(x)),
η2(x) := 1η(x)=2 = (1− ξ(x))ω(x),
η3(x) := 1η(x)=3 = ξ(x)ω(x),
η0(x) := 1η(x)=0 = (1− ξ(x))(1− ω(x)).

(2.2)

Finally, we also express the correspondence (2.1) by the following application from Σ̂N to ΩN :

η = η(ξ, ω), where, for any x ∈ BN , η(x) = 2ω(x) + ξ(x). (2.3)

• Generator for the diffusion mechanism: it corresponds to the usual stirring mechanism where each
site has an exponential clock with rate D and independent from all the other clocks. When the clock
rings, a neighbouring site is chosen uniformly at random and the states of both sites are exchanged.
The action of the generator on functions f : Σ̂N → R is therefore given by:

LNf(ξ, ω) :=

d∑
k=1

∑
(x,x+ek)∈BN

D
(
f(ξx,x+ek , ωx,x+ek)− f(ξ, ω)

)
(2.4)

where (e1, ..., ed) is the canonical basis of Zd and for ζ ∈ {0, 1}BN and x, y ∈ BN , ζx,y is the configuration
obtained from ζ by exchanging the occupation variables ζ(x) and ζ(y), i.e,

ζx,y(z) =

 ζ(x) if z = y,
ζ(y) if z = x,
ζ(z) otherwise.

• Generator for the contact process in the bulk: following the description of the CPRS in the
introduction, the birth and death mechanism in the bulk has the following rates: for η ∈ ΩN and
x ∈ BN ,

0→ 1 at rate λ1n1(x, η) + λ2n3(x, η), 1→ 0 at rate 1, 0→ 2 at rate r,

2→ 0 at rate 1, 1→ 3 at rate r, 3→ 1 at rate 1,

2→ 3 at rate λ1n1(x, η) + λ2n3(x, η), 3→ 2 at rate 1.

(2.5)

Therefore, using the correspondence (2.1), the generator LN = LN,λ1,λ2,r of the CPRS acts as follows

on functions f : Σ̂N → R:

LNf(ξ, ω) =
∑
x∈BN

LxBN f(ξ, ω) , (2.6)

where for x ∈ BN ,

LxBN f(ξ, ω) :=
(
r(1− ω(x)) + ω(x)

)[
f(ξ, σxω)− f(ξ, ω)

]
+
(
βBN (x, ξ, ω)(1− ξ(x)) + ξ(x)

)[
f(σxξ, ω)− f(ξ, ω)

]
,

(2.7)

βBN (x, η) := λ1

∑
y∼x
y∈BN

η1(y) + λ2

∑
y∼x
y∈BN

η3(y)

where x ∼ y means that x and y are neighbouring sites in BN , and where for ζ ∈ {0, 1}BN , σxζ is the
configuration obtained from ζ by flipping the configuration at x, i.e.

σxζ(z) =

{
1− ζ(x) if z = x,
ζ(z) otherwise.
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• Generator for the boundary dynamics: the generator of the dynamics at the boundary is parametrized
by θ̂ = (θ`, θr) with θ`, θr ≥ 0 and a positive function b̂ = (b1, b2, b3) : Γ → R3

+ satisfying the

following conditions: there exists a neighbourhood V of B in R × Td−1 and a smooth function
ĝ = (g1, g2, g3) : V → (0, 1)3 in C2(V,R) such that

0 < c∗ < min
1≤i≤3

|gi| ≤ max
1≤i≤3

|gi| ≤ C∗ < 1 (2.8)

for two positive constants c∗ and C∗, and such that the restriction of ĝ to Γ is equal to b̂. The dynamics
at the boundary can then be described as follows: a site x ∈ Γ−N , resp. x ∈ Γ+

N goes from state
i ∈ {0, 1, 2, 3} to state j ∈ {0, 1, 2, 3} \ {i} at rate N−θ`bj(x/N), resp. N−θrbj(x/N) . In order to
express the generator of the boundary dynamics, we make use of ηi = ηi(ξ, ω) for i ∈ {0, 1, 2, 3} which

is the configuration in {0, 1}BN obtained from (ξ, ω) ∈ Σ̂N according to (2.2). For f : Σ̂N → R, the
boundary generator acts on f as follows:

Lb̂,θ̂,Nf(ξ, ω) :=
∑
x∈ΓN

Lx
b̂,θ̂,N

f(ξ, ω),

where

Lx
b̂,θ̂,N

f(ξ, ω) := cx(̂b(x/N), ξ, σxω)
[
f(ξ, σxω)− f(ξ, ω)

]
+ cx(̂b(x/N), σxξ, ω)

[
f(σxξ, ω)− f(ξ, ω)

]
+ cx(̂b(x/N), σxξ, σxω)

[
f(σxξ, σxω)− f(ξ, ω)

]
,

and with

cx(̂b(x/N), ξ, ω) :=

{
N−θ`

∑3
i=0 bi(x/N)ηi(x) if x ∈ Γ−N ,

N−θr
∑3
i=0 bi(x/N)ηi(x) if x ∈ Γ+

N

and b0(x/N) := 1 −
∑3
i=1 bi(x/N). Note that the following simpler expression holds for Lb̂,θ̂,N : for

f : Σ̂N → R and (ξ, ω) ∈ Σ̂N ,

Lb̂,θ̂,Nf(ξ, ω) = N−θ`
3∑
i=0

∑
x∈Γ−N

bi(x/N)
(
f(σi,x(ξ, ω))− f(ξ, ω)

)

+N−θr
3∑
i=0

∑
x∈Γ+

N

bi(x/N)
(
f(σi,x(ξ, ω))− f(ξ, ω)

) (2.9)

with σi,x(ξ, ω) := σi,xη(ξ, ω), the configuration in Σ̂N associated to σi,xη, where

σi,xη(z) :=

{
i if z = x,
η(ξ, ω)(z) otherwise

with η(ξ, ω) as defined in (2.3).

Fix a time horizon T > 0 and denote {(ξNt , ωNt ), t ∈ [0, T ]} the Markov process associated to the generator

LN := N2LN +N2Lb̂,θ̂,N + LN . (2.10)

Let DΣ̂N
([0, T ]) be the path space of càdlàg trajectories with values in Σ̂N . Given a measure µN on Σ̂N ,

denote by PµN the probability measure on DΣ̂N
([0, T ]) induced by µN and (ξt, ωt)t≥0 and denote EµN the

expectation with respect to PµN .
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Invariant measures for the diffusive and boundary dynamics:
Consider α̂ = (α1, α2, α3) : B −→ (0, 1)3 a smooth function satisfying the following conditions:

∃ c∗, C∗ > 0, 0 < c∗ < min
1≤i≤3

|αi| ≤ max
1≤i≤3

|αi| ≤ C∗ < 1 (2.11)

and
∀x ∈ Γ, α̂(x) = b̂(x). (2.12)

Denote νNα̂ the Bernoulli product measure on BN with parameter α̂: for (ξ, ω) ∈ Σ̂N ,

νNα̂ (ξ, ω) :=
1

Zα̂,N
exp

( 3∑
i=1

∑
x∈BN

(
log

αi(x/N)

α0(x/N)

)
ηi(x)

)
,

where Zα̂,N is the normalizing constant

Zα̂,N =
∏
x∈BN

(
1 +

3∑
i=1

exp(αi(x/N)
)

and with α0 = 1− α1 − α2 − α3. Note that νNα̂ is such that for every 1 ≤ i ≤ 3 and x ∈ BN ,

EνN
α̂

[ηi(x)] = αi(x/N).

The following statements are easy to verify:

• Consider α̂ a constant profile. Then νNα̂ is an invariant measure for the exchange dynamics so for any

f : Σ̂N → R, ∫
Σ̂N

LNf(ξ, ω)dνNα̂ (ξ, ω) = 0. (2.13)

• Consider α̂ a smooth profile satisfying (2.11) and (2.12). Then νNα̂ is an invariant measure for the

boundary dynamics so for any f : Σ̂N → R,∫
Σ̂N

Lb̂,θ̂,Nf(ξ, ω)dνNα̂ (ξ, ω) = 0. (2.14)

For any θ̂ ∈ (R+)3, at fixed N , the dynamics defined by (2.10) is irreducible and the state space is finite.

Therefore, there is a unique invariant measure that in the sequel we denote µssN (θ̂).

Useful (in)equalities: For any A,B > 0,

A(B −A) = −1

2
(B −A)2 +

1

2
(B2 −A2). (2.15)

For any a, b, A and N ∈ N,

2ab ≤ N

A
a2 +

A

N
b2. (2.16)

2.2 The macroscopic equations

Let us first introduce a few notations. We will write functions with values in R with normal letters (for

instance G) and the ones with values in R3 with letters with a hat (for instance Ĝ) . For n,m ∈ N, denote
Cn,m([0, T ] × B) the space of functions that are n times differentiable in time and m times differentiable in
space, Cn,m0 , resp. Cn,m0,− , resp. Cn,m0,+ the ones in Cn,m([0, T ] × B) which are zero on Γ, resp. Γ−, resp. Γ+.

Denote C∞k (B) the space of smooth functions with compact support in B, Cm(B) the space of functions that
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are m times differentiable in space and C(B) when m = 0. For θ̂ = (θ`, θr) in (R+)2, we will use the following
notations to denote these functional spaces:

Cθ̂ :=


C1,2

0 if θ̂ ∈ [0, 1)2,

C1,2
0,− if θ` ∈ [0, 1), θr ≥ 1,

C1,2
0,+ if θr ∈ [0, 1), θ` ≥ 1,
C1,2 if θr, θ` ≥ 1.

(2.17)

Let < ., . > be the L2(B) inner product and < ., . >µ the inner product with respect to a measure µ. For

f̂ = (f1, f2, f3) and ĝ = (g1, g2, g3) in
(
L2(B)

)3
, < f̂, ĝ >=

∑3
i=1 < fi, gi >. Introduce H1(B) the set of

functions in L2(B) such that for any 1 ≤ k ≤ d, there exists an element ∂ekg in L2(B) such that for any ϕ
in C∞k (B),

< ∂ekϕ, g >= − < ϕ, ∂ekg > .

The H1(B) norm is then defined as follows:

‖g‖H1(B) =
(
‖g‖2L2(B) +

d∑
k=1

‖∂ekg‖2L2(B)

)1/2

.

Denote L2
(

[0, T ],H1(B)
)

the space of functions f : [0, T ]→ H1(B) such that∫ T

0

‖f(t, .)‖2H1(B)dt <∞.

In order to define the value of an element G in H1(B) at the boundary, we need to introduce the notion of
trace of functions on such Sobolev spaces. The trace operator in the Sobolev space H1(B) can be defined as
a bounded linear operator, Tr : H1(B)→ L2(Γ) such that Tr extends the classical trace, that is Tr(G) = G|Γ ,
for any G ∈ H1(B) ∩ C(B̄). We refer to [6, Part II Section 5] for a detailed survey of the trace operator.
In the sequel, for s, u ∈ R+ × Γ and for any f ∈ L2((0, T );H1(B)), f(s, u) stands for Tr(f(s, .))(u).

To lighten notations, for a function Ĝ depending on time and space we will often write Ĝs instead of

Ĝ(s, .). Finally, for θ̂ ∈ (R+)2, introduce the following linear functional on L2
(

[0, T ],H1(B)
)

parametrized

by a test function Ĝ in Cθ̂ : for t ∈ [0, T ],

IĜ(ρ̂)(t) := < ρ̂t, Ĝt > − < ρ̂0, Ĝ0 > −
∫ t

0

< ρ̂s, ∂sĜs > ds

−D
∫ t

0

< ρ̂s,∆Ĝs > ds−
∫ t

0

< F̂ (ρ̂s), Ĝs > ds

(2.18)

where F̂ = (F1(ρ̂), F2(ρ̂), F3(ρ̂)) : [0, 1]3 → R3 is defined by F1(ρ1, ρ2, ρ3) = 2d(λ1ρ1 + λ2ρ3)ρ0 + ρ3 − (r + 1)ρ1

F2(ρ1, ρ2, ρ3) = rρ0 + ρ3 − 2d(λ1ρ1 + λ2ρ3)ρ2 − ρ2

F3(ρ1, ρ2, ρ3) = 2d(λ1ρ1 + λ2ρ3)ρ2 + rρ1 − 2ρ3,
(2.19)

with ρ0 = 1− ρ1 − ρ2 − ρ3.
The hydrodynamic equation is a reaction diffusion coupled equation with mixed boundary conditions

depending on θ̂. If θ`, resp. θr in [0, 1), the boundary conditions are of Dirichlet type on Γ−, resp. Γ+. If
θ` = 1, resp θr = 1, they are of Robin type on Γ−, resp. Γ+. If θ` > 1, resp. θr > 1, they are of Neumann
type on Γ−, resp. Γ+. We will focus on the cases where θ` ∈ [0, 1), θr = 1 resp. θ` > 1, θr = 1 corresponding
to a Dirichlet boundary condition on Γ− and a Robin boundary condition on Γ+, resp. a Neumann boundary
condition on Γ− and a Robin boundary condition on Γ+. All the other cases can easily be adapted (see the
Table 1).
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Definition 1. Let γ̂ : B → R3 be a continuous function.

• Hydrodynamic equation for θ` ∈ [0, 1) and θr = 1. We say that a bounded function ρ̂ = (ρ1, ρ2, ρ3) :
[0, T ]×B → R3 is a weak solution of the Dirichlet + Robin mixed boundary problem

∂tρ̂ = D∆ρ̂+ F̂ (ρ̂) in B × (0, T ),
ρ̂(0, .) = γ̂ in B,

ρ̂(t, .)|Γ− = b̂ for 0 < t ≤ T,
∂e1 ρ̂(t, .)|Γ+ = 1

D (̂b− ρ̂)|Γ+ for 0 < t ≤ T

(2.20)

if, for any 1 ≤ i ≤ 3,
ρi ∈ L2((0, T ),H1(B)), (2.21)

for any function Ĝ ∈ Cθ̂, for any t ∈ [0, T ],

IĜ(ρ̂)(t) +D

3∑
i=1

∫ t

0

∫
Γ−

bi(r)(∂e1Gi,s)(r)n1(r).dS(r)ds

+D

3∑
i=1

∫ t

0

∫
Γ+

ρi(s, r)(∂e1Gi,s)(r)n1(r).dS(r)ds−
3∑
i=1

∫ t

0

∫
Γ+

Gi(r)(bi(r)− ρi(s, r))n1(r).dS(r)ds = 0,

(2.22)

where n1(r) is the outward unit normal vector to the boundary surface Γ and dS(r) is an element of
surface on Γ. And,

ρ̂(0, .) = γ̂(.) almost surely. (2.23)

• Hydrodynamic equation for θ` > 1 and θr = 1. We say that a bounded function ρ̂ = (ρ1, ρ2, ρ3) :
[0, T ]×B → R3 is a weak solution of the Neumann + Robin mixed boundary problem

∂tρ̂ = D∆ρ̂+ F̂ (ρ̂) in B × (0, T ),
ρ̂(0, .) = γ̂ in B,
∂e1 ρ̂(t, .)|Γ− = 0 for 0 < t ≤ T
∂e1 ρ̂(t, .)|Γ+ = 1

D (̂b− ρ̂)|Γ+ for 0 < t ≤ T

(2.24)

if ρ̂ satisfies conditions (2.21) and (2.23) as well as the following: for any Ĝ ∈ Cθ̂, for any t ∈ [0, T ],

IĜ(ρ̂)(t) +D

3∑
i=1

∫ t

0

∫
Γ−
ρi(s, r)(∂e1Gi,s)(r)n1(r).dS(r)ds

+D

3∑
i=1

∫ t

0

∫
Γ+

ρi(s, r)(∂e1Gi,s)(r)n1(r).dS(r)ds−
∫

Γ+

Gi(r)(bi(r)− ρi(s, r))n1(r).dS(r)ds = 0.

