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† Institut Élie Cartan de Lorraine, UMR 7502, Université de Lorraine, B.P. 70239, 54506
Vandoeuvre-lès-Nancy Cedex, France and Systems Research Institute of the Polish Academy
of Sciences, ul. Newelska 6, 01-447 Warszawa, Poland and Department of Scientific Comput-
ing, Informatics Center, Federal University of Paraıba, Brazil (e-mail: jan.sokolowski@univ-
lorraine.fr)

1



6 A priori estimates. Proof of Theorems 3.5 34
6.1 Commutators and connections . . . . . . . . . . . . . . . . . . . 35

6.1.1 Commutators . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.2 Relation between ∇s and ∂s. Estimates of πi. . . . . . . . 37

6.2 Main integral identity. . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Estimates of reminders Ni . . . . . . . . . . . . . . . . . . . . . . 45

6.3.1 Estimates of N1 and N2. . . . . . . . . . . . . . . . . . . . 45
6.3.2 Estimates of N3 and N4 . . . . . . . . . . . . . . . . . . . 47

6.4 Proof of Theorem 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Proof of Theorem 3.6 52

A Proof of Lemmas 2.1, 2.2, and Corollary 2.4 54

B Sobolev spaces 56
B.1 Anisotropic spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.2 Proof of Lemma 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . 58

C Proof of Lemma 4.3 62

D Proof of Lemma 4.5 64
D.1 Proof of estimate (4.24) for Am. . . . . . . . . . . . . . . . . . . 64
D.2 The proof of estimate (4.25) for Cm−1. . . . . . . . . . . . . . . 66
D.3 The proof of estimate (4.26) for Bm−1 and Dm−1 . . . . . . . . . 67

E Proof of Lemma 6.3 69

1 Introduction

This paper is devoted to applications of the theory of geometric flows to shape
optimization problems. The beginning of the modern mathematical theory of
shape optimization was laid in monographs [21], and [7]. In the monographs, it
was first singled out as an independent scientific discipline. At present, the the-
ory of shape optimization includes a large number of various applied problems.

In this paper we deal with basic 2D shape optimization problem which ad-
mits the following formulation. Fix an arbitrary bounded simply connected
domain Ω ⊂ R2. It is supposed to contain the inclusion Ωi such that Ωi ⊂ Ω.
The shape of the inclusion is unknown and must be determined together with
the solution of the problem. Let a Jordan curve Γ be the boundary of Ω. In this
setting the interface Γ split Ω into the inclusion Ωi and the curvilinear annulus
Ωe \ Ωi. Finally, fix an arbitrary constant a0 > 0 and set

a(x) = a0 in Ωi, a = 1 in Ωi. (1.1)

As a basic example, we consider the single measurement identification problem
arising in the electrical impedance tomography, [3]. Electrical impedance to-
mography is used in medical imaging to reconstruct the electric conductivity of
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a part of the body from measurements of currents and voltages at the surface.
The problem can be formulated as follows

For given g, h : ∂Ω → R satisfying the condition

g ∈ L2(∂Ω), h ∈W 1/2,2(∂Ω),

∫
∂Ω

g ds = 0 (1.2)

it is necessary to find Γ and an electric potential u : Ω → R satisfying the
equations

div (a∇u) = 0 in Ω, a∇u · ν = g, u = h on ∂Ω,

where ν is the outward normal vector to ∂Ω. More generally, the problem
of identification is to determine the shape of an inclusion by the additional
boundary condition. This inverse problem is ill-posed and in general case has no
solution. Its approximate solution can be found by using the shape optimization
approach. Thus we come to the following variational problem. Denote by
v, w : Ω → R the solutions to boundary value problems

div a∇v = 0 div a∇w = 0 in Ω, (1.3)

a∇v · ν = g w = h on ∂Ω, (1.4)∫
∂Ω

v dx = 0 . (1.5)

Next, define a positive objective function that vanishes if and only if v = w =: u.
The most successful choice of the objective functional is the Kohn-Vogelius
energy functional, which is given by the formula, [10],

J(Γ) =

∫
Ω

a∇(v − w) · ∇(v − w) dx. (1.6)

Note that for fixed h and g, it depends only on Γ.
Unfortunately, shape optimization problems as stated with no additional

geometric constrains are ill-posed, see [17], [22] for examples. The reason is
that microstructures tend to form, which are associated with a weak converges
of the characteristic functions along a minimizing sequence Ωm

i , m ≥ 1. Indeed,
in the absence of strong compactness of the minimizing sequences of designs,
the optimal state should be attained by a fine mixture of different phases.

The widely used the method to cope with these difficulties is to penalize the
shape perimeter by adding a regularizing term to the objective functional:

ϵp L+ J (1.7)

Here L is the perimeter of Ωi, ϵp > 0 is the regularization parameter. If Γ = ∂Ωi

is a regular curve, then L is the length of Γ.This penalization was proposed in
[5] by analogy with the Mumford-Shah functional, [15], in the theory of image
segmentation processes. The stronger regularization may be obtained if we
impose constrains on the curvatures of Γ. This approach also was motivated by
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the theory of image processing, [16]. The only possible geometrically invariant
penalization functional depending on curvatures is the 1-dimensional Willmore
functional (Euler elastica) defined by the equality

Ee(Γ) =
1

2

∫
Γ

|k|2 ds, (1.8)

where k is the curvature vector of Γ. Therefore, we can define the strong regu-
larization of an objective function as follows

E + J, where E = ϵe Ee + ϵp L. (1.9)

Here ϵj are some positive constants. Note that the penalization term can be
interpreted as the cost of structure manufacturing. Hence ϵj are not necessary
to be small. Without loss of generality we will assume that ϵi = 1, which leads
to the following expression for E

E =

∫
Γ

( 1
2
|k|2 + 1

)
ds = Ee + L. (1.10)

The most important question of the theory is the construction of a robust al-
gorithm for the numerical study of shape optimization problems. The standard
approach is to use the steepest descent method based on the shape calculus
developed by Sokolowski and Zolesio (1992), [21]. See also Delfour and Zolesio
(2001), [7], and references therein. The shape calculus works for inclusions Ωi

with the regular boundary Γ = ∂Ωi. In this setting, the objective function J is
considered as a functional defined on the totality of smooth curves Γ. This as-
sumption is natural from the practical point of view. Without loss of generality
we may restrict our considerations by the class of twice differentiable immer-
sions (parametrized curves) f : S1 → R2 with Γ = f(S1) diffreomorphic to the
circle S1. In this framework, we will use the denotation J(f) along with the
denotation J(Γ). The main goal of the shape calculus is to develop the method
of differentiation of objective functions with respect to shapes of geometrical
objects.

The shape derivative of an objective function is defined as follows. Choose
an arbitrary vector field X : Sd−1 → Rd and consider the immersion

f t(θ) = f(θ) + tX(θ), t ∈ (−1, 1), θ ∈ Sd−1.

The curves Γt = f t(S1), t ∈ (−1, 1), determine 1-parametric family of pertur-
bations of Γ. The shape derivative J̇ of J in the direction X is defined by the
equality

J̇(Γ) [X] =
d

dt
J(Γt)

∣∣∣
t=0

. (1.11)

If it admits the Hadamard representation

J̇(Γ) [X] =

∫
Γ

ϕn ·X ds, ϕ ∈ L1(Γ), (1.12)
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where n is the inward normal to Γ = ∂Ωi, then the vector field

dJ(θ) := ϕ(θ)n(θ), θ ∈ S1, (1.13)

is said to be the gradient of J at the point f .
For the transmission single measurement identification problem, the gradient

dJ of the Kohn-Vogelius objective function (1.6) is defined by the equality, see
[3],

dJ = 2
(
a∂nv

[
∂nv

]
− a∂nw

[
∂nw

]
)n−

[
a∇v · ∇v − a∇w · ∇w

]
n, (1.14)

where v, w are solutions to problem (1.4),
[
·
]
denotes the jump across Γ.

The similar definition holds for the geometric energy functional E (see Lemma
3.3 in Section 3). Note that that the shape gradient can be regarded as a normal
vector field on Γ.

If f is sufficiently smooth, for example f ∈ C2+α, then the mapping f +
δ dJ (f) defines an immersion of S1 into R2 for all sufficiently small δ > 0. In
the steepest descent method, the optimal immersion f and the corresponding
shape Γ = f(S1) are determined as a limit of the sequence of immersions

fn+1 = fn − δ
(
dE(fn) + dJ(fn)

)
, n ≥ 0, (1.15)

and the corresponding sequence of curves Γn = fn(S1). Here the energy E is
defined by (1.10), δ is a fixed positive number, usually small, f0 is an arbi-
trary admissible initial shape. Relation (1.15) can be considered as the time
discretization of the Cauchy problem

∂tf(t) = −
(
dE(f(t)) + dJk(f(t))

)
, f(0) = f0. (1.16)

Note that here t is an artificial quasi-time related to the steepest descent method.
Since E(f(t)) + J(f(t)) is a decreasing function of t, a solution to problem

(1.16) can be considered as an approximate solution to the penalized variational
problem

min
(
E + J

)
Hence the existence of a solution to Cauchy problem (1.16) guarantees the well-
posedness of the steepest descent method. In its turn, the existence of the
limit lim

t→∞
f(t) guarantees the convergence of the method. Hence the task is

to investigate the well posedness of Cauchy problem (1.16). The main goal of
this paper is the proof of the existence of global smooth solution to the Cauchy
problem (1.16) for an arbitrary smooth initial data, see Section 3. The paper is
organized as follows.
In Section 2, we give basic definition and characterize the elementary properties
of curves with finite elastic energy. We also collect the basic facts from the
theory of Sobolev spaces, which will be used throughout the paper.
In Section 3 we formulate the main result on existence of global solution to
Cauchy problem (1.16). We give the outline of the proof and formulate the
main a priori estimates of solutions. Furthermore, we consider in details the
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dependence of smoothness of the gradient dJ on the curvature of the interface
Γ. In Section 5, we give the proof of main estimates for the gradient of Kohn-
Vogelius functional. In Sections 6 and 7, we give the proof of a priori estimates
for the gradient flow of penalized Kohn-Vogelius functional. In Appendix, we
collect auxiliary results which are used throughout of the paper.

2 Preliminaries

In this section we collect the basic facts on the theory of planar curves and the
theory of Sobolev spaces on the real axis.

2.1 Geometric lemmata

Further we will consider special class of immersions f : S1 → R2 satisfying the
conditions ∫

Γ

(1
2
|k|2 + 1

)
ds ≤ E0, Γ = f(S1). (2.1)

Our consideration are based on the following elementary lemmas on the proper-
ties of such immersions. The first gives the double-side estimates for the length
L in terms of the energy bound E0.

Lemma 2.1. The estimate
2

E0
≤ L ≤ E0, (2.2)

hods true for every curve Γ satisfying condition (2.1).

Proof. The proof is given in Appendix A.

The second lemma provides the local graph representation of planar curves
with square integrable curvature. Let us consider the following construction.

Choose an arbitrary immersion satisfying condition (2.1). Let z = f(θz) ∈ Γ
be an arbitrary point. Fix arc-length coordinate s such that

s(z) = 0 and − L/2 ≤ s < L/2.

For every 0 < κ < L/2, denote by Γκ the arc

x = f(s), −κ < s < κ.

Next, introduce the Cartesian coordinates (x1, x2) with origin at z such
the axis of abscissa is directed along the tangent vector τ(θz) and the axis of
ordinate is directed along the normal vector n(θz). The consequent results do
not depend on the choice of z. Now our task is to show that the curve Γ locally
can be represented as a graph of C1+α function in a neighborhood of z.

6



Lemma 2.2. Under the above assumptions, there exist positive numbers κ, α,
β, and c, depending only on the constant E0 in (2.1),and the function η ∈
C1(−α, β), η(0) = 0, with the following properties

0 < c−1 ≤ κ, α, β ≤ c <∞,

∥η′∥C(−alpha,β) ≤ 1/6, ∥η′′∥L2(−α,β) ≤ c∥k∥L2(Γ3κ).
(2.3)

Here η′(x1) = ∂x1
η(x1). Moreover, the mapping x1 → (x1, η(x1)) defines C1-

parametrization of the arc Γ3κ and takes diffeomorphically the interval (−α, β)
onto this arc.

Proof. The proof is given in Appendix A.

Lemma 2.2 gives the simple criterium of the absence of self intersections of
curves Γ satisfying the energy condition (2.1).

Corollary 2.3. Let an immersion f : S1 → R2 meets all requirements of Lemma
2.2. Furthermore assume that there is ν > 0 with the property

dist (Γ \ Γ3κ, Γ2κ) ≥ ν. (2.4)

Then Γ has no self-intersections. Conversely, if Γ has no self-intersections,
then inequality (3.10) holds for some ν > 0.

Proof. The corollary is an obvious consequence of Lemma 2.2.

The second corollary extends the previous results to the case of families of
immersions with finite elastic energy. Let us consider a family of immersions
f(t, ·) : S1 → R2, t ∈ [0, T ]. Every immersion f(t, ·), satisfying condition (2.1),
defines L(t)- periodic function of the arc-length variable s,

f(t, s) = f(t, θ(s)).

Note that the periods L(t) are uniformly bounded from below and above by
the constants 2/E0 and E0. Moreover, the functions ∂2sf(s, t) are uniformly
bounded in L2(−L(t)/2,L(t)/2). It follows that the set of the mappings f(t, ·),
t ∈ [0, T ], satisfying (2.1), is relatively compact in C1(R).

Assume that a family of immersions f(t), t ∈ [0, T ], satisfies the following
conditions

G.1 The curves Γ(t) = f(t,S1) have no self-intersections.

G.2 The immersions f(t) satisfy energy condition (2.1) with the constant E0

independent of t.

G.3 The set of the mappings f(t, ·), t ∈ [0, T ] is compact in the space C(S1,R2).

