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Abstract

Abstract We consider an interacting particle system which models the sterile insect technique. It is the
superposition of a generalized contact process with exchanges of particles on a finite cylinder with open
boundaries (see Kuoch et al., 2017 ). We first show that when the system is in contact with reservoirs
at different slow-down rates, the hydrodynamic limit is a set of coupled non linear reaction-diffusion
equations with mixed boundary conditions. We then prove the hydrostatic limit when the macroscopic
equations exhibit a unique attractor.
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1 Introduction

In this paper, we consider the interacting particle system introduced in [19] to model the sterile insect
technique. This technique was developed, among others, by E. Knipling (see [18]) to eradicate New World
screw worms in the 1950s, a serious pest for warm blooded animals. The method is still used today, for
instance in France, to protect crops from the very invasive Mediterranean flies, and it is also being tested to
fight mosquitoes which transmit dengue in countries like Panama or Brazil. We refer to [7] for a detailed list
of trials and programs regarding that method. The sterile insect technique works as follows: male insects
are sterilized in captivity using gamma rays. They are then released in the wild population, where females
mate only once, giving rise to no offspring if they mate with a sterile male. When enough sterile individuals
are released, the wild population eventually becomes extinct. From a mathematical perspective, the sterile
insect technique has mainly been modelled in a deterministic way through the study of partial differential
equations (see [1]).

This technique was studied from a probabilistic perspective in [19] and [20] using interacting particle
systems. In [19], a phase transition result was proved at the microscopic level. Recently, another probabilistic
model was studied in [16], also at the microscopic level. In [20], the study is carried out at the macroscopic
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level (hydrodynamic limit) in both finite and infinite volume with reservoirs, in order to account for the
migration/immigration mechanism.

Here, we aim at studying the hydrodynamic and hydrostatic limits of the interacting particle system in
[20], under the effect of slow reservoirs in any dimension d ≥ 1. The slow-down mechanism models the fact
that beyond the boundary through which insects arrive into the system or leave it, there are very few insects
(the exterior of the system might be a territory which is much less favorable to the development of these
insects).

In the perspective of interacting particle systems, the sterile insect technique is modelled as follows:
individuals evolve on a d-dimensional finite set BN = {−N, · · · , N} × Td−1

N , where N ≥ 1 and Td−1
N =

(Z/NZ)d−1. The evolution of the population is described by a continuous time Markov process (ηNt )t≥0 with
state space EBN where E is a countable set. In this model, the gender does not come into account so we refer
to sterile individuals rather than sterile males. The quantity of interest here is not the number of insects per
site but the type of insects present at a given site. Precisely, E = {0, 1, 2, 3} and for x in BN ,

η(x) =


0 if there are no insects in x,
1 if there are only wild insects in x,
2 if there are only sterile insects in x,
3 if there is a combination of wild and sterile insects in x.

The dynamics of the Markov process is the superposition of three Markovian jump processes:

(i) An exchange dynamics which models the fact that insects move in an isotropic way within the bulk
BN and which is parameterised by a diffusivity constant D > 0. Precisely, for a configuration η and
x, y two sites in BN , the states of sites x and y in η are exchanged at rate D.

(ii) A birth and death dynamics within BN which models births of individuals due to the mating of a wild
individual with wild or sterile insects, as well as deaths of individuals. This is the dynamics introduced
in [19] that was referred to as a contact process with random slowdowns (CPRS). It is parameterised
by a release rate r > 0 and growth rates λ1, λ2 > 0. Sterile individuals are injected on a site at rate
r independently of everything else. The rate at which wild individuals give birth (to wild individuals)
on neighbouring sites is λ1 at sites in state 1, and λ2 at sites in state 3. Sterile individuals do not give
birth. We take λ2 < λ1 to reflect the fact that fertility is reduced at sites in state 3. Deaths for each
type of insects occur independently and at rate 1.

(iii) A boundary dynamics which models the slow migration/immigration mechanism. The mechanism is

parameterised by a function b̂ = (b1, b2, b3) : {−1, 1} × Td−1 → [0, 1]3 for the rates, where Td−1 =
(R/Z)d−1, and the slowdown effect by two constants θℓ and θr in R+.

Note that without the presence of sterile insects, the CPRS would be a basic contact process (as defined
for instance in [23]) with parameter λ1, and the presence of sterile insects can be interpreted as a random
decrease of the fertility rate due to the presence of sites containing sterile and wild individuals. In [19], the
microscopic study of the contact process with random slowdowns in dimension d ≥ 1 leads to the following
phase transition result: for certain values of λ1 and λ2, when r is large enough, the healthy population almost
surely becomes extinct, and survives otherwise. In this paper, the CPRS will be called generalized contact
process. In [20], the hydrodynamic limit of the superposition of the three dynamics above, where the first
and the third one are accelerated in the diffusive scaling N2, and where θℓ = θr = 0, is proven to be a system
of non linear reaction-diffusion equations with Dirichlet boundary conditions in any dimension.

In this paper, we first prove the finite volume hydrodynamic limit of this particle system for any values
of θℓ, θr ≥ 0 and in any dimension. The hydrodynamic equation obtained has mixed boundary conditions
which depend on the values of θℓ, resp. θr. Precisely, for θℓ ∈ [0, 1), resp. θr ∈ [0, 1), we get a Dirichlet type
boundary condition at the left-hand side, resp. right-hand side of the system. For θℓ = 1, resp. θr = 1, we
get a Robin type boundary condition at the left-hand side, resp. right-hand side of the system. For θℓ > 1,
resp. θr > 1, we get a Neumann type boundary condition at the left-hand side, resp. right-hand side of the
system.
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We then prove the finite volume hydrostatic limit of the particle system for a specific class of parameters
regarding the dynamics. Within that class of parameters, the sequence of invariant measures of the interacting
particle system is associated to a profile which is the stationary solution of the hydrodynamic equation with
corresponding mixed boundary conditions.

Our paper is, up to our knowledge, the first one regarding the effect of mixed reservoirs in and out of
equilibrium (hydrodynamic and hydrostatic limit) for a multi species process in a bounded d-dimensional
cylinder. Note that all our results can be extended to the d-dimensional hypercube, [−1, 1]d, following the
method in [21]. We believe that the analysis for general domains would require more effort, in particular,
regarding the choice of a suitable discretization of the underlying macroscopic space. The discretization
issue has been addressed for some conservative interacting particle systems evolving on a bounded Lipschitz
domain (see [5] and references therein). For domains such as manifolds, we refer to [25] for the symmetric
simple exclusion process with no reservoirs. Both papers [5] and [25] rely on duality techniques. The effect of
reservoirs on a one dimensional conservative system has been widely studied in finite volume (see for instance
[6], [10]). Much is now known both at the microscopic and macroscopic levels. Recently, the effect of slow
reservoirs has aroused considerable interest for the symmetric simple exclusion process in one dimension (see
for instance [2], [12], [13], [14] and references therein). In [11], the authors proved a hydrostatic principle for
a boundary driven gradient symmetric exclusion process using the fact that the stationary profile is a global
attractor for the hydrodynamic equation. This method inspired our proof for the hydrostatic limit. However,
the fact that we obtained coupled equations for the hydrodynamic limit, and that we work in any dimension
make the analysis more subtle and require general analytical tools.

This paper is organized as follows. In Section 2 we introduce the notation and state our results. The proof
of the hydrodynamic limit for each of these regimes is established in Section 3 via the Entropy Method. Among
other things, as we work in an arbitrary dimension, some care must be taken to perform the ”replacement
lemma”, and also to define and characterize the solution of the hydrodynamic limit at the boundary, through
the use of the ”Trace Operator” (see subsection 3.4). The difficulties due to different boundary slowing
exponents are purely analytical, and appear when proving uniqueness of the hydrodynamic equation with
mixed boundary conditions. The proof of the hydrostatic limit, established in Section 4, relies on the use of
a well chosen change of coordinates for the coupled equations. Under this change of coordinates (inspired
by some simulations, see Appendix B), a comparison principle holds. It allows us to find a unique attractor
when some conditions on the parameters are satisfied. Outside that class of parameters, although uniqueness
of the invariant measure holds, we do not even know whether there is uniqueness of the stationary solution
of the hydrodynamic equation, and simulations show that for Neumann type boundary conditions there are
several stationary profiles. However, we believe that a more general hydrostatic principle in the spirit of the
one proved in [22] is valid.

2 Notation and results

2.1 The microscopic model

The dynamics of our interacting particle system is given by three generators, one for the exchange dynamics,
one for the generalized contact dynamics and one for the boundary dynamics. In order to explicit each one
of those generators, let us give a few notations. Let N ∈ N and d ≥ 1. For p ≥ 1, we write Tp

N , resp. Tp,

the discrete, resp. continuous, torus (Z/NZ)p, (R/Z)p. Denote by BN = {−N, · · · , N} × Td−1
N the bulk and

ΓN = {−N,N} × Td−1
N , resp. Γ+

N = {N} × Td−1
N , resp. Γ−

N = {−N} × Td−1
N , the boundary, resp. right-hand

side boundary, resp. left-hand side boundary, of the bulk. Denote B = (−1, 1)×Td−1 the continuous counter
part of the bulk, B = [−1, 1]×Td−1 its closure, Γ = {−1, 1}×Td−1, Γ− = {−1}×Td−1 and Γ+ = {1}×Td−1.

The microscopic state space is denoted by ΩN := {0, 1, 2, 3}BN and its elements, called configurations,
are denoted by η. Therefore, for x ∈ BN , η(x) ∈ {0, 1, 2, 3}. To describe the dynamics of our model, we will

use the correspondence introduced in [20] between the state space ΩN and Σ̂N := ({0, 1} × {0, 1})BN where
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the correspondence between an element (ξ, ω) ∈ Σ̂N and η ∈ ΩN is given as follows: for x ∈ BN ,

η(x) = 0 ⇐⇒ (1− ξ(x))(1− ω(x)) = 1,

η(x) = 1 ⇐⇒ ξ(x)(1− ω(x)) = 1,

η(x) = 2 ⇐⇒ (1− ξ(x))ω(x) = 1,

η(x) = 3 ⇐⇒ ξ(x)ω(x) = 1.

(2.1)

In other words, ω ∈ {0, 1} represents the presence of sterile insects, and ξ ∈ {0, 1} that of wild ones on a
given site, i.e., (ξ(x), ω(x)) = (0, 0) if x is in state 0, (1, 0) if it is in state 1, (0, 1) if it is in state 2 and (1, 1)
if it is in state 3. Also, in order to describe the evolution of the density of sites in state 1, 2, 3, resp 0, we
define for x in BN and a configuration η ∈ ΩN with associated configuration (ξ, ω) ∈ Σ̂N ,

η1(x) := 1{η(x)=1} = ξ(x)(1− ω(x)),
η2(x) := 1{η(x)=2} = (1− ξ(x))ω(x),
η3(x) := 1{η(x)=3} = ξ(x)ω(x),
η0(x) := 1{η(x)=0} = (1− ξ(x))(1− ω(x)).

(2.2)

Finally, we also express the correspondence (2.1) by the following application from Σ̂N to ΩN :

η = η(ξ, ω), where, for any x ∈ BN , η(x) = 2ω(x) + ξ(x). (2.3)

• Generator for the exchange mechanism: it corresponds to the usual stirring mechanism where
each site has an exponential clock with rate D and independent from all the other clocks, where D is
a fixed positive parameter. When the clock rings, a neighbouring site is chosen uniformly at random
and the states of both sites are exchanged. The action of the generator on functions f : Σ̂N → R is
therefore given by:

LNf(ξ, ω) :=

d∑
k=1

∑
(x,x+ek)∈B2

N

D
(
f(ξx,x+ek , ωx,x+ek)− f(ξ, ω)

)
(2.4)

where (e1, · · · , ed) is the canonical basis of Zd and for ζ ∈ {0, 1}BN and x, y ∈ BN , ζx,y is the configu-
ration obtained from ζ by exchanging the occupation variables ζ(x) and ζ(y), i.e,

ζx,y(z) =

 ζ(x) if z = y,
ζ(y) if z = x,
ζ(z) otherwise.

• Generator for the generalized contact process in the bulk: following the description of the
generalized contact process in the introduction, let us give its rates in the bulk. For η ∈ ΩN , x ∈ BN

and i ∈ {1, 3} denote by ni(x, η) the number of neighbours of x in state i, that is, ni(x, η) =
∑
y∼x

ηi(y),

where x ∼ y means that x and y are neighbouring sites in BN . Births and arrivals of sterile individuals
at x happen at the following rates:

0 → 1 at rate λ1n1(x, η) + λ2n3(x, η), 2 → 3 at rate λ1n1(x, η) + λ2n3(x, η),

and 0 → 2 at rate r, 1 → 3 at rate r,
(2.5)

Deaths of individuals at x happen at rate 1:

1 → 0 at rate 1, 2 → 0 at rate 1, 3 → 1 at rate 1, 3 → 2 at rate 1, (2.6)

Therefore, using the correspondences (2.1), (2.2) and (2.3), the generator LN = LN,λ1,λ2,r of the

generalized contact process acts as follows on functions f : Σ̂N → R: for (ξ, ω) in Σ̂N and η = η(ξ, ω),
we have

LNf(ξ, ω) =
∑

x∈BN

Lx
BN

f(ξ, ω) , (2.7)
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where for x ∈ BN ,

Lx
BN

f(ξ, ω) :=
(
r(1− ω(x)) + ω(x)

)[
f(ξ, σxω)− f(ξ, ω)

]
+
(
βBN

(x, ξ, ω)(1− ξ(x)) + ξ(x)
)[

f(σxξ, ω)− f(ξ, ω)
]
,

(2.8)

βBN
(x, η) := λ1n1(x, η) + λ2n3(x, η)

where, for ζ ∈ {0, 1}BN , σxζ is the configuration obtained from ζ by flipping the configuration at x, i.e.

σxζ(z) =

{
1− ζ(x) if z = x,
ζ(z) otherwise.

• Generator for the boundary dynamics: the generator of the dynamics at the boundary is parametrised
by θ̂ = (θℓ, θr) with θℓ, θr ≥ 0 and a positive function b̂ = (b1, b2, b3) : Γ → R3

+ satisfying the

following conditions: there exists a neighbourhood V of B in R × Td−1 and a smooth function
ĝ = (g1, g2, g3) : V → (0, 1)3 in C2(V,R) (the space of twice differentiable functions), with

∃ c∗, C∗ > 0, 0 < c∗ < min
1≤i≤3

|gi| ≤ max
1≤i≤3

|gi| ≤ C∗ < 1, and g1 + g2 + g3 < 1 (2.9)

and, the restriction of ĝ to Γ is equal to b̂. The dynamics at the boundary can then be described as
follows: a site x ∈ Γ−

N , resp. x ∈ Γ+
N , flips from state i ∈ {0, 1, 2, 3} to state j ∈ {0, 1, 2, 3} \ {i} at

rate N−θℓbj(x/N), resp. N−θrbj(x/N) . In order to express the generator of the boundary dynamics,
we make use of ηi = ηi(ξ, ω) for i ∈ {0, 1, 2, 3} which is the configuration in {0, 1}BN obtained from

(ξ, ω) ∈ Σ̂N according to (2.2). For f : Σ̂N → R, the boundary generator acts on f as follows: for (ξ, ω)

in Σ̂N , we have

Lb̂,θ̂,Nf(ξ, ω) = N−θℓ

3∑
i=0

∑
x∈Γ−

N

bi(x/N)
(
f(σi,x(ξ, ω))− f(ξ, ω)

)

+N−θr

3∑
i=0

∑
x∈Γ+

N

bi(x/N)
(
f(σi,x(ξ, ω))− f(ξ, ω)

)
,

(2.10)

where b0(x/N) := 1−
∑3

i=1 bi(x/N) and with σi,x(ξ, ω) := σi,xη(ξ, ω), the configuration in Σ̂N associ-
ated to σi,xη, where

σi,xη(z) :=

{
i if z = x,
η(ξ, ω)(z) otherwise

with η(ξ, ω) as defined in (2.3).

Fix a time horizon T > 0 and denote by {(ξNt , ωN
t ), t ∈ [0, T ]} the Markov process associated to the generator

LN := N2LN +N2Lb̂,θ̂,N + LN . (2.11)

Let DΣ̂N
([0, T ]) be the path space of càdlàg trajectories with values in Σ̂N . Given a measure µN on Σ̂N ,

denote by PµN
the probability measure on DΣ̂N

([0, T ]) induced by µN and (ξt, ωt)t∈[0,T ], and denote by EµN

the expectation with respect to PµN
.

Invariant measures for the exchange and boundary dynamics:
Consider α̂ = (α1, α2, α3) : B −→ (0, 1)3 a smooth function satisfying, for c∗, C∗ > 0 given in (2.9),

0 < c∗ < min
1≤i≤3

|αi| ≤ max
1≤i≤3

|αi| ≤ C∗ < 1, α1 + α2 + α3 < 1. (2.12)
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Denote by νNα̂ the Bernoulli compound product measure on BN with parameter α̂: for (ξ, ω) ∈ Σ̂N ,

νNα̂ (ξ, ω) :=
1

Zα̂,N
exp

( 3∑
i=1

∑
x∈BN

(
log

αi(x/N)

α0(x/N)

)
ηi(x)

)
, (2.13)

where α0 = 1− α1 − α2 − α3 and where Zα̂,N is the normalizing constant

Zα̂,N =
∏

x∈BN

1

α0(x/N)
.

Note that νNα̂ is such that for every 1 ≤ i ≤ 3 and x ∈ BN ,

EνN
α̂
[ηi(x)] = αi(x/N).