(2.25)

Remark 1. In (2.22), the integral over Γ− corresponds to the Dirichlet boundary condition. In (2.25) the
integral over Γ− comes from an integration by part of the terms involved in the bulk. Both in (2.22) and
(2.25) the first integral over Γ+ comes from an integration by part of the terms involved in the bulk and the
second integral over Γ+ corresponds to the Robin boundary condition.

Definition 2. Stationary solution of the hydrodynamic equation.
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(θ`, θr) θr ∈ [0, 1) θr = 1 θr > 1

θ` ∈ [0, 1) (D ; D) (D ; R) (D ; N)

θ` = 1 (R ; D) (R ; R) (R ; N)

θ` > 1 (N ; D) (N ; R) (N ; N)

Figure 1: Mixed boundary conditions depending on the values of θ` and θr. The letters D, resp. R, resp.
N denote a Dirichlet, resp. Robin, resp. Neumann boundary condition. For instance (D ; N) denotes a left
hand side Dirichlet boundary condition and a right hand side Neumann boundary condition.

• A function ρ = (ρ1, ρ2, ρ3) in
(
H1(B)

)3
is said to be a stationary solution of (2.20) if for every function

Ĝ = (G1, G2, G3) ∈ C2
0 (B)3, for all 1 ≤ i ≤ 3,

D < ρi,∆Gi > + < Fi(ρ̂), Gi > = D

∫
Γ−

bi(r)(∂e1Gi)(r)n1(r).dS(r)

+D

∫
Γ+

ρi(r)(∂e1Gi)(r)n1(r).dS(r)−
∫

Γ+

Gi(r)(bi(r)− ρi(r))n1(r).dS(r).

(2.26)

• A function ρ = (ρ1, ρ2, ρ3) in
(
H1(B)

)3
is said to be a stationary solution of (2.24) if for every function

Ĝ = (G1, G2, G3) ∈ C2
0 (B)3, for all 1 ≤ i ≤ 3,

D < ρi,∆Gi > + < Fi(ρ̂), Gi > = D

∫
Γ−

ρi(r)(∂e1Gi)(r)n1(r).dS(r)

+D

∫
Γ+

ρi(r)(∂e1Gi)(r)n1(r).dS(r)−
∫

Γ+

Gi(r)(bi(r)− ρi(r))n1(r).dS(r).

(2.27)

2.3 Hydrodynamic and hydrostatic results

Let us state the main results proved in this paper. The first one (Theorem 1) establishes the hydrodynamic
limit of the dynamics defined above and the second one (Theorem 2) establishes its hydrostatic limit. Before
stating Theorem 1, let us first define the empirical measure (π̂N (ξt, ωt))t≥0 = (π̂Nt )t≥0 associated to (ξt, ωt)t≥0.

Recall how in (2.2), we built ηi ∈ {0, 1}BN from (ξ, ω) ∈ Σ̂N for 0 ≤ i ≤ 3. For any t ≥ 0,

π̂N (ξt, ωt) :=
( 1

Nd

∑
x∈BN

η1,t(x)δx/N ,
1

Nd

∑
x∈BN

η2,t(x)δx/N ,
1

Nd

∑
x∈BN

η3,t(x)δx/N

)
=: (πN1,t(ξt, ωt), π

N
2,t(ξt, ωt), π

N
3,t(ξt, ωt))

where δx/N is the point mass at x/N . For Ĝ in C1,2([0, T ]×B) and t ≥ 0, write

< π̂Nt , Ĝt >:=

3∑
i=1

< πNi,t, Gi(t, .) >=

3∑
i=1

1

Nd

∑
x∈BN

ηi,t(x)Gi(t,
x

N
).
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The empirical measure is therefore the triplet of empirical measures associated to the density of sites in state
1, resp. 2, resp. 3. DenoteM the set of positive measures on B with total mass bounded by 1 2d. The process
(π̂Nt )t≥0, is a Markov process with state space M3 and its trajectories are in D([0, T ],M3), the path space
of cadlàg time trajectories with values in M3. We endow the path space with the Skorohod topology (we

refer to [3] for a detailed survey on the Skorohod topology). For θ̂ ∈ (R+)2 and µN a measure on Σ̂N , denote

Qθ̂N = PµN (π̂N )−1 the law of the process (π̂N (ξt, ωt))t≥0 when (ξ0, ω0) ∼ µN and where (ξt, ωt)t≥0 evolves

according to the dynamics given by (2.10), with parameter θ̂ for the boundary reservoirs. The hydrodynamic
result states as follows:

Theorem 1. (Hydrodynamic limit). For any sequence of initial probability measure (µN )N≥1 on Σ̂N , the

sequence of probability measures (Qθ̂N )N≥1 is weakly relatively compact and all its converging subsequences

converge to some limit Qθ̂,∗ that is concentrated on the set of weak solutions of hydrodynamic equation that
are in L2(0, T ;H1(B)). Furthermore, if there is an initial continuous profile γ̂ : B → [0, 1]3 such that for any

δ > 0 and any Ĝ ∈ C∞k (B),

lim sup
N→∞

PµN
[∣∣∣ < π̂N , Ĝ > − < γ̂, Ĝ >

∣∣∣ > δ
]

= 0,

then, (Qθ̂N )N≥1 converges to the Dirac mass Qθ̂ concentrated on the unique weak solution ρ̂ of the boundary

value problem associated to θ̂ and with initial condition γ̂. Therefore, for any t ∈ [0, T ], δ > 0 and any

function Ĝ ∈ C1,2
c ([0, T ]×B),

lim sup
N→∞

PµN
[∣∣∣ < π̂Nt , Ĝt > − < ρ̂t, Ĝt >

∣∣∣ > δ
]

= 0.

We prove Theorem 1 in Section 3.

For the hydrostatic limit, we need to introduce the following sets of conditions:

(H1) :

 D ≥ 1
r + 1 > 2d(λ1 − λ2)
1 > 2dλ2

(H2) :

{
Dδ1 + r + 2 > 2d(λ1 − λ2)
Dδ1 + 1 > 2dλ2

(H3) :

{
r + 2 > 2d(λ1 − λ2)
1 > 2dλ2

where δ1 is the smallest eigenvalue of the Laplacian with Dirichlet boundary conditions (see (3.70)). Recall

that µssN (θ̂) denotes the sequence of unique invariant measures for the irreducible dynamics defined by (2.10).
The hydrostatic result states as follows.

Theorem 2. (Hydrostatic limit). Suppose that conditions (H1) hold. There exists a unique stationary
solution of (2.20) that we denote ρD,R, and a unique stationary solution of (2.24) that we denote ρN,R.
Furthermore, the following statements hold.

• Consider θ̂ = (θ`, θr) with θ` ∈ [0, 1) and θr = 1. For any continuous function Ĝ : B → [0, 1]3,

lim
N→∞

EµssN (θ̂)

( ∣∣∣ 3∑
i=1

1

Nd

∑
x∈BN

ηi(x)Gi(x/N)−
3∑
i=1

∫
B

Gi(u)ρD,Ri (u)du
∣∣∣ ) = 0. (2.28)

In other words, the sequence (µssN (θ̂))N≥1 is associated to the unique stationary profile ρD,R.
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• Consider θ̂ = (θ`, θr) with θ` > 1 and θr = 1. For any continuous function Ĝ : B → [0, 1]3,

lim
N→∞

EµssN (θ̂)

( ∣∣∣ 3∑
i=1

1

Nd

∑
x∈BN

ηi(x)Gi(x/N)−
3∑
i=1

∫
B

Gi(u)ρN,Ri (u)du
∣∣∣ ) = 0. (2.29)

In other words, the sequence (µssN (θ̂))N≥1 is associated to the unique stationary profile ρN,R.

Remark 2. For all the other mixed boundary regimes corresponding to other values of θ̂, the hydrostatic
principle states in the same way, replacing ρD,Ri or ρN,Ri by the stationary solution of the associated hydro-
dynamic equation. In the cases where only Dirichlet and Robin boundary conditions are involved, one can
slightly weaken the conditions (H1) by using conditions (H2) and (H3) instead. Precisely: in the (D ; D),
(D ; R), (R; D) regimes, the hydrostatic principle holds under conditions (H2) and in the (N ; N) regime, it
holds under conditions (H3).

The proof of Theorem 2 is done in Section 4. It essentially relies on an intermediate result stated
in Theorem 6 regarding the convergence of solutions of the hydrodynamic equation towards the unique
stationary state. This result is non standard as it involves a system of coupled equations and we prove it in
the second section of Section 4.

3 Proof of the hydrodynamic limit

As said before, we focus on the cases where θ` ∈ [0, 1), θr = 1 and θ` > 1, θr = 1. We follow the entropy
method introduced by Guo, Papanicolaou and Varadhan in [13] to prove the hydrodynamic limit. First, we

prove tightness of the sequence of measures (Qθ̂N )N≥1. Then, we show that any limit point of (Qθ̂N )N≥1 is a
Dirac mass concentrated on a weak solution of (2.20) if θ` ∈ [0, 1), θr = 1, or (2.24) if θ` > 1, θr = 1. Finally,
we prove uniqueness of the solution of the hydrodynamic equations at fixed initial data.

3.1 The martingale property and tightness

By Dynkin’s formula (see [15, Appendix A.1] ), for 1 ≤ i ≤ 3, t ∈ [0, T ] and Ĝ ∈ C1,2
c ([0, T ]×B),

MN
i,t(Ĝ) :=< πNi,t, Gi,t > − < πNi,0, Gi,0 > −

∫ t

0

< πNi,s, ∂sGi,s > ds

−N2

∫ t

0

LN < πNi,s, Gi,s > ds−
∫ t

0

LN < πNi,s, Gi,s > ds−N2

∫ t

0

Lb̂,θ̂,N < πNi,s, Gi,s > ds

(3.1)

is a martingale with respect to the natural filtration Ft = σ(ηs, s ≤ t) and with quadratic variation given
by:

N2

∫ t

0

LN < πNi,s, Gi,s >
2 ds+

∫ t

0

LN < πNi,s, Gi,s >
2 ds+N2

∫ t

0

Lb̂,θ̂,N < πNi,s, Gi,s >
2 ds

− 2N2

∫ t

0

< πNi,s, Gi,s > LN < πNi,s, Gi,s > ds− 2

∫ t

0

< πNi,s, Gi,s > LN < πNi,s, Gi,s > ds

− 2N2

∫ t

0

< πNi,s, Gi,s > Lb̂,θ̂,N < πNi,s, Gi,s > ds.

(3.2)

We then have that

M̂N
t (Ĝ) :=

3∑
i=1

MN
i,t(Ĝ)

is also a martingale whose quadratic variation is known.
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In order to develop the integral terms in (3.1), introduce the discrete second derivative in the direction
ek (for 1 ≤ k ≤ d) in the bulk, the discrete laplacian, and the discrete gradient in the direction e1 at the
boundary: for x ∈ BN \ ΓN ,

(∂Nek)2G(x/N) :=

d∑
k=1

N2
(
G
(x+ ek

N

)
+G

(x− ek
N

)
− 2G

( x
N

))
,

∆NG(x/N) :=

d∑
k=1

(∂Nek)2G(x/N), (∂Ne1)−H(x/N) := N
(
H
( x
N

)
−H

(x− e1

N

))
and

(∂Ne1)+H(x/N) := N
(
H
(x+ e1

N

)
−H

( x
N

))
.

Computations yield

MN
i,t(Ĝ) =< πNi,t, Gi,t > − < πNi,0, Gi,0 > −

∫ t

0

< πNi,s, ∂sGi,s > ds

−
∫ t

0

D

Nd

∑
x∈BN\ΓN

∆NGi,s(x/N)ηi,s(x)ds−
∫ t

0

D

Nd

∑
x∈ΓN

d∑
k=2

(∂Nek)2Gi,s(x/N)ηi,s(x)ds

−
∫ t

0

[ D

Nd−1

∑
x∈Γ+

N

(∂Ne1)−Gi,s(x/N)ηi,s(x)− D

Nd−1

∑
x∈Γ−N

(∂Ne1)+Gi,s(x/N)ηi,s(x)
]
ds

−
∫ t

0

1

Nd

∑
x∈BN

Gi,s(x/N)τxfi(ηs)ds

+
N2

Nd+θ`

∫ t

0

∑
x∈Γ−N

Gi,s(x/N)
(
ηi,s(x)− bi(x/N)

)
ds+

N2

Nd+θr

∫ t

0

∑
x∈Γ+

N

Gi,s(x/N)
(
ηi,s(x)− bi(x/N)

)
ds,

(3.3)

where we used that

LN < πNi,s, Gi,s >=
1

Nd

∑
x∈BN

Gi,s(x/N)τxfi(ηs), (3.4)

with
LNη1(0) = βBN (0, η)η0(0) + η3(0)− (r + 1)η1(0) =: f1(ξ, ω),
LNη2(0) = rη0(0) + η3(0)− βBN (0, η)η2(0)− η2(0) =: f2(ξ, ω),
LNη3(0) = βBN (0, η)η2(0) + rη1(0)− 2η3(0) =: f3(ξ, ω).

The second and third line in (3.3) correspond to the computation of the time integral associated to N2LN ,
the fourth line in (3.3) corresponds to the time integral associated to LN and the last term, to the integral
associated to N2Lb̂,θ̂,N .

Proposition 1. The sequence of probability measures (Qθ̂N )N≥1 is tight in the Skorohod topology of D([0, T ],M3).

We refer to [15, Section 4] for details regarding the proof of tightness of a sequence of probability measures.
Recall that it is enough to show that for every H in a dense subset of C(B) for the L2 norm, for every 1 ≤ i ≤ 3,

lim sup
δ→0

lim sup
N→∞

EµN
[

sup
|t−s|≤δ

∣∣∣ < πi,t, H > − < πi,s, H >
∣∣∣ ] = 0. (3.5)

By density of C2
0(B) in C2(B) for the L1 norm, it is enough to show (3.5) with H in C2

0(B). To prove that,
we use the martingale and its quadratic variation introduced in (3.1) and (3.2), and show that

lim sup
δ→0

lim sup
N→∞

EµN
[

sup
|t−s|≤δ

∣∣∣MN
i,t(H)−MN

i,s(H)
∣∣∣] = 0, (3.6)
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and

lim sup
δ→0

lim sup
N→∞

EµN
[

sup
|t−s|≤δ

∣∣∣ ∫ t

s

LN < πNi,r, H > dr
∣∣∣] = 0. (3.7)

We get (3.6) using the triangular inequality, Doob’s inequality and the fact that the quadratic variation
converges to zero. To prove (3.7), one shows that there is a constant C depending only on H such that for
every r ∈ [0, T ], ∣∣∣LN < πNi,r, H >

∣∣∣ ≤ C. (3.8)

For that, use the decomposition of LN and the fact that H vanishes at the boundary as well as explicit
computations and the fact that the fi’s are uniformly bounded in N .