It follows from Lemma 2.2 that for every f(t, θ), t ∈ (0, T ), there is κ ∈
(0, 2/E0) which meets all requirements of this lemma and is independent of t.
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Corollary 2.4. Let a family of immersions f(t, ·) : S1 → R2 satisfies conditions
G.1- G.3. Then there is ν > 0 such that

dist (Γ(t) \ Γ3κ(t), Γ2κ(t)) ≥ ν (2.5)

for all t ∈ [0, T ] and for all arcs Γ3κ(t) given by Lemma 2.2.

Proof. The proof is given in Appendix A

2.2 Functional spaces

Sobolev spaces of periodic functions. For every integer r ≥ 0, denote by
Hr

♯ , the Sobolev space of all L -periodic mappings with the finite norm

∥f∥2Hr
♯
=

∫ L

0

(|f |2 + |∂rsf |2) ds. (2.6)

For real r ≥ 0, the space Hr
♯ is defined by the interpolation. Note that the

equivalent norm in Hr
♯ may be defined by the equality

∥f∥2Hr
♯
=
∑
m∈Z

(1 + |m|2)|fm|2,

where the Fourier coefficients

fm =
1√
L

∫ L

0

e−
2π
L mi f(s) ds.

If Γ is a rectifiable Jordan curve of the length L, then the curvature of Γ, the
gradient of Kohn-Vogelius functional, tangent and normal vectors of Γ can be
regarded as L-periodic functions of the arc-length variable s. By this reason,
we will use the parallel denotations for Hr

♯ :

Hr
♯ =W r,2

♯ = Hr(Γ) =W r,2(Γ). (2.7)

Remark 2.5. In Sections 3, 6, and 7, we will consider one-parametric families
of curves Γ(t), t ∈ (0, T ), with the lengths uniformly bounded from above and
uniformly separated from 0. In this case the Sobolev spaces of periodic functions
depend on the temporal variable t and should be denoted by Hr

♯ (t). By abuse of
notation, further we omit the symbol t and will write Hr

♯ instead of Hr
♯ (t).

Inequalities Further, we will use the simplest one-dimensional versions of
the Sobolev, interpolation, and Gagliardo-Nirenberg inequalities. The first is
the embedding inequality

∥f∥L∞(0,L) ≤ c∥f∥Hσ
♯

for all σ > 1/2; (2.8)

the second is the standard interpolation inequality

∥f∥Hϱ
♯
≤ c ∥f∥1−

ϱ
r

L2(0,L) ∥f∥
ϱ
r

Hr
♯

for all 0 ≤ ϱ ≤ r; (2.9)
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and the third is the Gagliardo-Nirenberg inequality, [18],

∥∂ϱs f∥
L

2r
ϱ (0,L)

≤ c ∥f∥1−
ϱ
r

L∞(0,L) ∥f∥
ϱ
r

Hr
♯

for all 0 < ϱ ≤ r. (2.10)

We also will use the Moser inequality

∥u v∥Hr
♯
≤ c∥u∥L∞(0,L) ∥v∥Hr

♯
+ c∥v∥L∞(0,L) ∥u∥Hr

♯
, 0 ≤ r <∞. (2.11)

Here the constant c depends only on L and the exponents σ, ϱ, r.

Sobolev spaces on real line. For every integer r ≥ 0, denote by Hr(R), the
Sobolev space of mappings f : R → R with the finite norm

∥f∥2Hr(R =

∫
R
(|f |2 + |∂rsf |2) ds. (2.12)

For real r ≥ 0, the norm in Hr(R) may be defined by the equality

∥f∥2Hr(R) =

∫
R
(1 + |ξ|2)r|f̂(ξ)|2 dξ,

where the Fourier transform

f̂(ξ) =
1√
2π

∫
R
e−sξ i f(s) ds.

We also will use the denotation

Hr(R) =W r,2(R).

3 Results

3.1 Estimates of Kohn-Vogelus functional

The existence of smooth solutions to the gradient flows equations for shape op-
timization problems guarantees that the steepest descent method is well defined
and give the robust algorithm for numeric calculations of an optimal shape. In
this section we give outline of main ideas of the proofs of existence and smooth-
ness results for the gradient flows in the shape optimization theory. In order to
be clear, we restrict our considerations to the single measurement identification
problem for the Kohn-Vogelius functional. Recall the formulation of this prob-
lem given in Section 1. Let simply connected bounded ”hold all” domain Ω ⊂ R2

contains an inclusion Ωi ⊂ Ω bounded by a Jordan curve Γ. The interface Γ
splits Ω into the simply connected inclusion Ωi and two-connected curvilinear
annulus Ωe = Ω \ Ωi. Define the conductivity coefficient a by the relations

a = 1 in Ωe, a = a0 = const. > 0 in Ωi. (3.1)
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Finally, choose an arbitrary function g, h : ∂Ω → R satisfying the conditions

h ∈W 1/2,2(∂Ω), g ∈ L2(Ω),

∫
∂Ω

g ds = 0. (3.2)

The Kohn-Vogelius energy functional is defined as follows, [10]

J(Ωi) =

∫
Ω

a∇(v − w) · ∇(v − w) dx. (3.3)

Here v, w : Ω → R satisfy the equations and boundary conditions

div a∇v = 0 div a∇w = 0 in Ω,

a∇v · n = g w = h on ∂Ω, (3.4)∫
∂Ω

v dx = 0 . (3.5)

Under the above assumptions, boundary value problem (3.4) has the only weak
solution v, w ∈W 1,2(Ω) satisfying the orthogonality condition

∥v∥W 1,2(Ω) ≤ c∥g∥L2(∂Ω), ∥w∥W 1,2(Ω) ≤ c∥h∥W 1/2,2(∂Ω). (3.6)

Here c depends only on Ω and the constant a0 in the definition (3.1) of a. Hence
the Kohn-Vogelius functional is well defined as a function of Ωi or equivalently
of Γ.

Assume, in addition, that the data have additional smoothness properties

∂Ω,Γ ∈ C2+α, h ∈ C2+α(∂Ω), g ∈ C1+α(∂Ω)), α ∈ (0, 1). (3.7)

Denote by v−, w+ the restrictions of v, w on Ωe and by v+, w+ the restrictions
of v, w on Ωi. It follows from the Schauder estimates for solutions to elliptic
equations that v−, w− ∈ C2+α(Ωe) and v

+, w+ ∈ C2+α(Ωi). For every function
Φ with Φ− and Φ+ continuous in Ωe and Ωi, the denotation

[
Φ
]
, stands for the

jump of Φ across Γ,[
Φ
]
(x) = lim

Ωe∋y→x
Φ−(y)− lim

Ωi∋y→x
Φ+(y) for all x ∈ Γ.

For strong solutions to transmission problem (3.4) we have[
a∂nv

]
≡
[
a∇v

]
· n = 0,

[
a∂nw

]
≡
[
a∇w

]
· n = 0,

[
v
]
=
[
w
]
= 0. (3.8)

With this notation the gradient dJ of the Kohn-Vogelius objective function (1.6)
is defined as follows, see [3],

dJ = 2
(
a∂nv

[
∂nv

]
− a∂nw

[
∂nw

]
)n−

[
a∇v · ∇v − a∇w · ∇w

]
n, (3.9)
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3.1.1 Estimates of dJ

In this section we consider in details the gradient dJ of the Kohn-Vogelius
functional. Our goal is to derive the estimates of dJ in the Sobolev spaces
Hr

♯ in terms of the geometric characteristics of the interface Γ. By virtue of

representation (3.9), the normal vector field dJ : Γ → R2 is the quadratic
form of the derivatives of solutions v, w to boundary value problem (3.4) First
we derive the estimates for a general transmission problem. Assume that the
interface Γ satisfies the following conditions

H.1 The Jordan curve Γ ⊂ Ω satisfies the energy condition

1

2

∫
Γ

|k2|ds+ L ≤ E0.

H.2 There is ν > 0 with the property

dist (Γ \ Γ3κ, Γ2κ) ≥ ν, (3.10)

for every arcΓ3κ with κ, defined by Lemma 2.2

H.3 There is ρ > 0 such that dist (Γ, ∂Ω) > ρ.

By virtue of Corollary 2.4, every curve Γ satisfying Conditions H.1- H.3 is a
Jordan curve of the class C1+α, 0 < α < 1/2. It splits the domain Ω into
two parts. The first Ωi ⋐ Ω (inclusion) is a simply connected domain with
boundary Γ. The second is the curvilinear annulus Ωe = Ω \ Ωi bounded by
Γ and ∂Ω. For simplicity, we will assume that ∂Ω is a Jordan curve of the
class C∞. We adopt the convention that Γ has the positive orientation. This
means that the point z(s) goes along Γ in the counter-clockwise direction while
s increases. In its turn, the tangent vector τ and the normal vector n form the
moving orthonormal frame with the positive orientation. This means that n is
inward normal vector to ∂Ωi = Γ.

Next, introduce the piece-wise constant function a : Ω → R+ (conductivity)
defined by the equalities

a = 1 in Ωe, a = a0 in Ωi. (3.11)

Model transmission problem Let w ∈ W 1,2(Ω) be a weak solution to the
equation

div (a∇w) = 0 in Ω.

We do not impose boundary conditions on w. Denote by w− and w+ the
restrictions of w onto subdomains Ωe and Ωi,

w− := w in Ωe, w+ := w in Ωi.

If Γ is sufficiently smooth, then w is continuous on Γ. In other words, w− = w+

on Γ. However, the normal derivative of w has a jump across Γ. Next set

∂nw
− = ∇w− · n, ∂nw

+ = ∇w+ · n on Γ.
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Our task is to estimate ∂nw
± via the curvature of Γ. The following theorem on

the estimates of ∂nw
± is the first main result of this section. Recall definition

(2.7) of the Sobolev spaces Hr
♯ = Hr(Γ) of periodic functions.

Theorem 3.1. Under the above assumptions, the estimate

∥∂nw±∥
H

m+1/2
♯

≤ c ( 1 + ∥∂ms k∥L2(Γ) ) ∥w∥W 1,2(Ω) (3.12)

holds for every integer m ≥ 0. Here c depends only on m and on the constants
E0, ν, ρ in Conditions H.1-H.3.

Estimates of dJ . Note that the solutions v, w to problems (3.4) meet al
requirements of Theorem 3.1 and admit the estimates

∥v∥W 1,2(Ω) + ∥w∥W 1,2(Ω) ≤ c(g, h)

This result along with representation (3.9) and the multiplicative estimates in
Sobolev spaces leads to the following theorem, which is the second main result
of this section.

Theorem 3.2. Assume that a curve Γ satisfies conditions H.1-H.3 and k ∈
Hr

♯ ,for some integer r ≥ 1. Then for every β ∈ [0, 1/2), there is a constant c,
depending on r, β, and constants E0, ν, ρ in conditions H.1-H.3, the gradient
dJ(s) of the Kohn-Vogelius functional admits the estimate

∥dJ∥Hr+β ≤ c(1 + ∥k∥Hr
♯
). (3.13)

In particular, we have

∥∂rsdJ∥Lq(0,L) ≤ c(1 + ∥k∥Hr
♯
). (3.14)

for every q ∈ [1,∞). In this case the constant c depends in addition on q.

3.2 Gradient flow. Existence theory

3.2.1 Problem formulation

The standard formulation of the geometric flow equations deals with immersions
(parametrized curves). Further we will assume that the interface Γ admits the
representation Γ = f(S1), where the immersion f : S1 → R2 is unknown and
should be defined along with the solution to the gradient flow problem (1.16).
Note that f is a 2π periodic function of the angle variable θ ∈ R/2πZ. The
element of the length of Γ equals

ds =
√
g(θ) dθ, g = |∂θf |2,

where g is the only nontrivial coefficient of the first fundamental form of the
curve Γ. In this setting, the derivative with respect to the arc-length variable s

∂s =
1

√
g(θ)

∂θ

12



becomes the nonlinear differential operator depending on f .
Hereinafter we assume that the point f(θ) is going around Γ in the positive

counterclockwise direction while the parameter θ increases. The tangent vector

τ(θ) = ∂sf(θ) := |∂θf |−1 ∂θf(θ),

and the normal vector

n(θ) = τ⊥(θ) = (−τ2, τ1),

form the positive oriented moving frame on Γ. Notice that n is the unit inward
normal vector to ∂Ωi = Γ. The curvature vector k is defined by the equalities

k(θ) = ∂sτ(θ) = ∂2sf(θ). (3.15)

Notice that the curvature vector field k is orthogonal to τ and is directed along
the normal vector n.

The Euler elastic energy Ee and the perimeter L are defined by the equalities

Ee =
∫
Γ

k2

2
ds, L =

∫
Γ

ds =

∫ 2π

0

√
g dθ (3.16)

We take the penalization energy in the form

E = Ee + L =

∫
Γ

( k2
2

+ 1
)
ds, (3.17)

The gradient of E is given by the following lemma.

Lemma 3.3. Under the above assumptions, we have

dE(f) = ∇s∇s k +
1

2
|k|2 k, dL = −k, (3.18)

dE(f) = ∇s∇s k +
1

2
|k|2 k − k. (3.19)

Here the connection ∇s for every vector field Φ : Γ → R2, is defined by the
equality

∇s Φ = ∂sΦ− (∂sΦ · τ) τ. (3.20)

Identities (3.19) are classic (see for instance [8]). They are very particular
case of the 3D Willmore variation formula.