One can verify the following statements:

• Consider α̂ a smooth profile satisfying (2.12) and

∀x ∈ Γ, α̂(x) = b̂(x). (2.14)

Then, νNα̂ is an invariant and reversible measure for the boundary dynamics: for any f : Σ̂N → R,∫
Σ̂N

Lb̂,θ̂,Nf(ξ, ω)dνNα̂ (ξ, ω) = 0. (2.15)

• Consider α̂ a constant profile. Then νNα̂ is an invariant and reversible measure for the exchange dynamics

so for any f : Σ̂N → R, ∫
Σ̂N

LNf(ξ, ω)dνNα̂ (ξ, ω) = 0. (2.16)

For any θ̂ ∈ (R+)2, at fixed N , the dynamics defined by (2.11) is irreducible and the state space is finite.

Therefore, the dynamics has a unique invariant probability measure that in the sequel we denote by µss
N (θ̂).

Useful (in)equalities: For any A,B > 0,

A(B −A) = −1

2
(B −A)2 +

1

2
(B2 −A2). (2.17)

For any a, b, A and N ∈ N,
2ab ≤ N

A
a2 +

A

N
b2. (2.18)

For any sequences of positive numbers (aN )N≥1 and (bN )N≥1

lim
N→∞

1

N
log(aN + bN ) ≤ max

(
lim

N→∞

1

N
log aN , lim

N→∞

1

N
log bN

)
. (2.19)

2.2 The macroscopic equations

Let us first introduce a few notations. We will write functions with values in R with Roman letters (for

instance G) and the ones with values in R3 with letters with a hat (for instance Ĝ) . For n,m ∈ N, denote
by Cn,m([0, T ]× B) the space of functions that are n times differentiable in time and m times differentiable
in space, Cn,m

0 , resp. Cn,m
0,− , resp. Cn,m

0,+ , the ones in Cn,m([0, T ]×B) which are zero on Γ, resp. Γ−, resp. Γ+.

Denote by C∞
k (B) the space of smooth functions with compact support in B, Cm(B) the space of functions

that are m times differentiable in space with Cm
0 (B), resp. Cm

0,−(B), resp. Cm
0,+(B), those which are zero on
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Γ, resp. Γ−, resp. Γ+, and C(B) the space of continuous functions on B . For θ̂ = (θℓ, θr) in (R+)2, we will
use the following notation to denote these functional spaces:

Cθ̂ :=


C1,2
0 if θ̂ ∈ [0, 1)2,

C1,2
0,− if θℓ ∈ [0, 1), θr ≥ 1,

C1,2
0,+ if θr ∈ [0, 1), θℓ ≥ 1,

C1,2 if θr, θℓ ≥ 1.

(2.20)

Let ⟨ , ⟩ be the L2(B) inner product and ⟨ , ⟩µ the inner product with respect to a measure µ. For

f̂ = (f1, f2, f3) and ĝ = (g1, g2, g3) in
(
L2(B)

)3
, ⟨f̂ , ĝ⟩ =

∑3
i=1⟨fi, gi⟩. Recall that (e1, · · · , ed) is the canonical

basis of Zd. Introduce the Sobolev space H1(B) which we recall to be the set of functions g ∈ L2(B) such
that for any 1 ≤ k ≤ d, there exists an element denoted by ∂ekg ∈ L2(B) such that for any φ in C∞

k (B),

⟨∂ekφ, g⟩ = −⟨φ, ∂ekg⟩,

where ∂ekφ is the usual partial derivative. The H1(B) norm is then defined as follows:

∥g∥H1(B) =
(
∥g∥2L2(B) +

d∑
k=1

∥∂ekg∥2L2(B)

)1/2

=
(
∥g∥22 +

d∑
k=1

∥∂ekg∥22
)1/2

.

We will write ∥g∥22 instead of ∥g∥2L2(B) when no confusion is possible. Introduce H1
0(B), the closure of

C∞
k (B) in H1(B) for that norm. Denote by L2

(
[0, T ],H1(B)

)
the space of functions f : [0, T ] → H1(B) such

that ∫ T

0

∥f(t, .)∥2H1(B)dt < ∞.

In order to define the value of an element G in H1(B) at the boundary, we need to introduce the notion of
trace of functions on such Sobolev spaces. The trace operator in the Sobolev space H1(B) can be defined as
a bounded linear operator, Tr : H1(B) → L2(Γ) such that Tr extends the classical trace, that is Tr(G) = G|Γ ,

for any G ∈ H1(B) ∩ C(B). We refer to [8, Part II Section 5] for a detailed survey on the trace operator.

In the sequel, for s, u ∈ [0, T ] × Γ and for any f ∈ L2
(
[0, T ],H1(B)

)
, f(s, u) stands for Tr(f(s, .))(u).

Notice that H1
0(B) is the set of elements of H1(B) with zero trace.

To lighten notations, for a function Ĝ depending on time and space we will often write Ĝs instead of

Ĝ(s, .). Finally, for θ̂ ∈ (R+)2, introduce the following linear functional on L2
(
[0, T ],H1(B)

)
parameterised

by a test function Ĝ in Cθ̂ : for t ∈ [0, T ],

IĜ(ρ̂)(t) := ⟨ρ̂t, Ĝt⟩ − ⟨ρ̂0, Ĝ0⟩ −
∫ t

0

⟨ρ̂s, ∂sĜs⟩ds−D

∫ t

0

⟨ρ̂s,∆Ĝs⟩ds−
∫ t

0

⟨F̂ (ρ̂s), Ĝs⟩ds (2.21)

where F̂ = (F1(ρ̂), F2(ρ̂), F3(ρ̂)) : [0, 1]
3 → R3 is defined by F1(ρ1, ρ2, ρ3) = 2d(λ1ρ1 + λ2ρ3)ρ0 + ρ3 − (r + 1)ρ1

F2(ρ1, ρ2, ρ3) = rρ0 + ρ3 − 2d(λ1ρ1 + λ2ρ3)ρ2 − ρ2
F3(ρ1, ρ2, ρ3) = 2d(λ1ρ1 + λ2ρ3)ρ2 + rρ1 − 2ρ3,

(2.22)

with ρ0 = 1− ρ1 − ρ2 − ρ3.
The hydrodynamic equation is a system of coupled reaction diffusion equations with mixed boundary

conditions depending on θ̂. If θℓ, resp. θr, belongs to [0, 1), the boundary conditions are of Dirichlet type on
Γ−, resp. Γ+. If θℓ = 1, resp θr = 1, they are of Robin type on Γ−, resp. Γ+. If θℓ > 1, resp. θr > 1, they are
of Neumann type on Γ−, resp. Γ+. We will focus on the cases where θℓ ∈ [0, 1), θr = 1 resp. θℓ > 1, θr = 1,
corresponding to a Dirichlet boundary condition on Γ− and a Robin boundary condition on Γ+, resp. a
Neumann boundary condition on Γ− and a Robin boundary condition on Γ+. All the other cases can be
adapted from those ones (see Table 1).
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Definition 1. Let γ̂ : B → R3 be a continuous function.

• Hydrodynamic equation for θℓ ∈ [0, 1) and θr = 1.
A bounded function ρ̂ = (ρ1, ρ2, ρ3) : [0, T ]×B → R3 is a weak solution of the Dirichlet + Robin mixed
boundary problem 

∂tρ̂ = D∆ρ̂+ F̂ (ρ̂) in B × (0, T ),
ρ̂(0, .) = γ̂ in B,

ρ̂(t, .)|Γ− = b̂ for 0 < t ≤ T,

∂e1 ρ̂(t, .)|Γ+ = 1
D (̂b− ρ̂)|Γ+ for 0 < t ≤ T,

(2.23)

if, for any 1 ≤ i ≤ 3,

ρi ∈ L2
(
[0, T ],H1(B)

)
, (2.24)

for any function Ĝ ∈ Cθ̂, for any t ∈ [0, T ],

IĜ(ρ̂)(t) +D

3∑
i=1

∫ t

0

∫
Γ−

bi(r)(∂e1Gi,s)(r)n1(r).dS(r)ds

+D

3∑
i=1

∫ t

0

∫
Γ+

ρi(s, r)(∂e1Gi,s)(r)n1(r).dS(r)ds

−
3∑

i=1

∫ t

0

∫
Γ+

Gi(r)(bi(r)− ρi(s, r))n1(r).dS(r)ds = 0,

(2.25)

where n1(r) is the outward normal unit vector to the boundary surface Γ and dS(r) is an element of
surface on Γ. And,

ρ̂(0, .) = γ̂(.) almost surely. (2.26)

• Hydrodynamic equation for θℓ > 1 and θr = 1.
A bounded function ρ̂ = (ρ1, ρ2, ρ3) : [0, T ]×B → R3 is a weak solution of the Neumann + Robin mixed
boundary problem 

∂tρ̂ = D∆ρ̂+ F̂ (ρ̂) in B × (0, T ),
ρ̂(0, .) = γ̂ in B,
∂e1 ρ̂(t, .)|Γ− = 0 for 0 < t ≤ T

∂e1 ρ̂(t, .)|Γ+ = 1
D (̂b− ρ̂)|Γ+ for 0 < t ≤ T,

(2.27)

if ρ̂ satisfies conditions (2.24) and (2.26) as well as the following condition (2.28): for any Ĝ ∈ Cθ̂, for
any t ∈ [0, T ],

IĜ(ρ̂)(t) +D

3∑
i=1

∫ t

0

∫
Γ−

ρi(s, r)(∂e1Gi,s)(r)n1(r).dS(r)ds

+D

3∑
i=1

∫ t

0

∫
Γ+

ρi(s, r)(∂e1Gi,s)(r)n1(r).dS(r)ds

−
∫
Γ+

Gi(r)(bi(r)− ρi(s, r))n1(r).dS(r)ds = 0.

(2.28)

Remark 1. In (2.25), the integral over Γ− corresponds to the Dirichlet boundary condition. In (2.28) the
integral over Γ− comes from an integration by parts of the terms involved in the bulk. Both in (2.25) and
(2.28) the first integral over Γ+ comes from an integration by parts of the terms involved in the bulk and the
second integral over Γ+ corresponds to the Robin boundary condition.
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(θℓ, θr) θr ∈ [0, 1) θr = 1 θr > 1

θℓ ∈ [0, 1) (D ; D) (D ; R) (D ; Ne)

θℓ = 1 (R ; D) (R ; R) (R ; Ne)

θℓ > 1 (Ne ; D) (Ne ; R) (Ne ; Ne)

Figure 1: Mixed boundary conditions depending on the values of θℓ and θr. The letters D, resp. R, resp.
Ne denote a Dirichlet, resp. Robin, resp. Neumann boundary condition. For instance (D ; Ne) denotes a
left-hand side Dirichlet boundary condition and a right-hand side Neumann boundary condition.

Definition 2 (Stationary solution of the hydrodynamic equation).

• A function ρ = (ρ1, ρ2, ρ3) in
(
H1(B)

)3
is a stationary solution of (2.23) if for every function Ĝ =

(G1, G2, G3) ∈ C2
0,−(B)3, for all 1 ≤ i ≤ 3,

D⟨ρi,∆Gi⟩+ ⟨Fi(ρ̂), Gi⟩ = D

∫
Γ−

bi(r)(∂e1Gi)(r)n1(r).dS(r)

+D

∫
Γ+

ρi(r)(∂e1Gi)(r)n1(r).dS(r)−
∫
Γ+

Gi(r)(bi(r)− ρi(r))n1(r).dS(r).

(2.29)

In other words, ρ is a stationary solution of (2.23) if ρ̂(t, u) ≡ ρ(u) is a solution of (2.23).

• A function ρ = (ρ1, ρ2, ρ3) in
(
H1(B)

)3
is a stationary solution of (2.27) if for every function Ĝ =

(G1, G2, G3) ∈ C2(B)3, for all 1 ≤ i ≤ 3,

D⟨ρi,∆Gi⟩+ ⟨Fi(ρ̂), Gi⟩ = D

∫
Γ−

ρi(r)(∂e1Gi)(r)n1(r).dS(r)

+D

∫
Γ+

ρi(r)(∂e1Gi)(r)n1(r).dS(r)−
∫
Γ+

Gi(r)(bi(r)− ρi(r))n1(r).dS(r).

(2.30)

In other words, ρ is a stationary solution of (2.23) if ρ̂(t, u) ≡ ρ(u) is a solution of (2.27).

2.3 Hydrodynamic and hydrostatic results

Let us state the main results proved in this paper. The first one (Theorem 1) establishes the hydrodynamic
limit of the dynamics defined above and the second one (Theorem 2) establishes its hydrostatic limit. Before
stating Theorem 1, let us first define the empirical measure π̂N (ξ, ω) = π̂N associated to a given configuration

(ξ, ω). Recall how in (2.2), we built ηi ∈ {0, 1}BN from (ξ, ω) ∈ Σ̂N for 0 ≤ i ≤ 3. Then,

π̂N (ξ, ω) :=
( 1

Nd

∑
x∈BN

η1(x)δx/N ,
1

Nd

∑
x∈BN

η2(x)δx/N ,
1

Nd

∑
x∈BN

η3(x)δx/N

)
=: (πN

1 (ξ, ω), πN
2 (ξ, ω), πN

3 (ξ, ω))

where δx/N is the point mass at x/N . For Ĝ in C1,2([0, T ]×B) and t ≥ 0, write
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⟨π̂N , Ĝt⟩ :=
3∑

i=1

⟨πN
i , Gi(t, .)⟩ =

3∑
i=1

1

Nd

∑
x∈BN

ηi(x)Gi(t,
x

N
).

The empirical measure is therefore the triplet of empirical measures associated to the density of sites in state
1, resp. 2, resp. 3. Denote by M the set of positive measures on B with total mass bounded by 3 (because

for any configuration η, πN (η)(B) = |ΛN |
Nd ≤ 3). The process (π̂N

t )t≥0 = (π̂N (ξt, ωt))t≥0, is a Markov process
with state space M3 and its trajectories belong to D([0, T ],M3), the path space of càdlàg time trajectories
with values in M3. We endow the path space with the Skorohod topology (we refer to [3] for a detailed

presentation on the Skorohod topology). For θ̂ ∈ (R+)2 and µN a probability measure on Σ̂N , denote by

Qθ̂
N = PµN

(π̂N )−1 the law of the process (π̂N (ξt, ωt))t≥0 when (ξ0, ω0) ∼ µN and where (ξt, ωt)t≥0 evolves

according to the dynamics given by (2.11), with parameter θ̂ for the boundary reservoirs. The hydrodynamic
result states as follows:

Theorem 1 (Hydrodynamic limit). For any sequence of initial probability measure (µN )N≥1 on Σ̂N , the

sequence of probability measures (Qθ̂
N )N≥1 is weakly relatively compact and all its converging subsequences

converge to some limit Qθ̂,∗ concentrated on the set of weak solutions of the hydrodynamic equation that
are in L2([0, T ];H1(B)), in the sense of Definition 1. Furthermore, if there is an initial continuous profile

γ̂ : B → [0, 1]3 such that for any δ > 0 and any Ĝ ∈ C∞
k (B),

lim sup
N→∞

µN

[∣∣∣⟨π̂N , Ĝ⟩ − ⟨γ̂, Ĝ⟩
∣∣∣ > δ

]
= 0,

then, (Qθ̂
N )N≥1 converges to the Dirac mass Qθ̂ concentrated on the unique weak solution ρ̂ of the boundary

value problem associated to θ̂ and with initial condition γ̂. Therefore, for any t ∈ [0, T ], δ > 0 and any

function Ĝ ∈ C1,2
c ([0, T ]×B),

lim sup
N→∞

PµN

[∣∣∣⟨π̂N
t , Ĝt⟩ − ⟨ρ̂t, Ĝt⟩

∣∣∣ > δ
]
= 0.

We prove Theorem 1 in Section 3.

Intuitively, the sterile insect technique is more effective when r is large and λ2 is small. This result has
been made precise at the microscopic level for the generalized contact process, in [19, Theorem 2.5], where
the author proved a phase transition result: when λ1 > λ2 are properly tuned, there is a critical value
rc > 0 below which the wild population survives with strictly positive probability and above which the wild
population dies out almost surely.

To establish the hydrostatic limit, depending on the parameters at the boundary, we will need one of the
following sets of conditions to be satisfied:

(H1) :

 D ≥ 1
r + 1 > 2d(λ1 − λ2)
1 > 2dλ2

(H2) :

{
Dδ1 + r + 2 > 2d(λ1 − λ2)
Dδ1 + 1 > 2dλ2

(H3) :

{
r + 2 > 2d(λ1 − λ2)
1 > 2dλ2,

where δ1 is the smallest eigenvalue of the Laplacian with Dirichlet boundary conditions (see (3.70)). These
conditions will appear technically in the proof of Theorem 2. However, note that at fixed D and λ1, this
corresponds to having r large and λ2 small enough, which is consistent with the effectiveness of the sterile
insect technique.

Recall that µss
N (θ̂) denotes the sequence of unique invariant measures for the irreducible dynamics defined

by (2.11). The hydrostatic result states as follows.
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Theorem 2 (Hydrostatic limit). Suppose that conditions (H1) hold. There exists a unique stationary solution
of (2.23) that we denote by ρD,R, and a unique stationary solution of (2.27) that we denote by ρNe,R.
Furthermore, the following statements hold.