3.2 Replacement Lemmas

In order to characterize the limit points of a sequence (Qθ̂N )N≥1, we need to close the equation (3.3). That
means that we want to show that each term of the martingale converges to a term that appears in the weak
formulation of the solution of the hydrodynamic equation, and that the martingale converges to zero. For
that, we perform a replacement lemma in the bulk and one at the boundary. The replacement lemma in the
bulk (Proposition 2) is exactly the same as in [18, Lemma 4.2] and we refer to that article for a detailed
proof. Here we focus on the replacement lemmas at the boundary and more specifically on the left hand side
boundary (the same statements hold on the right hand side). There are two replacement lemmas: one for
θ` ∈ [0, 1) whose formulation coincides with the replacement lemma at the boundary in [18, Proposition 4.3]
(corresponding to a Dirichlet condition), and one for θr ≥ 1, whose formulation involves particle densities
over small macroscopic boxes.

3.2.1 Dirichlet forms

Let us recall the expressions introduced in [18, Section 5] of the Dirichlet forms associated to each dynamics:

for f : Σ̂N → R and µ a measure on Σ̂N ,

DN (f, µ) :=

d∑
k=1

∑
(x,x+ek)∈B2

N

∫
Σ̂N

D
(√

f(ξx,x+ek , ωx,x+ek)−
√
f(ξ, ω)

)2

dµ(ξ, ω),

Db̂,θ̂,N (f, µ) := N−θ`
3∑
i=0

∑
x∈Γ−N

∫
Σ̂N

bi(x/N)(1− ηi(x))
(√

f(σi,x(ξ, ω))−
√
f(ξ, ω)

)2

dµ(ξ, ω)

+N−θr
3∑
i=0

∑
x∈Γ+

N

∫
Σ̂N

bi(x/N)(1− ηi(x))
(√

f(σi,x(ξ, ω))−
√
f(ξ, ω)

)2

dµ(ξ, ω)

and

DN (f, µ) :=
∑
x∈BN

∫
Σ̂N

[
r(1− ω(x)) + ω(x)

](√
f(ξ, σxω)−

√
f(ξ, ω)

)2

dµ(ξ, ω)

+
∑
x∈BN

∫
Σ̂N

[
βBN (x, ξ, ω)(1− ξ(x)) + ξ(x)

](√
f(σxξ, ω)−

√
f(ξ, ω)

)2

dµ(ξ, ω).

In the proofs of the Replacement lemmas, we will widely make use of the following inequalities.

Lemma 1. (i) Consider α̂ a smooth profile which satisfies (2.11) and (2.12). There is a constant C1 > 0

such that for any density function f : Σ̂N → R with respect to the measure νNα̂ ,

< LN
√
f,
√
f >νN

α̂
≤ −1

4
DN (f, νNα̂ ) + C1N

d−2. (3.9)
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(ii) Consider α̂ a smooth profile which either satisfies (2.11) and (2.12) or is constant. There is a constant

C2 > 0 such that for any density function f : Σ̂N → R with respect to the measure νNα̂ ,

< LN
√
f,
√
f >νN

α̂
≤ C2N

d. (3.10)

(iii) Consider α̂ a smooth profile which satisfies (2.11) and (2.12), then for any density function f : Σ̂N → R
with respect to the measure νNα̂ ,

< Lb̂,θ̂,N
√
f,
√
f >νN

α̂
= −1

2
Db̂,θ̂,N (f, νNα̂ ). (3.11)

Proof. Both (i) and (ii) are stated and proved in [18, Section 6, Lemma 6.1] and (iii) follows from the fact
that νNα̂ is invariant under the dynamics generated by Lb̂,θ̂,N when α̂ satisfies (2.11) and (2.12). We recall

the proof of (ii). Using the correspondence (2.1) and the expression of the generator for the contact process
in the bulk (2.6) we have

< LN
√
f,
√
f >νN

α̂
=
∑
x∈BN

∫ (
βBN (x, ξ, ω)(1− ξ(x)) + ξ(x)

)√
f(ξ, ω)

(√
f(σxξ, ω)−

√
f(ξ, ω)

)
dνNα̂ (ξ, ω)

+
∑
x∈BN

∫ (
r(1− ω(x)) + ω(x)

)√
f(ξ, ω)

(√
f(ξ, σxω)−

√
f(ξ, ω)

)
dνNα̂ (ξ, ω).

As the terms βBN (x, ξ, ω)(1− ξ(x)) + ξ(x) and r(1−ω(x)) +ω(x) are uniformly bounded in N by a constant
C(λ1, λ2, r, d), the above is less than

I1 + I2 : =
∑
x∈BN

∫
C(λ1, λ2, r, d)

√
f(ξ, ω)

(√
f(σxξ, ω) +

√
f(ξ, ω)

)
dνNα̂ (ξ, ω)

+
∑
x∈BN

∫
C(λ1, λ2, r, d)

√
f(ξ, ω)

(√
f(ξ, σxω) +

√
f(ξ, ω)

)
dνNα̂ (ξ, ω).

To deal with I1 (the same method holds for I2). Use (2.16) with A = 2N to get that

I1 ≤ 2C(λ1, λ2, r, d)
∑
x∈BN

∫
f(ξ, ω)dνNα̂ (ξ, ω) + C(λ1, λ2, r, d)

∑
x∈BN

∫
f(σxξ, ω)dνNα̂ (ξ, ω).

Since f is a density with respect to νNα̂ , the first term is less than CNd where C > 0 is a uniform constant
in N . Now note that for x ∈ BN , using∫

f(σxξ, ω)dνNα̂ (ξ, ω) =
∑

0≤i≤3

∫
ηi(x)f(σxξ, ω)dνNα̂ (ξ, ω)

≤
∑

0≤i≤3

∑
j 6=i

αj(x/N) 6=0

αi(x/N)

αj(x/N)

∫
ηj(x)f(ξ, ω)dνNα̂ (ξ, ω)

where we used the change of variable (ξ, ω)→ (σxξ, ω) and formulas (A.5) in the second inequality. Now as
α̂ satisfies (2.11) and (2.12), the set{αi(x/N)

αj(x/N)
, αj(x/N) 6= 0, 0 ≤ i, j ≤ 3

}
is uniformly bounded in N . Using again that f is a density we get the desired result.

14



3.2.2 Replacement lemma in the bulk.

Let us first introduce a few notations. Given a smooth profile α̂, and a function φ : Σ̂N → R, denote
∼
φ(α̂)

the expectation of φ under νNα̂ . For ` ∈ N, introduce

Λ`x = {y ∈ BN , ‖y − x‖ ≤ `}

where ‖y − x‖ = max{|yi − xi|, 1 ≤ i ≤ d}, and denote η`i (x) the average of η in Λ`x, that is,

η`i (x) =
1

|Λ`x|
∑
y∈Λ`x

ηi(y), for 1 ≤ i ≤ 3.

Introduce the vector
η̂`(x) = (η̂`1(x), η̂`2(x), η̂`3(x))

and for ε > 0,

VεN (ξ, ω) =
∣∣∣ 1

|ΛbεNcx |

∑
y∈Λ

bεNc
x

τyφ(ξ, ω)−
∼
φ(η̂bεNc(0))

∣∣∣.
In the sequel, we will write εN instead of bεNc. The replacement lemma in the bulk stated and proved in
[18, Lemma 4.2] is the following:

Proposition 2. For any G ∈ C1,2
0 and for any function φ : Σ̂N → R ,

lim sup
ε→0

lim sup
N→∞

EµN
[ 1

Nd

∑
x∈BN

∫ T

0

∣∣Gs(x/N)
∣∣τxVεN (ξs, ωs)ds

]
= 0.

3.2.3 Replacement lemma at the left hand side boundary for θ` ∈ [0, 1).

Here we fix θ` in [0, 1) and prove the replacement lemma at the left hand side boundary. It essentially states
that when performing the macroscopic limit N →∞, one can replace ηi(x) by bi(x/N). For θr ∈ [0, 1), the
replacement lemma at the right hand side boundary is exactly the same. Recall that this result has been
proved for θ` = θr = 0 in [18, Section 6] and we generalize it here to the case where the left hand side (or
right hand side) parameter θ` is allowed to vary in [0, 1).

Proposition 3. For any sequence of measures (µN )N≥0 on Σ̂N , for any G ∈ C1,2([0, T ] × B) and any
i ∈ {1, 2, 3}, for any t ∈ [0, T ], for all δ > 0,

lim sup
N→∞

PµN
[∣∣∣ ∫ t

0

1

Nd−1

∑
x∈Γ−N

G(s, x/N)
(
ηi,s(x)− bi(x/N)

)
ds
∣∣∣ > δ

]
= 0. (3.12)

Note that the replacement lemma at the right hand side boundary for θr ∈ [0, 1) states as above, with the
sum in x carrying over Γ+

N rather than Γ−N .

Proof. Fix an i ∈ {1, 2, 3}. It is enough to show that

lim sup
N→∞

1

Nd
log
(
PµN

[∣∣∣ ∫ t

0

1

Nd−1

∑
x∈Γ−N

G(s, x/N)
(
ηi,s(x)− bi(x/N)

)
ds
∣∣∣ > δ

])
= −∞.
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Consider α̂ a smooth profile satisfying conditions (2.11) and (2.12). For a > 0,

PµN
[∣∣∣ ∫ t

0

1

Nd−1

∑
x∈Γ−N

G(s, x/N)
(
ηi,s(x)− bi(x/N)

)
ds
∣∣∣ > δ

]

≤ sup
(ξ,ω)∈Σ̂N

dµN
dνNα̂

(ξ, ω)× PνN
α̂

[∣∣∣ ∫ t

0

1

Nd−1

∑
x∈Γ−N

G(s, x/N)
(
ηi,s(x)− bi(x/N)

)
ds
∣∣∣ > δ

]

≤ exp(K0N
d)EµN

[
exp

(
aNd

∣∣∣ ∫ t

0

1

Nd−1

∑
x∈Γ−N

G(s, x/N)
(
ηi,s(x)− bi(x/N)

)
ds
∣∣∣)] exp(−aδNd).

We used, in the first inequality, that the Radon-Nikodym derivative of µN with respect to νNα̂ is bounded by
exp(K0N

d) with K0 a constant, and Tchebychev’s inequality in the second line. Therefore,

1

Nd
log
(
PµN

[∣∣∣ ∫ t

0

1

Nd−1

∑
x∈Γ−N

G(s, x/N)
(
ηi,s(x)− bi(x/N)

)
ds
∣∣∣ > δ

])

≤ −aδ +K0 +
1

Nd
log
(
EνN

α̂

[
exp

(
aNd

∣∣∣ ∫ t

0

1

Nd−1

∑
x∈Γ−N

G(s, x/N)
(
ηi,s(x)− bi(x/N)

)
ds
∣∣∣)]). (3.13)

It is enough to show that the last term is uniformly bounded in a and N and then, take a → ∞ with N .
Since e|x| ≤ ex + e−x and

lim sup
N

1

N
log(aN + bN ) = max

[
lim sup

N

1

N
log aN , lim sup

N

1

N
log bN

]
, (3.14)

we show that the last term in (3.13) without the absolute values, is uniformly bounded in a and N . Apply
Feynman-Kac’s formula with

V (s, (ξs, ωs)) =
aNd

Nd−1

∑
x∈Γ−N

G(s, x/N)(ηi,s(x)− bi(x/N)).

Since G is bounded,

1

Nd
log
(
EνN

α̂

[
exp

(
aNd

∫ t

0

1

Nd−1

∑
x∈Γ−N

G(s, x/N)
(
ηi,s(x)− bi(x/N)

)
ds
)])

≤
∫ t

0

ds
{

sup
f

[ ∫
Σ̂N

a

Nd−1

∑
x∈Γ−N

G(s, x/N)
(
bi(x/N)− ηi(x)

)
f(ξ, ω)dνNα̂ (ξ, ω) +

1

Nd
< LN

√
f,
√
f >νN

α̂

]}
.

Note that for x ∈ Γ−N ,

bi(x/N)− ηi(x) =
∑
j 6=i

(bi(x/N)ηj(x)− bj(x/N)ηi(x))

and for j 6= i, ∫
ηi(x)bj(x/N)f(ξ, ω)dνNα̂ (ξ, ω) =

∫
ηj(x)f(σi,x(ξ, ω))bi(x/N)dνNα̂ (ξ, ω). (3.15)
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Therefore,

G(s, x/N)

∫ (
bi(x/N)− ηi(x)

)
f(ξ, ω)dνNα̂ (ξ, ω)

= G(s, x/N)

∫
bi(x/N)

∑
j 6=i

ηj(x)f(ξ, ω)dνNα̂ (ξ, ω)−G(s, x/N)

∫
bi(x/N)

∑
j 6=i

ηj(x)f(σi,x(ξ, ω))dνNα̂ (ξ, ω)

= −G(s, x/N)

∫
bi(x/N)(1− ηi(x))(f(σi,x(ξ, ω))− f(ξ, ω))dνNα̂ (ξ, ω)

≤ A

2

∫
bi(x/N)(1− ηi(x))

(√
f(σi,x(ξ, ω))−

√
f(ξ, ω)

)2

dνNα̂ (ξ, ω)

+
1

2A

(
G(s, x/N)

)2 ∫
bi(x/N)(1− ηi(x))

(√
f(σi,x(ξ, ω)) +

√
f(ξ, ω)

)2

dνNα̂ (ξ, ω)

(3.16)

where we used (2.16) in the last line replacing A by AN , with A > 0. Summing (3.16) over Γ−N and multiplying
by a

Nd−1 yields,∫
η

a

Nd−1

∑
x∈Γ−N

(bi(x/N)− ηi(x))f(ξ, ω)dνNα̂ (ξ, ω) ≤ aANθ`

2Nd−1
Db̂,θ̂,N (f, νNα̂ ) +

a‖b‖∞‖G‖2∞
2A

where the second term comes from Cauchy-Schwarz’s inequality, the fact that f is a density, the change
of variable formula (3.15) and the fact that b is bounded and that there are of order Nd−1 terms in Γ−N .

Therefore, taking a = A = N
1−θ`

2 , using (3.9), (3.10) and (3.11) to bound < LN
√
f,
√
f >νN

α̂
and the fact

that a Dirichlet form is positive we are left with

1

Nd
log
(
EνN

α̂

[
exp

(
aNd

∫ t

0

1

Nd−1

∑
x∈Γ−N

G(s, x/N)
(
ηi,s(x)− bi(x/N)

)
ds
)])

≤ T sup
f

{ N2

2Nd
Db̂,θ̂,N (f, νNα̂ ) +

‖G‖2∞‖b‖∞
2

+
1

Nd
< LN

√
f,
√
f >νN

α̂

}
≤ T sup

f

{‖G‖2∞‖b‖∞
2

− N2

4Nd
DN (f, νNα̂ ) + C1 + C2

}
≤ T sup

f

{(aANθ`

2Nd−1
− N2

2Nd

)
Db̂,θ̂,N (f, νNα̂ ) +

‖G‖2∞a‖b‖∞
2A

}
+ TC1 + TC2

≤ T ‖b‖∞‖G‖
2
∞

2
+ TC1 + TC2,

hence the desired result.