We are now in a position to specify the gradient flow equation

∂tf + dE + dJ = 0, f(0) = f0. (3.21)

for the penalized Kohn-Vogelius functional. Applying Lemma 3.3 we can rewrite
equation (3.21) in the form

∂tf + ∇s∇s k +
1

2
|k|2 k − k + dJ = 0 for t > 0, f(0) = f0. (3.22)

The gradient dJ is defined by relation (3.9) and can be regarded as nonlinear
nonlocal operator acting on Γ. Hence (3.22) is a nonlinear operator equation.
It may be considered as a nonlocal perturbation of the elastic flow.
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3.2.2 Existence theorem

In this subsection we prove the main theorem on the existence of global smooth
solution to problem (3.22). Assume that the initial data satisfy the following
conditions:

I.1 The even integer number m ≥ 10

I.2 The initial curve Γ0 = f0(S1) satisfies conditions H.1-H.3 of Theorem
3.1.

I.3 There is a constant Em such that∫
Γ0

|∂rsk0|2 ds ≤ Em for all 0 ≤ r ≤ m. (3.23)

I.4 The length element
√
g0 = |∂θf0| satisfies the condition

∥√g0∥Cm−5(S1) ≤ cg <∞.. (3.24)

Theorem 3.4. Assume that the initial data satisfy Conditions I.1-I.4. Then
there is a maximal T ∈ (0,∞] with the following properties. For every ε > 0,
problem (3.22) has a solution such that

f ∈ C(0, T ′;Cm−5(S1)), ∂tf ∈ C(0, T ′;Cm−9(S1)) for every 0 < T ′ < T.
(3.25)

Moreover, the Jordan curves Γ(t) = f(t, S1), t ∈ [0, T ), are separated from ∂Ω
and have no self-intersections. If T <∞, then there is a sequence f(tj), tj → T
as j → ∞, such that dist (Γ(tj), ∂Ω) → 0 , or (and) f(tj) converge in C1(S1)
as j → ∞ to some immersion f∞ such that f∞ has a self-intersection.

The proof is standard and consists of three steps. The first is the proof of
the local solvability of problem (3.22) on the small time intervals. The second
most important step is the proof of the global a priori estimates for smooth
solutions to problem (3.22) in Sobolev and Hölder classes. These estimates and
the extension method entail the existence of smooth solution which meets all
requirements of Theorem 3.4.

A detailed proof of short-time existence is outside of the scope of this paper.
Note that equation (3.22) is a degenerate parabolic equation with added low
order operator dJ . In our case the local existence result can be obtained as
writing the flow as a graph over the initial date. In particular, the problem can
be reduced to a scalar parabolic equation for the distance function, [6]. See also
[8] and [11] for useful arguments.

Hence out main task is to derive global a priori estimates for solutions to
problem (3.22). This part of the proof is technical and lengthy. Our approach is
based on the estimates for Kohn-Vogelius functional given by Theorem 3.2 and
methods developed in [1], [8], and [12]. The results are given by the following two
theorems. The first constitutes the Sobolev a priori estimates for the curvature
k as a function of the arc-length variable s.
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Theorem 3.5. Let f : [0, T ]× S1 → R2 be a smooth solution to problem (3.22)
with initial data satisfying condition∫

Γ(0)

|∂ms k0|2ds ≤ Em <∞, E(0) ≤ E0 <∞, (3.26)

where m ≥ 6 is an even integer. Furthermore assume that there are two pos-
itive constants ν and ρ with the following properties. For every t ∈ [0, T ],
the curve Γ(t) satisfies Conditions H.1-H.3 with some fixed constant ν and
dist (Γ(t), ∂Ω) > ρ independent of t. Then there is a constant c, depending
only on E0, ν, ρ, T , and m, such that

sup
t∈[0,T ]

∥k(t)∥2Hm−2(t) +

∫ T

0

∥k(t)∥2Hm(t) dt ≤ cEm + c(1 + T ). (3.27)

Proof. The proof is given in Appendix 6.

The second theorem gives the a priori estimates for solutions to problem
(3.21) in the Hölder classes.

Theorem 3.6. Let a smooth solution to problem (3.21) meets all requirements
of Theorem 3.5 with even integer m ≥ 10. Furthermore assume that the initial
data satisfies conditions I.1-I.4 of Theorem 3.4. Then there is a constant c,
depending only on T , ν, ρ, m and the constants Em, cg in conditions I.1-I.4,
such that

∥f∥C(0,T ;Cm−5(S1)) + ∥f∥C1(0,T ;Cm−9(S1)) ≤ c. (3.28)

Proof. The proof is given in Section 7.

In order to complete the proof of Theorem 3.4 we use the extension method.
Without loss of generality we may assume that f0 ∈ C∞(S1). Hence the problem
has a C∞- solution f defined on some small interval (0, T ). By virtue of Theorem
3.6, this solution meets all requirements of Theorem 3.4 for every even m <∞.
Moreover, every immersion f(t), t ∈ [0, T ), satisfies conditions H.1-H.3 of
Theorem (3.2) with some constants ν(t) > 0 and ρ(t) > 0. Let (0, T ) be the
maximal interval of existence of such a solution. There are two possibilities

either lim inf
t→T

ν(t)ρ(t) > 0 or lim inf
t→T

ν(t)ρ(t) = 0.

Let us prove that T = ∞ in the first case. Assume contrary to our claim
that T < ∞. There is δ > 0 such that quantities ν(t) and ρ(t) are uniformly
separated from zero on the interval [T − δ, T ), i.e.,

ν(t) > ν > 0 ρ(t) > ρ > 0

for some ν and ρ. Hence f(t) meet all requirements of Theorem 3.6 on the
interval [T − δ, T ) with the initial data f(T − δ). It follows from this theorem
that

∥f(t)∥Cm−5(S1) + ∥∂tf(t)∥Cm−9(S1) ≤ c(m) for all t ∈ [T −∆, T ]
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Recall that here m ≥ 10 is an arbitrary even integer. Hence the immersions
f(t) converges in every space Cm(S1) to some immersion f∞ ∈ C∞(S1) which
obviously satisfies conditions H.1-H.4. The local existence theory implies the
existence of smooth solution to equation (3.21) with initial data f(T ) = f∞ for
some interval [T, T + δ). This contradict the maximality of T .

It remains to consider the case when T < ∞ and hence lim inf ν(t)ρ(t) = 0.
Obviously there exist a sequence tj such that

ν(tj)ρ(tj) → 0, tj → T as j → ∞

If ρ(tj) → 0 as tj → T , then dist (Γ(tj), ∂Ω) → 0 as tj → T and the assertion
follows. Let us consider the case

ν(tj) → 0, tj → T as j → ∞ (3.29)

Recall that the immersions x = f(t, s), s ∈ [0,L(t), are uniformly bounded in
C1+α[0,L(t)]. Moreover, the bound depends only on the constant E0. More-
over, by virtue of Lemma 2.1, the perimeters L(t) are uniformly bounded from
above and uniformly separated from 0. After passing to a subsequence we may
assume that the sequence L(tj) converges to some positive L∞ as tj → T . The
immersions f(tj , s converges in C1 norm to an immersion f∞(s) on the every
compact interval of [0,L∞). It is clear that the energy of the correspondent
curve Γ∞ dies not exceed E0. It remains to prove that the limiting curve Γ∞
has an self-intersection. To this end, note the the set of curves {Γ(tj)} ∪ Γ∞ is
compact in the uniform metric. If the limiting curve has no self- intersections,
then every curve from this set has no-self-intersections. From this and Corol-
lary 2.5 we conclude that ν(tj) ≥ ν > 0 for some ν independent of j, which
contradicts to relation (3.29). This completes the proof of Theorem 3.4.

Since the energy E(tj) of the curve Γ(tj) is bounded by the constant E0,
it follows from Lemma 2.2 that the functions fj(s) = f(tj , s) are uniformly
bounded in C1+α norm for 0 ≤ α < 1/2. Hence after passing to a subsequence
we may assume that Γ(tj) convege uniformly to C1 curve Γ∞. Obviously either
Γ∞ has a self- intersection or (and) it touch ∂Ω. This complete the proof of
Theorem 3.4.

4 Model transmission problem

4.1 Transmission problem. Notation. Results.

Let us consider the following construction. Fix an arbitrary positive κ an ρ and
introduce the rectangular

Q0 = (−2κ, 2κ)× (−2ρ, 2ρ), Q = (−κ, κ)× (−ρ, ρ) (4.1)

in the plane of variable y = (y1, y2). Next, fix an arbitrary integer r ≥ 1 and
introduce the systems of of numbers

κm = κ
(
2− m

r

)
, ρm = ρ(2− m

r
), 1 ≤ m ≤ r.
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and the corresponding domains

Qm = (−κm, κm)× (−ρm, ρm), Qr = Q. (4.2)

Choose an arbitrary function φ such the properties

φ ∈ C∞
0 (Q), 0 ≤ φ ≤ 1, φ = 1 in Q/2, ∂y2φ = 0 for y2 = 0. (4.3)

and a system of functions φm, 1 ≤ m ≤ r, such that

φm ∈ C∞
0 (Qm), 0 ≤ φm ≤ r − 1,

φm = 1 in Qm+1 for 1 ≤ m ≤ r − 1, φr = φ.
(4.4)

Next, introduce 2× 2- matrix N(y1) with the properties

N = N⊤, , C−1
N I ≤ N ≤ CNI, ∥N∥W 1,2(−2κ,2κ) ≤ CN , (4.5)

where CN is some fixed constant. Finally set

a(y2) = 1 for y2 < 0, a(y2) = a0 = const. > 0 for y2 ≥ 0.

Let u : Q0 → R be a solution to the elliptic equation

div (aN∇u) = 0 in Q0. (4.6)

We do not impose any boundary conditions on u. Instead of this we assume
that it admits the estimate

∥u∥L2(Q0) + ∥∇u∥L2(Q0) ≤ Cu <∞ (4.7)

Now set
v = φu where φ is defined by (4.3) . (4.8)

The main goal of this subsection is to estimate the one-side co-normal derivatives
of v on the interface {x2 = 0}. To this end we introduce the system of functions

vm = φm u, 1 ≤ m ≤ r, (4.9)

where φm are given by (4.4).

Proposition 4.1. Under the above assumptions, we have

(α) the functions vm = φmu, 1 ≤ m ≤ r, admit the estimates

∥∂m1 ∇vm∥L2(Q) ≤ c(1 + ∥∂m1 N∥L2(−2κ,2κ)). (4.10)

(β) the function v ≡ vr = φu satisfies the equality

∂r1 div
(
aNv

)
= div ∂1µ+ ∂1σ, (4.11)

where µ and σ are compactly supported in Q and admit the estimate

∥∇µ∥L2(Q) + ∥σ∥L2(Q) ≤ c(1 + ∥∂r1N∥L2(−2κ,2κ)). (4.12)
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Here the constant c depends only on r, φ, and the constants CN , Cu in (4.5)
and (4.7).

The second main result of this section is the following proposition, which
constitute the estimates for the conormal derivatives of u on the interface {y2 =
0}. Split the rectangular Q into to parts

Q− = (−κ, κ)× (−ρ, 0), Q+ = (−κ, κ)× (0, ρ),

separated by the interface segment

ℓ = (−κ, κ)× {0}.

Denote by u± and v± the restrictions of the functions u and v = φu on Q±.
We also denote by ∂Nu

± and ∂Nv
± the conormal derivatives

∂Nu
± = (N21∂1 +N22∂2)u

±, ∂Nv
± = (N21∂1 +N22∂2)v

± on l (4.13)

We will consider the conormal derivatives as a function defined on the interval
(κ, κ). Since the function φ vanishes for |y1| ≥ κ, we may assume that φ∂Nu

±

and ∂Nv
± are extended by zero to R. Now recall definition of Sobolev spaces

Hα(R) in subsection 2.2

Proposition 4.2. Assume that all assumptions of Proposition 4.1 are satisfied.
Then the estimate

∥φ∂Nu±∥W r−1/2,2(R) ≤ c(1 + ∥∂r1N∥L2(−κ,κ) (4.14)

holds true for all r ≥ 1.

The rest of the subsection is devoted to the proof of Propositions 4.1 and
4.2.

4.2 Proof of Proposition 4.1

We proceed with the induction principle estimating step by step the function
vm. Our first step is do derive the recurrent system of elliptic equations for
these functions and their derivatives.

4.2.1 Extended system of equations.

It is easily seen that the functions vm, 1 ≤ m ≤ r satisfy the following recurrent
system of differential equations

div
(
aN∇vm) = divBm−1 + Cm−1 in Q0, 1 ≤ m ≤ r, (4.15)

which is understood in the sense of distributions. Here v0 = u and

Bm−1 = vm−1 aN∇φm, Cm−1 = a∇φm ·N ∇vm−1. (4.16)

18



Indeed, we have∫
Q0

aN∇vm · ∇ζ dy =

∫
Q0

aN∇(φmu) · ∇ζ dy =∫
Q0

aNvm−1∇φm · ∇ζ dy +
∫
Q0

aNφm∇u · ∇ζ dy =∫
Q0

aNvm−1∇φm · ∇ζ dy −
∫
Q0

avm−1N∇φm · ∇ζ dy

+

∫
Q0

aN∇u∇(ζ φm)dy =∫
Q0

aNvm−1∇φm · ∇ζ dy −
∫
Q0

aN∇φm∇vm−1ζ dy,

for every ζ ∈ C∞
0 (Q0). Thus we get∫

Q0

aN∇vm · ∇ζ dy =

∫
Q0

avm−1N∇φm · ∇ζ dy −
∫
Q0

aN∇φm∇vm−1ζ dy,

which obviously yields (4.15). We are interested the smoothness properties of
solutions to system (4.15)-(4.16) with respect to the variable y1. To this end,
notice that

∂m1 div
(
aN∇vm) = div ∂m1 Bm−1 + ∂m1 Cm−1 in Q0, 1 ≤ m ≤ r, (4.17)

and
∂m1 div

(
aN∇vm) = div

(
aN∇∂m1 vm) + div Am. (4.18)

Here
Am =

∑
i+j=m,j≥1

Am
ij , Am

ij = a∂j1N ∇∂i1vm. (4.19)

Further we also will consider the quantity

Dm−1 = ∂m−1
1 Bm−1. (4.20)

Thus we get

div
(
aN∇∂m1 vm) = − div Am + div ∂m1 Bm−1 + ∂m1 Cm−1 in Qm (4.21)

for every 1 ≤ m ≤ r. Now our task is to estimate the quantities Am, Bm−1,
Cm−1, and Dm−1.