• Consider θ̂ = (θℓ, θr) with θℓ ∈ [0, 1) and θr = 1. For any continuous function Ĝ : B → [0, 1]3,

lim
N→∞

Eµss
N (θ̂)

( ∣∣∣ 3∑
i=1

1

Nd

∑
x∈BN

ηi(x)Gi(x/N)−
3∑

i=1

∫
B

Gi(u)ρ
D,R
i (u)du

∣∣∣ ) = 0. (2.31)

In other words, the sequence (µss
N (θ̂))N≥1 is associated to the unique stationary profile ρD,R.

• Consider θ̂ = (θℓ, θr) with θℓ > 1 and θr = 1. For any continuous function Ĝ : B → [0, 1]3,

lim
N→∞

Eµss
N (θ̂)

( ∣∣∣ 3∑
i=1

1

Nd

∑
x∈BN

ηi(x)Gi(x/N)−
3∑

i=1

∫
B

Gi(u)ρ
N,R
i (u)du

∣∣∣ ) = 0. (2.32)

In other words, the sequence (µss
N (θ̂))N≥1 is associated to the unique stationary profile ρNe,R.

Remark 2. For all the other mixed boundary regimes corresponding to other values of θ̂, the hydrostatic
principle states in the same way, replacing ρD,R

i or ρNe,R
i by the stationary solution of the associated hy-

drodynamic equation. In the cases where only Dirichlet and Robin boundary conditions are involved, we can
slightly weaken the conditions (H1) by using conditions (H2) or (H3) instead. Precisely: in the (D;D), (D;R),
(R;D) regimes, the hydrostatic principle holds under conditions (H2) and in the (Ne ; Ne) regime, it holds
under conditions (H3).

The proof of Theorem 2 is done in Section 4. It essentially relies on an intermediate result stated
in Theorem 6 regarding the convergence of solutions of the hydrodynamic equation towards the unique
stationary state. This result is non standard as it involves a system of coupled equations and we prove it in
the second Subsection of Section 4.

3 Proof of the hydrodynamic limit

As said before, we focus on the cases where θℓ ∈ [0, 1), θr = 1 and θℓ > 1, θr = 1. We follow the entropy
method introduced by Guo, Papanicolaou and Varadhan in [15] to prove the hydrodynamic limit. First, we

prove tightness of the sequence of measures (Qθ̂
N )N≥1. Then, we show that any limit point of (Qθ̂

N )N≥1 is
a Dirac mass concentrated on a weak solution of (2.23) if θℓ ∈ [0, 1), θr = 1, or (2.27) if θℓ > 1, θr = 1.
Finally, we prove uniqueness of the solution of the hydrodynamic equations at fixed initial data. We do not
give details for the standard steps but rather, insist on the specific difficulties arising in our case, namely,
the d-dimensional replacement lemmas (subsections 3.2.3 and 3.2.4) and the uniqueness of the solution of the
hydrodynamic equation (sections 3.5).

3.1 The martingale property and tightness

Recall from (2.11) the definition of the total generator LN . By Dynkin’s formula (see [17, Appendix A.1]),

for 1 ≤ i ≤ 3, t ∈ [0, T ] and Ĝ ∈ C1,2
c ([0, T ]×B),

MN
i,t(Ĝ) := ⟨πN

i,t, Gi,t⟩ − ⟨πN
i,0, Gi,0⟩ −

∫ t

0

⟨πN
i,s, ∂sGi,s⟩ds

−N2

∫ t

0

LN ⟨πN
i,s, Gi,s⟩ds−

∫ t

0

LN ⟨πN
i,s, Gi,s⟩ds−N2

∫ t

0

Lb̂,θ̂,N ⟨πN
i,s, Gi,s⟩ds

(3.1)
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is a martingale with respect to the natural filtration Ft = σ(ηs, s ≤ t) and with quadratic variation given
by: ∫ t

0

LN

(
⟨πN

i,s, Gi,s⟩2
)
ds− 2N2

∫ t

0

⟨πN
i,s, Gi,s⟩LN

(
⟨πN

i,s, Gi,s⟩
)
ds. (3.2)

We then have that

M̂N
t (Ĝ) :=

3∑
i=1

MN
i,t(Ĝ)

is also a martingale whose quadratic variation is known. In order to develop the integral terms in (3.1),
introduce the discrete second derivative in the direction ek (for 1 ≤ k ≤ d) in the bulk, the discrete Laplacian,
and the discrete gradient in the direction e1 at the boundary: for x ∈ BN \ ΓN ,

(∂N
ek
)2G(x/N) :=

d∑
k=1

N2
(
G
(x+ ek

N

)
+G

(x− ek
N

)
− 2G

( x

N

))
,

∆NG(x/N) :=

d∑
k=1

(∂N
ek
)2G(x/N), (∂N

e1)
−H(x/N) := N

(
H
( x

N

)
−H

(x− e1
N

))
and

(∂N
e1)

+H(x/N) := N
(
H
(x+ e1

N

)
−H

( x

N

))
.

Computations yield

MN
i,t(Ĝ) = ⟨πN

i,t, Gi,t⟩ − ⟨πN
i,0, Gi,0⟩ −

∫ t

0

⟨πN
i,s, ∂sGi,s⟩ds

−
∫ t

0

D

Nd

∑
x∈BN\ΓN

∆NGi,s(x/N)ηi,s(x)ds−
∫ t

0

D

Nd

∑
x∈ΓN

d∑
k=2

(∂N
ek
)2Gi,s(x/N)ηi,s(x)ds

−
∫ t

0

[ D

Nd−1

∑
x∈Γ+

N

(∂N
e1)

−Gi,s(x/N)ηi,s(x)−
D

Nd−1

∑
x∈Γ−

N

(∂N
e1)

+Gi,s(x/N)ηi,s(x)
]
ds

−
∫ t

0

1

Nd

∑
x∈BN

Gi,s(x/N)τxfi(ηs)ds

+
N2

Nd+θℓ

∫ t

0

∑
x∈Γ−

N

Gi,s(x/N)
(
ηi,s(x)− bi(x/N)

)
ds

+
N2

Nd+θr

∫ t

0

∑
x∈Γ+

N

Gi,s(x/N)
(
ηi,s(x)− bi(x/N)

)
ds,

(3.3)

where we used that

LN ⟨πN
i,s, Gi,s⟩ =

1

Nd

∑
x∈BN

Gi,s(x/N)τxfi(ηs), (3.4)

with
LNη1(0) = βBN

(0, η)η0(0) + η3(0)− (r + 1)η1(0) =: f1(η),
LNη2(0) = rη0(0) + η3(0)− βBN

(0, η)η2(0)− η2(0) =: f2(η),
LNη3(0) = βBN

(0, η)η2(0) + rη1(0)− 2η3(0) =: f3(η).

The second and third lines in (3.3) correspond to the computation of the time integral associated to N2LN ,
the fourth line in (3.3) corresponds to the time integral associated to LN and the last term, to the integral
associated to N2Lb̂,θ̂,N .
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For i ∈ {1, 2, 3}, a computation of the quadratic variation of the martingale MN
i,t(Ĝ) shows that its

expectation vanishes as N ↑ ∞. Therefore, by Doob’s inequality, for every δ > 0,

lim sup
N→∞

PµN

[
sup

0≤t≤T

∣∣∣MN
i,t(Ĝ)

∣∣∣ > δ
]
= 0. (3.5)

Proposition 1. The sequence of measures (Qθ̂
N )N≥1 is tight in D([0, T ],M3).

We refer to [17, Chapter 4] for details regarding the proof of tightness of a sequence of probability measures.
It is enough to show that for every H in a dense subset of C(B) for the L2 norm, for every 1 ≤ i ≤ 3,

lim sup
δ→0

lim sup
N→∞

EµN

[
sup

|t−s|≤δ

∣∣∣⟨πi,t, H⟩ − ⟨πi,s, H⟩
∣∣∣ ] = 0. (3.6)

By density of C2
0(B) in C2(B) for the L1 norm, it is enough to show (3.6) with H ∈ C2

0(B), so that H vanishes
at the boundary. To prove that, we use the martingale and its quadratic variation introduced in (3.1) and
(3.2), and show that

lim sup
δ→0

lim sup
N→∞

EµN

[
sup

|t−s|≤δ

∣∣∣MN
i,t(H)−MN

i,s(H)
∣∣∣ ] = 0, (3.7)

and

lim sup
δ→0

lim sup
N→∞

EµN

[
sup

|t−s|≤δ

∣∣∣ ∫ t

s

LN ⟨πN
i,r, H⟩dr

∣∣∣ ] = 0. (3.8)

We get (3.7) using the triangular inequality and (3.5). To prove (3.8), we show that there is a constant C
depending only on H such that for every r ∈ [0, T ],∣∣∣LN ⟨πN

i,r, H⟩
∣∣∣ ≤ C. (3.9)

For that, we use the decomposition of LN and the fact that H vanishes at the boundary as well as explicit
computations and the fact that the fi’s are uniformly bounded in N .

3.2 Replacement Lemmas

In order to characterize the limit points of a sequence (Qθ̂
N )N≥1, we need to close the equation (3.3). That

means that we want to show that each term of the martingale converges to a term that appears in the weak
formulation of the solution of the hydrodynamic equation, and that the martingale converges to zero. For
that, we perform a replacement lemma in the bulk and one at the boundary. The replacement lemma in the
bulk (Proposition 2) is exactly the same as in [20, Lemma 4.2] and we refer to that article for a detailed
proof. Here we focus on the replacement lemmas at the boundary and more specifically on the left-hand side
boundary (the same statements hold on the right-hand side). There are two replacement lemmas: one for
θℓ ∈ [0, 1) whose formulation coincides with the replacement lemma at the boundary in [20, Proposition 4.3]
(corresponding to a Dirichlet condition), and one for θr ≥ 1, whose formulation involves particle densities
over small macroscopic boxes.

3.2.1 Dirichlet forms

Let us recall the expressions introduced in [20, Section 5] of the Dirichlet forms associated to each dynamics.

For that, recall the correspondences (2.1) and (2.2). For f : Σ̂N → R and µ a measure on Σ̂N ,

DN (f, µ) =

d∑
k=1

∑
(x,x+ek)∈B2

N

∫
Σ̂N

D
(√

f(ξx,x+ek , ωx,x+ek)−
√
f(ξ, ω)

)2

dµ(ξ, ω),
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Db̂,θ̂,N (f, µ) :=
1

Nθℓ

3∑
i=0

∑
x∈Γ−

N

∫
Σ̂N

bi(x/N)(1− ηi(x))
(√

f(σi,x(ξ, ω))−
√

f(ξ, ω)
)2

dµ(ξ, ω)

+
1

Nθr

3∑
i=0

∑
x∈Γ+

N

∫
Σ̂N

bi(x/N)(1− ηi(x))
(√

f(σi,x(ξ, ω))−
√
f(ξ, ω)

)2

dµ(ξ, ω),

and

DN (f, µ) :=
∑

x∈BN

∫
Σ̂N

[
r(1− ω(x)) + ω(x)

](√
f(ξ, σxω)−

√
f(ξ, ω)

)2

dµ(ξ, ω)

+
∑

x∈BN

∫
Σ̂N

[
βBN

(x, ξ, ω)(1− ξ(x)) + ξ(x)
](√

f(σxξ, ω)−
√
f(ξ, ω)

)2

dµ(ξ, ω).

In the proofs of the Replacement lemmas, we will widely make use of the following inequalities.

Lemma 1. (i) Consider α̂ a smooth profile which satisfies (2.12). There is a constant C1 > 0 such that

for any density function f : Σ̂N → R with respect to the measure νNα̂ ,

⟨LN

√
f,

√
f⟩νN

α̂
≤ −1

4
DN (f, νNα̂ ) + C1N

d−2. (3.10)

(ii) Consider α̂ a smooth which satisfies (2.12) including constants. There is a constant C2 > 0 such that

for any density function f : Σ̂N → R with respect to the measure νNα̂ ,

⟨LN

√
f,

√
f⟩νN

α̂
≤ C2N

d. (3.11)

(iii) Consider α̂ a smooth profile which satisfies (2.12) and (2.14), then for any density function f : Σ̂N → R
with respect to the measure νNα̂ ,

⟨Lb̂,θ̂,N

√
f,

√
f⟩νN

α̂
= −1

2
Db̂,θ̂,N (f, νNα̂ ). (3.12)

We refer to [20], Lemma 6.1 for the proof. The authors use some change of variable formulas in the same
spirit as those given in (A.1) and (A.2). For point (iii), they use an alternative expression of the boundary
generator expressed in terms of (ξ, ω).

3.2.2 Replacement lemma in the bulk.

Let us first introduce a few notations. Given a smooth profile α̂, and a function ϕ : Σ̂N → R, denote by
∼
ϕ(α̂)

the expectation of ϕ under νNα̂ . For ℓ ∈ N, introduce

Λℓ
x = {y ∈ BN , ∥y − x∥ ≤ ℓ}, (3.13)

where ∥y − x∥ = max{|yi − xi|, 1 ≤ i ≤ d}, and denote by ηℓi (x) the average of η in Λℓ
x, that is,

ηℓi (x) =
1

|Λℓ
x|

∑
y∈Λℓ

x

ηi(y), for 1 ≤ i ≤ 3. (3.14)

Introduce the vector
η̂ℓ(x) = (ηℓ1(x), η

ℓ
2(x), η

ℓ
3(x))

and for ε > 0,

VεN (ξ, ω) =
∣∣∣ 1

|Λ⌊εN⌋
0 |

∑
y∈Λ

⌊εN⌋
0

τyϕ(ξ, ω)−
∼
ϕ(η̂⌊εN⌋(0))

∣∣∣.
In the sequel, we will write εN instead of ⌊εN⌋. The replacement lemma in the bulk stated and proved in
[20, Lemma 4.2] is the following:
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Proposition 2. For any G ∈ C1,2
0 and for any function ϕ : Σ̂N → R ,

lim sup
ε→0

lim sup
N→∞

EµN

[ 1

Nd

∑
x∈BN

∫ T

0

∣∣Gs(x/N)
∣∣τxVεN (ξs, ωs)ds

]
= 0.

3.2.3 Replacement lemma at the left-hand side boundary for θℓ ∈ [0, 1).

Here we fix θℓ in [0, 1) and prove the replacement lemma at the left-hand side boundary. It essentially states
that when performing the macroscopic limit N → ∞, we can replace ηi(x) by bi(x/N). For θr ∈ [0, 1), the
replacement lemma at the right-hand side boundary is exactly the same. Recall that this result has been
proved for θℓ = θr = 0 in [20, Section 6] and we generalize it here to the case where the left-hand side (or
right-hand side) parameter θℓ is allowed to vary in [0, 1).

Proposition 3. For any sequence of measures (µN )N≥0 on Σ̂N , for any G ∈ C1,2([0, T ] × B) and any
i ∈ {1, 2, 3}, for any t ∈ [0, T ], for all δ > 0,

lim sup
N→∞

PµN

[∣∣∣ ∫ t

0

1

Nd−1

∑
x∈Γ−

N

G(s, x/N)
(
ηi,s(x)− bi(x/N)

)
ds
∣∣∣ > δ

]
= 0. (3.15)

Note that the replacement lemma at the right-hand side boundary for θr ∈ [0, 1) states as above, with the
sum in x carrying over Γ+

N rather than Γ−
N .

Proof. Fix an i ∈ {1, 2, 3}. It is enough to show that

lim sup
N→∞

1

Nd
log

(
PµN

[∣∣∣ ∫ t

0

1

Nd−1

∑
x∈Γ−

N

G(s, x/N)
(
ηi,s(x)− bi(x/N)

)
ds
∣∣∣ > δ

])
= −∞.

Consider α̂ a smooth profile satisfying conditions (2.12) and (2.14). For a > 0,

PµN

[∣∣∣ ∫ t

0

1

Nd−1

∑
x∈Γ−

N

G(s, x/N)
(
ηi,s(x)− bi(x/N)

)
ds
∣∣∣ > δ

]

≤ sup
(ξ,ω)∈Σ̂N

dµN

dνNα̂
(ξ, ω)× PνN

α̂

[∣∣∣ ∫ t

0

1

Nd−1

∑
x∈Γ−

N

G(s, x/N)
(
ηi,s(x)− bi(x/N)

)
ds
∣∣∣ > δ

]

≤ exp(K0N
d − aδNd)EνN

α̂

[
exp

(
aNd

∣∣∣ ∫ t

0

1

Nd−1

∑
x∈Γ−

N

G(s, x/N)
(
ηi,s(x)− bi(x/N)

)
ds
∣∣∣)].

We used, in the first inequality, that the Radon-Nikodym derivative of µN with respect to νNα̂ is bounded by
exp(K0N

d) with K0 a constant, and Chebychev’s inequality in the second line. Therefore,

1

Nd
log

(
PµN

[∣∣∣ ∫ t

0

1

Nd−1

∑
x∈Γ−

N

G(s, x/N)
(
ηi,s(x)− bi(x/N)

)
ds
∣∣∣ > δ

])
≤ −aδ +K0

+
1

Nd
log

{
EνN

α̂

[
exp

{
aNd

∣∣∣ ∫ t

0

1

Nd−1

∑
x∈Γ−

N

G(s, x/N)
(
ηi,s(x)− bi(x/N)

)
ds
∣∣∣}]}.