3.2.4 Replacement lemma at the left hand side boundary for θ` ≥ 1.

For θ` ≥ 1, the replacement lemma at the boundary involves particle densities over small macroscopic boxes.
Again, the same replacement lemma holds at the right hand side boundary for θr ≥ 1. In fact, we will see in
the proof that the lemma holds for any positive value of θ`, resp. θr regardless of whether θ` resp. θr ≥ 1.

Proposition 4. For any sequence of probability measures (µN )N≥0 on Σ̂N , for any G ∈ C1,2([0, T ]×B), for
all i ∈ {1, 2, 3} and any t ∈ [0, T ],

lim sup
ε→0

lim sup
N→∞

EµN
[∣∣∣ 1

Nd−1

∑
x∈Γ−N

∫ t

0

G(s, x/N)(ηεNi,s (x)− ηi,s(x))ds
∣∣∣] = 0. (3.17)
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Proof. Consider α̂ a smooth profile satisfying conditions (2.11) and (2.12) . By the entropy inequality (see
[15, Appendix 1]), for any A > 0,

EµN
[∣∣∣ 1

Nd−1

∑
x∈Γ−N

∫ t

0

G(s, x/N)(ηεNi,s (x)− ηi,s(x))ds
∣∣∣]

≤ 1

ANd
H(µN |νNα̂ ) +

1

ANd
logEνN

α̂

[
exp

(
ANd

∣∣∣ 1

Nd−1

∑
x∈Γ−N

∫ t

0

G(s, x/N)
(
ηεNi,s (x)− ηi,s(x)

)
ds
∣∣∣)]. (3.18)

As BN is finite, there is a constant K0 > 0 such that H(µN |νNα̂ ) ≤ K0N
d so the first term in (3.18) is

bounded by K0/A. Let us show that the second term tends to zero when N →∞ and ε→ 0 and then take
A arbitrarily big. Again, by (3.14), it is enough to show that the second term in (3.18) without the absolute
values in the exponential, tends to zero. By Feynman-Kac’s inequality,

1

ANd
log EνN

α̂

[
exp

(
ANd 1

Nd−1

∑
x∈Γ−N

∫ t

0

G(s, x/N)
(
ηεNi,s (x)− ηi,s(x)

)
ds
)]

≤
∫ t

0

ds sup
f

[ ∫ 1

Nd−1

∑
x∈Γ−N

G(s, x/N)
(
ηεNi (x)− ηi(x)

)
f(ξ, ω)dνNα̂ (ξ, ω) +

1

ANd
< LN

√
f,
√
f >νN

α̂

]
(3.19)

where the supremum is taken over densities. Write ηεNi (x) − ηi(x) as a d-dimensional telescopic sum. For
that, note that for any y ∈ ΛεN , there is an integer py ≤ dεN and py points u1 = x, ..., up = x+ y such that
for every 1 ≤ j ≤ py − 1, uj+1 − uj = erj where rj ∈ {1, ..., d}. Therefore,

ηεNi (x)− ηi(x) =
1

(εN)d

∑
y∈ΛεN

py−1∑
j=1

(
ηi(uj + erj )− ηi(uj)

)
. (3.20)

Performing the change of variable (ξ, ω)→ (ξuj ,uj+erj , ωuj ,uj+erj ) =: (ξuj , ωuj ) and using (A.2),

1

Nd−1

∑
x∈Γ−N

G(s, x/N)

∫ (
ηεNi (x)− ηi(x)

)
f(ξ, ω)dνNα̂ (ξ, ω) (3.21)

=
1

2Nd−1

∑
x∈Γ−N

G(s, x/N)

∫
1

(εN)d

∑
y∈ΛεN

py−1∑
j=1

(
ηi(uj + erj )− ηi(uj)

)(
f(ξ, ω)− f(ξuj , ωuj )

)
dνNα̂ (ξ, ω)

(3.22)

+
1

2Nd−1

∑
x∈Γ−N

G(s, x/N)

∫
1

(εN)d

∑
y∈ΛεN

py−1∑
j=1

(
ηi(uj + erj )− ηi(uj)

)
f(ξuj , ωuj )

(
1−

νNα̂ (ξuj , ωuj )

νNα̂ (ξ, ω)

)
dνNα̂ (ξ, ω).

(3.23)

First we deal with (3.22). Using that |ηi(uj + erj )− ηi(uj)| ≤ 1 and inequality (2.16),

(3.22) ≤ 1

2Nd−1

∑
x∈Γ−N

B

2(εN)d

∫ ∑
y∈ΛεN

py−1∑
j=1

(√
f(ξuj , ωuj )−

√
f(ξ, ω)

)2

dνNα̂ (ξ, ω)

+
1

2Nd−1

∑
x∈Γ−N

‖G‖2∞
2B(εN)d

∫ ∑
y∈ΛεN

py−1∑
j=1

(√
f(ξuj , ωuj ) +

√
f(ξ, ω)

)2

dνNα̂ (ξ, ω)

(3.24)
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where B > 0 will be chosen later. Now for x ∈ Γ−N ,

∑
y∈ΛεN

py−1∑
j=1

(√
f(ξuj , ωuj )−

√
f(ξ, ω)

)2

≤ dεN
d∑
k=1

∑
(z,z+ek)∈x+ΛεN

(√
f(ξz,z+ek , ωz,z+ek)−

√
f(ξ, ω)

)2

and

∑
y∈ΛεN

py−1∑
j=1

(√
f(ξuj , ωuj ) +

√
f(ξ, ω)

)2

≤ dεN
d∑
k=1

∑
(z,z+ek)∈x+ΛεN

(√
f(ξz,z+ek , ωz,z+ek) +

√
f(ξ, ω)

)2

.

Therefore,∫ ∑
x∈Γ−N

1

(εN)d

∑
y∈ΛεN

py−1∑
j=1

(√
f(ξuj , ωuj )−

√
f(ξ, ω)

)2

dνNα̂ (ξ, ω)

≤ dεN
∫ ∑

x∈Γ−N

1

(εN)d

d∑
k=1

∑
(z,z+ek)∈x+ΛεN

(√
f(ξz,z+ek , ωz,z+ek)−

√
f(ξ, ω)

)2

dνNα̂ (ξ, ω)

≤ d
∫ d∑

k=1

∑
(z,z+ek)∈B2

N

(√
f(ξz,z+ek , ωz,z+ek)−

√
f(ξ, ω)

)2

dνNα̂ (ξ, ω) =
d

D
DN (f, νNα̂ )

(3.25)

where the last inequality comes from an integration by part formula and the fact that there are of order
Nd−1 elements in Γ−N . Now using that f is a density,

1

2Nd−1

∫ ∑
x∈Γ−N

1

(εN)d

∑
y∈ΛεN

py−1∑
j=1

(√
f(ξuj , ωuj ) +

√
f(ξ, ω)

)2

dνNα̂ (ξ, ω) (3.26)

≤ dεN +
1

Nd−1

∑
x∈Γ−N

dεN

(εN)d

∑
(z,z+ek)∈x+ΛεN

∫
f(ξz,z+ek , ωz,z+ek)dνNα̂ (ξ, ω). (3.27)

Note that (ξ, ω) 7→ f(ξz,z+ek , ωz,z+ek) is not a density. Using the explicit expression of the product measure
νNα̂ , one has that for (x, x+ ek) ∈ B2

N

νNα̂ (ξx,x+ek , ωx,x+ek)

νNα̂ (ξ, ω)
=

3∏
i=1

(αi(x/N)

α0(x/N)

)ηi(x+ek)−ηi(x)(αi((x+ ek)/N)

α0((x+ ek)/N)

)
.

Now using that αi
(
x+ek
N

)
= αi

(
x
N

)
+O

(
1
N

)
we have the following inequality: there is a constant C > 0 such

that ∣∣∣1− νNα̂ (ξx,x+ek , ωx,x+ek)

νNα̂ (ξ, ω)

∣∣∣ ≤ C

N
. (3.28)

Therefore, for (x, x+ ek) ∈ B2
N , ∫

f(ξx,x+ek , ωx,x+ek)dνNα̂ (ξ, ω) ≤ 1 +
C

N
(3.29)

so the last term in (3.27) is smaller than

1

Nd−1

∑
x∈Γ−N

dεN

(εN)d

∑
z,z+ek∈x+ΛεN

(
1 +

C

N

)
=
dεN

B
+
dε

B
. (3.30)
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Collecting inequalities (3.24), (3.25) and (3.30), we get that

(3.22) ≤ dB

2D
DN (f, νNα̂ ) + ‖G‖2∞

(dεN
B

+
dε

B

)
. (3.31)

Now we deal with (3.23). By inequalities (3.28) and (3.29) and using that ηi ∈ {0, 1},

(3.23) ≤ ‖G‖∞
Nd−1

∑
x∈Γ−N

∫
1

(εN)d

∑
y∈ΛεN

py−1∑
j=1

f(ξuj , ωuj )
(

1−
νNα̂ (ξuj , ωuj )

νNα̂ (ξ, ω)

)
dνNα̂ (ξ, ω)

≤ C‖G‖∞
Nd

∑
x∈Γ−N

1

(εN)d

∑
y∈ΛεN

py−1∑
j=1

(
1 +

C

N

)
≤ ‖G‖∞

(
1 +

C

N

)
Cdε.

(3.32)

Therefore, collecting inequalities (3.31) and (3.32), for any density f ,∫
1

Nd−1

∑
x∈Γ−N

(
ηεNi (x)− ηi(x)

)
f(ξ, ω)dνNα̂ (ξ, ω) ≤

( dB

2DNd−1
DN (f, νNα̂ ) +

dεN

B
+
dε

B
+ Cdε+

C2dε

N

)
.

This, combined with (3.19) as well as Lemma 1 yields:

1

ANd
log EνN

α̂

[
exp

(
ANd

∣∣∣ 1

Nd−1

∑
x∈Γ−N

∫ t

0

G(s, x/N)
(
ηεNi,s (x)− ηi,s(x)

)
ds
∣∣∣)]

≤ sup
f

[(T‖G‖∞dB
2DNd−1

− N2

4ANd

)
DN (f, νNα̂ ) +

T‖G‖∞ε
B

(N + d) + T‖G‖∞Cdε
(

1 +
C

N

)
+
C4

A

]
(3.33)

with C4 > 0, a constant that only depends on d. Taking B = (ND)/(2dT‖G‖∞A) and putting together
(3.19) and (3.33) yields

EµN
[∣∣∣ 1

Nd−1

∑
x∈Γ−N

∫ t

0

G(s, x/N)(ηεNi,s (x)− ηi,s(x))ds
∣∣∣] ≤ K0Aε

(
1 +

1

N

)
+ T‖G‖∞Cdε

(
1 +

C

N

)
+
C4

A

with K0 a constant depending on T,G, d and taking ε→ 0 and then A→∞ we get the desired result.

3.3 Energy estimates

In view of the proof of uniqueness of the limit of the sequence of probability measures (Qθ̂N )N≥1, we state

that any limiting measure Qθ̂ is concentrated on a trajectory belonging to a specific functional space. This
allows to define the hydrodynamic limit at the boundary.

Proposition 5. Let θ̂ ∈ (R+)2 and Qθ̂ be a limit point of the sequence of probability measures (Qθ̂N )N≥1.

Then, the probability measure Qθ̂ is concentrated on paths ρ̂(t, u)du such that for every 1 ≤ i ≤ 3, ρi belongs
to L2((0, T );H1(B)).

This follows from the Lemma below and the Riesz Representation Theorem. A similar proof can be found,
for instance in [15, section 5].

Lemma 2. For any θ̂ ∈ (R+)2, there is a constant Kθ̂ > 0 such that for every 1 ≤ i ≤ 3,

EQθ̂
[
sup
H

(∫ T

0

∫
B

d∑
k=1

∂ekH(s, u)ρi(s, u)duds−Kθ̂

∫ T

0

∫
B

H(s, u)2duds
)]

<∞ (3.34)

where the supremum is carried over functions H ∈ C0,2
c ([0, T ]×B).
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For the proof of Lemma 2, one can follow the arguments in [15, Section 5]. First prove (3.34) for a
dense and countable set of elements of C0,2

c ([0, T ] × B) thanks to Feynmann-Kac’s inequality. Then, use an
integration by part to deal with the spatial derivatives in H, as well as a change of variable.

3.4 Characterization of the limit point in the (Dirichlet ; Robin) mixed regime

In order to show that the limit point of the sequence of probability measures (Qθ̂N )N≥1 lies on the trajectory

with density profile the unique solution of the hydrodynamic equation associated to θ̂ and γ̂, we give a
characterization result (see Proposition 6). We will focus on the (Dirichlet ; Robin) mixed regime since the
(Neumann ; Robin) mixed regime can be proved following the same lines. Therefore, take θ` ∈ [0, 1) and
θr ≥ 1.

As mentioned in the introduction, in one dimension, the macroscopic trajectories are continuous in space
and their values at the boundaries are defined in the classical sense. This is no longer valid in higher
dimension. To deal with this difficulty we use the regularity of the trajectories proved in Proposition 5: the
trajectories lie in L2((0, T );H1(B)) so their values at the boundary are defined via the trace operator (see
Lemma 3).

Proposition 6. If Qθ̂ is a limit point of the sequence of probability measures (Qθ̂N )N≥1, then

Qθ
[
π̂,
∣∣∣IĜ(ρ̂)(t) +D

3∑
i=1

∫ t

0

[ ∫
Γ−
bi(r)(∂e1Gi,s)(r)n1(r).dS(r) +

∫
Γ+

ρi(s, r)(∂e1Gi,s)(r)n1(r).dS(r)
]
ds

−
3∑
i=1

∫ t

0

∫
Γ+

Gi(r)(bi(r)− ρi(s, r))n1(r).dS(r)ds
∣∣∣ = 0, ∀t ∈ [0, T ], ∀Ĝ ∈ Cθ̂

]
= 1

(3.35)

where recall that IĜ(ρ̂) was defined in (2.18).

Proof. The fact that any limit point is concentrated on trajectories which are absolutely continuous with

respect to the Lebesgue measure comes from Proposition 5. Let Qθ̂ be a a limit point of the sequence of

probability measures (Qθ̂N )N≥1, To prove (3.35), it is enough to show that for any fixed δ > 0 and Ĝ ∈ C1,2
0,−,

Qθ̂
[
π̂, sup

0≤t≤T

∣∣∣IĜ(ρ̂)(t) +D

3∑
i=1

∫ t

0

[ ∫
Γ−

bi(r)(∂e1Gi,s)(r)n1(r).dS(r) +

∫
Γ+

ρi(s, r)(∂e1Gi,s)(r)n1(r).dS(r)
]
ds

−
3∑
i=1

∫ t

0

∫
Γ+

Gi(r)(bi(r)− ρi(s, r))n1(r).dS(r)ds
∣∣∣ > δ

]
= 0.

(3.36)

Here, note that for s ∈ [0, T ] and r ∈ Γ, ρi(s, r) stands for Tr(ρ)(s, r) which is well defined since ρ is in
L2([0, T ],H1(B)). By the triangular inequality, it suffices to prove that for any 1 ≤ i ≤ 3,

Qθ̂
[
π̂, sup

0≤t≤T

∣∣∣IGi(ρi)(t) +D

∫ t

0

[ ∫
Γ−
bi(r)(∂e1Gi,s)(r)n1(r).dS(r) +

∫
Γ+

ρi(s, r)(∂e1Gi,s)(r)n1(r).dS(r)
]
ds

−
∫ t

0

∫
Γ+

Gi(r)(bi(r)− ρi(s, r))n1(r).dS(r)ds
∣∣∣ > δ

]
= 0.