4.2.2 Basis of induction. Auxiliary Lemma

In this subsection we prove the following lemma, which gives the basis of the
induction process. In what follows, we will denote by c various constants de-
pending on the rectangular Q0, r, φm, and the constants CN and Cu in (4.5)
and (4.7).
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Lemma 4.3. Under the above assumptions,

∥∂1∇v1∥L2(Q1) ≤ c. (4.22)

Proof. The proof is given in Appendix C.

Remark 4.4. Notice that

∥∂1B1∥L2(Q1) + ∥C1∥L2(Q1) ≤ c. (4.23)

Auxiliary lemma. Now we have to organize the induction process. To do
this, we have to derive the recursion system of estimates for the quantities Am,
Bm1 and Cm−1. Notice that form = 1 the desired estimates follows from Remark
4.4. Hence it suffices to consider the case m ≥ 2.

Lemma 4.5. For every integer m ∈ [2, r] and σ ∈ (1/2, 1), there is a constant
c such that

∥Am∥L2(Qm) ≤ c(1 + ∥∂m1 N∥L2(−κm,κm) + ∥∂m1 ∇vm∥λL2(Qm)), (4.24)

where λ = (m− 2 + σ)/(m− 1) < 1,

∥∂m−1
1 Cm−1∥L2(Qm) ≤

c( 1 + ∥∂m−1
1 N∥L2(−κm,κm) + ∥∂m−1

1 ∇vm−1∥L2(Qm) ),
(4.25)

∥∂m1 Bm−1∥L2(Qm) + ∥∇Dm−1∥L2(Qm) ≤
c
(
1 + ∥∂m1 N∥L2(−κm,κm) + ∥∂m−1

1 ∇vm−1∥L2(Qm−1)

)
,

(4.26)

Proof. The proof is given in Appendix D

4.3 The proof of Proposition 4.1

We are now in a position to complete the proof of Proposition 4.1. We start
with the proof of estimate (4.10) in assertion (α). Recall the denotations for
the rectangular Q and Q0,

Q = (−κ, κ)× (−ρ, ρ), Q0 = (−2κ, 2κ)× (−2ρ, 2ρ).

Let us consider the sequences of domains Q = Qr ⊂ Qr−1... ⊂ Q0 and functions
φm, 0 ≤ m ≤ r, defined by relations (4.2)-(4.4). Recall that φr = φ. Let us
also consider the sequence of the functions vm = φmu. It is necessary to prove
that the estimate

∥∂m1 ∇vm∥L2(Q) ≤ c(1 + ∥∂m1 N∥L2(−κ,κ)) (4.27)

holds true for all 1 ≤ m ≤ r. Notice that for m = 1, this estimate obviously fol-
lows from estimate in Lemma 4.3. Now we proceed with the induction principle.
Assume that the inequality

∥∂m−1
1 ∇vm−1∥L2(Qm−1) ≤ c(1 + ∥∂m−1

1 N∥L2(−κm−1,κm−1)) (4.28)
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holds for some m ≥ 2. Notice that the function vm satisfies equation (4.21) that
reads

div
(
aN∇∂m1 vm) = − div Am + div ∂m1 Bm−1 + ∂m1 Cm−1 in Qm, (4.29)

where Am, Bm−1, and Cm−1 are given by (4.16) and (4.19). Recall that the
positive matrix aN is uniformly bounded from below and above. Multiplying
both sides of (4.29) by ∂m1 vm, integrating the result by parts over Qm, and
applying the Cauchy inequality we arrive at the estimate

∥∂m1 ∇vm∥L2(Qm) ≤ ∥Am∥L2(Qm) + ∥∂m1 Bm−1∥L2(Qm) + ∥∂m−1
1 Cm−1∥L2(Qm).

It follows from estimates in Lemma 4.5 that

∥∂m1 ∇vm∥L2(Qm) ≤ c+ ∥∂m1 ∇vm∥λL2(Qm)+

c∥∂m1 N∥L2(−κm,κm) + c∥∂m−1
1 ∇vm−1∥L2(Qm−1)),

where 0 < λ < 1. From this and the induction hypothesis we conclude that

∥∂m1 ∇vm∥L2(Qm) ≤ c
(
1 + ∥∂m1 N∥L2(−κm,κm)

)
.

This completes the proof of the induction step. Applying the induction principle
we obtain desired estimate (4.10)for all m ∈ [1, r].

Let us turn to the proof of assertion (β). To this end, notice that φ = φr

and v = φu = vr. From this and relation (4.17) we conclude that equality (4.11)
holds true for

µ = Dr−1, σ = Cr−1.

It is clear that estimate (4.12) is a straightforward consequence of Lemma 4.5.
This completes the proof of Proposition 4.1.

4.4 Conormal derivative. Proof of Proposition 4.2.

Split the rectangular Q into to parts

Q− = (−κ, κ)× (−ρ, 0), Q+ = (−κ, κ)× (0, ρ),

separated by the interface segment

ℓ = (−κ, κ)× {0}.

Denote by u± and v± the restrictions of the functions u and v = φu on Q±.
We also denote by ∂Nu

± and ∂Nv
± the conormal derivatives

∂Nu
± = (N21∂1 +N22∂2)u

±, ∂Nv
± = (N21∂1 +N22∂2)v

± on ℓ. (4.30)

We will consider the conormal derivatives as a function defined on the interval
(−κ, κ). Since the function φ vanishes for |x1| ≥ κ, we may assume that φ∂Nu

±

and ∂Nv
± are extended by zero to R. Recall that for every s ≥ 0, the Sobolev
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space W s,2(R) is defined as the completion of the space C∞
0 (R with respect to

the norm

∥u∥2W s,2(R) =

∫
R
(1 + ξ2)s |û(ξ)|2 dξ, (4.31)

where û is the Fourier transform of u.
We estimate ∂Nu

−. The proof of inequality (4.14) for φ∂Nu
+ is similar.

First we show that this inequality holds true for ∂Nv
−. It suffices to prove that∣∣∣ ∫

R
∂r1(∂Nv

−) ζ dx1

∣∣∣ ≤ c∥ζ∥W 1/2,2(R) (4.32)

Choose an arbitrary function ζ ∈W 1/2,2(R). By virtue of the extension theorem
for Sobolev functions, the function ζ can be extended to the strip Q∞ = R ×
(−ρ, 0) such that the extension ζ∗ admits the estimate

c−1∥ζ∥W 1/2,2(R) ≤ ∥ζ∗∥W 1,2(Q∞) ≤ c∥ζ∥W 1/2,2(R). (4.33)

Let µ and σ are defined by Proposition 4.1. Note that the coefficient a = 1
in Q−, and the functions v−, µ, σ are compactly supported in the rectangular
Q. Multiplying both the sides of (4.11) by ζ and integrating the result by parts
over Q− we arrive at the integral identity∫

R
∂r1∂Nv

− ζ dx1 =

∫
R
∂1µ(x1, 0) · e2 ζ dx1

+

∫
Q−

∂r1N∇v− · ∇ζ∗ dx−
∫
Q−

∂1µ · ∇ζ∗ dx−
∫
Q−

σ ∂1ζ
∗ dx.

(4.34)

It follows from (4.12) that

∥µ(·, 0)∥W 1/2(R) ≤ c∥µ∥W 1,2(Q) ≤ c
(
1 + ∥∂r1N∥L2(−κ,κ)

)
,

which yields∣∣∣ ∫
R
∂1µ(x1, 0) · e2 ζ dx1

∣∣∣ ≤ c ∥µ(·, 0)∥W 1/2,2(R) ∥ζ∥W 1/2,2(R)

≤ c
(
1 + ∥∂r1N∥L2(−κ,κ)

)
∥ζ∥W 1/2,2(R). (4.35)

Next, estimate (4.12) implies∣∣∣ ∫
Q−

∂1µ · ∇ζ∗ dx
∣∣∣ ≤ c ∥∇µ∥L2(Q−) ∥∇ζ∗∥L2(Q−) ≤

c
(
1 + ∥∂r1N∥L2(−κ,κ) ∥ζ∗∥W 1,2(Q−) ≤

c(1 + ∥∂r1N∥L2(−κ,κ) ) ∥ζ∥W 1/2,2(R). (4.36)

Again employing estimate (4.12) we obtain∣∣∣ ∫
Q−

∂1σ ∂1ζ
∗ dx

∣∣∣ ≤ c∥σ∥L2(Q−) ∥∇ζ∗∥L2(Q−) ≤

c (1 + ∥∂r1N∥L2(−κ,κ)) ∥ζ∗∥W 1,2(Q−) ≤
c
(
1 + ∥∂r1N∥L2(−κ,κ)

)
∥ζ∥W 1/2,2(R). (4.37)
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Let us estimate the second integral in the right hand side of (4.34). It is easy
to check that

∂r1(N∇v) = N∇∂r1v +Ar, (4.38)

where Ar is given by equality (4.19) with a = 1 in Q−. It follows from estimate
(4.15) in Lemma 4.5 and estimate (4.10) in Proposition 4.1 that

∥Ar∥L2(Q) ≤ c
(
1 + ∥∂r1N∥L2(−κ,κ)

)
+ c∥∂r1∇v∥λL2(Q)

≤ c
(
1 + ∥∂r1N∥L2(−κ,κ)

)
.

(4.39)

On the other hand, estimate (4.10) yields

∥N∇∂r1v∥L2(Q) ≤ c
(
1 + ∥∂r1N∥L2(−κ,κ)

)
.

Combining this estimate with inequality (4.39) and identity (4.38) we obtain

∥∂r1(N∇v)∥L2(Q−) ≤ ∥N∇∂r1v∥L2(Q−) + ∥Ar∥L2(Q−) ≤ c
(
1 + ∥∂r1N∥L2(−κ,κ)

)
.

Recall that the function ζ∗ is extended by zero from Q− to the strip Q∞. It
follows from this and the Cauchy inequality that∣∣∣ ∫

Q−
∂r1(N∇v−) · ∇ζ∗ dx

∣∣∣ ≤ c
(
1 + ∥∂r1N∥L2(−κ,κ)

)
∥∇ζ∗∥L2(Q∞)

≤ c
(
1 + ∥∂r1N∥L2(−κ,κ)

)
∥ζ∥W 1/2,2(R).

(4.40)

Inequalities (4.35), (4.36),(4.37), and (4.40) give estimates for all integrals in
the right hand side of (4.34). These estimates along with identity (4.34) finally
yields the desired estimate (4.32). In particular we have

∥∂Nv−∥W r−1/2(R) ≤ c
(
1 + ∥∂r1N∥L2(−κ,κ)

)
. (4.41)

It remains to obtain the similar estimate for the function φ∂Nu
−. Recall that

v = φu, where φ is an arbitrary function of the class C∞
0 (Q). Now we specify φ.

To this end, choose an arbitrary function ϕ ∈ C∞
0 (−κ, κ) and fix the function

ι(x2), x2 ∈ R, such that

ι ∈ C∞
0 (R), ι(x2) = 1 for |x2| ≤ ρ/3, ι(x2) = 0 for |x2| ≥ 2ρ/3.

Now set
φ ≡ φr = ϕ(x1)ι(x2).

With this notation we have

∂Nv
− = ϕ∂Nu

− + ∂1ϕN21u
− = ϕ∂Nu

− + ∂1φv
−
r−1 on ℓ, (4.42)

since u coincides with vr−1 on the support of ∇φ. Recall that vm, 0 ≤ m ≤ r,
are defined by (4.4) and (4.9). Since the function φ is compactly supported in
Q, we have

∥∂1φvr−1∥W r−1/2,2((−κ,κ)×{0}) ≤ c∥∂r−1
1 (∂1φvr−1)∥W 1/2,2((−κ,κ)×{0}) ≤

c∥∂r−1
1 (∇φvr−1)∥W 1,2(Q−) ≤ c∥∂r−1

1 (a∇φvr−1)∥W 1,2(Q)
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On the other hand, relations (4.16) and (4.20) imply

∂r−1
1 (a∇φvr−1) = Dr−1.

From this and estimate (4.26) for Dm−1 in Lemma4.5 we conclude that

∥∂1φvr−1∥W r−1/2,2((−κ,κ)×{0}) ≤ c∥Dr−1∥W 1,2(Q)

≤ ∥∇Dr−1∥L2(Q) ≤ c(1 + ∥∂r1N∥L2(−κ,κ) + ∥∂r−1
1 ∇vr−1∥L2(Qr−1))

Combining this result with estimate (4.27) we arrive at the estimate

∥∂1φvr−1∥W r−1/2,2((−κ,κ)×{0}) ≤ c(1 + ∥∂r1N∥L2(−κ,κ),

which along with identity (4.42) and estimate (4.41) gives

∥φ∂Nv∥W r−1/2,2((−κ,κ)×{0}) ≤ c
(
1 + ∥∂r1N∥L2(−κ,κ)

)
,

This completes the proof of Proposition 4.2

5 Kohn-Vogelius functional. Proof of Theorems
3.1 and 3.2

Recall the formulation of the problem. Our goal is to derive estimates of the
gradient dJ of the Kohn-Vogelius functional J in terms of the geometric char-
acteristics of the interface Γ. The results are based on the normal derivatives
estimate for solutions to transmission problem given in the previous section.
These estimate establish the dependance of the smoothness properties of so-
lutions to a transmission problem and the the smoothness properties of the
interface Γ. Recall the conditions H.1-H.3 imposed on Γ.

H.1 The Jordan curve Γ ⊂ Ω satisfies the energy condition

1

2

∫
Γ

|k2|ds+ L ≤ E0.