(3.16)

It is enough to show that the lim sup of the last term is uniformly bounded in a and then, take a → ∞. Since
e|x| ≤ ex + e−x, using inequality (2.19), we show that the last term in (3.16) without the absolute values, is
uniformly bounded in a and N . Applying Feynman-Kac’s inequality (see [17, Appendix A.1]) with

V (s, (ξs, ωs)) =
aNd

Nd−1

∑
x∈Γ−

N

G(s, x/N)(ηi,s(x)− bi(x/N)),

15



we get that

1

Nd
log

(
EνN

α̂

[
exp

(
aNd

∫ t

0

1

Nd−1

∑
x∈Γ−

N

G(s, x/N)
(
ηi,s(x)− bi(x/N)

)
ds
)])

≤
∫ t

0

ds sup
f

{∫
Σ̂N

a

Nd−1

∑
x∈Γ−

N

G(s, x/N)
(
bi(x/N)− ηi(x)

)
f(ξ, ω)dνNα̂ (ξ, ω)

+
1

Nd
⟨LN

√
f,

√
f⟩νN

α̂

}
,

where the supremum is taken over densities with respect to νNα̂ . Note that for x ∈ Γ−
N ,

bi(x/N)− ηi(x) =
∑
j ̸=i

(bi(x/N)ηj(x)− bj(x/N)ηi(x)),

and, for j ̸= i, by the change of variable presented in (A.2),

∫
ηi(x)bj(x/N)f(ξ, ω)dνNα̂ (ξ, ω) =

∫
ηj(x)bi(x/N)f(σi,x(ξ, ω))dν

N
α̂ (ξ, ω). (3.17)

Therefore,

G(s, x/N)

∫ (
bi(x/N)− ηi(x)

)
f(ξ, ω)dνNα̂ (ξ, ω)

= G(s, x/N)

∫
bi(x/N)

∑
j ̸=i

ηj(x)f(ξ, ω)dν
N
α̂ (ξ, ω)

−G(s, x/N)

∫
bi(x/N)

∑
j ̸=i

ηj(x)f(σi,x(ξ, ω))dν
N
α̂ (ξ, ω)

= −G(s, x/N)

∫
bi(x/N)(1− ηi(x))(f(σi,x(ξ, ω))− f(ξ, ω))dνNα̂ (ξ, ω)

≤ A

2

∫
bi(x/N)(1− ηi(x))

(√
f(σi,x(ξ, ω))−

√
f(ξ, ω)

)2

dνNα̂ (ξ, ω)

+
1

2A

(
G(s, x/N)

)2 ∫
bi(x/N)(1− ηi(x))

(√
f(σi,x(ξ, ω)) +

√
f(ξ, ω)

)2

dνNα̂ (ξ, ω),

(3.18)

where we used (2.18) in the last line replacing A by AN , with A > 0. Summing (3.18) over Γ−
N and multiplying

by a
Nd−1 yields, ∫

Σ̂N

a

Nd−1

∑
x∈Γ−

N

G(s, x/N)(bi(x/N)− ηi(x))f(ξ, ω)dν
N
α̂ (ξ, ω)

≤ aANθℓ

2Nd−1
Db̂,θ̂,N (f, νNα̂ ) +

a

ANd−1

∑
x∈Γ−

N

(
G(s, x/N)

)2
≤ aANθℓ

2Nd−1
Db̂,θ̂,N (f, νNα̂ ) +

a

A
∥G2∥∞,

where the second term in the first inequality comes from Cauchy-Schwarz’s inequality, the fact that f is
a density, the change of variable formula (3.17) and the fact that each coordinate of b̂ is bounded by 1.
Therefore, using (3.10), (3.11) and (3.12) to bound ⟨LN

√
f,

√
f⟩νN

α̂
and the fact that a Dirichlet form is

positive we are left with
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1

Nd
log

(
EνN

α̂

[
exp

(
aNd

∫ t

0

1

Nd−1

∑
x∈Γ−

N

G(s, x/N)
(
ηi,s(x)− bi(x/N)

)
ds
)])

≤
∫ t

0

ds sup
f

{aANθℓ

2Nd−1
Db̂,θ̂,N (f, νNα̂ ) +

a

A
∥G2∥∞ +

1

Nd
⟨LN

√
f,

√
f⟩νN

α̂

}
≤ T sup

f

{aANθℓ

2Nd−1
Db̂,θ̂,N (f, νNα̂ ) +

a

A
∥G2∥∞ − N2

Nd

(
DN (f, νNα̂ ) +Db̂,θ̂,N (f, νNα̂ )

)
+ C1 + C2

}
≤ T sup

f

{(aANθℓ

2Nd−1
− N2

Nd

)
Db̂,θ̂,N (f, νNα̂ )

}
+

a

A
∥G2∥∞ + TC1 + TC2.

(3.19)

Now, taking A = 2
aN

1−θℓ , collecting (3.16) and (3.19) we are left with

lim
N→∞

1

Nd
log

(
PµN

[∣∣∣ ∫ t

0

1

Nd−1

∑
x∈Γ−

N

G(s, x/N)
(
ηi,s(x)− bi(x/N)

)
ds
∣∣∣ > δ

])
≤ lim

N→∞

(
− aδ +K0 +

1

2
a2Nθℓ−1∥G∥2∞ + TC1 + TC2

)
≤ −aδ +K0 + TC1 + TC2

(3.20)

and then, taking a → ∞, the result follows.

3.2.4 Replacement lemma at the left-hand side boundary for θℓ ≥ 1.

For θℓ ≥ 1, the replacement lemma at the boundary involves particle densities over small macroscopic boxes.
Again, the same replacement lemma holds at the right-hand side boundary for θr ≥ 1. In fact, we will see in
the proof that the lemma holds for any positive value of θℓ, resp. θr, regardless of whether θℓ resp. θr ≥ 1.
Here, as we are working in arbitrary dimension, some care must be taken in the proof when adapting the
argument used for instance in [17, Chapter 5].

Proposition 4. For any sequence of measures (µN )N≥0 on Σ̂N , for any G ∈ C1,2([0, T ] × B), for all
i ∈ {1, 2, 3} and any t ∈ [0, T ],

lim sup
ε→0

lim sup
N→∞

EµN

[ ∣∣∣ 1

Nd−1

∑
x∈Γ−

N

∫ t

0

G(s, x/N)(ηεNi,s (x)− ηi,s(x))ds
∣∣∣ ] = 0. (3.21)

Proof. For a vector x = (x1, · · · , xd) ∈ BN , write x = (x1, x̌), where x̌ = (x2, · · · , xd) ∈ Td−1
N . First, consider

the expression in the expectation without absolute value and the time integral, and rewrite it for any s ∈ [0, t]
as

IN,ε(Gs, ηs) :=

εN∑
j1=0

∑
ǩ∈[−εN,εN ]d−1

1

Nd−1

∑
x∈Γ−

N

1

|ΛεN
x |

G(s, x/N)
(
ηi,s(x+ (j1, ǩ))− ηi,s(x)

)
, (3.22)

where we recall that ΛεN
x is defined in (3.13). For x ∈ Γ−

N ,

|ΛεN
x | = (εN + 1)(2εN + 1)d−1. (3.23)
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Fix (j1, ǩ) ∈ {0, · · · , εN} × [−εN, εN ]d−1 . The sum over x ∈ Γ−
N can be handled in the following way

1

Nd−1

∑
x∈Γ−

N

G(s, x/N)ηi,s(x+ (j1, ǩ))

=
1

Nd−1

∑
x∈Γ−

N

(
G(s, x/N)−G(s, (x+ (j1, ǩ))/N)

)
ηi,s(x+ (j1, ǩ))

+
1

Nd−1

∑
x∈Γ−

N

G(s, (x+ (j1, ǩ))/N)ηi,s(x+ (j1, ǩ)).

(3.24)

Since G is twice differentiable in space, a Taylor expansion allows us to bound the first term on the right-hand
side of (3.24) by dεCG(N) where CG(N) is uniformly bounded in N by a constant CG, depending only on
G. Now, rewrite the last term in (3.24) as follows:

1

Nd−1

∑
x∈Γ−

N

G(s, (x+ (j1, ǩ))/N)ηi,s(x+ (j1, ǩ))

=
1

Nd−1

∑
x̌∈Td−1

N

G(s, (−N + j1, x̌+ ǩ)/N)ηi,s((−N + j1, x̌+ ǩ))

=
1

Nd−1

∑
x̌∈Td−1

N

G(s, (−N + j1, x̌)/N)ηi,s((−N + j1, x̌))

=
1

Nd−1

∑
x∈Γ−

N

G(s, x/N)ηi,s(x+ j1e1)) + εC ′
G(N),

(3.25)

where again, to get the last line, we used a Taylor expansion of G and with C ′
G(N) uniformly bounded in N

by a constant C ′
G depending only on G. Using (3.24), (3.23) and (3.25), we get

IN,ε(Gs, ηs) = εC ′′
G(N) +

1

εN + 1

εN∑
j1=0

1

Nd−1

∑
x∈Γ−

N

G(s, x/N)
[
ηi,s(x+ j1e1)− ηi,s(x)

]
:= εC ′′

G(N) +RN,ε(Gs, ηs),

with C ′′
G(N), uniformly bounded by C ′′

G, a constant that only depends on G. Therefore, we are left to prove
that

lim sup
ε→0

lim sup
N→∞

EµN

[∣∣∣ ∫ t

0

RN,ε(Gs, ηs)ds
∣∣∣] = 0 .

Consider α̂ a smooth profile satisfying conditions (2.12) and (2.14) . By the entropy inequality (see [17,
Appendix 1]), for any A > 0,

EµN

[∣∣∣ ∫ t

0

RN,ε(Gs, ηs)ds
∣∣∣]

≤ 1

ANd
H(µN |νNα̂ ) +

1

ANd
logEνN

α̂

[
exp

(
ANd

∣∣∣ ∫ t

0

RN,ε(Gs, ηs)ds
∣∣∣)]. (3.26)

As BN is finite, there is a constant K0 > 0 such that H(µN |νNα̂ ) ≤ K0N
d so the first term in (3.26) is

bounded by K0/A. Let us show that the second term tends to zero when N → ∞ and ε → 0 and then take
A arbitrarily big. Again, by (2.19), it is enough to show that the second term in (3.26) without the absolute
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values in the exponential, tends to zero. By Feynman-Kac’s inequality,

1

ANd
logEνN

α̂

[
exp

(
ANd

∫ t

0

RN,ε(Gs, ηs)ds
)]

≤
∫ t

0

ds sup
f

[ ∫
RN,ε(Gs, η)

)
f(ξ, ω)dνNα̂ (ξ, ω) +

1

ANd
⟨LN

√
f,

√
f⟩νN

α̂

] (3.27)

where the supremum is taken over densities with respect to νNα̂ . Now, rewrite RN,ε(Gs, η) using a telescopic
sum to write the differences ηi(x+ j1e1)− ηi(x):

RN,ε(Gs, η) =
1

εN + 1

εN∑
j1=0

1

Nd−1

∑
x∈Γ−

N

j1−1∑
ℓ=0

G(s, x/N)
[
ηi((ℓ+ 1)e1 + x)− ηi(ℓe1 + x)

]
Fix 0 ≤ ℓ ≤ j1 ≤ εN . Performing the change of variable

(ξ, ω) → (ξℓe1+x,(ℓ+1)e1+x, ωℓe1+x,(ℓ+1)e1+x) := (ξ, ω)ℓ,x

and using (A.1), ∫ (
ηi((ℓ+ 1)e1 + x)− ηi(ℓe1 + x)

)
f(ξ, ω)dνNα̂ (ξ, ω)

=

∫
ηi(ℓe1 + x)

[
f((ξ, ω)ℓ,x)− f(ξ, ω)

]
dνNα̂ (ξ, ω)

+

∫
ηi((ℓ+ 1)e1 + x)f(ξ, ω)

(
1−

νNα̂ ((ξ, ω)ℓ,x)

νNα̂ (ξ, ω)

)
dνNα̂ (ξ, ω).

(3.28)

To deal with the first term on the right-hand side of (3.28) using inequality (2.18), this term is bounded by

B

2

∫
ηi(ℓe1 + x)

[√
f((ξ, ω)ℓ,x)−

√
f(ξ, ω)

]2
dνNα̂ (ξ, ω)

+
1

2B

∫
ηi(ℓe1 + x)

[√
f((ξ, ω)ℓ,x) +

√
f(ξ, ω)

]2
dνNα̂ (ξ, ω)

≤ B

2

∫
ηi(ℓe1 + x)

[√
f((ξ, ω)ℓ,x)−

√
f(ξ, ω)

]2
dνNα̂ (ξ, ω)

+
1

B

∫
ηi(ℓe1 + x)

[
f((ξ, ω)ℓ,x) + f(ξ, ω)

]
dνNα̂ (ξ, ω)

≤ B

2

∫
ηi(ℓe1 + x)

[√
f((ξ, ω)ℓ,x)−

√
f(ξ, ω)

]2
dνNα̂ (ξ, ω)

+
1

B

[
1 +

∫
ηi(ℓe1 + x)f((ξ, ω)ℓ,x)dνNα̂ (ξ, ω)

]
where B > 0 will be chosen later and where we used that f is a density with respect to νNα̂ in the last line.
Note that (ξ, ω) 7→ f((ξ, ω)ℓ,x) is not a density but we can deal with the last integral term as follows:∫

ηi(ℓe1 + x)f((ξ, ω)ℓ,x)dνNα̂ (ξ, ω)

=
∑
j ̸=i

∫
ηi(ℓe1 + x)ηj((ℓ+ 1)e1 + x)f((ξ, ω)ℓ,x)dνNα̂ (ξ, ω)

=
∑
j ̸=i

∫
ηj(ℓe1 + x)ηi((ℓ+ 1)e1 + x)

(
1 +R

ℓe1+x,(ℓ+1)e1+x
i,j (α̂)

)
f(ξ, ω)dνNα̂ (ξ, ω)

≤ 1 +
C

N
,

(3.29)
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where in the second line we used the change of variable formula (A.1) and, in the last line, the fact that f

is a density with respect to νNα̂ and that R
ℓe1+x,(ℓ+1)e1+x
i,j (α̂) = O(N−1) so bounded by C/N where C is a

constant. Therefore, for N large enough, for all 0 ≤ ℓ ≤ j1 ≤ εN ,∫ (
ηi((ℓ+ 1)e1 + x)− ηi(ℓe1 + x)

)
f(ξ, ω)dνNα̂ (ξ, ω)

≤ B

2

∫
ηi(ℓe1 + x)

[√
f((ξ, ω)x,ℓ)−

√
f(ξ, ω)

]2
dνNα̂ (ξ, ω) +

2

B
+

C

BN
.

Now, let us deal with the second term in (3.28). Using the explicit expression of the product measure νNα̂ ,
one has that for (x, x+ ℓe1) ∈ B2

N

νNα̂ (ξx,x+eℓ , ωx,x+eℓ)

νNα̂ (ξ, ω)
=

3∏
i=1

(αi(x/N)

α0(x/N)

)ηi(x+eℓ)−ηi(x)(αi((x+ eℓ)/N)

α0((x+ eℓ)/N)

)
.

Now using that αi

(
x+eℓ
N

)
= αi

(
x
N

)
+O

(
1
N

)
we have the following inequality: there is a constant C̃ > 0 such

that ∣∣∣1− νNα̂ (ξx,x+eℓ , ωx,x+eℓ)

νNα̂ (ξ, ω)

∣∣∣ ≤ C̃

N
. (3.30)

Therefore, the second term in (3.28) is bounded by C̃/N .
We are left with∫

RN,ε(Gs, η)f(ξ, ω)dν
N
α̂ (ξ, ω)

≤ 1

εN + 1

εN∑
j1=0

1

Nd−1

∑
x∈Γ−

N

j1−1∑
ℓ=0

Gs

( x

N

)

×
[B
2

∫
ηi(ℓe1 + x)

[√
f((ξ, ω)x,ℓ)−

√
f(ξ, ω)

]2
dνNα̂ (ξ, ω) +

2

B
+

C

BN
+

C̃

N

]
≤ 1

εN + 1

εN∑
j1=0

B

2Nd−1
∥G∥∞DN (f, νNα̂ ) +

∥G∥∞2εN

B
+

∥G∥∞Cε

B
+

∥G∥∞C̃

N

≤ B

2Nd−1
∥G∥∞DN (f, νNα̂ ) +

2∥G∥∞εN

B
+

∥G∥∞Cε

B
+

∥G∥∞C̃

N
.

(3.31)

This, combined with (3.27) as well as Lemma 1 yields:

1

ANd
log EνN

α̂

[
exp

(
ANd

∫ t

0

RN,ε(Gs, ηs)ds
)]

≤ T sup
f

[(∥G∥∞B

2
N1−d − N2−d

4A

)
DN (f, νNα̂ )

]
+ Tε∥G∥∞

(2N
B

+
C

B

)
+

TC4

A
+

T∥G∥∞C̃

N

(3.32)

with C4 > 0, a constant that is uniform in N and ε. Taking B = N
4A∥G∥∞

and putting together (3.27), (3.26)

and (3.32) yields

EµN

[ ∫ t

0

RN,ε(Gs, ηs)ds
]
≤ Tε∥G∥∞

(
8A∥G∥∞ +

4A∥G∥∞C

N

)
+

K0 + TC4

A
+

T∥G∥∞C̃

N
,

so

lim sup
N→∞

EµN

[∣∣∣ ∫ t

0

RN,ε(Gs, ηs)ds
∣∣∣] ≤ 8εT∥G∥2∞A+

K0 + TC4

A
,

taking ε → 0, and then A → ∞, the result follows.
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3.3 Energy estimates

In view of the proof of uniqueness of the limit of the sequence of probability measures (Qθ̂
N )N≥1, we state

that any limiting measure Qθ̂ is concentrated on a trajectory belonging to a specific functional space. This
allows to define the hydrodynamic limit at the boundary.

Proposition 5. Let θ̂ ∈ (R+)2 and Qθ̂ be a limit point of the sequence of probability measures (Qθ̂
N )N≥1.