(3.37)

As usual, we would like to approximate ρ by a convolution of its associated empirical measure with an
approximation of the identity. Indeed, that convolution product can then be written in terms of the mean
value of the configuration in a microscopic box. This is straightforward in the bulk, however, for the boundary
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terms, one needs to justify that such an approximation works (see (3.49)).Without loss of generality, let us

deal with i = 1. We turn to our martingales (3.1) MN
1,t(Ĝ) and recall that we have proved that its quadratic

variation vanishes as N ↑ ∞. For ε > 0, introduce the set

BN,ε = {−N(1− ε), · · · , N(1− ε)} × Td−1
N .

By Proposition 2,

MN
1,t(Ĝ) =< πN1,t, G1,t > − < πN1,0, G1,0 > −

∫ t

0

< πN1,s, ∂sG1,s > ds

−
∫ t

0

D

Nd

∑
x∈BN\ΓN

∆G1,s(x/N)η1,s(x)ds

+

∫ t

0

D

Nd−1

∑
x∈Γ−N

b1(x/N)∂e1G1,s(x/N)ds+

∫ t

0

D

Nd−1

∑
x∈Γ−N

∂e1G1,s(x/N)
(
η1,s(x)− b1(x/N)

)
ds

−
∫ t

0

D

Nd−1

∑
x∈Γ+

N

∂e1G1,s(x/N)ηεN1,s (x)ds+

∫ t

0

D

Nd−1

∑
x∈Γ+

N

∂e1G1,s(x/N)
(
ηεN1,s (x)− η1,s(x)

)
ds

+

∫ t

0

D

Nd−1

∑
x∈Γ+

N

G1,s(x/N)
(
ηεN1,s (x)− b(x/N)

)
ds

−
∫ t

0

1

Nd

∑
x∈BN,ε

G1,s

( x
N

)(
2d(λ1η

εN
1 (x) + λ2η

εN
3 (x))ηεN0 (x) + ηεN3 (x)− (r + 1)ηεN1 (x)

)
ds

+R
(
N, ε,G1, (ηt)t∈[0,T ]

)
,

(3.38)

where R
(
N, ε,G1, (ηt)t∈[0,T ]

)
is a random variable satisfying lim

ε→0
lim
N→∞

EµN
[
R
(
N, ε,G1, (ηt)t∈[0,T ]

)]
= 0.

From Proposition 3 and Proposition 4, the martingale MN
1,t(Ĝ) can be rewritten as

MN
1,t(Ĝ) =< πN1,t, G1,t > − < πN1,0, G1,0 > −

∫ t

0

< πN1,s, ∂sG1,s > ds

−
∫ t

0

D

Nd

∑
x∈BN\ΓN

∆G1,s(x/N)η1,s(x)ds+

∫ t

0

D

Nd−1

∑
x∈Γ−N

b1(x/N)∂e1G1,s(x/N)ds

−
∫ t

0

D

Nd−1

∑
x∈Γ+

N

∂e1G1,s(x/N)ηεN1,s (x)ds+

∫ t

0

D

Nd−1

∑
x∈Γ+

N

G1,s(x/N)
(
ηεN1,s (x)− b(x/N)

)
ds

−
∫ t

0

1

Nd

∑
x∈BN,ε

G1,s

( x
N

)(
2d(λ1η

εN
1 (x) + λ2η

εN
3 (x))ηεN0 (x) + ηεN3 (x)− (r + 1)ηεN1 (x)

)
ds

+R′
(
N, ε,G1, (ηt)t∈[0,T ]

)
,

(3.39)

where R′
(
N, ε,G1, (ηt)t∈[0,T ]

)
is a random variable satisfying lim

ε→0
lim
N→∞

EµN
[
R′
(
N, ε,G1, (ηt)t∈[0,T ]

)]
= 0.

On the other hand, a computation of the quadratic variation of the martingale MN
1,t(Ĝ) shows that its

expectation vanishes as N ↑ ∞. Therefore, by Doob’s inequality, for every δ > 0,

lim sup
N→∞

PµN
[

sup
0≤t≤T

∣∣∣MN
1,t(Ĝ)

∣∣∣ > δ
]

= 0, (3.40)

Now, introduce the following approximations of the identity on B:

uε(x) =
1

(2ε)d
1[−ε,ε]d(x), (3.41)
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urightε (x) =
1

ε(2ε)d−1
1[0,ε]×[−ε,ε]d−1(x), and uleftε (x) =

1

ε(2ε)d−1
1[−ε,0]×[−ε,ε]d−1(x). (3.42)

Note that for ε > 0, 1 ≤ i ≤ 3, x ∈ BN,ε, y ∈ Γ+
N , and z ∈ Γ−N ,

ηεNi (x) =
(2εN)d

(2εN + 1)d
(
πNi ∗ uε

)
(x/N), (3.43)

ηεNi (y) =
(2εN)d−1

(2εN + 1)d−1

(
πNi ∗ urightε

)
(y/N), and ηεNi (z) =

(2εN)d−1

(2εN + 1)d−1

(
πNi ∗ uleftε

)
(z/N). (3.44)

Here we will only make used of (3.43) and the first relation in (3.44) since we need to replace elements in the
bulk and the right hand side boundary of the system to recover the weak formulation of the equation in the
(Dirichlet; Robin) regime. For regimes where a replacement is needed on the left hand side boundary, we use
the second relation in (3.44) in the same way.

We may thus replace in (3.39) and (3.40), ηεNi by πNi ∗ uε in the bulk and ηεNi by πNi ∗ urightε at the right
boundary. Therefore, for any δ > 0.

lim sup
ε→0

lim sup
N→∞

Qθ̂N

[
sup

0≤t≤T

∣∣∣F Ĝ,t1,N,ε

(
π̂
)∣∣∣ ≥ δ] = 0,

where for any trajectory π̂ and for any t ∈ [0, T ],

F Ĝ,t1,N,ε

(
π̂
)

=< π1,t, G1,t > − < π1,0, G1,0 > −
∫ t

0

< π1,s, ∂sG1,s > ds

−
∫ t

0

D
〈
π1,s,∆G1,s

〉
ds+

∫ t

0

D

Nd−1

∑
x∈Γ−N

b1(x/N)∂e1G1,s(x/N)ds

−
∫ t

0

D

Nd−1

∑
x∈Γ+

N

∂e1G1,s(x/N)
(
π1,s ∗ urightε

)
(x)ds

+

∫ t

0

D

Nd−1

∑
x∈Γ+

N

G1,s(x/N)
((
π1,s ∗ urightε

)
(x)− b(x/N)

)
ds

−
∫ t

0

1

Nd

∑
x∈BN,ε

G1,s(x/N), F1

(
π1,s ∗ uε(x/N), π2,s ∗ uε(x/N), π3,s ∗ uε(x/N)

)
ds ,

(3.45)

where functions Fi, i = 1, 2, 3 are defined in (2.19). By approximating Lebesgue intergals by Riemann sums,
on the bulk and at the boundary, we obtain

lim sup
ε→0

lim sup
N→∞

Qθ̂N

[
sup

0≤t≤T

∣∣∣F Ĝ,t1,ε

(
π̂
)∣∣∣ ≥ δ] = 0 ,

where for any trajectory π̂ and for any t ∈ [0, T ],

F Ĝ,t1,ε

(
π̂
)

=< π1,t, G1,t > − < π1,0, G1,0 > −
∫ t

0

< π1,s, ∂sG1,s > ds

−D
∫ t

0

〈
π1,s,∆G1,s

〉
ds+D

∫ t

0

∫
Γ−
b1(r)∂e1G1,s(r) drds

−D
∫ t

0

∫
Γ+

∂e1G1,s(r)
(
π1,s ∗ urightε

)
(r) drds +

∫ t

0

∫
Γ+

G1,s(r)
((
π1,s ∗ urightε

)
(r)− b(r)

)
drds

−
∫ t

0

∫
B1,ε

G1,s(r), F1

(
π1,s ∗ uε(r), π2,s ∗ uε(r), π3,s ∗ uε(r)

)
drds ,

(3.46)
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with B1,ε = [−1 + ε, 1 + ε]×Td−1. By the continuity of the function π̂ → F Ĝ,t1,ε

(
π̂
)
, for each ε > 0, we get for

any limit point Qθ̂ of the sequence of probability measures (Qθ̂N )N≥1,

lim sup
ε→0

Qθ̂
[

sup
0≤t≤T

∣∣∣F Ĝ,t1,ε

(
π̂
)∣∣∣ ≥ δ] = 0 . (3.47)

To conclude the proof, it remains to prove that we may replace the convolutions appearing in the func-

tional F Ĝ,t1,ε by the associated density of the trajectory. By Proposition 5, Qθ̂ is concentrated on paths
(π̂(t, dr))t∈[0,T ] = (ρ̂(t, r)dr)t∈[0,T ] which are absolutely continuous with respect to the Lebesgue measure
and such that for every 1 ≤ i ≤ 3, ρi belongs to L2((0, T );H1(B)). For the replacement of the convolution
with the density in the bulk, since uε is an approximation of the identity in L1(B) and the functions Fi are
Lipschitz, the random variables∫ t

0

∫
B1,ε

G1,s(r), F1

(
π1,s ∗ uε(r), π2,s ∗ uε(r), π3,s ∗ uε(r)

)
drds

converge Qθ̂ almost surely to∫ t

0

∫
B1,ε

G1,s(r), F1

(
ρ1,s(r), ρ2,s(r), ρ3,s(r)

)
drds . (3.48)

For the replacement of the convolution at the boundary we use the following result which follows from [7,
Section 5.3]: for any H ∈ H1(B)

lim
ε→0

H ∗ urightε = Tr(H) a.s in Γ+. (3.49)

For the other terms in F Ĝ,t1,ε , by the dominated convergence Theorem, for almost every trajectory (π̂(t, dr))t∈[0,T ] =

(ρ̂(t, r)dr)t∈[0,T ] with ρ1 ∈ L2((0, T );H1(B)),

lim
ε→0

D

∫ t

0

∫
Γ+

∂e1G1,s(r)
(
π1,s ∗ urε

)
(r) drds −

∫ t

0

∫
Γ+

G1,s(r)
((
π1,s ∗ urε

)
(r) − b(r)

)
drds

= D

∫ t

0

∫
Γ+

∂e1G1,s(r)Tr(ρ1,s)(r) drds −
∫ t

0

∫
Γ+

G1,s(r)
(

Tr(ρ1,s)(r) − b(r)
)
drds.

(3.50)

Collecting (3.47), (3.48), (3.49) and (3.50), we obtain (3.37) and conclude the proof.

3.5 Uniqueness of the limit points

In order to finish the proof of the hydrodynamic limit specific to each regime we are left to show that each
boundary valued problem (2.20) and (2.24) with fixed initial data admits a unique solution. For that, we use
the standard method which consists in decomposing the difference of two solutions on the orthonormal basis
of a well chosen eigenvectors of the Laplacian. The choice of the family of eigenvectors is not necessarily
intuitive and depends on the boundary conditions of the mixed regime considered. As we are working in
dimension d ≥ 1, we will need to control integral terms on the boundary. Therefore, we will make use of
the following result regarding the continuity of the trace operator. We refer to [6, Part II Section 5] for a
detailed survey of the trace operator.

Theorem 3. (see [6]) Fix 1 ≤ p <∞ and Ω an open subspace of Rd with smooth boundary ∂Ω. There is a
constant Ctr > 0 depending only on Ω and p such that for any ϕ ∈ C∞(Ω),

‖ϕ‖Lp(∂Ω) ≤ Ctr‖ϕ‖W 1,p
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where ‖.‖Lp(∂Ω) denotes the Lp norm on ∂Ω and ‖.‖W 1,p the Sobolev norm on Ω given by

‖ϕ‖W 1,p =
(
‖ϕ‖pLp(Ω) + ‖∇ϕ‖pLp(Ω)

)1/p

where

‖∇ϕ‖pLp(Ω) =

d∑
i=1

‖∂eiϕ‖
p
Lp(Ω).

Remark 3. For p = 2 and Ω = B,

‖ϕ‖2L2(∂Ω) ≤ ‖ϕ‖
2
L2(Ω) + ‖∇ϕ‖2L2(Ω) (3.51)

In particular, Ctr = 1.

In the sequel we only make use of (3.51) but we stated Theorem 3 by sake of completeness.

3.5.1 Uniqueness of the solution in the (Neumann ; Robin) mixed regime

Theorem 4. There exists a unique solution to the Neumann + Robin boundary problem (2.24).

Proof. By Liouville’s Theorem stated for instance in [6], there is a countable system {Vn, αn, n ≥ 1} of
eingensolutions for the problem {

−∆φ = αφ
∂e1φ|Γ = 0

(3.52)

in H1(B) and containing all possible eigenvalues. The set {Vn, n ≥ 1} forms a complete, orthonormal system
in the Hilbert space L2(B) and the eigenvalues 0 ≤ α1 < α2 < ... < αn −→

n→∞
∞ have finite multiplicity. Note

that for any U,W ∈ H1(B),

< U,W >2= lim
n→∞

n∑
k=1

< U, Vk >< W,Vk >, (3.53)

< ∇U,∇W >2= lim
n→∞

n∑
k=1

αk < U, Vk >< W,Vk >, (3.54)

‖U‖2L2(Γ+) = lim
n→∞

n∑
k=1

(∫
Γ+

U(r)V̌k(r)n1(r)dS(r)
)2

. (3.55)

One can check that since we are working on (−1, 1)× Td−1, for k = (k1, ..., kd) ∈ N× (N∗)d−1,

Vk(x1, ...xd) = 2
d−1

2 cos
(k1πx1

2
+
π

2

) d∏
i=2

sin(kiπxi) and αk =
(k1π)2

4
+

d∑
i=2

k2
i π

2,

V̌k(x2, ..., xd) = 2
d−1

2

d∏
i=2

sin(kiπxi) and α̌k =

d∑
i=2

k2
i π

2. (3.56)

Note that by abuse of notations we indexed the family Vk by N∗ instead of N × (N∗)d−1 but this is not a
problem because we can give an order to elements of N× (N∗)d−1.

Consider ρ̂1 and ρ̂2 two solutions of (2.24) associated to the same initial profile and for n ∈ N and t > 0,
introduce

Gn(t) =

3∑
i=1

n∑
k=1

| < ρ1
i − ρ2

i , Vk > |2. (3.57)
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Let us show that lim
n→∞

Gn(t) = ‖ρ̂1 − ρ̂2‖22 =: G(t) = 0. For that, apply the weak formulation (2.24) with Vk:

for any 1 ≤ i ≤ 3

< (ρ1
i − ρ2

i )(t, .), Vk > = −Dαk
∫ t

0

< (ρ1
i − ρ2

i )(s, .), Vk > ds+

∫ t

0

< (Fi(ρ̂
1)− Fi(ρ̂2))(s, .), Vk > ds

−
∫ t

0

∫
Γ+

(ρ1
i − ρ2

i )(s, r)Vk(r)n1(r).dS(r)ds.