H.2 There is ν > 0 with the property

dist (Γ \ Γ3κ, Γ2κ) ≥ ν,

for every arcΓ3κ with κ, defined by Lemma 2.2

H.3 There is ρ > 0 such that

ν dist (Γ, ∂Ω) > ρ.
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By virtue of Corollary 2.4, every curve Γ satisfying thise conditions is a Jordan
curve of the class C1+α, 0 < α < 1/2. It splits the domain Ω into two parts.
The first Ωi ⋐ Ω (inclusion) is a simply connected domain with boundary Γ.
The second is the curvilinear annulus Ωe = Ω \ Ωi bounded by Γ and ∂Ω. For
simplicity, we will assume that ∂Ω is a Jordan curve of the class C∞.

Next, recall that the piece-wise constant function a : Ω → R+ (conductivity)
defined by the equalities

a = 1 in Ωe, a = a0 in Ωi.

5.1 Proof of Theorem 3.1

Let w ∈W 1,2(Ω) be a weak solution to the equation

div (a∇w) = 0 in Ω. (5.1)

Denote by w− and w+ the restrictions of w onto subdomains Ωe and Ωi,

w− := w in Ωe, w+ := w in Ωi. (5.2)

If Γ is sufficiently smooth, then w is continuous on Γ. In other words, w− = w+

on Γ. However, the normal derivative of w has a jump across Γ. The following
remark is important for the further analysis. Set

∂mw
− = ∇w− · n, ∂nw

+ = ∇w+ · n on Γ. (5.3)

Our task is to to prove the estimate (3.12):

∥∂nw±∥Hm+1/2(Γ) ≤ c ( 1 + ∥∂ms k∥L2(Γ) ) ∥w∥W 1,2(Ω),

where m ≥ 0 is an arbitrary integer, c depends only on m and on the constants
E0, ν, ρ in Conditions H.1-H.3. We split the proof of estimate (3.12) into three
steps. First, we define a standard neighborhood of an arbitrary point z ∈ Γ and
the special mapping which takes diffeomorphically the standard neighborhood
onto rectangular. Next we employ Proposition 4.2 in Section 4 in order to
obtain the local version of estimate (3.12). Finally, we use the local estimate
end partition of unit to complete the proof of (3.12).

5.1.1 Standard neighborhood and standard mapping

Note that the immersion f and the curve Γ = f(S1) satisfy all conditions of
Lemma 2.2. Choose an arbitrary z ∈ Γ and consider the subarc Γ2κ of the arc
Γ3κ defined by Lemma 2.2. It follows from this lemma that Γ2κ admits the
representation

Γ2κ : x2 = η(x1), x1 ∈ (−γ, δ)
with positive γ, δ, depending only on κ. Next, assume that Γ has no self
intersections and is compactly embedded into a bounded domain Ω ⊂ R2. Set

2ρ = min
{
ν, dist (Γ, ∂Ω)

}
> 0, (5.4)

where ν > 0 is given by Corollary 2.3.
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Definition 5.1. Under the above assumptions, the standard neighborhood Σ2κ

of the point z is the curvilinear quadrangle defined in the Cartesian coordinates
system associated with z by the equalities

Σ2κ =
{
x = (x1, x2) : −γ < x1 < δ, −2ρ+ η(x1) < x2 < 2ρ+ η(x1). (5.5)

Our next task is to define the special mapping, which takes the standard
neighborhood onto the rectangular. To this end introduce new variables

y1 = s(x1), y2 = x2 − η(x1). (5.6)

It is easy to see that the mapping y = y(x) takes diffeomorphically the standard
neighborhood Σ2κ onto the rectangular

Q0 = (−2κ, 2κ)× (−2ρ, 2ρ). (5.7)

Introduce the matrices M and N defined by the equalities

M := y′(x) =

( √
1 + η′2 0

−η′ 1

)
, N = (detM)−1MM⊤. (5.8)

Notice that these matrices depend only on x1 and hence only on s ∈ (−2κ, 2κ).
Introduce the function Θ : (−2κ, 2κ) → R defined by the equalities

Θ(s) = arctan η′(x1(s)), Θ(0) = 0, (5.9)

in the Cartesian coordinates associated with z. Recall that x = 0 and s = 0 at
the chosen point z.

Lemma 5.2. Under the above assumptions, we have

Θ ∈W 1,2(−2κ, 2κ), |Θ| ≤ π

18
, (5.10)

τ(s) =
(
cosΘ, sinΘ), n(s) = (− sinΘ, cosΘ), k(s) = Θ′(s)n(s). (5.11)

Moreover, the matrices M and N admit the representation

M =

(
1

cosΘ
0

− tanΘ 1

)
, N =

1

cosΘ

(
1 − sinΘ

− sinΘ 1

)
. (5.12)

Proof. Introduce the function

λ(s(x1)) = η(x1), s ∈ (−2κ, 2κ).

We have

λ′(s)

√
1 + η′(x1)

2
= η′(x1) and hence λ′(s)2 = η′(x1)

2 − λ′(s)2 η′(x1)
2
,
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which gives

η′ =
λ′√

1− λ′2
, 1 + η′

2
=

1

1− λ′2
. (5.13)

In particular, we have

M =


1√

1− λ′2
0

− λ′√
1− λ′2

1

 . (5.14)

Next notice that

τ =
1√

1 + η′2
(1, η′) = (

√
1− λ′2, λ′) = (cosΘ, sinΘ) (5.15)

with
Θ = arctan η′ = arcsinλ′

We thus get the following formulae for the curvature vecor k and the normal κ

k = ∂sτ = Θ′(s)n, n = (− sinΘ, cosΘ).

Identity implies that the matrices M and N admit representation (5.13). It
remains to note that | tanΘ| = |η′| ≤ 1/6, which yields the estimate |Θ| ≤
π/18.

Corollary 5.3. Under the assumptions of Lemma 5.2, the estimate

∥∂ms N∥L2(−2κ,2κ) ≤ c(m)(1 + ∥∂m−1
s k∥L2(−2κ,2κ)) (5.16)

holds for every integer m ≥ 1.

Proof. Since |Θ| ≤ π/18, it follows from the estimates of composite functions in
Sobolev spaces that

∥∂ms N∥L2(−2κ,2κ) ≤ c(CN )(1 + ∥∂ms Θ∥L2(−2κ,2κ),

where

CN =

m∑
k=0

sup
|Θ|≤π/18

|∂kΘN(Θ)|.

It remains to note that ∂ms Θ = ∂m−1
s k.

5.2 Local estimates

In this paragraph we prove the local estimates of the normal derivative of a weak
solution to equation 5.1. The result is given by the following proposition. Fix
an arbitrary point z ∈ Γ. Without loss of generality we may assume that the
arc-length variable s equals zero at z. Let κ, depending only on the constant
E0 in Condition H.1, be given by Lemma 2.2. Choose an arbitrary function
ϕ ∈ C∞

0 (−κ, κ). Furthermore, assume that the functions ϕ(s) and ϕ(s)∂nw
±(s)

extended by zero to the real axis R
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Proposition 5.4. Under the above assumptions, the estimate

∥ϕ∂nw±∥Wm+1/2,2(R) ≤ c
(
1 + ∥∂ms k∥L2(−2κ,2κ)

)
∥w∥W 1,2(Ω) (5.17)

holds for every integer m ≥ 0. Here c depends only on m and on the constants
E0,ν, ρ in Conditions H.1-H.3 of Theorem 3.2.

Proof. Notice that estimate (5.17) is invariant with respect to dilation w. Hence
without loss of generality we may assume that ∥w∥W 1,2(Ω) = 1. For an arbitrary
fixed z ∈ Γ, denote by Σ2κ the standard neighborhood determined by Definition
5.1. Split Σ2κ into two disjoint parts Σ−

2κ and Σ+
2κ defined by the equalities

Σ−
2κ =

{
x = (x1, x2) : −γ < x1 < δ, η(x1)− 2ρ < x2 < η(x1)

}
,

Σ+
2κ =

{
x = (x1, x2) : −γ < x1 < δ, η(x1) < x2 < 2ρ+ η(x1)

} (5.18)

Here (x1, x2) is the local system of Cartesian coordinates associated with z and
defined in Lemma 2.2. Notice that the ordinate axis x2 is directed inside Ωi and
hence

Σ−
2κ = Σ2κ ∩ Ωe, Σ+

2κ = Σ2κ ∩ Ωi, Σ2κ = Σ−
2κ ∪ Σ+

2κ ∪ Γ2κ.

In particular, the coefficient a equals 1 in Σ−
2κ and equals a0 in Σ+

2κ. The function
w serves as a solution to equation (5.1) and the integral identity∫

Σ2κ

a∇w · ∇ζ dx = 0, (5.19)

holds for all ζ ∈W 1,2
0 (Σ2κ). The standard change of variables

y1 = s(x1), y2 = x2 − η(x1).

takes diffeomorphically the standard neighborhood Σ2κ onto the rectangular

Q0 = (−2κ, 2κ)× (−2ρ, 2ρ).

In its turn, the standard change of the variables (5.6) takes diffeomorphically
curvilinear quadrangles Σ±

2κ onto the rectangles

Q−
0 = (−2κ, 2κ)× (−2ρ, 0), Q+

2κ = (−2κ, 2κ)× (0, 2ρ)

We have

Q0 = Q−
0 ∪Q+

0 ∩ ℓ, where the interval ℓ = (−2κ, 2κ)× {0}.

Now set
u(y) = w(x(y)), u±(y) = w±(x(y)) = u(y)

∣∣∣
Q±

0

. (5.20)

Notice that w serves as a weak solution to equation (5.1) in the standard neigh-
borhood Σ2κ. In particular, it satisfies integral identity (5.19). Notice that

∇xw(x(y)) =M⊤∇yu(y), dx = (det M)−1dy
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The change of the variables x → y in (5.19) leads to the following integral
identity for the function u : Q0 → R,∫

Σ2κ

aN∇u · ∇ζ dy = 0 for all ζ ∈W 1,2
0 (Q0) (5.21)

Here the matrix N is given by Lemma 5.2. The conormal derivative ∂Nu
− on

the segment ℓ is defined by the equality

∂Nu
− = N21∂y1

u− +N22∂y2
u− =

1

cosΘ

(
− ∂y1

u− sinΘ + ∂y2
u−
)
, (5.22)

where Θ(s) is given by Lemma 5.2. It is easily seen that N and u meet all
requirements of Proposition 4.2. Now choose an arbitrary ϕ ∈ C∞

0 (−κ, κ) and
assume that the function ϕ∂Nu

−(s) extended by 0 to the real axis. Applying es-
timate (4.14) in Proposition 4.2 and estimate(5.16) in Corollary 5.3 we conclude
that the inequality

∥ϕ∂Nu−∥W r−1/2(R) ≤ c(1 + ∂rsN∥L2(−2κ,2κ)) ≤ c(1 + ∥∂r−1
s k∥L2(−2κ,2κ) (5.23)

holds for every integer r ≥ 1.
Recall that s ≡ y1. Next, formulae (5.11) and (5.12) in Lemma 5.2 along

with formula (5.22) imply

n(s) · ∇xw
−(x(y)) ≡ n(s)M⊤ · ∇v− =

(− sinΘ, cosΘ) ·

(
1

cosΘ
− tanΘ

0 1

)
∇u =

1

cosΘ
(− sinΘ ∂y1u+ ∂y2u) = ∂Nu

− on ℓ.

(5.24)

It follows that for every ϕ ∈ C∞
0 (−κ, κ), we have

ϕ(s)∂nw
−(s) = ϕ(s)∂Nu

−(s) for s ∈ (−2κ, 2κ).

From this and and estimate (5.23) we obtain desired estimate (5.17).

5.3 Globalization

Now we employ Proposition 5.4 in order to complete the proof of Theorem 3.1.
To this end, we use the method of partition of unit.

Partition of unit. Let Γ satisfies all conditions of Theorem 3.1 and κ ∈
(0,L/2) be given by Lemma 2.2. Recall that L and κ depends only on the
constant E0 in the energy condition H.1. Choose a finite collection of points
zk ∈ Γ with the arc-length coordinates sk such that

sk =
k

N
L, 0 ≤ k ≤ N − 1, (5.25)
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where N is an arbitrary integer satisfying the condition

1

N
<
κ

4
.

Now choose an arbitrary function ψ ∈ C∞
0 [−L/2,L/2) with the properties

ψ(s) ≥ 0, ψ(s) = 0 for |s| ≥ κ, ψ(s) = 1 for |s| ≤ κ/2. (5.26)

We will consider ψ(s) as a function defined on Γ. In other words, it can be
regarded as L-periodic function defined on R. For every integer k ∈ [0, N − 1],
define the function

ψk(s) = ψ(s− sk).

The function ψk : Γ → R is compactly supported on the arc of the length 2κ
centered at zk. Moreover, ψk = 1 on the arc of length κ centered at zk. These
arcs cover the whole curve Γ. It is easily seen that for every z ∈ Γ, at least one
of the functions ψk equals 1 at z.

Now set

ϕk =
ψk

N−1∑
j=0

ψj

. (5.27)

It is clear that every nonnegative function ϕk ∈ C∞(Γ) is compactly supported
in the arc of length 2κ centered at zk and

N−1∑
k=0

ϕk = 1. (5.28)

Introduce the functions ωk with the properties

ωk = ϕk∂nw
−, ∂nw

− =

N−1∑
k=0

ωk. (5.29)

It is clear that for every m ≥ 0, we have

∥∂nw−∥Hm+1/2(Γ) ≤
N−1∑
k=0

∥ωk∥Hm+1/2(Γ). (5.30)

See Subsection 2.2 for the definition of spaces Hr(Γ) = Hr
♯ .