Then, the probability measure Qθ̂ is concentrated on paths ρ̂(t, u)du such that for every 1 ≤ i ≤ 3, ρi belongs
to L2((0, T );H1(B)).

This follows from the Lemma below and the Riesz Representation Theorem.

Lemma 2. For any θ̂ ∈ (R+)2, there is a constant Kθ̂ > 0 such that for every 1 ≤ i ≤ 3,

EQθ̂

[
sup
H

(∫ T

0

∫
B

d∑
k=1

∂ekH(s, u)ρi(s, u)duds−Kθ̂

∫ T

0

∫
B

H(s, u)2duds
)]

< ∞, (3.33)

where the supremum is carried over functions H ∈ C0,2
c ([0, T ]×B).

For the proof of Lemma 2, which we do not detail here, one can follow the arguments in [17, Lemma
7.2 Chapter 5]. First prove (3.33) for a dense and countable set of elements of C0,2

c ([0, T ] × B) thanks to
Feynmann-Kac’s inequality. Then, use an integration by parts to deal with the spatial derivatives in H, as
well as the change of variable (A.1). To recover Proposition 5 from Lemma 2 and the Riesz Representation
Theorem, we also refer to [17, Chapter 5, Theorem 7.1].

3.4 Characterization of the limit point in the (Dirichlet ; Robin) mixed regime

In order to show that the limit point of the sequence of probability measures (Qθ̂
N )N≥1 lies on the trajectory

with density profile the unique solution of the hydrodynamic equation associated to θ̂ and γ̂, we give a
characterization result (see Proposition 6). We will focus on the (Dirichlet ; Robin) mixed regime since the
(Neumann ; Robin) mixed regime can be proved following the same strategy. Therefore, take θℓ ∈ [0, 1) and
θr = 1.

As mentioned in the introduction, in one dimension, the macroscopic trajectories are continuous in space
and their values at the boundaries are defined in the classical sense. This is no longer valid in higher
dimension. To deal with this difficulty we use the regularity of the trajectories proved in Proposition 5: the
trajectories lie in L2([0, T ],H1(B)) so their values at the boundary are defined via the trace operator (see
Lemma 3).

Proposition 6. If Qθ̂ is a limit point of the sequence of probability measures (Qθ̂
N )N≥1, then

Qθ
[
π̂,

∣∣∣IĜ(ρ̂)(t)
+D

3∑
i=1

∫ t

0

[ ∫
Γ−

bi(r)(∂e1Gi,s)(r)n1(r).dS(r) +

∫
Γ+

ρi(s, r)(∂e1Gi,s)(r)n1(r).dS(r)
]
ds

−
3∑

i=1

∫ t

0

∫
Γ+

Gi(r)(bi(r)− ρi(s, r))n1(r).dS(r)ds
∣∣∣ = 0, ∀t ∈ [0, T ], ∀Ĝ ∈ Cθ̂

]
= 1,

(3.34)

where IĜ(ρ̂) was defined in (2.21).

Proof. The fact that any limit point is concentrated on trajectories which are absolutely continuous with

respect to the Lebesgue measure comes from Proposition 5. Let Qθ̂ be a limit point of the sequence of
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probability measures (Qθ̂
N )N≥1. To prove (3.34), it is enough to show that for any fixed δ > 0 and Ĝ ∈ C1,2

0,−,

Qθ̂
[
π̂, sup

0≤t≤T

∣∣∣IĜ(ρ̂)(t) +D

3∑
i=1

∫ t

0

[ ∫
Γ−

bi(r)(∂e1Gi,s)(r)n1(r).dS(r)

+

∫
Γ+

ρi(s, r)(∂e1Gi,s)(r)n1(r).dS(r)
]
ds

−
3∑

i=1

∫ t

0

∫
Γ+

Gi(r)(bi(r)− ρi(s, r))n1(r).dS(r)ds
∣∣∣ > δ

]
= 0.

Here, note that for s ∈ [0, T ] and r ∈ Γ, ρi(s, r) stands for Tr(ρ)(s, r) which is well defined since ρ is in
L2([0, T ],H1(B)). By the triangular inequality, it suffices to prove that for any 1 ≤ i ≤ 3,

Qθ̂
[
π̂, sup

0≤t≤T

∣∣∣IGi
(ρi)(t) +D

∫ t

0

[ ∫
Γ−

bi(r)(∂e1Gi,s)(r)n1(r).dS(r)

+

∫
Γ+

ρi(s, r)(∂e1Gi,s)(r)n1(r).dS(r)
]
ds−

∫ t

0

∫
Γ+

Gi(r)(bi(r)

− ρi(s, r))n1(r).dS(r)ds
∣∣∣ > δ

]
= 0.

(3.35)

As usual, we would like to approximate ρ by a convolution of its associated empirical measure with an
approximation of the identity. Indeed, that convolution product can then be written in terms of the mean
value of the configuration in a microscopic box. This is straightforward in the bulk, however, for the boundary
terms, we need to justify that such an approximation works (see (3.46)). Without loss of generality, let us

deal with i = 1. We turn to our martingales (3.1) MN
1,t(Ĝ) and recall that we have proved that its quadratic

variation vanishes as N ↑ ∞. For ε > 0, introduce the set

BN,ε = {−N(1− ε), · · · , N(1− ε)} × Td−1
N .

We now use Proposition 2 to replace the local functions of η by functions of the particle density:

MN
1,t(Ĝ) = ⟨πN

1,t, G1,t⟩ − ⟨πN
1,0, G1,0⟩ −

∫ t

0

⟨πN
1,s, ∂sG1,s⟩ds

−
∫ t

0

D

Nd

∑
x∈BN\ΓN

∆G1,s

( x
N

)
η1,s(x)ds

+
D

Nd−1

[ ∫ t

0

∑
x∈Γ−

N

b1(x/N)∂e1G1,s

( x
N

)
ds+

∫ t

0

∑
x∈Γ−

N

∂e1G1,s

( x
N

)(
η1,s(x)− b1(x/N)

)
ds
]

− D

Nd−1

[ ∫ t

0

∑
x∈Γ+

N

∂e1G1,s

( x
N

)
ηεN1,s (x)ds−

∫ t

0

∑
x∈Γ+

N

∂e1G1,s

( x
N

)(
ηεN1,s (x)− η1,s(x)

)
ds
]

+

∫ t

0

D

Nd−1

∑
x∈Γ+

N

G1,s(x/N)
(
ηεN1,s (x)− b1(x/N)

)
ds

−
∫ t

0

1

Nd

∑
x∈BN,ε

G1,s

( x

N

){
2d(λ1η

εN
1,s (x) + λ2η

εN
3,s (x))η

εN
0,s (x) + ηεN3,s (x)− (r + 1)ηεN1,s (x)

}
ds

+R
(
N, ε,G1, (ηt)t∈[0,T ]

)
,

(3.36)

where R
(
N, ε,G1, (ηt)t∈[0,T ]

)
is a random variable satisfying

lim
ε→0

lim
N→∞

EµN

[
R
(
N, ε,G1, (ηt)t∈[0,T ]

)]
= 0.
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From Proposition 3 and Proposition 4, the martingale MN
1,t(Ĝ) can be rewritten as

MN
1,t(Ĝ) = ⟨πN

1,t, G1,t⟩ − ⟨πN
1,0, G1,0⟩ −

∫ t

0

⟨πN
1,s, ∂sG1,s⟩ds

−
∫ t

0

D

Nd

∑
x∈BN\ΓN

∆G1,s

( x

N

)
η1,s(x)ds+

∫ t

0

D

Nd−1

∑
x∈Γ−

N

b1(x/N)∂e1G1,s

( x

N

)
ds

−
∫ t

0

D

Nd−1

∑
x∈Γ+

N

∂e1G1,s

( x

N

)
ηεN1,s (x)ds+

∫ t

0

D

Nd−1

∑
x∈Γ+

N

G1,s

( x

N

)(
ηεN1,s (x)− b1(x/N)

)
ds

−
∫ t

0

1

Nd

∑
x∈BN,ε

G1,s

( x

N

)(
2d(λ1η

εN
1 (x) + λ2η

εN
3 (x))ηεN0 (x) + ηεN3 (x)− (r + 1)ηεN1 (x)

)
ds

+R′(N, ε,G1, (ηt)t∈[0,T ]

)
,

(3.37)

where R′(N, ε,G1, (ηt)t∈[0,T ]

)
is a random variable satisfying

lim
ε→0

lim
N→∞

EµN

[
R′(N, ε,G1, (ηt)t∈[0,T ]

)]
= 0.

On the other hand, by (3.5) recall that

lim sup
N→∞

PµN

[
sup

0≤t≤T

∣∣∣MN
1,t(Ĝ)

∣∣∣ > δ
]
= 0.

Now, introduce the following approximations of the identity on B:

uε(x) =
1

(2ε)d
1[−ε,ε]d(x), (3.38)

uright
ε (x) =

1

ε(2ε)d−1
1[0,ε]×[−ε,ε]d−1(x), and uleft

ε (x) =
1

ε(2ε)d−1
1[−ε,0]×[−ε,ε]d−1(x). (3.39)

Note that for ε > 0, 1 ≤ i ≤ 3, x ∈ BN,ε, y ∈ Γ+
N , and z ∈ Γ−

N ,

ηεNi (x) =
(2εN)d

(2εN + 1)d
(
πN
i ∗ uε

)
(x/N), (3.40)

ηεNi (y) =
(2εN)d−1

(2εN + 1)d−1

(
πN
i ∗ uright

ε

)( y

N

)
, and ηεNi (z) =

(2εN)d−1

(2εN + 1)d−1

(
πN
i ∗ uleft

ε

)( z

N

)
. (3.41)

Here we will only make use of (3.40) and the first relation in (3.41) since we need to replace elements in the
bulk and the right-hand side boundary of the system to recover the weak formulation of the equation in the
(Dirichlet; Robin) regime. For regimes where a replacement is needed on the left-hand side boundary, we use
the second relation in (3.41) in the same way.

We may thus replace in (3.37) and (3.5), ηεNi by πN
i ∗ uε in the bulk and ηεNi by πN

i ∗ uright
ε at the right

boundary. Therefore, for any δ > 0.

lim sup
ε→0

lim sup
N→∞

Qθ̂
N

[
sup

0≤t≤T

∣∣∣F Ĝ,t
1,N,ϵ

(
π̂
)∣∣∣ ≥ δ

]
= 0,
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where for any trajectory π̂ and for any t ∈ [0, T ],

F Ĝ,t
1,N,ϵ

(
π̂
)
= ⟨π1,t, G1,t⟩ − ⟨π1,0, G1,0⟩ −

∫ t

0

⟨π1,s, ∂sG1,s⟩ds

−
∫ t

0

D
〈
π1,s,∆G1,s

〉
ds+

∫ t

0

D

Nd−1

∑
x∈Γ−

N

b1(x/N)∂e1G1,s(x/N)ds

−
∫ t

0

D

Nd−1

∑
x∈Γ+

N

∂e1G1,s(x/N)
(
π1,s ∗ uright

ε

)
(x)ds

+

∫ t

0

D

Nd−1

∑
x∈Γ+

N

G1,s(x/N)
((
π1,s ∗ uright

ε

)
(x)− b1(x/N)

)
ds

−
∫ t

0

1

Nd

∑
x∈BN,ε

G1,s(x/N), F1

(
π1,s ∗ uε(x/N), π2,s ∗ uε(x/N), π3,s ∗ uε(x/N)

)
ds ,

(3.42)

where functions Fi, i = 1, 2, 3 are defined in (2.22). By approximating Lebesgue integrals by Riemann sums,
on the bulk and at the boundary, we obtain

lim sup
ε→0

lim sup
N→∞

Qθ̂
N

[
sup

0≤t≤T

∣∣∣F Ĝ,t
1,ϵ

(
π̂
)∣∣∣ ≥ δ

]
= 0 ,

where for any trajectory π̂ and for any t ∈ [0, T ],

F Ĝ,t
1,ϵ

(
π̂
)
= ⟨π1,t, G1,t⟩ − ⟨π1,0, G1,0⟩ −

∫ t

0

⟨π1,s, ∂sG1,s⟩ds

−D

∫ t

0

〈
π1,s,∆G1,s

〉
ds+D

∫ t

0

∫
Γ−

b1(r)∂e1G1,s(r) drds

−D

∫ t

0

∫
Γ+

∂e1G1,s(r)
(
π1,s ∗ uright

ε

)
(r) drds

+

∫ t

0

∫
Γ+

G1,s(r)
((
π1,s ∗ uright

ε

)
(r)− b1(r)

)
drds

−
∫ t

0

∫
Bε

G1,s(r), F1

(
π1,s ∗ uε(r), π2,s ∗ uε(r), π3,s ∗ uε(r)

)
drds ,

(3.43)

with Bε = [−1 + ε, 1 + ε]× Td−1. By the continuity of the function π̂ → F Ĝ,t
1,ϵ

(
π̂
)
, for each ε > 0, we get for

any limit point Qθ̂ of the sequence of probability measures (Qθ̂
N )N≥1,

lim sup
ε→0

Qθ̂
[
sup

0≤t≤T

∣∣∣F Ĝ,t
1,ϵ

(
π̂
)∣∣∣ ≥ δ

]
= 0 . (3.44)

To conclude the proof, it remains to prove that we may replace the convolutions appearing in the func-

tional F Ĝ,t
1,ϵ by the associated density of the trajectory. By Proposition 5, Qθ̂ is concentrated on paths

(π̂(t, dr))t∈[0,T ] = (ρ̂(t, r)dr)t∈[0,T ] which are absolutely continuous with respect to the Lebesgue measure
and such that for every 1 ≤ i ≤ 3, ρi belongs to L2([0, T ],H1(B)). For the replacement of the convolution
with the density in the bulk, since uε is an approximation of the identity in L1(B) and the functions Fi are
Lipschitz, the random variables∫ t

0

∫
Bε

G1,s(r)F1

(
π1,s ∗ uε(r), π2,s ∗ uε(r), π3,s ∗ uε(r)

)
drds
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converge Qθ̂ almost surely to ∫ t

0

∫
B

G1,s(r)F1

(
ρ1,s(r), ρ2,s(r), ρ3,s(r)

)
drds . (3.45)

For the replacement of the convolution at the boundary we use the following result which follows from [9,
Section 5.3]: for any H ∈ H1(B)

lim
ε→0

H ∗ uright
ε = Tr(H) a.s in Γ+. (3.46)

For the other terms in F Ĝ,t
1,ϵ , by the dominated convergence Theorem, for almost every trajectory (π̂(t, dr))t∈[0,T ] =

(ρ̂(t, r)dr)t∈[0,T ] with ρ1 ∈ L2([0, T ],H1(B)),

lim
ε→0

D

∫ t

0

∫
Γ+

∂e1G1,s(r)
(
π1,s ∗ ur

ε

)
(r) drds −

∫ t

0

∫
Γ+

G1,s(r)
(
π1,s ∗ ur

ε(r) − b1(r)
)
drds

= D

∫ t

0

∫
Γ+

∂e1G1,s(r)Tr(ρ1,s)(r) drds −
∫ t

0

∫
Γ+

G1,s(r)
(
Tr(ρ1,s)(r) − b1(r)

)
drds.

(3.47)

Collecting (3.44), (3.45), (3.46) and (3.47), we obtain (3.35) and conclude the proof.

3.5 Uniqueness of the limit points

In order to finish the proof of the hydrodynamic limit specific to each regime we are left to show that each
boundary valued problem (2.23) and (2.27) with fixed initial data admits a unique solution. For that, we use
the standard method which consists in decomposing the difference of two solutions on the orthonormal basis
of a well chosen eigenvectors of the Laplacian. The choice of the family of eigenvectors is not necessarily
intuitive and depends on the boundary conditions of the mixed regime considered. We thus give details for
both the (Neumann; Robin) and (Dirichlet; Robin) mixed regimes, for which the family of eigenvectors are
different. As we are working in dimension d ≥ 1, we will need to control integral terms on the boundary.
Therefore, we will make use of the following result regarding the continuity of the trace operator. We refer
to [8, Part II Chapter 5] for a detailed survey of the trace operator.

Theorem 3 (Trace Theorem, see [8]). Fix 1 ≤ p < ∞ and Ω an open bounded subspace of Rd with smooth
boundary ∂Ω. There is a constant Ctr > 0 depending only on Ω and p such that for any φ ∈ C∞(Ω),

∥φ∥Lp(∂Ω) ≤ Ctr∥φ∥W 1,p ,

where ∥.∥Lp(∂Ω) denotes the Lp norm on ∂Ω and ∥.∥W 1,p the Sobolev norm on Ω given by

∥φ∥W 1,p =
(
∥φ∥pLp(Ω) + ∥∇φ∥pLp(Ω)

)1/p

,

where

∥∇φ∥pLp(Ω) =

d∑
i=1

∥∂eiφ∥
p
Lp(Ω).

Remark 3. For p = 2 and Ω = B,

∥φ∥2L2(∂Ω) ≤ ∥φ∥2L2(Ω) + ∥∇φ∥2L2(Ω) (3.48)

In particular, Ctr = 1.

In the sequel we only make use of (3.48) but we stated Theorem 3 for the sake of completeness.
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3.5.1 Uniqueness of the solution in the (Neumann ; Robin) mixed regime

Here, we choose a basis of eigenvectors satisfying Neumann conditions on both boundaries (3.49).

Theorem 4. There exists a unique solution to the Neumann + Robin boundary problem (2.27).