(3.58)

Therefore < ρ1
i (t, .)− ρ2

i (t, .), Vk > is time differentiable with derivative:

∂t < ρ1
i (t, .)− ρ2

i (t, .), Vk > = −Dαk < ρ1
i (t, .)− ρ2

i (t, .), Vk > + < Fi(ρ̂
1(t, .))− Fi(ρ̂2(t, .)), Vk >

−
∫

Γ+

(ρ1
i − ρ2

i )(t, r)Vk(r)n1(r).dS(r)
(3.59)

and so is Gn, with

G′n(t) = −2D

3∑
i=1

n∑
k=1

αk
∣∣ < ρ1

i,t − ρ2
i,t, Vk >

∣∣2 + 2

3∑
i=1

n∑
k=1

< Fi(ρ̂
1
t )− Fi(ρ̂2

t ), Vk >< ρ1
i,t − ρ2

i,t, Vk >

− 2

3∑
i=1

n∑
k=1

∫
Γ+

(ρ1
i − ρ2

i )(t, r)V̌k(r)n1(r).dS(r) < ρ1
i,t − ρ2

i,t, Vk >

≤ −2D

3∑
i=1

n∑
k=1

αk
∣∣ < ρ1

i,t − ρ2
i,t, Vk >

∣∣2 +

3∑
i=1

n∑
k=1

< Fi(ρ̂
1
t )− Fi(ρ̂2

t ), Vk >
2 +Gn(t)

+
1

A

3∑
i=1

n∑
k=1

(∫
Γ+

(ρ1
i − ρ2

i )(t, r)V̌k(r)n1(r).dS(r)
)2

+AGn(t),

(3.60)

for any A > 0, where we used both the Cauchy-Schwarz and (2.16) inequalities in the last line. By (3.53),
(3.54) and (3.55), the right hand side of (3.60) converges to

−2D‖∇(ρ̂1 − ρ̂2)‖22 +

3∑
i=1

‖Fi(ρ̂1)− Fi(ρ̂2)‖22 + (1 +A)‖ρ̂1 − ρ̂2‖22 +
1

A
‖ρ̂1 − ρ̂2‖2L2(Γ). (3.61)

By the trace inequality (3.51),

‖ρ̂1 − ρ̂2‖2L2(Γ) ≤ ‖ρ̂
1 − ρ̂2‖2L2(B) + ‖∇(ρ̂1 − ρ̂2)‖22. (3.62)

Furthermore, using that ρ̂1 and ρ̂2 take their values in [0, 1]3, there is a constant C := C(λ1, λ2, r, d) > 0
such that for any ρ̂a, ρ̂b ∈ [0, 1]3 and 1 ≤ i ≤ 3,

∣∣Fi(ρ̂a)− Fi(ρ̂b)
∣∣ ≤ C 3∑

j=1

|ρaj − ρbj |.

Then, by Cauchy-Schwarz’s inequality, there is a constant C ′ > 0 such that for any 1 ≤ i ≤ 3,

‖Fi(ρ̂a)− Fi(ρ̂b)‖22 ≤ C ′
3∑
j=1

‖ρai − ρbi‖22. (3.63)

Putting together (3.61), (3.62), (3.63), taking A > 1
D and applying the dominated convergence theorem, we

are left with
G′(t) ≤ (C ′ + 2 +A)G(t). (3.64)

Grönwall’s inequality and the fact that G(0) = 0 yields G(t) = 0 at any time.
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3.5.2 Uniqueness of the solution in the (Dirichlet ; Robin) mixed regime

Theorem 5. There exists a unique solution to the Dirichlet + Robin boundary problem (2.20).

Proof. The proof follows the same lines as the previous one except that we consider another family of eigen-
functions of the Laplacian. Indeed, consider the following boundary-eigenvalue problem for the Laplacian:

−∆φ = γφ
φ(x) = 0 for x ∈ Γ− × Td−1

∂e1φ(x) = 0 for x ∈ Γ+ × Td−1

φ ∈ H1(B).

(3.65)

Again, one can check that the countable system of eigensolutions {Wn, γn, n ≥ 1} given below (in (3.66))
for the problem (3.65) contains all possible eigenvalues and is a complete, orthonormal system in the Hilbert
space L2(B), that the eigenvalues γn have finite multiplicity and that 0 < γ1 ≤ γ2... ≤ γn →∞. Furthermore,
(3.53), (3.54) and (3.55) stay valid when one replaces Vk by Wk, where, for k = (k1, ..., kd) ∈ N× (N∗)d−1,

Wk(x) = 2
d−1

2

[
(−1)k1 cos

((π
4

+
k1π

2

)
x
)

+ sin
((π

4
+
k1π

2

)
x
)] d∏

i=2

sin(kiπxi) (3.66)

with

γk =
(π

4
+
k1π

2

)2

+

d∑
i=2

k2
i π

2.

Again, by abuse of notations we have indexed the Wk’s by N∗ instead of (N∗)d.

As before, take ρ̂1 and ρ̂2 two solutions of (2.20) with same initial data and introduce

Hn(t) =

3∑
i=1

n∑
k=1

∣∣ < ρ1
i (t, .)− ρ2

i (t, .),Wk >
∣∣2 (3.67)

and
H(t) = ‖(ρ̂1 − ρ̂2)(t, .)‖22. (3.68)

Using the weak formulation (2.22) with Wk, we get that for any 1 ≤ i ≤ 3,

< (ρ1
i − ρ2

i )(t, .),Wk > = −Dγk
∫ t

0

< (ρ1
i − ρ2

i )(s, .),Wk > ds+

∫ t

0

< (Fi(ρ̂
1)− Fi(ρ̂2))(s, .),Wk > ds

−
∫ t

0

∫
Γ+

(ρ1
i − ρ2

i )(s, r)W̌k(r)n1(r).dS(r)ds

(3.69)

where the W̌k = V̌k are defined in (3.56). Then, one concludes following exactly the same lines as the proof
of Theorem 4.

3.5.3 Uniqueness of the solution in the other regimes

In order to prove uniqueness in the other regimes, one can follow the same classic method used above. The
orthonormal basis used to decompose the difference of two solutions as in (3.57) or (3.67) then depends on
the boundary conditions. For the (Dirichlet ; Dirichlet) regime, the decomposition is carried out on the
eigenvectors of the following boundary-eigenvalue problem for the Laplacian:{

−∆φ = δφ
φ ∈ H1

0(B).
(3.70)
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for which the associated family of eigenvectors is

Uk(x1, ...xd) = 2
d−1

2

d∏
i=1

sin(kiπxi),

with eigenvalues given by

δk =

d∑
i=1

k2
i π

2

for k = (k1, ..., kd) ∈ (N∗)d. As before, for V,W ∈ L2(B),

< V,W >2= lim
n→∞

n∑
k=1

< V,Uk >2< W,Uk >2, (3.71)

< ∇V,∇W >2= lim
n→∞

n∑
k=1

δk < V,Uk >< W,Uk >, (3.72)

‖V ‖2L2(Γ) = lim
n→∞

n∑
k=1

(∫
Γ

V (r)Ǔk(r)n1(r)dS(r)
)2

(3.73)

where the Ǔk = V̌k are defined in (3.56).

4 Hydrostatic limit

In this section, we prove Theorem 2 which states that when the parameters r, λ1, λ2, d,D satisfy certain condi-
tions, starting from an invariant measure, the system converges to the stationary profile of the corresponding
hydrodynamic equation. Precisely, recall that in Section 2, for θ̂ ∈ (R+)3 we defined µssN (θ̂) as the sequence
of unique invariant measures for the irreducible dynamics defined by (2.10). The hydrostatic principle states
that this sequence is associated to the unique stationary solution of the hydrodynamic equation, if existence
and uniqueness of such a solution hold. For the proof, we were inspired by [9] and the key argument relies on
the convergence of all the trajectories satisfying the hydrodynamic equation to the unique stationary profile
of these equations. In [9], the convergence of trajectories is established thanks to a comparison principle.
The difficulty here is that we are dealing with a system of coupled equations and we need to define a specific
order for which such a comparison principle holds. Now in [17], it has been proved that at the microscopic
level, the interacting particle system is attractive only for the following order:

2 < 0 < 3 < 1. (4.1)

That means that given two configurations η ≤ ∼η, it is possible to build a coupling between (ηt)t≥0 and (
∼
ηt)t≥0

where both these processes evolve according to the dynamics given by (2.10), such that η0 ≤
∼
η0 and almost

surely, for all t ≥ 0, ηt ≤
∼
ηt pointwise in the sense of (4.1). Note that using the main result from [4], one

can show that the system remains attractive when adding an exchange and reservoir dynamics. It is then
natural to think that attractiveness also holds at the macroscopic level through a comparison principle. A
comparison principle means that if two profiles are such that at a certain time, one is smaller than the other
almost everywhere, then the same is true at any later time. Considering the microscopic order (4.1) it is
natural to consider that the largest state at the macroscopic level corresponds to (ρ1 = 1, ρ2 = 0, ρ3 = 0) and
the smallest state to (ρ2 = 1, ρ1 = ρ3 = 0). We will work under the following change of coordinates: ρ1

T := ρ1 + ρ3

R := 1− (ρ2 + ρ3)
(4.2)
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which is consistent with the fact that (1, 1, 1) corresponds to the largest profile (ρ1 = 1, ρ2 = 0, ρ3 = 0) and

(0, 0, 0) with the lowest one (ρ2 = 1, ρ1 = ρ3 = 0). In the sequel, we will say that given two profiles ρ̂ and φ̂,

ρ̂ ≤ φ̂ if:  ρ1 ≤ φ1

ρ1 + ρ3 ≤ φ1 + φ3

1− (ρ2 + ρ3) ≤ 1− (φ2 + φ3)
(4.3)

almost everywhere. We prove a comparison principle under that change of coordinates (see Lemma 3). As
previously, since we are working in any dimension d ≥ 1 with mixed boundary conditions, some care must
be taken to deal with the integral terms on Γ when proving the comparison principle. For that, we strongly
rely on analytical tools stated in [21].

Under the change of coordinates (4.2), the coupled equations in the bulk become, : ∂tρ1 = D∆ρ1 + F1(ρ1, T,R)
∂tT = D∆T +H(ρ1, T,R)
∂tR = D∆R+ J(R)

(4.4)

with  F1(ρ1, T,R) = 2d
[
(λ1 − λ2)ρ1 + λ2T

]
(R− ρ1) + T − (r + 2)ρ1

H(ρ1, T,R) = 2d
[
(λ1 − λ2)ρ1 + λ2T

]
(1− T )− T

J(R) = −(r + 1)R+ 1.
(4.5)

We will see that the comparison principle stated and proved in Lemma 3 yields the following Theorem which
is used to prove Theorem 2.

Theorem 6. Suppose that conditions (H1) hold. Then, there exists a unique stationary solution ρD,R, resp.
ρN,R of (2.20), resp. (2.24). Furthermore, for any solution ρ̂D,R, resp. ρ̂N,R to the boundary value problem
(2.20), resp. (2.24)

lim
t→∞

3∑
i=1

‖ρD,Ri (t, .)− ρD,Ri (.)‖1 = 0, (4.6)

resp.

lim
t→∞

3∑
i=1

‖ρN,Ri (t, .)− ρN,Ri (.)‖1 = 0. (4.7)

Note that this result can be equivalently formulated in the change of coordinates (4.2) and we will prove
it in that setting in the next subsection.

Remark 4. One could ask if conditions on the parameters are necessary to establish existence and uniqueness
of the stationary solution of the hydrodynamic equation. Could we not generalize the result to all parameters?
In order to answer that, we simulated the solutions to the equation in the (Neumann ; Neumann) regime for
which the constant profile (ρ1 = 0, ρ2 = r

r+1 , ρ3 = 0) is stationary. Indeed,

F1

(
0,

r

r + 1
, 0
)

= F2

(
0,

r

r + 1
, 0
)

= F3

(
0,

r

r + 1
, 0
)

= 0

and it corresponds to the extinction regime, that is, there are no more wild insects. We observed (see below in
the Appendix B) that in dimensions 1, for parameters λ1 = 1, λ2 = 0.75 and D = r = 1, for which conditions
(H1) are not satisfied, the solution of the hydrodynamic equation starting from ρ1 = 1, ρ2 = ρ3 = 0 converges
to a constant profile which is not (0, r

r+1 , 0) so uniqueness does not hold. Simulations confirm that Theorem
6 does not hold in all generality and that conditions on the parameters are necessary, although conditions
(H1) might not be the optimal ones.
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4.1 Proof of the hydrostatic principle

Let us prove Theorem 2. We prove the first point, the second one follows in the same way. Denote AT ⊂
D([0, T ],

(
M+

)3
) the set of trajectories {ρ̂(t, u)du, 0 ≤ t ≤ T} whose density ρ̂ = (ρ1, ρ2, ρ3) satisfies

conditions (2.21) and (2.23) of the definition of a weak solution of (2.20) for some initial profile ρ̂0. Consider

Q∗ss(θ̂) a limit point of the sequence (QN
µssN (θ̂)

)N≥1 associated to the invariant measures. By Theorem 1,

Q∗ss(θ̂)
(
AT
)

= 1. (4.8)

Now consider QNkss (θ̂) a subconverging sequence of (QNµssN (θ̂))N≥1. By stationarity of µssN (θ̂)

E
Q
Nk
ss (θ̂)

(∣∣∣ < π̂N , Ĝ > − < ρ, Ĝ >
∣∣∣) = E

Q
Nk
ss (θ̂)

(∣∣∣ < π̂NT , Ĝ > − < ρ, Ĝ >
∣∣∣) (4.9)

and

lim
k→∞

E
Q
Nk
ss (θ)

(∣∣∣ < π̂NT , Ĝ > − < ρ, Ĝ >
∣∣∣) = EQ∗ss(θ)

(∣∣∣ < π̂T , Ĝ > − < ρ, Ĝ >
∣∣∣1AT )

≤
3∑
i=1

‖Gi‖∞ sup
ρ̂

( 3∑
i=1

‖ρi(T, .)− ρi(.)‖1
) (4.10)

where the supremum is taken over trajectories which are solutions to (2.20). Then, one concludes thanks to
(4.6) in Theorem 6.

4.2 Proof of Theorem 6

In order to prove Theorem 6 we first establish a comparison principle (Lemma 3). Then, we show that the
difference between the largest solution and the smallest solution vanishes (Lemma 4). Using an integration
by parts, it is useful to rewrite the weak formulations (2.22) and (2.22), in the following suitable forms: for
any 0 ≤ τ ≤ t ≤ T , for any G ∈ C2([0, T ]×B),

< ρ̂t, Ĝt > − < ρ̂τ , Ĝτ >=

∫ t

τ

< ρ̂s, ∂sĜs > ds−D
∫ t

τ

∫
B

(
∇ρ̂s · ∇Ĝs

)
(r)drds

−
∫ t

τ

< F̂ (ρ̂s), Ĝs > ds−D
3∑
i=1

∫ t

τ

∫
Γ−

bi(r)(∂e1Gi,s)(r)n1(r).dS(r)ds

+

3∑
i=1

∫ t

τ

∫
Γ+

Gi(r)(bi(r)− ρi(s, r))n1(r).dS(r)ds = 0,

(4.11)

and

< ρ̂t, Ĝt > − < ρ̂τ , Ĝτ >=

∫ t

τ

< ρ̂s, ∂sĜs > ds−D
∫ t

τ

∫
B

(
∇ρ̂s · ∇Ĝs

)
(r)drds

−
∫ t

τ

< F̂ (ρ̂s), Ĝs > ds−
∫

Γ+

Gi(r)(bi(r)− ρi(s, r))n1(r).dS(r)ds = 0.