Global estimates of the normal derivatives. It follows from (5.30) that it
suffices to estimate ωk in the space Hm+1/2(Γ). To this end we use the following
construction. Choose an arbitrary compactly supported function F : (−κ, κ) →
R. There are two ways to extend F to the real line. The first way is to extend
F by zero to R. We denote this extension by F ,

F (s) = F (s) for |s| < κ, F = 0 otherwise.
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The second way is to extend F L-periodically to R. We denote this extension
by F♯. These extension are connected by the relation

F♯(s) =

∞∑
k=−∞

F (s+ kL). (5.31)

The following lemma constitutes the connection between Sobolev norms of F
and F♯.

Lemma 5.5. There is the constant c depending only on L and m such that

∥F♯∥Hm+1/2
♯

≤ c∥F∥Hm+1/2(R) for all m ≥ 0. (5.32)

The norms in the spaces H
m+1/2
♯ and Hm+1/2(R) are defined in Subsection 2.2

Proof. The proof is given in Subsection B.2

We are now in a position to complete the proof of Theorem 3.1. To this end,
it suffices to prove that every function ωk defined by (5.29) admits the estimate

∥ωk∥Hm+1/2(Γ) ≤ c (1 + ∥∂ms k∥L2(Γ)) ∥w∥W 1,2(Ω). (5.33)

Fix an arbitrary integer k ∈ [0, N − 1] and the corresponding point zk = f(sk).
After the shift of the coordinate s we may assume that sk = 0. Let the arc Γk

centered at zk is defined by Lemma 2.2 with z replaced by zk. Introduce the
function F : Γκ → R given by the equality

F = ϕk(s) ∂nw
−(s), s ∈ (−κ, κ) (5.34)

Notice that ϕk ∈ C∞
0 (−κ, κ). Let F be the extension by 0 to the real line. It

follows from estimate (5.17) in Lemma 5.5 that

∥F∥Hm+1/2(R) ≤ c (1 + ∥∂ms k∥L2(Γ)) ∥w∥W 1,2(Ω). (5.35)

On the other hand, relations (5.29) and (5.31) imply the equality

F♯ = ωk on Γ.

From this, estimate (5.35), and estimate (5.32) in Lemma 5.5 we finally obtain

∥ωk∥Hm+1/2(Γ) = ∥F♯∥Hm+1/2(Γ) ≤ c∥F∥Hm+1/2(R) ≤
c (1 + ∥∂ms k∥L2(Γ)) ∥w∥W 1,2(Ω),

which yields desired estimate (5.33). This completes the proof of Theorem 3.1.
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5.4 Proof of Theorem 3.2

Recall that Kohn-Vogelius functional is defined by the formula

J(Γ) =

∫
Ω

a∇(v − w) · ∇(v − w) dx. (5.36)

Here v, w : Ω → R satisfy the equations and boundary conditions

div a∇v = 0 div a∇w = 0 in Ω, (5.37)

a∇v · n = g w = h on ∂Ω. (5.38)

Its gradient dJ is defined by equality (1.14),

dJ = 2
(
a∇v · n

[
∂nv

]
− a∇w · n

[
∂nw

]
)n−

[
a∇v · ∇v − a∇w · ∇w

]
n, (5.39)

Let a curve Γ satisfies conditions H.1-H.3 and the curvature k ∈ Hr(Γ)
with integer r ≥ 0. It is necessary to prove that for every β ∈ [0, 1/2), the
gradient dJ admits the estimate

∥dJ∥Hr+β(Γ ≤ c(1 + ∥∂rsk∥L2(Γ)), (5.40)

where the constant c depends on r, β, and constants E0, ν, ρ in conditions
H.1-H.3. Note that estimate (5.40) and the embedding theorems imply the
inequality

∥∂rsdJ∥Lq(Γ) ≤ c(1 + ∥∂rsk∥L2(Γ)). (5.41)

which holds for every q ∈ [1,∞). In this case the constant c depends in addition
on q. The rest of the section is devoted to the proof of estimate (5.40). The
key observation is that this estimate is straightforward consequence of Theorem
3.1. In particular, it follows from inequalities (3.6) that the solutions v and w
to problems (5.38) admit the estimate

∥v∥W 1,2(Ω) + ∥w∥W 1,2(Ω) ≤ c(g, h)

Hence they meet all requirements of Theorem 3.1. Applying this theorem we
conclude that estimates

∥∂nv±∥Hm+1/2(Γ) + ∥∂nw±∥Hm+1/2(Γ) ≤ c
(
1 + ∥∂mk∥L2(Γ)

)
(5.42)

holds true for all integer m ≥ 0. Next, it follows from (5.39) that dJ is a
quadratic form of the normal derivatives ∂nv

± and ∂nw
±. Hence it suffices to

estimates the products ∂nv
± ∂nw

± and ∂nv
± ∂nw

∓. Let us estimate ∂nv
−∂wn−.

The the proof of estimates of other terms are similar. It is necessary to show
that

∥∂nv−∂nw−∥Hm+β(Γ) ≤ c
(
1 + ∥∂mk∥L2(Γ)

)
. (5.43)

for all integerm ≥ 1 and for all β ∈ [0, 1/2). It follows from the Moser inequality
that

∥∂nv−∂nw−∥Hm+β(Γ) ≤ c ∥∂nv−∥L∞(Γ) ∥∂nw−∥Hm+β(Γ)

+c ∥∂nw−∥L∞(Γ) ∥∂nv−∥Hm+β(Γ).
(5.44)
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By virtue of the embedding theorem , the inequalities It follows from the em-
bedding theorem that the inequalities

∥∂nv−∥L∞(Γ) ≤ c(σ) ∥∂nv−∥H1/2+σ(Γ), ∥∂nw−∥L∞(Γ) ≤ c(σ) ∥∂nw−∥H1/2+σ(Γ).

hold for every σ > 0. Applying the interpolation inequality to the right hand
sides of these estimates we obtain

∥∂nv−∥H1/2+σ(Γ) ≤ c ∥∂nv−∥
1− σ

m

H1/2(Γ)
∥∂nv−∥

σ
m

Hm+1/2(Γ)
,

∥∂nw−∥H1/2+σ(Γ) ≤ c ∥∂nw−∥1−
σ
m

H1/2(Γ)
∥∂nw−∥

σ
m

Hm+1/2(Γ)
.

Inequality (5.42) with m = 0 implies

∥∂nv−∥H1/2(Γ) + ∥∂nw−∥H1/2(Γ) ≤ c.

We thus get for m ≥ 1,

∥∂nv−∥L∞(Γ) ≤ c ∥∂nv−∥
σ
m

Hm+1/2(Γ)
,

∥∂nw−∥L∞(Γ) ≤ c ∥∂nw−∥
σ
m

Hm+1/2(Γ)
.

(5.45)

Next, the interpolation inequality implies

∥∂nv−∥Hm+β(Γ) ≤ c ∥∂nv−∥
1
m ( 1

2−β)

H1/2(Γ)
∥∂nv−∥

1− 1
m ( 1

2−β)

Hm+1/2(Γ)
,

∥∂nw−∥Hm+β(Γ) ≤ c ∥∂nw−∥
1
m ( 1

2−β)

H1/2(Γ)
∥∂nw−∥1−

1
m ( 1

2−β)

Hm+1/2(Γ)
.

It follows that

∥∂nv−∥Hm+β(Γ) ≤ c ∥∂nv−∥
1− 1

m ( 1
2−β)

Hm+1/2(Γ)
,

∥∂nw−∥Hm+β(Γ) ≤ c ∥∂nw−∥1−
1
m ( 1

2−β)

Hm+1/2(Γ)
.

Substituting these inequalities along with inequalities (5.45) into (5.44) we ob-
tain

∥∂nv−∂nw−∥Hm+β(Γ) ≤ c ∥∂nv−∥
σ
m

Hm+1/2(Γ)
∥∂nw−∥1−

1
m ( 1

2−β)

Hm+1/2(Γ)

+∥∂nw−∥
σ
m

Hm+1/2(Γ)
∥∂nv−∥

1− 1
m ( 1

2−β)

Hm+1/2(Γ)
.

(5.46)

Now set

σ =
1

2
− β, λ =

σ

m
.

We have
σ

m
= λ, 1− 1

m
(
1

2
− β) = 1− λ.
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From this and (5.46) we conclude that

∥∂nv−∂nw−∥Hm+β(Γ) ≤ c ∥∂nv−∥λHm+1/2(Γ) ∥∂nw
−∥1−λ

Hm+1/2(Γ)

+∥∂nw−∥λHm+1/2(Γ) ∥∂nv
−∥1−λ

Hm+1/2(Γ)
.

Applying the Young inequality we arrive at the estimate

∥∂nv−∂nw−∥Hm+β(Γ) ≤ c ∥∂nv−∥Hm+1/2(Γ) + c ∥∂nw−∥Hm+1/2(Γ).

It remains to note this inequality along with inequality (5.42) obviously imply
desired estimate (5.43). This completes the proof of Theorem 3.2.

6 A priori estimates. Proof of Theorems 3.5

In this section we prove theorem 3.5. To this end, we have to derive the Sobolev
a priori estimates of solutions to the Cauchy problem

∂tf +∇2
s k +

|k|2

2
− k + dJ = 0 in (0, T )× S1,

f(0, θ) = f0(θ), θ ∈ S1
(6.1)

for an immersion f(t, θ) , t > 0, θ ∈ R/2πZ. Here θ is the angle variable on S1,
and hence f is 2π-periodic function of θ. Recall that s is arc-length variable on
the curve Γ(t) = f(t,S1) associated with f . We have

∂s =
1

|∂θf |
∂θ, ∇s = ∂s · −(τ · ∂s·) τ,

τ = ∂sf, k = ∂2sf = ∂sτ.

(6.2)

Note that the time derivative ∂t is calculated for fixed angle variable θ. With
this notation ∂s and ∇s become a nonlinear differential operators.

Further we will denote by L(t) the length

L(t) =
∫
Γ(t)

ds :=

∫ 2π

0

√
g(t, θ) dθ,

√
g = |∂θf |, (6.3)

of Γ(t) = f(t, S1).
Now fix an arbitrary even integer m ≥ 6. Throughout of the section we will

assume that all conditions of Theorem 3.5 are satisfied. In particular, there are
two positive constants E0 and Em such that the initial curvature k0 = ∂2sf0(s)
satisfies the inequalities∫

Γ(0)

(
1

2
|k0|2 + 1)ds ≤ E0,

∫
Γ(0)

|∂m−2
s k0|2 ds ≤ Em. (6.4)

The proof of Theorem 3.5 falls into six steps. Our first task to introduce the
necessary notation and collect the auxiliary material.
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6.1 Commutators and connections

6.1.1 Commutators

The proofs of a priori estimates in Theorem 3.5 is based on the multiplication
both sides of equation (6.1) by the higher order derivative of k and integration
of the resulting equality by parts. This procedure requires the calculation of the
commutator of spatial and time derivatives. In order to do this, we introduce
some notation. Let us consider a one-parametric family of immersions f : [0, T ]×
S1. Set

V = ∂t f, π2 = 2V · k, π1 =
1

2
∂sπ2. (6.5)

Denote by Π and ∇t a projection and differential operator defined by the equal-
ities

ΠΦ = Φ− (τ · Φ) τ, ∇tΦ = Π ∂tΦ, (6.6)

where Φ : [0, T ] × S1 :→ R2 is an arbitrary smooth vector field. In particular,
we have

∇sΦ = ∂sΦ− (τ · ∂sΦ) τ = Π ∂sΦ, ∇tΦ = ∂tΦ− (τ · ∂tΦ) τ = Π ∂tΦ.

The following lemma gives the expression for the operator ∂2s ∂t.

Lemma 6.1. Under the above assumptions, we have

Π∂2s∂t f = ∇tk − π2 k. (6.7)

Proof. Let Φ : [0, T ]× S1 :→ R2 be an arbitrary smooth vector field. We have

(∂s∂t − ∂t∂s)Φ =
1

|∂θf |
∂θ ∂tΦ− ∂t

( 1

|∂θf |
∂θΦ

)
=

−∂t
( 1

|∂θf |

)
∂θ Φ =

1

|∂θf |3
(∂θf · ∂θ∂t f) ∂θΦ =

(∂s f · ∂s∂t f) ∂sΦ = −(∂2sf · ∂tf) ∂sΦ = −1

2
π2 ∂sΦ.

Here we use the relation ∂sf · ∂tf = τ · ∂tf = 0, which follows from equation
(6.1). Thus we get

∂s∂tΦ = ∂t∂sΦ− 1

2
π2 ∂sΦ. (6.8)

Next, we have

∂2s∂tΦ = ∂s(∂s∂tΦ− ∂t∂sΦ) + (∂s∂t(∂sΦ)− ∂t∂s(∂sΦ) + ∂t∂
2
sΦ.

From this and (6.8) we obtain

∂2s∂tΦ = ∂t∂
2
sΦ− 1

2
∂s(π2∂sΦ)−

1

2
π2∂

2
sΦ.
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Substituting Φ = f in this relation and recalling the equalities τ = ∂sf , k = ∂2sf
we arrive at the identity

∂2s∂tf = ∂tk −
1

2
∂s(π2)τ − π2k.

Applying to both sides of this identity the projection Π and noting that

Π ∂t = ∇t, Π τ = 0, Π k = k

we obtain the desired equality (6.7).

Now we calculate the commutator of the differential operators ∇2
s and ∇t.

The result is given by the following lemma.

Lemma 6.2. Let Φ : [0, T ]× S1 be a smooth normal field, i.e., Φ is orthogonal
to the tangent vector τ . Then we have

∇2
s∇tΦ = ∇t∇2

sΦ− π2∇2
sΦ− π1∇sΦ. (6.9)

Proof. Following Lemma 2.1 in [1], Lemma 2.1 in [8], and Lemma 1 in [12] we
have the identity

∇2
s∇tΦ = ∇t∇2

sΦ− C2 − C1 − C0, (6.10)

where C2 = π2∇2
sΦ and

C1 = (k · ∇sV +∇sk · V )∇sΦ+ 2
(
(k · ∇sΦ)∇sV − (∇sV · ∇sΦ)k

)
,

C0 =
(
(∇sk · Φ)∇sV − (∇sV · Φ)∇sk

)
+
(
(k · Φ)∇2

sV − (∇2
sV · Φ)k

)
.