Proof. By Liouville’s Theorem stated for instance in [8], there is a countable system {Vn, αn, n ≥ 1} of
eingensolutions for the problem {

−∆ϕ = αϕ
∂e1ϕ|Γ = 0

(3.49)

in H1(B) and containing all possible eigenvalues. The set {Vn, n ≥ 1} forms a complete, orthonormal system
in the Hilbert space L2(B) and the eigenvalues

0 ≤ α1 < α2 < · · · < αn −→
n→∞

∞ (3.50)

have finite multiplicity. Note that for any U,W ∈ H1(B),

⟨U,W ⟩2 = lim
n→∞

n∑
k=1

⟨U, Vk⟩⟨W,Vk⟩, (3.51)

⟨∇U,∇W ⟩2 = lim
n→∞

n∑
k=1

αk⟨U, Vk⟩⟨W,Vk⟩. (3.52)

One can check that since we are working on (−1, 1)× Td−1, for k = (k1, · · · , kd) ∈ N× (N \ {0})d−1,

Vk(x1, · · ·xd) = 2
d−1
2 cos

(k1πx1

2
+

π

2

) d∏
i=2

sin(kiπxi) and αk =
(k1π)

2

4
+

d∑
i=2

k2i π
2.

Furthermore, define

V̌k(x2, · · · , xd) = 2
d−1
2

d∏
i=2

sin(kiπxi) and α̌k =

d∑
i=2

k2i π
2. (3.53)

We have

∥U∥2L2(Γ+) = lim
n→∞

n∑
k=1

(∫
Γ+

U(r)V̌k(r)n1(r)dS(r)
)2

. (3.54)

Note that by abuse of notations we indexed the family Vk by N \ {0} instead of N× (N \ {0})d−1 but this is
not a problem because we can give an order to elements of N× (N \ {0})d−1.

Consider ρ̂1 and ρ̂2 two solutions of (2.27) associated to the same initial profile and for n ∈ N and t > 0,
introduce

Gn(t) =

3∑
i=1

n∑
k=1

|⟨ρ1i − ρ2i , Vk⟩|2. (3.55)

Let us show that lim
n→∞

Gn(t) = ∥ρ̂1 − ρ̂2∥22 =: G(t) = 0. For that, apply the weak formulation (2.27) with Vk:

for any 1 ≤ i ≤ 3

⟨(ρ1i − ρ2i )(t, .), Vk⟩ = −Dαk

∫ t

0

⟨(ρ1i − ρ2i )(s, .), Vk⟩ds+
∫ t

0

⟨(Fi(ρ̂
1)− Fi(ρ̂

2))(s, .), Vk⟩ds

−
∫ t

0

∫
Γ+

(ρ1i − ρ2i )(s, r)Vk(r)n1(r).dS(r)ds.

(3.56)
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Therefore ⟨ρ1i (t, .)− ρ2i (t, .), Vk⟩ is time differentiable with derivative:

∂t⟨ρ1i (t, .)− ρ2i (t, .), Vk⟩ = −Dαk⟨ρ1i (t, .)− ρ2i (t, .), Vk⟩+ ⟨Fi(ρ̂
1(t, .))− Fi(ρ̂

2(t, .)), Vk⟩

−
∫
Γ+

(ρ1i − ρ2i )(t, r)Vk(r)n1(r).dS(r)
(3.57)

and so is Gn, with

G′
n(t) = −2D

3∑
i=1

n∑
k=1

αk

∣∣⟨ρ1i,t − ρ2i,t, Vk⟩
∣∣2 + 2

3∑
i=1

n∑
k=1

⟨Fi(ρ̂
1
t )− Fi(ρ̂

2
t ), Vk⟩⟨ρ1i,t − ρ2i,t, Vk⟩

− 2

3∑
i=1

n∑
k=1

∫
Γ+

(ρ1i − ρ2i )(t, r)V̌k(r)n1(r).dS(r)⟨ρ1i,t − ρ2i,t, Vk⟩

≤ −2D

3∑
i=1

n∑
k=1

αk

∣∣⟨ρ1i,t − ρ2i,t, Vk⟩
∣∣2 + 3∑

i=1

n∑
k=1

⟨Fi(ρ̂
1
t )− Fi(ρ̂

2
t ), Vk⟩2 +Gn(t)

+
1

A

3∑
i=1

n∑
k=1

(∫
Γ+

(ρ1i − ρ2i )(t, r)V̌k(r)n1(r).dS(r)
)2

+AGn(t),

(3.58)

for any A > 0, where we used both the Cauchy-Schwarz and (2.18) inequalities in the last line. By (3.51),
(3.52) and (3.54), the right-hand side of (3.58) converges to

−2D∥∇(ρ̂1 − ρ̂2)∥22 +
3∑

i=1

∥Fi(ρ̂
1)− Fi(ρ̂

2)∥22 + (1 +A)∥ρ̂1 − ρ̂2∥22 +
1

A
∥ρ̂1 − ρ̂2∥2L2(Γ+). (3.59)

By the trace inequality (3.48),

∥ρ̂1 − ρ̂2∥2L2(Γ) ≤ ∥ρ̂1 − ρ̂2∥22 + ∥∇(ρ̂1 − ρ̂2)∥22. (3.60)

Furthermore, using that ρ̂1 and ρ̂2 take their values in [0, 1]3, there is a constant C := C(λ1, λ2, r, d) > 0
such that for any ρ̂a, ρ̂b ∈ [0, 1]3 and 1 ≤ i ≤ 3,

∣∣Fi(ρ̂
a)− Fi(ρ̂

b)
∣∣ ≤ C

3∑
j=1

|ρaj − ρbj |.

Then, by Cauchy-Schwarz’s inequality, there is a constant C ′ > 0 such that for any 1 ≤ i ≤ 3,

∥Fi(ρ̂
a)− Fi(ρ̂

b)∥22 ≤ C ′
3∑

j=1

∥ρai − ρbi∥22. (3.61)

Putting together (3.59), (3.60), (3.61), taking A > 1
D and applying the dominated convergence theorem, we

are left with
G′(t) ≤ (C ′ + 2 +A)G(t). (3.62)

Grönwall’s inequality and the fact that G(0) = 0 yields G(t) = 0 at any time.

3.5.2 Uniqueness of the solution in the (Dirichlet ; Robin) mixed regime

Here, we choose a basis of eigenvectors satisfying a Dirichlet boundary condition on the left and Neumann
boundary condition on the right (3.63).

Theorem 5. There exists a unique solution to the Dirichlet + Robin boundary problem (2.23).
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Proof. The proof follows the same lines as the previous one except that we consider another family of eigen-
functions of the Laplacian. Indeed, consider the following boundary-eigenvalue problem for the Laplacian:

−∆ϕ = γϕ
ϕ(x) = 0 for x ∈ Γ− × Td−1

∂e1ϕ(x) = 0 for x ∈ Γ+ × Td−1

ϕ ∈ H1(B).

(3.63)

Again, one can check that the countable system of eigensolutions {Wn, γn, n ≥ 1} given below (in (3.65))
for the problem (3.63) contains all possible eigenvalues and is a complete, orthonormal system in the Hilbert
space L2(B), that the eigenvalues γn have finite multiplicity and that

0 < γ1 < γ2 · · · < γn → ∞. (3.64)

Furthermore, (3.51), (3.52) and (3.54) stay valid when we replace Vk by Wk, where, for k = (k1, · · · , kd) ∈
N× (N∗)d−1,

Wk(x) = 2
d−1
2

[
(−1)k1 cos

((π
4
+

k1π

2

)
x
)
+ sin

((π
4
+

k1π

2

)
x
)] d∏

i=2

sin(kiπxi) (3.65)

with

γk =
(π
4
+

k1π

2

)2

+

d∑
i=2

k2i π
2. (3.66)

Again, by abuse of notation we have indexed the Wk’s by N∗ instead of (N∗)d.
As before, take ρ̂1 and ρ̂2 two solutions of (2.23) with same initial data and introduce

Hn(t) =

3∑
i=1

n∑
k=1

∣∣⟨ρ1i (t, .)− ρ2i (t, .),Wk⟩
∣∣2 (3.67)

and
H(t) = ∥(ρ̂1 − ρ̂2)(t, .)∥22. (3.68)

Using the weak formulation (2.25) with Wk, we get that for any 1 ≤ i ≤ 3,

⟨(ρ1i − ρ2i )(t, .),Wk⟩ = −Dγk

∫ t

0

⟨(ρ1i − ρ2i )(s, .),Wk⟩ds+
∫ t

0

⟨(Fi(ρ̂
1)− Fi(ρ̂

2))(s, .),Wk⟩ds

−
∫ t

0

∫
Γ+

(ρ1i − ρ2i )(s, r)W̌k(r)n1(r).dS(r)ds,

(3.69)

where the W̌k = V̌k are defined in (3.53). Then, we conclude following exactly the same lines as the proof of
Theorem 4.

3.5.3 Uniqueness of the solution in the other regimes

In order to prove uniqueness in the other regimes, one can follow the same classic method used above. The
orthonormal basis used to decompose the difference of two solutions as in (3.55) or (3.67) then depends on
the boundary conditions. For the (Dirichlet ; Dirichlet) regime, the decomposition is carried out on the
eigenvectors of the following boundary-eigenvalue problem for the Laplacian:{

−∆ϕ = δϕ
ϕ ∈ H1

0(B),
(3.70)
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for which the associated family of eigenvectors is

Uk(x1, · · ·xd) = 2
d−1
2

d∏
i=1

sin(kiπxi),

with eigenvalues given by

δk =

d∑
i=1

k2i π
2

for k = (k1, · · · , kd) ∈ (N∗)d. As before, for V,W ∈ L2(B),

⟨V,W ⟩2 = lim
n→∞

n∑
k=1

⟨V,Uk⟩2⟨W,Uk⟩2, (3.71)

⟨∇V,∇W ⟩2 = lim
n→∞

n∑
k=1

δk⟨V,Uk⟩⟨W,Uk⟩, (3.72)

∥V ∥2L2(Γ) = lim
n→∞

n∑
k=1

(∫
Γ

V (r)Ǔk(r)n1(r)dS(r)
)2

(3.73)

where the Ǔk = V̌k are defined in (3.53).

4 Hydrostatic limit

In this section, we prove Theorem 2 which states that when the parameters r, λ1, λ2, d,D satisfy certain condi-
tions, starting from an invariant measure, the system converges to the stationary profile of the corresponding
hydrodynamic equation. Precisely, recall that in Section 2, for θ̂ ∈ (R+)2 we defined µss

N (θ̂) as the sequence
of unique invariant measures for the irreducible dynamics defined by (2.11). The hydrostatic principle states
that this sequence is associated to the unique stationary solution of the hydrodynamic equation, if existence
and uniqueness of such a solution hold. For the proof, we were inspired by [11] and the key argument relies on
the convergence of all the trajectories satisfying the hydrodynamic equation to the unique stationary profile
of these equations. In [11], the convergence of trajectories is established thanks to a comparison principle.
The difficulty here is that we are dealing with a system of coupled equations and we need to define a specific
order for which such a comparison principle holds. Now in [19, Theorem 4.1], it has been proved that at the
microscopic level, the generalized contact process is attractive only for the following order:

2 < 0 < 3 < 1. (4.1)

Note that in the corresponding state space Σ̂N , the order above translates into

(0, 1) < (0, 0) < (1, 1) < (1, 0).

Attractiveness for the order (4.1) means that given two configurations η ≤ ∼
η, it is possible to build a coupling

between (ηt)t≥0 and (
∼
ηt)t≥0 where both these processes evolve according to the dynamics given by (2.11),

such that η0 ≤ ∼
η0 and almost surely, for all t ≥ 0, ηt ≤

∼
ηt pointwise in the sense of (4.1). Note that using

[4, Theorem 2.4], one can show that the system remains attractive when adding an exchange and reservoir
dynamics. It is then natural to think that attractiveness also holds at the macroscopic level through a
comparison principle. A comparison principle means that if two profiles are such that at a certain time,
one is smaller than the other almost everywhere, then the same is true at any later time. Considering the
microscopic order (4.1) it is intuitive to consider that the largest state at the macroscopic level corresponds
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to (ρ1 = 1, ρ2 = 0, ρ3 = 0) and the smallest state to (ρ2 = 1, ρ1 = ρ3 = 0). We will work under the following
change of coordinates:  ρ1

T := ρ1 + ρ3
R := 1− (ρ2 + ρ3)

(4.2)

which is consistent with the fact that (1, 1, 1) corresponds to the largest profile (ρ1 = 1, ρ2 = 0, ρ3 = 0) and

(0, 0, 0) with the lowest one (ρ2 = 1, ρ1 = ρ3 = 0). In the sequel, we will say that given two profiles ρ̂ and ϕ̂,

ρ̂ ≤ ϕ̂ if:  ρ1 ≤ ϕ1

ρ1 + ρ3 ≤ ϕ1 + ϕ3

1− (ρ2 + ρ3) ≤ 1− (ϕ2 + ϕ3)
(4.3)

almost everywhere. Note that this new order adapted at the microscopic level, i.e

η̃ ≤ η ⇔ ∀x ∈ BN ,

 η̃1(x) ≤ η1(x)
η̃1(x) + η̃3(x) ≤ η1(x) + η3(x)
η2(x) + η3(x) ≤ η̃2(x) + η̃3(x),

(4.4)

is not equivalent to the one given in (4.1). Indeed, consider the configuration η full of 3’s and η̃ full of 0’s.
Then η̃ ≤ η for the order (4.1) but not for the order (4.4). However, one can check that if η̃ ≤ η for the order
(4.4), then η̃ ≤ η for the order (4.1), so the macroscopic order is consistent with the microscopic one but it
is weaker, so we can compare fewer profiles.

However, the notable fact, which we will prove, is that we have monotonicity under this new order, i.e. a
comparison principle holds under the change of coordinates (4.2). To prove that, as previously, since we are
working in any dimension d ≥ 1 with mixed boundary conditions, some care must be taken to deal with the
integral terms on Γ. For that, we strongly rely on analytical tools stated in [24].

Under the change of coordinates (4.2), the coupled equations in the bulk become, : ∂tρ1 = D∆ρ1 + F1(ρ1, T,R)
∂tT = D∆T +H(ρ1, T,R)
∂tR = D∆R+ J(R)

(4.5)

with  F1(ρ1, T,R) = 2d
[
(λ1 − λ2)ρ1 + λ2T

]
(R− ρ1) + T − (r + 2)ρ1

H(ρ1, T,R) = 2d
[
(λ1 − λ2)ρ1 + λ2T

]
(1− T )− T

J(R) = −(r + 1)R+ 1.
(4.6)

We will see that the comparison principle stated and proved in Lemma 3 yields the following Theorem which
is used to prove Theorem 2.

Theorem 6. Suppose that conditions (H1) hold. Then, there exists a unique stationary solution ρD,R, resp.
ρNe,R, of (2.23), resp. (2.27). Furthermore, for any solution ρ̂D,R, resp. ρ̂Ne,R, to the boundary value
problem (2.23), resp. (2.27),

lim
t→∞

3∑
i=1

∥ρD,R
i (t, .)− ρD,R

i (.)∥1 = 0, (4.7)

resp.

lim
t→∞

3∑
i=1

∥ρNe,R
i (t, .)− ρNe,R

i (.)∥1 = 0. (4.8)

Note that this result can be equivalently formulated in the change of coordinates (4.2) and we will prove
it in that setting in the next subsection.
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Remark 4. One could ask if conditions on the parameters are necessary to establish existence and uniqueness
of the stationary solution of the hydrodynamic equation. Could we not generalize the result to all parameters?
In order to answer that, we simulated the solutions to the equation in the (Neumann ; Neumann) regime for
which the constant profile (ρ1 = 0, ρ2 = r

r+1 , ρ3 = 0) is stationary. Indeed,

F1

(
0,

r

r + 1
, 0
)
= F2

(
0,

r

r + 1
, 0
)
= F3

(
0,

r

r + 1
, 0
)
= 0

and it corresponds to the extinction regime, that is, there are no more wild insects. We observed (see below in
the Appendix B) that in dimensions 1, for parameters λ1 = 1, λ2 = 0.75 and D = r = 1, for which conditions
(H1) are not satisfied, the solution of the hydrodynamic equation starting from ρ1 = 1, ρ2 = ρ3 = 0 converges
to a constant profile which is not (0, r

r+1 , 0) so uniqueness does not hold. Simulations confirm that Theorem
6 does not hold in all generality and that conditions on the parameters are necessary, although conditions
(H1) might not be the optimal ones.

4.1 Proof of the hydrostatic limit

Let us prove Theorem 2. We prove the first point, the second one follows in the same way. Denote by

AT ⊂ D([0, T ],
(
M+

)3
) the set of trajectories {ρ̂(t, u)du, 0 ≤ t ≤ T} whose density ρ̂ = (ρ1, ρ2, ρ3) satisfies

conditions (2.24) and (2.26) of the definition of a weak solution of (2.23) for some initial profile ρ̂0. Consider

Q∗
ss(θ̂) a limit point of the sequence (QN

µss
N (θ̂)

)N≥1 associated to the invariant measures. By Theorem 1,

Q∗
ss(θ̂)

(
AT

)
= 1. (4.9)

Now consider QNk
ss (θ̂) a subconverging sequence of (QN

µss
N
(θ̂))N≥1. By stationarity of µss

N (θ̂)

E
Q

Nk
ss (θ̂)

( ∣∣∣⟨π̂N , Ĝ⟩ − ⟨ρ, Ĝ⟩
∣∣∣ ) = E

Q
Nk
ss (θ̂)

( ∣∣∣⟨π̂N
T , Ĝ⟩ − ⟨ρ, Ĝ⟩

∣∣∣ ) (4.10)

and

lim
k→∞

E
Q

Nk
ss (θ̂)

( ∣∣∣⟨π̂N
T , Ĝ⟩ − ⟨ρ, Ĝ⟩

∣∣∣ ) = EQ∗
ss(θ̂)

( ∣∣∣⟨π̂T , Ĝ⟩ − ⟨ρ, Ĝ⟩
∣∣∣1AT

)
≤

3∑
i=1

∥Gi∥∞ EQ∗
ss

[
∥ρi(T, .)− ρi(.)∥1

]
.