(4.12)

Lemma 3. Consider ρ̂1
0 and ρ̂2

0 two initial profiles.

• Denote ρ̂1
t resp. ρ̂2

t the solutions to the (Dirichlet ; Robin) boundary problem (2.20) associated to
each of those initial profiles. Assume that there is an s ≥ 0 such that almost surely (in the Lebesgue
measure sense), ρ1

1(s, u) ≤ ρ2
1(s, u), T 1(s, u) ≤ T 2(s, u) and R1(s, u) ≤ R2(s, u). Then, for all s ≥ t,

ρ1
1(t, u) ≤ ρ2

1(t, u), T 1(t, u) ≤ T 2(t, u) and R1(t, u) ≤ R2(t, u) almost surely.
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• The same result holds when ρ̂1
t resp. ρ̂2

t are two solutions to the (Neumann ; Robin) boundary problem
(2.24).

Note that Lemma 3 holds for all parameters r, λ1, λ2, d and D, regardless of conditions (H1).

Proof. We prove the first point and the proof of the second one follows in the same way. Introduce

A(t) =

∫
B

(
ρ1

1 − ρ2
1

)2
+

(t, u)du+

∫
B

(
T 1 − T 2

)2
+

(t, u)du+

∫
B

(
R1 −R2

)2
+

(t, u)du

:= A1(t) +A2(t) +A3(t)

(4.13)

where x+ denotes max(x, 0), the positive part of x. We show that A(t) = 0 for all t ≥ s. Using the weak
formulation (2.22) of the solution of the (Dirichlet ; Robin) boundary problem and using Lemma 7.3 and
Remark 7.5 in [21], we get:

1

2

d

dt
A1(t) =

1

2

d

dt

∫
B

(
ρ1

1 − ρ2
1

)2
+

(t, u)du = −D
∫
B

∇(ρ1
1 − ρ2

1)∇
(
ρ1

1 − ρ2
1

)
+

)
(t, u)du

+

∫
B

(
F1(ρ̂1)− F2(ρ̂2)

)(
ρ1

1 − ρ2
1

)
+

)
(t, u)du−

∫
Γ+

(ρ1
1 − ρ2

1)2
+(t, u)du.

(4.14)

Using that ∇
(
(ρ1

1 − ρ2
1)+

)
= 1(ρ1

1−ρ2
1)≥0∇

(
ρ1

1 − ρ2
1

)
and that

∫
B

(
ρ1

1 − ρ2
1

)2
+

(0, u)du = 0, we are left with:

1

2

∫
B

(
ρ1

1 − ρ2
1

)2
+

(t, u)du ≤ −
∫ t

0

∫
B

D1(ρ1
1−ρ2

1)≥0‖∇
(
ρ1

1 − ρ2
1

)
‖22(r, u)dudr

+

∫ t

0

∫
B

(
F1(ρ̂1)− F2(ρ̂2)

)(
(ρ1

1 − ρ2
1

)
+

)
(r, u)dudr.

(4.15)

Proceeding in the same way for
∫
B

(
T 1 − T 2

)2
+

(t, u)du and
∫
B

(
R1 −R2

)2
+

(t, u)du we get:

1

2

∫
B

(
T 1 − T 2

)2
+

(t, u)du ≤ −
∫ t

0

∫
B

D1(T 1−T 2)≥0‖∇
(
T 1 − T 2

)
‖22(r, u)dudr

+

∫ t

0

∫
B

(
H(ρ̂1)−H(ρ̂2)

)
(T 1 − T 2

)
+

(r, u)dudr

(4.16)

and

1

2

∫
B

(
R1 −R2

)2
+

(t, u)du ≤ −
∫ t

0

∫
B

D1(R1−R2)≥0‖∇
(
R1 −R2

)
‖22(r, u)dudr

+

∫ t

0

∫
B

(
J(R1)− J(R2)

)
(R1 −R2

)
+

(r, u)dudr.

(4.17)

Therefore,

1

2
A(t) ≤

∫ t

0

∫
B

(
F1(ρ̂1)− F2(ρ̂2)

)(
ρ1

1 − ρ2
1

)
+

(r, u)dudr

+

∫ t

0

∫
B

(
H(ρ̂1)−H(ρ̂2)

)
(T 1 − T 2

)
+

(r, u)dudr +

∫ t

0

∫
B

(
J(R1)− J(R2)

)
(R1 −R2

)
+

(r, u)dudr.

(4.18)

Now let us use the explicit expressions of F1, J and H. We also use the following inequality: for any C ≥ 0
x, y ∈ R,

Cxy+ ≤ Cx+y+. (4.19)
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In order to avoid confusions, a squared term will always be put between brackets, while, for instance ρ2
1 refers

to the first coordinate of ρ̂2. We will denote C a constant which depends on λ1, λ2, r, d with values possibly
changing from one line to the next.(

F1(ρ̂1)− F2(ρ̂2)
)(
ρ1

1 − ρ2
1

)
+

=
[
2d(λ1 − λ2)(R2 − ρ1

1 − ρ2
1)− 2dλ1T

1 − (r + 2)
]
(ρ1

1 − ρ2
1)2

+

+
[
2dλ1ρ

1
1 + 2dλ2ρ

1
3

]
(R1 −R2)(ρ1

1 − ρ2
1)+ +

[
1 + 2dλ2(1− ρ2

2 − ρ3
3 − ρ2

1)
]
(T 1 − T 2)(ρ1

1 − ρ2
1)+

≤ C(ρ1
1 − ρ2

1)2
+ +

[
2dλ1ρ

1
1 + 2dλ2ρ

1
3

]
(R1 −R2)+(ρ1

1 − ρ2
1)+

+
[
1 + 2dλ2(1− ρ2

2 − ρ3
3 − ρ2

1)
]
(T 1 − T 2)+(ρ1

1 − ρ2
1)+,

(4.20)

where we used (4.19) and the fact that 2dλ1ρ
1
1 + 2dλ2ρ

1
3 ≥ 0 and 1 + 2dλ2(1− ρ2

2 − ρ3
3 − ρ2

1) ≥ 0 in the last
line.(

H(ρ̂1)−H(ρ̂2)
)
(T 1 − T 2)+ =

[
2dλ2 − 2d(λ1 − λ2)ρ1

1 − 2dλ2((T 2)2 + (T 1)2)− 1
]
(T 1 − T 2)2

+

+
[
2d(λ1 − λ2)(1− ρ2

1 − ρ2
3)
]
(ρ1

1 − ρ2
1)(T 1 − T 2)+

≤ C(T 1 − T 2)2
+ +

[
2d(λ1 − λ2)(1− ρ2

1 − ρ2
3)
]
(ρ1

1 − ρ2
1)+(T 1 − T 2)+

(4.21)

where again, we used (4.19) in the last line, the fact that λ1 ≥ λ2 and that (1− ρ2
1 − ρ2

3) ≥ 0. Finally,(
J(R1)− J(R2)

)
(R1 −R2

)
+

= −(r + 1)(R1 −R2
)2

+
. (4.22)

Collecting (4.20), (4.21) and (4.22) we are left with

1

2
A(t) ≤ C

∫ t

0

∫
B

((
ρ1

1 − ρ2
1

)2
+

(r, u) +
(
T 1 − T 2

)2
+

(r, u) +
(
R1 −R2

)2
+

(r, u)
)

dudr = C

∫ t

0

A(r)dr (4.23)

where C is a constant which depends on λ1, λ2, r, d and by Grönwall’s lemma, A(t) = 0.

Corollary 1. Denote ρ̂0 = (ρ0
1, T

0, R0), resp. ρ̂1 = (ρ1
1, T

1, R1) the weak solution of (4.4) with (Dirichlet ;
Robin) boundary conditions and initial data ρ0

1 = T 0 = R0 = 0, resp. ρ1
1 = T 1 = R1 = 1. Then for every

t ≥ s, ρ0
1(s, .) ≤ ρ0

1(t, .), T 0(s, .) ≤ T 0(t, .) and R0(s, .) ≤ R1(t, .), resp. ρ1
1(s, .) ≥ ρ1

1(t, .), T 1(s, .) ≥ T 1(t, .)
and R1(s, .) ≥ R1(t, .) almost surely. Furthermore, any other solution (ρ1, T,R) of (4.4) with (Dirichlet ;
Robin) boundary conditions satisfies: ρ0

1 ≤ ρ1 ≤ ρ1
1, T 0 ≤ T ≤ T 1 and R0 ≤ R ≤ R1 almost surely.

The same result holds for ρ̂0 = (ρ0
1, T

0, R0) resp. ρ̂1 = (ρ1
1, T

1, R1) the weak solution of (4.4) with
(Neumann ; Robin) boundary conditions and initial data ρ0

1 = T 0 = R0 = 0, resp. ρ1
1 = T 1 = R1 = 1.

Proof. We prove the result for the (Dirichlet ; Robin) boundary problem and for ρ̂0. The proof is the same
for ρ̂1 and for the (Neumann ; Robin) case. Fix s ≥ 0 and consider τsρ̂

0 : (t, u) 7→ ρ̂0(t + s, u). τsρ̂
0 is the

solution of (4.4) with initial condition u 7→ ρ̂0(s, u) and almost surely in B, τsρ̂
0(0, u) ≥ (0, 0, 0) = ρ̂0(0, u).

Applying Lemma 3 to τsρ̂
0 and ρ̂0 with s = 0 and t = t− s yields ρ̂0(t, u) ≥ ρ̂0(s, u) almost surely.

Lemma 4. Assume conditions (H1) are satisfied.

• Denote ρ̂0 = (ρ0
1, T

0, R0), resp. ρ̂1 = (ρ1
1, T

1, R1) the weak solution of (4.4) with (Dirichlet ; Robin)
boundary conditions and with initial data (0, 0, 0), resp. (1, 1, 1). Then,

lim
t→∞

3∑
i=1

∫
B

(∣∣ρ1
1(t, u)− ρ0

1(t, u)|+ |T 1(t, u)− T 0(t, u)|+ |R1(t, u)−R0(t, u)|
)
du = 0. (4.24)

• Denote ρ̂0 = (ρ0
1, T

0, R0), resp. ρ̂1 = (ρ1
1, T

1, R1) the weak solution of (4.4) with (Neumann ; Robin)
boundary conditions and with initial data (0, 0, 0), resp. (1, 1, 1). Then,

lim
t→∞

3∑
i=1

∫
B

(∣∣ρ1
1(t, u)− ρ0

1(t, u)|+ |T 1(t, u)− T 0(t, u)|+ |R1(t, u)−R0(t, u)|
)
du = 0. (4.25)

32



Proof. We start with the proof of the (Dirichlet ; Robin) regime. It is enough to show that

lim
t→∞

(
‖ρ1

1(t, .)− ρ0
1(t, .)‖22 + ‖T 1(t, .)− T 0(t, .)‖22 + ‖R1(t, .)−R0(t, .)‖22

)
= 0. (4.26)

Consider the eigenvalue problem for the Laplacian (3.65) and the countable system {Wn, γn, n ≥ 1} of
eigensolutions for that problem. For n ≥ 1 introduce

Kn(t) =

n∑
k=1

| < R1(t, .)−R0(t, .),Wk > |2 +

n∑
k=1

| < ρ1
1(t, .)− ρ0

1(t, .),Wk > |2 +

n∑
k=1

| < T 1(t, .)− T 0(t, .),Wk > |2

=: An(t) +Bn(t) + Cn(t).

(4.27)

Recall that by (3.53), one has

An(t) −→
n→∞

‖R1(t, .)−R0(t, .)‖22 =: A(t), Bn(t) −→
n→∞

‖ρ1
1(t, .)− ρ0

0(t, .)‖22 =: B(t),

and
Cn(t) −→

n→∞
‖T 1(t, .)− T 0(t, .)‖22 =: C(t).

Let us first prove that lim
t→∞

lim
n→∞

An(t) = 0. An is time differentiable and the weak formulation of a solution

of (4.4) with (Dirichlet ; Robin) boundary conditions yields,

A′n(t) = −2

n∑
k=1

(Dγk + r + 1)| < R1
t −R0

t ,Wk > |2

− 2

n∑
k=1

< R1
t −R0

t ,Wk >

∫
Γ+

(R1
t −R0

t )(r)Wk(r)n1(r)dS(r).

(4.28)

Integrating this between 0 and T and using the Cauchy-Schwarz inequality twice yields

An(0)−An(T ) ≥
∫ T

0

n∑
k=1

2(Dγk + r + 1)
∣∣ < R1

t −R0
t ,Wk >

∣∣2dt

− 2

√√√√∫ T

0

n∑
k=1

∣∣ < R1
t −R0

t ,Wk >
∣∣2dt

√√√√∫ T

0

n∑
k=1

(∫
Γ+

(R1
t −R0

t )(r)W̌k(r)n1(r)dS(r)
)2

dt.

Taking n→∞ and using (3.54) and (3.55) using the W ′ks and W̌ ′ks instead of the V ′ks and V̌ ′ks we get

A(0) ≥ 2(r + 1)

∫ T

0

A(t)dt+ 2D

∫ T

0

∼
A(t)dt− 2

√∫ T

0

A(t)dt

√∫ T

0

‖R1
t −R0

t ‖2L2(Γ)dt

≥ 2(r + 1)

∫ T

0

A(t)dt+ 2D

∫ T

0

∼
A(t)dt− 2

√∫ T

0

A(t)dt

√∫ T

0

A(t)dt+

∫ T

0

∼
A(t)dt

≥ 2(r + 1)

∫ T

0

A(t)dt+ 2D

∫ T

0

∼
A(t)dt− 2

( ∫ T

0

A(t)dt+

∫ T

0

∼
A(t)dt

)
≥ 2r

∫ T

0

A(t)dt+ 2(D − 1)

∫ T

0

∼
A(t)dt

where
∼
A(t) = ‖∇(R1

t −R0
t )‖2L2 and where we used the trace inequality (3.51) in the second inequality. Taking

T →∞, and using that D ≥ 1 we get that∫ ∞
0

‖R1
t −R0

t ‖22dt <∞.
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By Corollary 1, R1 is almost surely decreasing and R0 increasing therefore R1
t−R0

t is almost surely decreasing
and the above inequality implies

‖R1
t −R0

t ‖22 −→
t→∞

0.

We are now left to show that
lim
t→∞

lim
n→∞

[
Bn(t) + Cn(t)

]
= 0. (4.29)

We proceed following the same steps as for An.

B′n(t) = −2D

n∑
k=1

γk| < ρ1
1,t − ρ0

1,t,Wk > |2 + 2

n∑
k=1

< F1(ρ̂1
t )− F1(ρ̂0

t ),Wk >< ρ1
1,t − ρ0

1,t,Wk >

− 2

n∑
k=1

< ρ1
1,t − ρ0

1,t,Wk >

∫
Γ+

(ρ1
1,t − ρ0

1,t)(r)W̌k(r)n1(r).dS(r).