Notice that Ci are orthogonal to τ since ∇s and k are parallel to n. It is easy
to see that (

∇sk · Φ)∇sV − (∇sV · Φ)∇sk
)
· Φ = 0.

Note that the multipliers in this equality are parallel to n. Hence, either (∇sk ·
Φ)∇sV − (∇sV · Φ)∇sk = 0 or Φ is orthogonal to the normal vector n. In the
latter case Φ is orthogonal to n and τ and hence Φ = 0. From this we conclude
that

(∇sk · Φ)∇sV − (∇sV · Φ)∇sk = 0

Next we have (
(k · Φ)∇2

sV − (∇2
sV · Φ)k

)
· Φ = 0

Arguing as before we conclude that either (k ·Φ)∇2
sV −(∇2

sV ·Φ)k = 0 or Φ = 0.
We thus get

(k · Φ)∇2
sV − (∇2

sV · Φ)k = 0.

Combining the obtained results we conclude that C0 = 0. Now consider the
quantity C1. We have(

(k · ∇sΦ)∇sV − (∇sV · ∇sΦ)k
)
· ∇sΦ = 0.
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Repeating the previous arguments we conclude that either (k·∇sΦ)∇sV −(∇sV ·
∇sΦ)k = 0 or ∇sΦ = 0 is orthogonal to n and τ . Hence

(k · ∇sΦ)∇sV − (∇sV · ∇sΦ)k = 0

and
C1 = (k · ∇sV +∇sk · V )∇sΦ.

Since V and k are orthogonal to τ , we have

k · ∇sV +∇sk · V = k · ∂sV + ∂sk · V = ∂s(k · V ) = π1,

which yields the equality C1 = π1∇sΦ. Combining this result with the equalities
C2 = π2∇2

sΦ, C0 = 0, and relation (6.10) we obtain the desired identity (6.9).

6.1.2 Relation between ∇s and ∂s. Estimates of πi.

Relation between ∂s and ∇s. The important ingredient of the theory are
estimates Hr

♯ - Sobolev’s norm of the curvature k via L2-norm of the connection
∇r

sk. In this section we consider this problem in many details. We begin with
the observation that every smooth normal vector field Φ : S1 → R2 admits the
representation

Φ = φn, φ = Φ · n. (6.11)

It is easily seen that for every integer r > 0 we have

∇r
sΦ = ∂rsφn. (6.12)

The following lemma is the main result of this section.

Lemma 6.3. Let Φ : S1 → R2 be an arbitrary smooth vector field and σ ∈
(1/2, 1). Then for every integer r > 0, there is a constant c, depending only on
σ, r, and E0, such that

∥∂rsΦ−∇r
sΦ∥H0

♯
≤

c
(
∥Φ∥H0

♯
+ ∥k∥H0

♯

)1+ 1−σ
r
(
∥Φ∥Hr

♯
+ ∥k∥Hr

♯

)1− 1−σ
r . (6.13)

Proof. The proof is given in Appendix E.

If we assume that L2-norms (H0
♯ -norms) of Φ and k are uniformly bounded,

then Lemma 6.3 leads to the efficient estimate of the deviation ∂sΦ−∇sΦ. The
corresponding result is given by the following

Lemma 6.4. Let under the assumptions of Lemma 6.3,

∥Φ∥H0
♯
≤ CΦ, ∥k∥H0

♯
≤ E0.

Then for every ϵ ∈ (0, 1), there is a constant C, depending on E0, CΦ, integer
r ≥ 1, and ϵ such that

(1−ϵ)∥Φ∥Hr
♯
−ϵ∥k∥Hr

♯
−C ≤ ∥∇r

sΦ∥L2(0,L) ≤ (1+ϵ)∥Φ∥Hr
♯
+ϵ∥k∥Hr

♯
+C (6.14)
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Proof. Estimate (6.13) and the conditions of lemma imply the inequality

∥∂rsΦ−∇r
sΦ∥H0

♯
≤ C

(
∥Φ∥Hr

♯
+ ∥k∥Hr

♯

)1− 1−σ
r .

Since 1/2 < σ < 1 it follows from this and the Young inequality that

∥∂rsΦ−∇r
sΦ∥H0

♯
≤ C + ϵ

(
∥Φ∥Hr

♯
+ ∥k∥Hr

♯

)
.

We thus get the inequality∣∣ ∥∂rsΦ∥H0
♯
− ∥∇r

sΦ∥H0
♯

∣∣ ≤ C + ϵ
(
∥Φ∥Hr

♯
+ ∥k∥Hr

♯

)
.

which yields

∥∂rsΦ∥H0
♯
− ϵ
(
∥Φ∥Hr

♯
+ ∥k∥Hr

♯

)
− C ≤ ∥∇r

sΦ∥H0
♯

≤ ∥∂rsΦ∥H0
♯
+ ϵ
(
∥Φ∥Hr

♯
+ ∥k∥Hr

♯

)
+ C.

Noting that
∥Φ∥Hr

♯
− CΦ ≤ ∥∂rsΦ∥L2(0,L) ≤ ∥Φ∥Hr

♯
+ CΦ,

we arrive at desired estimate (6.14).

Corollary 6.5. Let ∥k∥L2(0,L) ≤
√
2E0 and an integer r ≥ 1. Then for every

ϵ ∈ (0, 1) there exists a constant C, depending only on E0, r, ϵ such that

(1− 2ϵ)∥k∥Hr
♯
− C ≤ ∥∇r

sk∥H0
♯
≤ (1 + 2ϵ)∥k∥Hr

♯
+ C (6.15)

Proof. It suffices to note that Φ = k and CΦ =
√
2E0 meet all requirements of

Lemma 6.4.

Estimates of πi. In this paragraph we give estimates for the coefficients πi
defined by (6.5). The result is given by the following Lemmas.

Lemma 6.6. Under the assumptions of Theorem 3.5 for every integer r ≥ 0,
there is a constant c depending on r, such that

∥V (t)∥Hr
♯
≤ c(1 + ∥k(t)∥Hr+2

♯
). (6.16)

Proof. Notice that

V ≡ ∂tf = ∇2
sk +

1

2
|k|2k − k + dJ. (6.17)

By virtue of Corollary 6.5

∥∇2
sk∥Hr

♯
≤ c+ c∥∇r+2

s k∥H0
♯
≤ c+ c∥k∥Hr+2

♯
. (6.18)

Next, the Moser inequality (2.10) implies the estimate

∥|k|2k∥Hr
♯
≤ c∥k∥2L∞(0,L) ∥k∥Hr

♯
.
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Now choose an arbitrary σ ∈ (1/2, 1). Recall that the embedding Hσ
♯ ↪→

L∞(0,L) is continuous. From this, the interpolation inequality, and the es-
timate ∥k∥L2(0,L) ≤ c we obtain

∥|k|2k∥Hr
♯
≤ c ∥k∥2Hσ

♯
∥k∥Hr

♯
≤ c ∥k∥

2σ
r+2

Hr+2
♯

∥k∥
r

r+2

Hr+2
♯

=

c ∥k∥
r+2σ
r+2

Hr+2
♯

≤ c (1 + ∥k∥Hr+2
♯

).
(6.19)

Finally, Theorem 3.2 on the estimates of the Kohn-Vogelius functional and es-
timate (6.15) in Corollary 6.5 imply

∥dJ∥Hr
♯
≤ c+ c∥∇r

sk∥H0
♯
≤ c+ c∥k∥Hr

♯
. (6.20)

Combining estimates (6.18) - (6.20) and recalling the expression we arrive at
desired estimate (6.16)

We are now in a position to estimate the quantities πi. Thew result is given
by the following lemma.

Lemma 6.7. Assume that all assumptions of Theorem 3.5 are satisfied. Let
an integer r ≥ 0 and σ ∈ (1/2, 1). Then there is c depending on r, σ and the
constants ν, ρ, ν in Theorem 3.5, such that

∥π2(t)∥Hr
♯
≤ c(1 + ∥k(t)∥1+

σ
r+2

Hr+2
♯

), ∥π1(t)∥Hr
♯
≤ c(1 + ∥k(t)∥1+

σ
r+3

Hr+3
♯

) (6.21)

for all t ∈ (0, T ).

Proof. Since π1 = −∂sπ2/2, it suffices to estimate π2. To shorten notation, we
omit the symbol t. Notice that π2 = k ·V . From this, the Moser inequality, and
continuity of the embedding Hσ

♯ ↪→ L∞(0,L) we conclude that

∥π2∥Hr
♯
≤ c∥k∥Hσ

♯
∥V ∥Hr

♯
+ ∥k∥Hr

♯
∥V ∥Hσ

♯
. (6.22)

By the interpolation inequality and estimate (6.16) in Lemma 6.6, we have

∥V ∥Hσ ≤ ∥V ∥1−
σ
r

H0
♯

∥V ∥
σ
r

Hr
♯
≤ c(1 + ∥k∥H2

♯
)1−

σ
r (1 + ∥k∥Hr+2

♯
)

σ
r .

Since

∥k∥H2
♯
≤ ∥k∥1−

2
r+2

H0
♯

∥k∥
2

r+2

Hr+2
♯

≤ c ∥k∥
2

r+2

Hr+2
♯

,

we have

∥V ∥Hσ
♯
≤ c

(
(1 + ∥k∥

2
r+2

Hr+2
♯

)1−σ
r (1 + ∥k∥Hr+2

♯
)

σ
r ≤ c(1 + ∥k∥Hr+2

♯
)µ,

where

µ =
2

r + 2
(1− σ

r
) +

σ

r
=

2 + σ

r + 2
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From this and the inequality

∥k∥Hr
♯
≤ c ∥k∥1−

r
r+2

H0
♯

∥k∥
r

r+2

Hr+2
♯

≤ c∥k∥
r

r+2

Hr+2
♯

,

we obtain

∥k∥Hr
♯
∥V ∥Hσ

♯
≤ c ∥k∥

r
r+2

Hr+2
♯

(1 + ∥k∥Hr+2
♯

)µ ≤ c+ c∥k∥1+
σ

r+2

Hr+2
♯

. (6.23)

Next, the interpolation inequality implies

∥k∥Hσ
♯
≤ c ∥k∥1−

σ
r+2

H0
♯

∥k∥
σ

r+2

Hr+2
♯

≤ c ∥k∥
σ

r+2

Hr+2
♯

,

which along with estimate (6.16) in Lemma 6.6 gives

∥k∥Hσ
♯
∥V ∥Hr

♯
≤ c ∥k∥

σ
r+2

Hr+2
♯

(1 + ∥k∥Hr+2
♯

) ≤ c+ c ∥k∥1+
σ

r+2

Hr+2
♯

.

Substituting this estimate and estimate (6.23) into (6.22) we arrive at desired
estimate (6.21).

6.2 Main integral identity.

Now we use formulae (6.7) and (6.9) in order to derive the main integral identity
for solutions to problem (6.1). The result is given by the following proposition.

Proposition 6.8. The following integral identity holds for every smooth solu-
tion f : [0, T ] × S1 to problem (6.1), for every t0 ∈ (0, T ], and for every even
integer m ≥ 6.

1

2

∫
Γ(t0)

|∇m−2
s k(t0)|2 ds+

∫ t0

0

∫
Γ(t)

|∇m
s k(t)|2 dsdt =

4∑
1

Ni +
1

2

∫
Γ(0)

|∇m−2
s k(0)|2 ds.

(6.24)

Here the quantity Ni defined by the equalities

N1 =

m−2
2∑

i=0

∫ t0

0

I2i(t) dt+
1

2
Im−2, N2 =

m−2
2∑

i=1

∫ t0

0

I2i−1(t) dt,

I2i(t) =

∫
Γ(t)

∇m−2−2i
s

(
π2∇2i

s k
)
· ∇m−2

s k ds,

I2i−1(t) =

∫
Γ(t)

∇m−2−2i
s

(
π1∇2i−1

s k
)
· ∇m−2

s k ds,

(6.25)

N3 =

∫ t0

0

∫
Γ(t)

∇m−4
s

(
(k · ∇2

sk) k
)
· ∇m

s k dsdt,

N4 = −
∫ t0

0

∫
Γ(t)

∇m−2
s Υ · ∇m

s k dsdt+

∫ t0

0

∫
Γ(t)

∇m−4
s

(
(k ·Υ) k) · ∇m

s k dsdt,

(6.26)
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where

Υ =
1

2
|k|2 k − k + dJ.

Proof. Multiplying both sides of (6.1) by ∂2s∇2m−4
s k and integrating the result

with respect to s and t we arrive at the equality∫ t0

0

∫
Γ(t)

(
∂tf · ∂2s∇2m−4

s k +∇2
sk · ∂2s∇2m−4

s k
)
dsdt+∫ t0

0

∫
Γ(t)

(1
2
|k|2k − k + dJ

)
· ∂2s∇2m−4

s k dsdt = 0.

(6.27)

The rest of the proof falls into a sequence of lemmas.

Lemma 6.9. Under the assumptions of Proposition 6.8, we have∫ t0

0

∫
Γ(t)

∂tf · ∂2s∇2m−4
s k ds =

1

2

∫
Γ(t0)

|∇m−2
s k(t0)|2 ds

−1

2

∫
Γ(0)

|∇m−2
s k(0)|2 ds−N1 −N2.

(6.28)

Proof. Notice that ∇⊤
s = −∂sΠ and ∇m−2

s k = Π∇m−2
s k. Since m is even, it

follows that∫
Γ(t)

∂tf · ∂2s∇2m−4
s k ds =

∫
Γ(t)

(∇⊤
s )

m−2∂2s∂t f ·Π∇m−2
s k ds =∫

Γ(t)

∇m−2
s Π∂2s∂t f · ∇m−2

s k ds.