(4.11)

Then, one concludes thanks to (4.7) in Theorem 6 and dominated convergence theorem.

4.2 Proof of Theorem 6

In order to prove Theorem 6 we first establish a comparison principle (Lemma 3). Then, we show that the
difference between the largest solution and the smallest solution vanishes (Lemma 4). Using an integration
by parts, it is useful to rewrite the weak formulations (2.25) and (2.25), in the following suitable forms: for
any 0 ≤ τ ≤ t ≤ T , for any G ∈ C2([0, T ]×B),

⟨ρ̂t, Ĝt⟩ − ⟨ρ̂τ , Ĝτ ⟩ =
∫ t

τ

⟨ρ̂s, ∂sĜs⟩ds−D

∫ t

τ

∫
B

(
∇ρ̂s · ∇Ĝs

)
(r)drds

−
∫ t

τ

⟨F̂ (ρ̂s), Ĝs⟩ds−D

3∑
i=1

∫ t

τ

∫
Γ−

bi(r)(∂e1Gi,s)(r)n1(r).dS(r)ds

+

3∑
i=1

∫ t

τ

∫
Γ+

Gi(r)(bi(r)− ρi(s, r))n1(r).dS(r)ds = 0,

(4.12)
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and

⟨ρ̂t, Ĝt⟩ − ⟨ρ̂τ , Ĝτ ⟩ =
∫ t

τ

⟨ρ̂s, ∂sĜs⟩ds−D

∫ t

τ

∫
B

(
∇ρ̂s · ∇Ĝs

)
(r)drds

−
∫ t

τ

⟨F̂ (ρ̂s), Ĝs⟩ds−
∫
Γ+

Gi(r)(bi(r)− ρi(s, r))n1(r).dS(r)ds = 0.

(4.13)

Lemma 3. Consider ρ̂10 and ρ̂20 two initial profiles.

• Denote by ρ̂1t resp. ρ̂2t , the solutions to the (Dirichlet ; Robin) boundary problem (2.23) associated to
each of those initial profiles. Assume that there is an s ≥ 0 such that almost surely (in the Lebesgue
measure sense), ρ11(s, u) ≤ ρ21(s, u), T

1(s, u) ≤ T 2(s, u) and R1(s, u) ≤ R2(s, u). Then, for all s ≥ t,
ρ11(t, u) ≤ ρ21(t, u), T

1(t, u) ≤ T 2(t, u) and R1(t, u) ≤ R2(t, u) almost surely.

• The same result holds when ρ̂1t resp. ρ̂2t , are two solutions to the (Neumann ; Robin) boundary problem
(2.27).

Note that Lemma 3 holds for all parameters r, λ1, λ2, d and D, regardless of conditions (H1).

Proof. We prove the first point and the proof of the second one follows in the same way. Introduce

A(t) =

∫
B

(
ρ11 − ρ21

)2
+
(t, u)du+

∫
B

(
T 1 − T 2

)2
+
(t, u)du+

∫
B

(
R1 −R2

)2
+
(t, u)du (4.14)

where x+ denotes max(x, 0), the positive part of x. We show that A(t) = 0 for all t ≥ s. Using the weak
formulation (2.25) of the solution of the (Dirichlet ; Robin) boundary problem and using Lemma 7.3 and
Remark 7.5 in [24], we get:

1

2

d

dt

∫
B

(
ρ11 − ρ21

)2
+
(t, u)du =

1

2

d

dt

∫
B

(
ρ11 − ρ21

)2
+
(t, u)du

= −D

∫
B

∇(ρ11 − ρ21)∇
(
ρ11 − ρ21

)
+
(t, u)du

+

∫
B

(
F1(ρ̂

1)− F2(ρ̂
2)
)(
ρ11 − ρ21

)
+

)
(t, u)du−

∫
Γ+

(ρ11 − ρ21)
2
+(t, u)du.

(4.15)

Using that ∇
(
(ρ11 − ρ21)+

)
= 1(ρ1

1−ρ2
1)≥0∇

(
ρ11 − ρ21

)
and that

∫
B

(
ρ11 − ρ21

)2
+
(0, u)du = 0, we are left with:

1

2

∫
B

(
ρ11 − ρ21

)2
+
(t, u)du ≤ −

∫ t

0

∫
B

D1(ρ1
1−ρ2

1)≥0∥∇
(
ρ11 − ρ21

)
∥22(r, u)dudr

+

∫ t

0

∫
B

(
F1(ρ̂

1)− F2(ρ̂
2)
)(
(ρ11 − ρ21

)
+

)
(r, u)dudr.

(4.16)

Proceeding in the same way for
∫
B

(
T 1 − T 2

)2
+
(t, u)du and

∫
B

(
R1 −R2

)2
+
(t, u)du we get:

1

2

∫
B

(
T 1 − T 2

)2
+
(t, u)du ≤ −

∫ t

0

∫
B

D1(T 1−T 2)≥0∥∇
(
T 1 − T 2

)
∥22(r, u)dudr

+

∫ t

0

∫
B

(
H(ρ̂1)−H(ρ̂2)

)
(T 1 − T 2

)
+
(r, u)dudr

(4.17)

and

1

2

∫
B

(
R1 −R2

)2
+
(t, u)du ≤ −

∫ t

0

∫
B

D1(R1−R2)≥0∥∇
(
R1 −R2

)
∥22(r, u)dudr

+

∫ t

0

∫
B

(
J(R1)− J(R2)

)
(R1 −R2

)
+
(r, u)dudr.

(4.18)
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Therefore,

1

2
A(t) ≤

∫ t

0

∫
B

(
F1(ρ̂

1)− F2(ρ̂
2)
)(
ρ11 − ρ21

)
+
(r, u)dudr

+

∫ t

0

∫
B

(
H(ρ̂1)−H(ρ̂2)

)
(T 1 − T 2

)
+
(r, u)dudr

+

∫ t

0

∫
B

(
J(R1)− J(R2)

)
(R1 −R2

)
+
(r, u)dudr.

(4.19)

Now let us use the explicit expressions of F1, J and H. We also use the following inequality: for any C ≥ 0
x, y ∈ R,

Cxy+ ≤ Cx+y+. (4.20)

In order to avoid confusions, a squared term will always be put between brackets, while, for instance ρ21 refers
to the first coordinate of ρ̂2. We will denote by C a positive constant which depends on λ1, λ2, r, d with
values possibly changing from one line to the next.(

F1(ρ̂
1)− F2(ρ̂

2)
)(
ρ11 − ρ21

)
+
=

[
2d(λ1 − λ2)(R

2 − ρ11 − ρ21)− 2dλ1T
1 − (r + 2)

]
(ρ11 − ρ21)

2
+

+
[
2dλ1ρ

1
1 + 2dλ2ρ

1
3

]
(R1 −R2)(ρ11 − ρ21)+

+
[
1 + 2dλ2(1− ρ22 − ρ33 − ρ21)

]
(T 1 − T 2)(ρ11 − ρ21)+

≤ C(ρ11 − ρ21)
2
+ +

[
2dλ1ρ

1
1 + 2dλ2ρ

1
3

]
(R1 −R2)+(ρ

1
1 − ρ21)+

+
[
1 + 2dλ2(1− ρ22 − ρ33 − ρ21)

]
(T 1 − T 2)+(ρ

1
1 − ρ21)+,

(4.21)

where we used (4.20) and the fact that 2dλ1ρ
1
1 + 2dλ2ρ

1
3 ≥ 0 and 1 + 2dλ2(1− ρ22 − ρ33 − ρ21) ≥ 0 in the last

line. (
H(ρ̂1)−H(ρ̂2)

)
(T 1 − T 2)+ =

[
2dλ2 − 2d(λ1 − λ2)ρ

1
1 − 2dλ2(T

2 + T 1)− 1
]
(T 1 − T 2)2+

+
[
2d(λ1 − λ2)(1− ρ21 − ρ23)

]
(ρ11 − ρ21)(T

1 − T 2)+

≤ C(T 1 − T 2)2+ +
[
2d(λ1 − λ2)(1− ρ21 − ρ23)

]
(ρ11 − ρ21)+(T

1 − T 2)+

(4.22)

where again, we used (4.20) in the last line, the fact that λ1 ≥ λ2 and that (1− ρ21 − ρ23) ≥ 0. Finally,(
J(R1)− J(R2)

)
(R1 −R2

)
+
= −(r + 1)(R1 −R2

)2
+
. (4.23)

Collecting (4.21), (4.22) and (4.23) we are left with

1

2
A(t) ≤ C

∫ t

0

∫
B

((
ρ11 − ρ21

)2
+
(r, u) +

(
T 1 − T 2

)2
+
(r, u) +

(
R1 −R2

)2
+
(r, u)

)
dudr

= C

∫ t

0

A(r)dr,

(4.24)

where C is a constant which depends on λ1, λ2, r, d and by Grönwall’s lemma, A(t) = 0.

Corollary 1. Denote by ρ̂0 = (ρ01, T
0, R0), resp. ρ̂1 = (ρ11, T

1, R1), the weak solution of (4.5) with (Dirichlet
; Robin) boundary conditions and initial data ρ01 = T 0 = R0 = 0, resp. ρ11 = T 1 = R1 = 1. Then for every
t ≥ s, ρ01(s, .) ≤ ρ01(t, .), T

0(s, .) ≤ T 0(t, .) and R0(s, .) ≤ R0(t, .), resp. ρ11(s, .) ≥ ρ11(t, .), T
1(s, .) ≥ T 1(t, .)

and R1(s, .) ≥ R1(t, .) almost surely. Furthermore, any other solution (ρ1, T,R) of (4.5) with (Dirichlet ;
Robin) boundary conditions satisfies: ρ01 ≤ ρ1 ≤ ρ11, T

0 ≤ T ≤ T 1 and R0 ≤ R ≤ R1 almost surely.
The same result holds for ρ̂0 = (ρ01, T

0, R0), resp. ρ̂1 = (ρ11, T
1, R1), the weak solution of (4.5) with

(Neumann ; Robin) boundary conditions and initial data ρ01 = T 0 = R0 = 0, resp. ρ11 = T 1 = R1 = 1.
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Proof. We prove the result for the (Dirichlet ; Robin) boundary problem and for ρ̂0. The proof is the same
for ρ̂1 and for the (Neumann ; Robin) case. Fix s ≥ 0 and consider τsρ̂

0 : (t, u) 7→ ρ̂0(t + s, u). τsρ̂
0 is the

solution of (4.5) with initial condition u 7→ ρ̂0(s, u) and almost surely in B, τsρ̂
0(0, u) ≥ (0, 0, 0) = ρ̂0(0, u).

Applying Lemma 3 to τsρ̂
0 and ρ̂0 with s = 0 and t = t− s yields ρ̂0(t, u) ≥ ρ̂0(s, u) almost surely.

Lemma 4. Assume conditions (H1) are satisfied.

• Denote by ρ̂0 = (ρ01, T
0, R0), resp. ρ̂1 = (ρ11, T

1, R1), the weak solution of (4.5) with (Dirichlet ; Robin)
boundary conditions and with initial data (0, 0, 0), resp. (1, 1, 1). Then,

lim
t→∞

3∑
i=1

∫
B

(∣∣ρ11(t, u)− ρ01(t, u)|+ |T 1(t, u)− T 0(t, u)|+ |R1(t, u)−R0(t, u)|
)
du = 0. (4.25)

• Denote by ρ̂0 = (ρ01, T
0, R0), resp. ρ̂1 = (ρ11, T

1, R1), the weak solution of (4.5) with (Neumann ;
Robin) boundary conditions and with initial data (0, 0, 0), resp. (1, 1, 1). Then,

lim
t→∞

3∑
i=1

∫
B

(∣∣ρ11(t, u)− ρ01(t, u)|+ |T 1(t, u)− T 0(t, u)|+ |R1(t, u)−R0(t, u)|
)
du = 0. (4.26)

Proof. We start with the proof of the (Dirichlet ; Robin) regime. It is enough to show that

lim
t→∞

(
∥ρ11(t, .)− ρ01(t, .)∥22 + ∥T 1(t, .)− T 0(t, .)∥22 + ∥R1(t, .)−R0(t, .)∥22

)
= 0. (4.27)

Consider the eigenvalue problem for the Laplacian (3.63) and the countable system {Wn, γn, n ≥ 1} of
eigensolutions for that problem. For n ≥ 1 introduce

Kn(t) = An(t) +Bn(t)+Cn(t) :=

n∑
k=1

|⟨R1(t, .)−R0(t, .),Wk⟩|2

+

n∑
k=1

|⟨ρ11(t, .)− ρ01(t, .),Wk⟩|2 +
n∑

k=1

|⟨T 1(t, .)− T 0(t, .),Wk⟩|2.
(4.28)

Recall that by (3.51), one has

An(t) −→
n→∞

∥R1(t, .)−R0(t, .)∥22 =: A(t), Bn(t) −→
n→∞

∥ρ11(t, .)− ρ01(t, .)∥22 =: B(t),

and
Cn(t) −→

n→∞
∥T 1(t, .)− T 0(t, .)∥22 =: C(t).

Let us first prove that lim
t→∞

lim
n→∞

An(t) = 0. An is time differentiable and the weak formulation of a solution

of (4.5) with (Dirichlet ; Robin) boundary conditions yields,

A′
n(t) = −2

n∑
k=1

(Dγk + r + 1)|⟨R1
t −R0

t ,Wk⟩|2

− 2

n∑
k=1

⟨R1
t −R0

t ,Wk⟩
∫
Γ+

(R1
t −R0

t )(r)Wk(r)n1(r)dS(r).

(4.29)

Integrating this between 0 and T and using the Cauchy-Schwarz inequality twice yields

An(0)−An(T ) ≥
∫ T

0

n∑
k=1

2(Dγk + r + 1)
∣∣⟨R1

t −R0
t ,Wk⟩

∣∣2dt
−2

√√√√∫ T

0

n∑
k=1

∣∣⟨R1
t −R0

t ,Wk⟩
∣∣2dt

√√√√∫ T

0

n∑
k=1

(∫
Γ+

(R1
t −R0

t )(r)W̌k(r)n1(r)dS(r)
)2

dt.
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Taking n → ∞ and using (3.52) and (3.54) using the W ′
ks and W̌ ′

ks instead of the V ′
ks and V̌ ′

ks we get

A(0) ≥ 2(r + 1)

∫ T

0

A(t)dt+ 2D

∫ T

0

Ã(t)dt− 2

√∫ T

0

A(t)dt

√∫ T

0

∥R1
t −R0

t ∥2L2(Γ)dt

≥ 2(r + 1)

∫ T

0

A(t)dt+ 2D

∫ T

0

Ã(t)dt− 2

√∫ T

0

A(t)dt

√∫ T

0

A(t)dt+

∫ T

0

Ã(t)dt

≥ 2(r + 1)

∫ T

0

A(t)dt+ 2D

∫ T

0

Ã(t)dt− 2
(∫ T

0

A(t)dt+

∫ T

0

Ã(t)dt
)

≥ 2r

∫ T

0

A(t)dt+ 2(D − 1)

∫ T

0

Ã(t)dt

where Ã(t) = ∥∇(R1
t −R0

t )∥2L2 and where we used the trace inequality (3.48) in the second inequality. Taking
T → ∞, and using that D ≥ 1 we get that∫ ∞

0

∥R1
t −R0

t ∥22dt < ∞.

By Corollary 1, R1 is almost surely decreasing and R0 increasing therefore R1
t −R0

t is almost surely decreasing
and the above inequality implies

∥R1
t −R0

t ∥22 −→
t→∞

0.

We are now left to show that
lim
t→∞

lim
n→∞

[
Bn(t) + Cn(t)

]
= 0. (4.30)

We proceed following the same steps as for An.

B′
n(t) = −2D

n∑
k=1

γk|⟨ρ11,t − ρ01,t,Wk⟩|2 + 2

n∑
k=1

⟨F1(ρ̂
1
t )− F1(ρ̂

0
t ),Wk⟩⟨ρ11,t − ρ01,t,Wk⟩

− 2

n∑
k=1

⟨ρ11,t − ρ01,t,Wk⟩
∫
Γ+

(ρ11,t − ρ01,t)(r)W̌k(r)n1(r).dS(r).

(4.31)

To lighten notations we will not write the subscript t in the computations, when there is no confusion. Let
us compute the second term.

n∑
k=1

⟨F1(ρ̂
1)− F1(ρ̂

0),Wk⟩⟨ρ11 − ρ01,Wk⟩ = 2d(λ1 − λ2)

n∑
k=1

⟨ρ11(R1 −R0),Wk⟩⟨ρ11 − ρ01,Wk⟩

+ 2d(λ1 − λ2)

n∑
k=1

⟨R0(ρ11 − ρ01),Wk⟩⟨ρ11 − ρ01,Wk⟩

− 2d(λ1 − λ2)

n∑
k=1

⟨(ρ11)2 + (ρ01)
2,Wk⟩⟨ρ11 − ρ01,Wk⟩

+ 2dλ2

n∑
k=1

⟨R1(T 1 − T 0),Wk⟩⟨ρ11 − ρ01,Wk⟩+ 2dλ2

n∑
k=1

⟨T 0(R1 −R0),Wk⟩⟨ρ11 − ρ01,Wk⟩

− 2dλ2

n∑
k=1

⟨T 1(ρ11 − ρ01),Wk⟩⟨ρ11 − ρ01,Wk⟩ − 2dλ2

n∑
k=1

⟨ρ01(T 1 − T 0),Wk⟩⟨ρ11 − ρ01,Wk⟩

+

n∑
k=1

⟨T 1 − T 0,Wk⟩⟨ρ11 − ρ01,Wk⟩ − (r + 2)

n∑
k=1

|⟨ρ11 − ρ01,Wk⟩|2.