(4.30)

To lighten notations we will not write the subscript t in the computations. Let us compute the second term.

n∑
k=1

< F1(ρ̂1)− F1(ρ̂0),Wk >< ρ1
1 − ρ0

1,Wk >= 2d(λ1 − λ2)

n∑
k=1

< ρ1
1(R1 −R0),Wk >< ρ1

1 − ρ0
1,Wk >

+ 2d(λ1 − λ2)

n∑
k=1

< R0(ρ1
1 − ρ0

1),Wk >< ρ1
1 − ρ0

1,Wk > −2d(λ1 − λ2)

n∑
k=1

< (ρ1
1)2 + (ρ0

1)2,Wk >< ρ1
1 − ρ0

1,Wk >

+ 2dλ2

n∑
k=1

< R1(T 1 − T 0),Wk >< ρ1
1 − ρ0

1,Wk > +2dλ2

n∑
k=1

< T 0(R1 −R0),Wk >< ρ1
1 − ρ0

1,Wk >

− 2dλ2

n∑
k=1

< T 1(ρ1
1 − ρ0

1),Wk >< ρ1
1 − ρ0

1,Wk > −2dλ2

n∑
k=1

< ρ0
1(T 1 − T 0),Wk >< ρ1

1 − ρ0
1,Wk >

+

n∑
k=1

< T 1 − T 0,Wk >< ρ1
1 − ρ0

1,Wk > −(r + 2)

n∑
k=1

| < ρ1
1 − ρ0

1,Wk > |2.

(4.31)

Using Lemma 3 and the Cauchy-Schwarz inequality, we get:

−1

2
B′n(t) ≥

n∑
k=1

[
Dγk + r + 2− 2d(λ1 − λ2)

]∣∣ < ρ1
1 − ρ0

1,Wk >
∣∣2

− (1 + 2dλ2)

n∑
k=1

< T 1 − T 0,Wk >< ρ1
1 − ρ0

1,Wk >

− 2dλ1

√
An(t)

√
Bn(t)−

√
Bn(t)

√√√√ n∑
k=1

(∫
Γ+

(ρ1
1 − ρ0

1)(r)W̌k(r)n1(r)dS(r)
)2

.

Integrating this between 0 and T and using the Cauchy-Scwharz inequality we are left with

1

2

(
Bn(0)−Bn(T )

)
≥
∫ T

0

n∑
k=1

[
Dγk + r + 2− 2d(λ1 − λ2)

]∣∣ < ρ1
1 − ρ0

1,Wk >
∣∣2dt

− (1 + 2dλ2)

∫ T

0

√
Bn(t)

√
Cn(t)dt− 2dλ1

∫ T

0

√
An(t)

√
Bn(t)dt

−

√∫ T

0

Bn(t)dt

√√√√∫ T

0

n∑
k=1

(∫
Γ+

(ρ1
1 − ρ0

1)(r)W̌k(r)n1(r)dS(r)
)2

dt.

(4.32)
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Now

C ′n(t) = −2D

n∑
k=1

γk| < T 1 − T 0,Wk > |2 + 2

n∑
k=1

< H(ρ̂1)−H(ρ̂0),Wk >< T 1 − T 0,Wk >

− 2

n∑
k=1

< T 1 − T 0,Wk >

∫
Γ+

(T 1 − T 0)(r)W̌k(r)n1(r).dS(r).

(4.33)

Again, we compute the second term using the explicit expression of H:

n∑
k=1

< H(ρ̂1)−H(ρ̂0),Wk >< ρ1
1 − ρ0

1,Wk >= 2d(λ1 − λ2)

n∑
k=1

< ρ1
1 − ρ0

1,Wk >< T 1 − T 0,Wk >

+ (2dλ2 − 1)

n∑
k=1

| < T 1 − T 0,Wk > |2 − 2d(λ1 − λ2)

n∑
k=1

< ρ1
1(T 1 − T 0),Wk >< T 1 − T 0,Wk >

− 2d(λ1 − λ2)

n∑
k=1

< T 0(ρ1
1 − ρ0

1),Wk >< T 1 − T 0,Wk > −2dλ2

n∑
k=1

< (T 1)2 − (T 0)2,Wk >< T 1 − T 0,Wk > .

(4.34)

Using Lemma 3 and the Cauchy-Schwarz inequality, we get:

−1

2
C ′n(t) ≥

n∑
k=1

[
Dγk + 1− 2dλ2

]∣∣ < T 1 − T 0,Wk >
∣∣2 −√Cn(t)

√√√√ n∑
k=1

(∫
Γ+

(T 1 − T 0)(r)W̌k(r)n1(r)dS(r)
)2

− 2d(λ1 − λ2)
√
Cn(t)

√
Bn(t).

Integrating this between 0 and T and using the Cauchy-Scwharz inequality we are left with:

1

2

(
Cn(0)− Cn(T )

)
≥
∫ T

0

n∑
k=1

[
Dγk + 1− 2dλ2

]∣∣ < T 1 − T 0,Wk >
∣∣2dt− 2d(λ1 − λ2)

∫ T

0

√
Cn(t)

√
Bn(t)dt

−

√∫ T

0

Cn(t)dt

√√√√∫ T

0

n∑
k=1

(∫
Γ+

(T 1 − T 0)(r)W̌k(r)n1(r)dS(r)
)2

dt.

(4.35)

Summing inequalities (4.32) and (4.35), using that Bn is uniformly bounded by a constant C1 and Cn by a
constant C2, we obtain

1

2

(
Bn(0)−Bn(T ) + Cn(0)− Cn(T )

)
≥
∫ T

0

n∑
k=1

[
Dγk + r + 2− 2d(λ1 − λ2)

]∣∣ < ρ1
1 − ρ0

1,Wk >
∣∣2dt

−max
(∫ T

0

Bn(t)dt,

∫ T

0

n∑
k=1

(∫
Γ+

(ρ1
1 − ρ0

1)(r)W̌k(r)n1(r)dS(r)
)2

dt
)

+

∫ T

0

n∑
k=1

[
Dγk + 1− 2dλ2

]∣∣ < T 1 − T 0,Wk >
∣∣2dt

−max
(∫ T

0

Cn(t)dt,

∫ T

0

n∑
k=1

(∫
Γ+

(T 1 − T 0)(r)W̌k(r)n1(r)dS(r)
)2

dt
)

− 2dC1λ1

√∫ T

0

An(t)dt− (1 + 2dλ1)C2

√∫ T

0

Bn(t)dt

(4.36)
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Taking n to infinty and using the dominated convergence theorem as well as the trace inequality (Theorem
3) we get:

1

2

(
B(0)−B(T ) + C(0)− C(T )

)
≥ min

(
[Dγ1 + r + 1− 2d(λ1 − λ2)]

∫ T

0

B(t)dt

− (2dλ2 + 1)C2

√∫ T

0

B(t)dt, (D − 1)

∫ T

0

‖∇(ρ1
1 − ρ0

1)‖2dt+ [r + 1− 2d(λ1 − λ2)]

∫ T

0

B(t)dt

− (2dλ2 + 1)C2

√∫ T

0

B(t)dt
)

+

+ min
(

[Dγ1 + 1− 2dλ2)

∫ T

0

C(t)dt, (D − 1)

∫ T

0

‖∇(T 1 − T 0)‖2dt+ (1− 2dλ2)

∫ T

0

C(t)dt]
)
.

(4.37)

Since conditions (H1) hold, all the factors between the time integrals
∫ T

0
B(t)dt and

∫ T
0
C(t)dt are strictly

positive and inequality (4.37) implies that∫ ∞
0

B(t)dt <∞, and

∫ ∞
0

C(t)dt <∞.

Again, by Corollary 1, ρ1
1 and T 1 are almost surely decreasing and ρ0

1 and T 0 increasing, therefore ρ1
1 − ρ0

1

and T 1 − T 0 are almost surely decreasing and the above inequalities imply

‖ρ1
1,t − ρ0

1,t‖22 −→
t→∞

0, and ‖T 1
t − T 0

t ‖22 −→
t→∞

0.

For the proof in the (Neumann ; Robin) regime, one proceeds in the same way, but decomposing the difference
between ρ̂1 and ρ̂0 on the basis (Vk)k≥1.

Now, we are able to prove Theorem 6.

Proof. Again, we focus on the (Dirichlet ; Robin) regime and the proof is the same for all the others. As said
before, it is enough to prove uniqueness of a solution of

D∆ρ1 + F1(ρ1, T,R) = 0, ρ1|Γ−
= b1(.), ∂e1ρ1(t, .)|Γ+ = 1

D (b1 − ρ1)|Γ+

D∆T +H(ρ1, T,R) = 0, T|Γ− = b1(.) + b3(.), ∂e1T (t, .)|Γ+ = 1
D (b1 + b3 − ρ1 − ρ3)|Γ+

D∆R+ J(R) = 0, R|Γ− = 1− b2(.)− b3(.), ∂e1R(t, .)|Γ+ = 1
D (ρ2 + ρ3 − b1 − b3)|Γ+ .

(4.38)

(i) Existence: For n ∈ N, define

U0
n = {u ∈ B, ρ0

1(n, .) ≤ ρ0
1(n+ 1, .), T 0(n, .) ≤ T 0(n+ 1, .), R0(n, .) ≤ R0(n+ 1, .)} (4.39)

and

U1
n = {u ∈ B, ρ1

1(n, .) ≤ ρ1
1(n+ 1, .), T 1(n, .) ≤ T 1(n+ 1, .), R1(n, .) ≤ R1(n+ 1, .)}. (4.40)

By Corollary 1, the above sets are almost sure and so is U := ∩
n≥0

(U0
n ∩ U1

n). On U , the sequence of

profiles {ρ̂1(n, .), n ≥ 1} (resp.{ρ̂0(n, .), n ≥ 1}) decreases (resp. increases) to a limit that we denote
ρ̂+(.) = (ρ+

1 (.), T+(.), R+(.)) (resp. ρ̂−(.) = (ρ−1 (.), T−(.), R−(.))). By Lemma 4, ρ̂+ = ρ̂− everywhere
on U so almost surely on B . Denote this profile ρ and consider ρ(t, .) the solution to (4.38) with

initial condition ρ. Since for all t ≥ 0, ρ̂0(t, .) ≤ ρ(.) ≤ ρ̂1(t, .) almost surely, by Lemma 3 we have

that for every s, t ≥ 0, ρ̂0(t + s, .) ≤ ρ(s, .) ≤ ρ̂1(t + s, .) almost surely and letting t → ∞ we get that
ρ(s, .) = ρ(.) for all s so ρ is a solution of (4.38).
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(ii) Uniqueness: Note that by Lemma 3 and Corollary 1, for any profiles ρ̂a = (ρa1 , T
a, Ra) and ρ̂b =

(ρb1, T
b, Rb) satisfying (4.4) with any initial condition, for every t > 0∫

B

(∣∣ρa1(t, u)− ρb1(t, u)|+
∣∣T a(t, u)− T b(t, u)|+

∣∣Ra(t, u)−Rb(t, u)|
)

du

≤
∫
B

(∣∣ρ1
1(t, u)− ρ0

1(t, u)|+
∣∣T 1(t, u)− T 0(t, u)|+

∣∣R1(t, u)−R0(t, u)|
)

du.

(4.41)

Applying (4.41) to two stationary solutions and using Lemma 4, one gets uniqueness.

As said before, existence and uniqueness of a solution ρ of (4.38) yields existence and uniqueness of the
stationary solution of (2.20). Similarly, the proof of (4.6) comes from the fact that∫

B

(
|ρ1(t, u)− ρ1(u)|+ |T (t, u)− T (u)|+ |R(t, u)−R(u)|

)
du

≤
∫
B

(∣∣ρ1
1(t, u)− ρ0

1(t, u)|+
∣∣T 1(t, u)− T 0(t, u)|+

∣∣R1(t, u)−R0(t, u)|
)
du

(4.42)

where again, we applied (4.41) and the fact that the right hand side term converges to 0.

A Change of variable formulas

The following change of variable formulas have been established in [18, Section 5.2]. Recall that for i, j ∈
{0, 1, 2, 3} and x, y ∈ BN , vj(x/N) = log(αj(x/N)), and

Rx,yi,j (α̂) = exp
((
vj(y/N)− vj(x/N)

)
−
(
vi(y/N)− vi(x/N)

))
− 1. (A.1)

Note that Rx,yi,j (α̂) = O(N−1). Consider f : Σ̂N → R and x, y ∈ BN .

(i) For (i, j) ∈ {0, 1, 2, 3}2 such that i 6= j,∫
Σ̂N

ηi(x)ηj(y)f(ξx,y, ωx,y)dνNα̂ (ξ, ω) =

∫
Σ̂N

ηj(x)ηi(y)(Rx,yi,j (α̂) + 1)f(ξ, ω)dνNα̂ (ξ, ω). (A.2)

(ii) For (i, j) ∈ {(1, 2), (2, 1), (3, 0), (0, 3)},∫
Σ̂N

ηi(x)f(σxξ, σxω)dνNα̂ (ξ, ω) =

∫
Σ̂N

ηj(x) exp(vi(x/N)− vj(x/N))f(ξ, ω)dνNα̂ (ξ, ω). (A.3)

(iii) For (i, j) ∈ {(1, 0), (0, 1), (3, 2), (2, 3)},∫
ηi(x)f(σxξ, ω)dνNα̂ (ξ, ω) =

∫
ηj(x) exp(vi(x/N)− vj(x/N))f(ξ, ω)dνNα̂ (ξ, ω). (A.4)

(iv) For (i, j) ∈ {(1, 3), (3, 1), (2, 0), (0, 2)},∫
ηi(x)f(ξ, σxω)dνNα̂ (ξ, ω) =

∫
ηj(x) exp(vi(x/N)− vj(x/N))f(ξ, ω)dνNα̂ (ξ, ω). (A.5)
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Figure 2: λ1 = 0.75, λ2 = 0.25, ρ̂(0, .) = (1, 0, 0).
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Figure 3: λ1 = 0.75, λ2 = 0.25, ρ̂(0, .) = (0, 1, 0).

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.25

0.50

0.75
rho_1
rho_1+rho_3
1-rho_2-rho_3

Figure 4: λ1 = 1, λ2 = 0.75, ρ̂(0, .) = (1, 0, 0).
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Figure 5: λ1 = 1, λ2 = 0.75, ρ̂(0, .) = (0, 1, 0).

B Simulations

The hydrodynamic equations have been simulated with an Euler explicit scheme, in dimension 1 and spatial
domain [0, 1], with Neumann boundary conditions. The fixed parameters chosen for the simulations are:

• Time horizon: T=100

• Time subdivision: δT = 5.105

• Space subdivision: δx = 100

• r = 1 and D = 1.

In the first simulation we took λ1 = 0.75 and λ2 = 0.25. The conditions (H1) are then satisfied and in
Figures 2 and 3 we present the limiting profiles starting from the initial condition (ρ1 = 1, ρ2 = 0, ρ3 = 0),
resp. (ρ1 = 0, ρ2 = 1, ρ3 = 0) in the system of coordinates (ρ1, ρ1 + ρ3, 1 − ρ2 − ρ3) and we observe that
both limiting profiles coincide. In the second simulation we took λ1 = 1 and λ2 = 0.75. The conditions (H1)
are not satisfied and in Figures 4 and 5 we present the limiting profiles starting from the initial condition
(ρ1 = 1, ρ2 = 0, ρ3 = 0), resp. (ρ1 = 0, ρ2 = 1, ρ3 = 0) and we observe that both limiting profiles do not
coincide.

Acknowledgements: This work has been conducted within the FP2M federation (CNRS FR 2036). The
authors would like to thank Camille Pouchol for the useful advice regarding numerical simulations.
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