(4.32)
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Using Lemma 3 and the Cauchy-Schwarz inequality, we get:

−1

2
B′

n(t) ≥
n∑

k=1

[
Dγk + r + 2− 2d(λ1 − λ2)

]∣∣⟨ρ11,t − ρ01,t,Wk⟩
∣∣2

− (1 + 2dλ2)

n∑
k=1

⟨T 1
t − T 0

t ,Wk⟩⟨ρ11 − ρ01,t,Wk⟩

− 2dλ1

√
An(t)

√
Bn(t)−

√
Bn(t)

√√√√ n∑
k=1

(∫
Γ+

(ρ11,t − ρ01,t)(r)W̌k(r)n1(r)dS(r)
)2

.

Integrating this between 0 and T and using the Cauchy-Scwharz inequality we are left with

1

2

(
Bn(0)−Bn(T )

)
≥

∫ T

0

n∑
k=1

[
Dγk + r + 2− 2d(λ1 − λ2)

]∣∣ < ρ11,t − ρ01,t,Wk >
∣∣2dt

− (1 + 2dλ2)

∫ T

0

√
Bn(t)

√
Cn(t)dt− 2dλ1

∫ T

0

√
An(t)

√
Bn(t)dt

−

√∫ T

0

Bn(t)dt

√√√√∫ T

0

n∑
k=1

(∫
Γ+

(ρ11,t − ρ01,t)(r)W̌k(r)n1(r)dS(r)
)2

dt.

(4.33)

Now

C ′
n(t) = −2D

n∑
k=1

γk|⟨T 1
t − T 0

t ,Wk⟩|2 + 2

n∑
k=1

⟨H(ρ̂1t )−H(ρ̂0t ),Wk⟩⟨T 1
t − T 0

t ,Wk⟩

− 2

n∑
k=1

⟨T 1
t − T 0

t ,Wk⟩
∫
Γ+

(T 1
t − T 0

t )(r)W̌k(r)n1(r).dS(r).

(4.34)

Again, we compute the second term using the explicit expression of H:

n∑
k=1

⟨H(ρ̂1)−H(ρ̂0),Wk⟩⟨ρ11 − ρ01,Wk⟩ = 2d(λ1 − λ2)

n∑
k=1

⟨ρ11 − ρ01,Wk⟩⟨T 1 − T 0,Wk⟩

+ (2dλ2 − 1)

n∑
k=1

|⟨T 1 − T 0,Wk⟩|2 − 2d(λ1 − λ2)

n∑
k=1

⟨ρ11(T 1 − T 0),Wk⟩⟨T 1 − T 0,Wk⟩

− 2d(λ1 − λ2)

n∑
k=1

⟨T 0(ρ11 − ρ01),Wk⟩⟨T 1 − T 0,Wk⟩

− 2dλ2

n∑
k=1

⟨(T 1)2 − (T 0)2,Wk⟩⟨T 1 − T 0,Wk⟩.

(4.35)

Using Lemma 3 and the Cauchy-Schwarz inequality, we get:

− 1

2
C ′

n(t) ≥
n∑

k=1

[
Dγk + 1− 2dλ2

]∣∣⟨T 1
t − T 0

t ,Wk⟩
∣∣2

−
√

Cn(t)

√√√√ n∑
k=1

(∫
Γ+

(T 1
t − T 0

t )(r)W̌k(r)n1(r)dS(r)
)2

− 2d(λ1 − λ2)
√
Cn(t)

√
Bn(t).
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Integrating this between 0 and T and using the Cauchy-Scwharz inequality we are left with:

1

2

(
Cn(0)− Cn(T )

)
≥

∫ T

0

n∑
k=1

[
Dγk + 1− 2dλ2

]∣∣⟨T 1
t − T 0

t ,Wk⟩
∣∣2dt

− 2d(λ1 − λ2)

∫ T

0

√
Cn(t)

√
Bn(t)dt

−

√∫ T

0

Cn(t)dt

√√√√∫ T

0

n∑
k=1

(∫
Γ+

(T 1
t − T 0

t )(r)W̌k(r)n1(r)dS(r)
)2

dt.

(4.36)

Summing inequalities (4.33) and (4.36), using that Bn is uniformly bounded by a constant K1 and Cn by a
constant K2 and that for any a, b > 0, −

√
a
√
b ≥ − 1

2 (a+ b), we obtain

1

2

(
Bn(0)−Bn(T ) + Cn(0)− Cn(T )

)
≥∫ T

0

n∑
k=1

[
Dγk + r + 2− 2d(λ1 − λ2)

]∣∣⟨ρ11,t − ρ01,t,Wk⟩
∣∣2dt

− 1

2

∫ T

0

Bn(t)dt−
1

2

∫ T

0

n∑
k=1

(∫
Γ+

(ρ11,t − ρ01,t)(r)W̌k(r)n1(r)dS(r)
)2

dt

+

∫ T

0

n∑
k=1

[
Dγk + 1− 2dλ2

]∣∣⟨T 1
t − T 0

t ,Wk⟩
∣∣2dt

− 1

2

∫ T

0

Cn(t)dt−
1

2

∫ T

0

n∑
k=1

(∫
Γ+

(T 1
t − T 0

t )(r)W̌k(r)n1(r)dS(r)
)2

dt

− 2dK1λ1

√∫ T

0

An(t)dt− (1 + 2dλ1)K2

√∫ T

0

Bn(t)dt.

(4.37)

Now, split the first and fourth terms into two parts. Lower bound the first one using that γ1 < γk for any
k ≥ 2 and we shall then use (3.52) to deal with the second term. The left-hand side in (4.37) is lower bounded
by

1

2

[ ∫ T

0

(
Dγ1 + r + 2− 2d(λ1 − λ2)

) n∑
k=1

∣∣⟨ρ11,t − ρ01,t,Wk⟩
∣∣2dt− ∫ T

0

Bn(t)dt
]

+
1

2

[ ∫ T

0

n∑
k=1

(
Dγk + r + 2− 2d(λ1 − λ2)

)∣∣⟨ρ11,t − ρ01,t,Wk⟩
∣∣2dt

−
∫ T

0

n∑
k=1

(∫
Γ+

(ρ11,t − ρ01,t)(r)W̌k(r)n1(r)dS(r)
)2

dt
]

+
1

2

[ ∫ T

0

(
Dγ1 + 1− 2dλ2

) n∑
k=1

∣∣⟨T 1
t − T 0

t ,Wk⟩
∣∣2dt− ∫ T

0

Cn(t)dt
]

+
1

2

[ ∫ T

0

n∑
k=1

(
Dγk + 1− 2dλ2

)∣∣⟨T 1
t − T 0

t ,Wk⟩
∣∣2dt

−
∫ T

0

n∑
k=1

(∫
Γ+

(T 1
t − T 0

t )(r)W̌k(r)n1(r)dS(r)
)2

dt
]

− 2dλ1K1

√∫ T

0

An(t)dt− (1 + 2dλ1)K2

√∫ T

0

Bn(t)dt.

(4.38)
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Taking n to infinity, using (3.64) and the dominated convergence theorem as well as the trace inequality
stated in Theorem 3 and using that D ≥ 1 and γ1 > 1 (see (3.66)) we get:(

B(0)−B(T ) + C(0)− C(T )
)
≥

2
(
r + 1− 2d(λ1 − λ2)

) ∫ T

0

B(t)dt+ (D − 1)

∫ T

0

∥∇(ρ11,t − ρ01,t)∥2dt

+ 2(1− 2dλ2)

∫ T

0

C(t)dt+ (D − 1)

∫ T

0

∥∇(T 1
t − T 0

t )∥2dt

− 4dλ1K1

√∫ T

0

A(t)dt− (1 + 2dλ1)K2

√∫ T

0

B(t)dt.

(4.39)

Since conditions (H1) hold, all the factors between the time integrals
∫ T

0
B(t)dt and

∫ T

0
C(t)dt are strictly

positive and inequality (4.39) implies that∫ ∞

0

B(t)dt < ∞, and

∫ ∞

0

C(t)dt < ∞.

Again, by Corollary 1, ρ11 and T 1 are almost surely decreasing and ρ01 and T 0 increasing, therefore ρ11 − ρ01
and T 1 − T 0 are almost surely decreasing and the above inequalities imply

∥ρ11,t − ρ01,t∥22 −→
t→∞

0, and ∥T 1
t − T 0

t ∥22 −→
t→∞

0.

For the proof in the (Neumann ; Robin) regime, one proceeds in the same way, but decomposing the difference
between ρ̂1 and ρ̂0 on the basis (Vk)k≥1 and using conditions (H2).

Now, we are able to prove Theorem 6.

Proof of Theorem 6. Again, we focus on the (Dirichlet ; Robin) regime and the proof is the same for all the
others. As said before, it is enough to prove uniqueness of a solution of

D∆ρ1 + F1(ρ1, T,R) = 0, ρ1|Γ− = b1(.), ∂e1ρ1(t, .)|Γ+ = 1
D (b1 − ρ1)|Γ+

D∆T +H(ρ1, T,R) = 0, T|Γ− = b1(.) + b3(.), ∂e1T (t, .)|Γ+ = 1
D (b1 + b3 − ρ1 − ρ3)|Γ+

D∆R+ J(R) = 0, R|Γ− = 1− b2(.)− b3(.), ∂e1R(t, .)|Γ+ = 1
D (ρ2 + ρ3 − b1 − b3)|Γ+ .

(4.40)

(i) Existence: For n ∈ N, define

U0
n = {u ∈ B, ρ01(n, .) ≤ ρ01(n+ 1, .), T 0(n, .) ≤ T 0(n+ 1, .), R0(n, .) ≤ R0(n+ 1, .)} (4.41)

and

U1
n = {u ∈ B, ρ11(n, .) ≤ ρ11(n+ 1, .), T 1(n, .) ≤ T 1(n+ 1, .), R1(n, .) ≤ R1(n+ 1, .)}. (4.42)

By Corollary 1, the above sets are almost sure and so is U := ∩
n≥0

(U0
n ∩ U1

n). On U , the sequence of

profiles {ρ̂1(n, .), n ≥ 1} (resp.{ρ̂0(n, .), n ≥ 1}) decreases (resp. increases) to a limit that we denote by
ρ̂+(.) = (ρ+1 (.), T

+(.), R+(.)) (resp. ρ̂−(.) = (ρ−1 (.), T
−(.), R−(.))). By Lemma 4, ρ̂+ = ρ̂− everywhere

on U so almost surely on B . Denote this profile by ρ and consider ρ(t, .) the solution to (4.40) with

initial condition ρ. Since for all t ≥ 0, ρ̂0(t, .) ≤ ρ(.) ≤ ρ̂1(t, .) almost surely, by Lemma 3 we have

that for every s, t ≥ 0, ρ̂0(t + s, .) ≤ ρ(s, .) ≤ ρ̂1(t + s, .) almost surely and letting t → ∞ we get that
ρ(s, .) = ρ(.) for all s so ρ is a solution of (4.40).
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(ii) Uniqueness: Note that by Lemma 3 and Corollary 1, for any profiles ρ̂a = (ρa1 , T
a, Ra) and ρ̂b =

(ρb1, T
b, Rb) satisfying (4.5) with any initial condition, for every t > 0∫

B

(∣∣ρa1(t, u)− ρb1(t, u)|+
∣∣T a(t, u)− T b(t, u)|+

∣∣Ra(t, u)−Rb(t, u)|
)
du

≤
∫
B

(∣∣ρ11(t, u)− ρ01(t, u)|+
∣∣T 1(t, u)− T 0(t, u)|+

∣∣R1(t, u)−R0(t, u)|
)
du.

(4.43)

Applying (4.43) to two stationary solutions and using Lemma 4, one gets uniqueness.

As said before, existence and uniqueness of a solution ρ of (4.40) yields existence and uniqueness of the
stationary solution of (2.23). Similarly, the proof of (4.7) comes from the fact that∫

B

(
|ρ1(t, u)− ρ1(u)|+ |T (t, u)− T (u)|+ |R(t, u)−R(u)|

)
du

≤
∫
B

(∣∣ρ11(t, u)− ρ01(t, u)|+
∣∣T 1(t, u)− T 0(t, u)|+

∣∣R1(t, u)−R0(t, u)|
)
du

(4.44)

where again, we applied (4.43) and the fact that the right-hand side term converges to 0.

A Change of variable formulas

The following change of variable formulas have been established in [20, Section 5.2]. Recall that for i, j ∈
{0, 1, 2, 3} and x, y ∈ BN , vj(x/N) = log(αj(x/N)), and

Rx,y
i,j (α̂) = exp

((
vj(y/N)− vj(x/N)

)
−
(
vi(y/N)− vi(x/N)

))
− 1.

Note that Rx,y
i,j (α̂) = O(N−1). Consider f : Σ̂N → R and x, y ∈ BN .

(i) For (i, j) ∈ {0, 1, 2, 3}2 such that i ̸= j,∫
Σ̂N

ηi(x)ηj(y)f(ξ
x,y, ωx,y)dνNα̂ (ξ, ω) =

∫
Σ̂N

ηj(x)ηi(y)(R
x,y
i,j (α̂) + 1)f(ξ, ω)dνNα̂ (ξ, ω). (A.1)

(ii) For (i, j) ∈ {0, 1, 2, 3}2 such that i ̸= j,∫
ηi(x)bj(x/N)f(ξ, ω)dνNα̂ (ξ, ω) =

∫
ηj(x)bi(x/N)f(σi,x(ξ, ω))dν

N
α̂ (ξ, ω), (A.2)

To prove both points, we use the explicit expression of νNα̂ . Let us give the details for (ii). Take (i, j) ∈
{0, 1, 2, 3}2 with i ̸= j, then,∫

ηi(x)bj(x/N)f(ξ, ω)dνNα̂ (ξ, ω) =

∫
(ξ,ω), ηi(x)=1

bj(x/N)f(σi,x(ξ, ω))dν
N
α̂ (ξ, ω)

=

∫
(ξ̌,ω̌)∈Σ̂N−1

bj(x/N)f(σi,x(ξ, ω))
bi(x/N)

b0(x/N)
dνN−1

α̂ (ξ̌, ω̌)

=

∫
ηj(x)bi(x/N)f(σi,x(ξ, ω))dν

N
α̂ (ξ, ω),

because
bj(x/N)

b0(x/N)
νN−1
α̂ (ξ̌, ω̌) = νNα̂

{
ηj(x) = 1, (ξ, ω)|BN\{x} = (ξ̌, ω̌)

}
.
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(a)
(
ρ1, ρ1 + ρ3, 1− ρ2 − ρ3

)
(T, .), solution of (B.1)

with initial condition (0, 0, 0).
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rho_1+rho_3
1-rho_2-rho_3

(b)
(
ρ1, ρ1 + ρ3, 1− ρ2 − ρ3

)
(T, .), solution of (B.1)

with initial condition (1, 1, 1).

Figure 2: T = 100, λ1 = 0.75, λ2 = 0.25. Conditions (H1) are satisfied.

B Simulations

The hydrodynamic equations with Neumann boundary conditions ∂tρ̂ = D∆ρ̂+ F̂ (ρ̂) in B × (0, T ),

∂e1 ρ̂(t, .)|Γ = 0 for 0 < t ≤ T,

(B.1)

have been simulated in dimension 1 with B = [0, 1]. For that, we used an Euler explicit scheme and chose
the following parameters:

• Time horizon: T=100

• Time subdivision: δT = 5.105

• Space subdivision: δx = 100

• r = 1 and D = 1.

In Figures 2 and 3, the x axis corresponds to the one dimensional space B = [0, 1] and the y axis is the space
of values of the density profiles ρ1, ρ1 + ρ3, 1− (ρ2 + ρ3).

In the first simulation, we took λ1 = 0.75 and λ2 = 0.25, so the conditions (H1) are satisfied. In Figure 2a
we presented the solution of (B.1) at time T = 100, with initial condition (ρ1, ρ1+ρ3, 1−ρ2−ρ3)(0, .) = (0, 0, 0)
and in Figure 2b the solution of (B.1) at time T = 100, with initial condition (ρ1, ρ1 + ρ3, 1− ρ2 − ρ3)(0, .) =
(1, 1, 1) . As expected (see Theorem 6), both profiles in Figure 2 coincide.

In the second simulation, we took λ1 = 1 and λ2 = 0.75, so the conditions (H1) are not satisfied.
In Figure 3a we presented the solution of (B.1) at time T = 100, with initial condition (ρ1, ρ1 + ρ3, 1 −
ρ2 − ρ3)(0, .) = (0, 0, 0) and in Figure 3b the solution of (B.1) at time T = 100, with initial condition
(ρ1, ρ1 + ρ3, 1 − ρ2 − ρ3)(0, .) = (1, 1, 1) . The profiles in Figure 2a and 2b do not coincide, which proves,
numerically that conditions on the parameters are needed for both these limiting profiles to coincide.
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Figure 3: T = 100, λ1 = 1, λ2 = 0.75. Conditions (H1) are not satisfied.
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