Recall that the integer m is even. From this and identity (6.7) in Lemma 6.1
we obtain∫
Γ(t)

∂tf · ∂2s∇2m−4
s k ds =

∫
Γ(t)

∇m−2
s ∂t k · ∇m−2

s k ds−
∫
Γ(t)

∇m−2
s (π2 k) · ∇m−2

s k ds.

Recalling the expression for I2i(t) we can rewrite this equality in the equivalent
form ∫

Γ(t)

∂tf · ∂2s∇2m−4
s k ds =

∫
Γ(t)

∇m−2
s ∂t k · ∇m−2

s k ds− I0(t). (6.29)

Let us consider the integral in the right hand side of this equality. Using identity
(6.9) in Lemma 6.2 with Φ replaced by k we obtain∫

Γ(t)

∇m−2
s ∂t k · ∇m−2

s k ds =

∫
Γ(t)

∇m−4
s ∂t∇2

s k · ∇m−2
s k ds−∫

Γ(t)

∇m−4
s (π2∇2

s k) · ∇m−2
s k ds−

∫
Γ(t)

∇m−4
s (π1∇s k) · ∇m−2

s k ds
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or equivalently∫
Γ(t)

∇m−2
s ∂t k · ∇m−2

s k ds =

∫
Γ(t)

∇m−4
s ∂t∇2

s k · ∇m−2
s k ds− I2(t)− I1(t).

Repeating this process we finally obtain

∫
Γ(t)

∇m−2
s ∂t k · ∇m−2

s k ds =

∫
Γ(t)

∂t∇m−2
s k · ∇m−2

s k ds−

m−2
2∑

i=1

(I2i(t)− I2i−1(t)).

Combining this equality with (6.29) we arrive at the identity∫
Γ(t)

∂tf · ∂2s∇2m−4
s k ds =

∫
Γ(t)

∂t∇m−2
s k · ∇m−2

s k ds

−

m−2
2∑

i=0

I2i(t)−

m−2
2∑

i=1

I2i−1(t)).

(6.30)

Now consider the integral∫ t0

0

∫
Γ(t)

∂t∇m−2
s k · ∇m−2

s k dsdt.

Our task is to integrate by parts with respect to t. The difficulty is that the
curve Γ(t) and ds depend on the time variable. In order to cope with this
difficulty we rewrite this integral in terms of the original independent variable
θ. The change of variable s→ θ leads to the equality∫ t0

0

∫
Γ(t)

∂t∇m−2
s k · ∇m−2

s k dsdt =

∫ t0

0

∫ 2π

0

∂t∇m−2
s k · ∇m−2

s k
√
g dθdt,

where
√
g = |∂θf |. Integrating by parts gives the equality∫ t0

0

∫ 2π

0

∂t∇m−2
s k · ∇m−2

s k
√
g dθdt =

1

2

∫ 2π

0

|∇m−2
s k(t0)|2

√
g(t0) dθ −

1

2

∫ 2π

0

|∇m−2
s k(0)|2

√
g(0) dθ

−1

2

∫ t0

0

∫ 2π

0

|∇m−2
s k(t)|2 ∂t

√
g(t) dθdt

(6.31)

Next we have

∂t
√

g(t) =
1

|∂θf |
(∂θf · ∂θ∂tf) = (∂sf · ∂s∂tf)

√
g(t)

Notice that

∂sf · ∂s∂tf = τ · ∂s∂tf = −∂sτ · ∂tf = −k · V = −1

2
π2,
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which yields∫ 2π

0

|∇m−2
s k(t)|2 ∂t

√
g(t) dθ = −1

2

∫ 2π

0

|∇m−2
s k(t)|2 π2

√
g(t) dθ =

−1

2

∫
Γ(t)

|∇m−2
s k(t)|2 π2 ds = −1

2
Im−2(t).

(6.32)

Next, we have

1

2

∫ 2π

0

|∇m−2
s k(t0)|2

√
g(t0) dθ −

1

2

∫ 2π

0

|∇m−2
s k(0)|2

√
g(0) dθ =

1

2

∫
Γ(t0)

|∇m−2
s k(t0)|2 ds−

1

2

∫
Γ(0)

|∇m−2
s k(0)|2 ds.

Substituting this equality along with equality (6.32) into (6.31) we obtain∫ t0

0

∫
Γ(t)

∂t∇m−2
s k · ∇m−2

s k dsdt =

∫ t0

0

∫ 2π

0

∂t∇m−2
s k · ∇m−2

s k
√
g dθdt

=
1

2

∫
Γ(t0)

|∇m−2
s k(t0)|2 ds−

1

2

∫
Γ(0)

|∇m−2
s k(0)|2 ds− 1

2

∫ t0

0

Im−2(t) dt.

(6.33)

Integrating both sides of equality (6.30) and using relation (6.33) we arrive at
the desired equality (6.28)

Lemma 6.10. Under the assumptions of Proposition 6.8 we have∫ t0

0

∫
Γ(t)

∇2
sk · ∂2s∇2m−4

s k ds =

∫ t0

0

∫
Γ(t)

|∇m
s k(t)|2 dsdt−N3. (6.34)

Proof. Arguing as in the proof of Lemma 6.9 we obtain∫
Γ(t)

∇2
sk · ∂2s∇2m−4

s k ds =

∫
Γ(t)

(∇⊤
s )

m−4∂2s∇2
sk ·Π∇m

s k ds =∫
Γ(t)

∇m−4
s Π ∂2s ∇2

s k · ∇m
s k ds =

∫
Γ(t)

∇m−4
s ∇s∂s ∇2

s k · ∇m
s k ds.

(6.35)

Note that
∂s∇2

sk = ∇3
sk + (τ · ∂s∇2

sk) τ.

Since ∇2
s is orthogonal to τ , we have

∂s∇2
sk = ∇3

sk − (k · ∇2
sk) τ.

It is easy to check that

∇s

(
(k · ∇2

sk) τ
)
= (k · ∇2

sk)∇sτ = (k · ∇2
sk) k,
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which yields
∇s∂s∇2

sk = ∇4
sk − (k · ∇2

sk) k.

Substituting this relation into (6.35) we finally obtain∫
Γ(t)

∇2
sk · ∂2s∇2m−4

s k ds =∫
Γ(t)

|∇m
s k|2 ds−

∫
Γ(t)

∇m−4
s

(
(k · ∇2

sk) k) · ∇m
s k ds.

which along with the expression for N3 implies desired equality (6.28).

Recall the denotation

Υ =
1

2
|k|2 k − k + dJ.

Lemma 6.11. Under the assumptions of Proposition 6.8 we have∫ t0

0

Υ · ∂2s∇2m−4
s = −N4. (6.36)

Proof. The proof imitates the proof of Lemma 6.10. We have∫
Γ(t)

Υ · ∂2s∇2m−4
s k ds =

∫
Γ(t)

(∇⊤
s )

m−4∂2sΥ ·Π∇m
s k ds

=

∫
Γ(t)

∇m−4
s ∇s∂s Υ · ∇m

s k ds.

(6.37)

Notice that Υ is orthogonal to τ . It follows that Note that

∂sΥ = ∇sΥ+ (τ · ∂sΥ) τ = ∇sUpsilon− (k ·Υ) τ.

Next we have
∇s

(
(k ·Υ) τ

)
= (k ·Υ)∇sτ = (k ·Υ) k,

which yields
∇s∂sΥ = ∇2

sΥ− (k ·Υ) k.

Substituting this relation into (6.36) we arrive at the identity∫
Γ(t)

Υ · ∂2s∇2m−4
s k ds =∫

Γ(t)

∇m−2
s Υ · ∇m

s k ds−
∫
Γ(t)

∇m−4
s

(
(k ·Υ) k) · ∇m

s k ds.

which along with the expression for N3 yields (6.36).

We are now in a position to complete the proof of Proposition 6.8. To this
end, it suffices to substitute equalities (6.28), (6.34), and (6.36) into integral
identity (6.27).
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6.3 Estimates of reminders Ni

6.3.1 Estimates of N1 and N2.

Estimates (6.21) for πi leads to the basic estimates for the reminders Ni in the
integral identity (6.24). The first result in this direction is given by the following

Lemma 6.12. Assume that all assumptions of Theorem 3.5 are satisfied. Let
an even integer m ≥ 4 and σ ∈ (1/2, 1). Then there is c, depending on m and
σ, such that

|Ni| ≤ c

∫ T

0

(
1 + ∥k(t)∥2−

2(1−σ)
m

Hm
♯

)
for i = 1, 2. (6.38)

Proof. The proof is based on Lemma 6.7 and Corollary 6.5. We give the proof
only for the quantity N1. The proof for N2 is similar. It follows from represen-
tation (6.25) for N1 that

N1 =

m−2
2∑

i=0

∫ t0

0

I2i(t) dt+
1

2
Im−2(t),

I2i(t) =

∫
Γ(t)

∇m−2−2i
s

(
π2∇2i

s k
)
· ∇m−2

s k ds.

(6.39)

Hence it suffices to estimate I2i(t). To simplify the notation, we omit the symbol
t. By the Cauchy inequality, we have

|I2i| ≤ ∥∇m−2−2i
s

(
π2∇2i

s k
)
∥H0

♯
∥∇m−2

s k∥H0
♯
. (6.40)

Next notice that
π2∇2i

s k = π2∂
2i
s K n, K = k · n

and hence
∇m−2−2i

s

(
π2∇2i

s k
)
= ∂m−2−2i

s (π2∂
2i
s K)n

It follows that

∥∇m−2−2i
s

(
π2∇2i

s k
)
∥H0

♯
≤ ∥π2∂2is K∥Hm−2−2i

♯
. (6.41)

The Moser inequality and the continuity of the embedding Hσ
♯ ↪→ L∞(0,L)

imply the estimate

∥π2∂2is K∥Hm−2−2i
♯

≤ c∥π2∥Hm−2−2i
♯

∥∂2is K∥Hσ
♯
+ c∥π2∥Hσ

♯
∥∂2is K∥Hm−2−2i

♯

≤ c∥π2∥Hm−2−2i
♯

∥K∥H2i+σ
♯

+ c∥π2∥Hσ
♯
∥K∥Hm−2

♯
.

(6.42)

It follows from the interpolation inequality and estimate (6.21) in Lemma 6.7
that

∥π2∥Hσ
♯
≤ ∥π2∥

1− σ
m−2

H0
♯

∥π2∥
σ

m−2

Hm−2
♯

≤

c
(
1 + ∥k∥1+

σ
2

H2
♯

)1− σ
m−2

(
1 + ∥k∥1+

σ
m

Hm
♯

) σ
m−2 .

(6.43)
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Since ∥k∥H0
♯
is uniformly bounded, the interpolation inequality implies

∥k∥H2
♯
≤ c∥k∥

2
m

Hm
♯
.

Substituting this inequality in (6.43) we arrive at the estimate

∥π2∥Hσ
♯
≤ c(1 + ∥k∥ιHm

♯
), (6.44)

where

ι =
2

m
(1 +

σ

2
)(1− σ

m− 2
) + (1 +

σ

m
)

σ

m− 2
=

2 + 2σ

m

Next notice that ∥K∥H0
♯
= ∥k∥H0

♯
is uniformly bounded, which yields

∥K∥Hm−2
♯

≤ c∥K∥
m−2
m

Hm
♯

From this and (6.44) we obtain

∥π2∥Hσ
♯
∥K∥Hm−2

♯
≤ c (1 + ∥k∥Hm

♯
)

2+2σ
m ∥K∥

m−2
m

Hm
♯

(6.45)

Next, estimate (6.21) in Lemma 6.7 and the interpolation inequality imply

∥π2∥Hm−2−2i
♯

∥K∥H2i+σ
♯

≤ c
(
1 + ∥k∥1+

σ
m−2i

Hm−2i
♯

)
∥K∥

2i+σ
m

Hm
♯

≤

c
(
1 + ∥k∥

m−2i
m (1+ σ

m−2i )

Hm
♯

)
∥K∥

2i+σ
m

Hm
♯

which gives

∥π2∥Hm−2−2i
♯

∥K∥H2i+σ
♯

≤ c(1 + ∥k∥1+
m−2i+σ

m

Hm
♯

) ∥K∥
2i+σ
m

Hm
♯

≤ (6.46)

Substituting (6.45) and (6.46) into (6.42) and next into (6.41) we arrive at the
inequality

∥∇m−2−2i
s

(
π2∇2i

s k
)
∥L2(0,L) ≤ c(1 + ∥k∥Hm

♯
)

2+2σ
m ∥K∥

m−2
m

Hm
♯

+

c(1 + ∥k∥1+
m−2i+σ

m

Hm
♯

) ∥K∥
2i+σ
m

Hm
♯
.

(6.47)

Now out task is to estimate Hr
♯ -norm of K via Hr

♯ -norm of k. To this end,

notice that the identity ∇r
sk = ∂rsK n and boundedness of L2-norm of K = k ·n

yields the estimates

∥K∥Hr
♯
≤ c+ ∥∂rsK∥H0

♯
= c+ c∥∇r

sk∥H0
♯
,

which holds for every integer r ≥ 0. Applying estimate (6.15) in Lemma 6.5 we
arrive at the inequality

∥K∥Hr
♯
≤ c+ c∥k∥Hr

♯
.
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Substituting this inequality with r = m into (6.47) Leads to the estimates

∥∇m−2−2i
s

(
π2∇2i

s k
)
∥H0

♯
≤ c(1 + ∥k∥1+

m−2i+σ
m

Hm
♯

) (1 + ∥k∥
2i+σ
m

Hm
♯

)

+(1 + ∥k∥
2+2σ

m

Hm
♯

(1 + ∥k∥Hm
♯
)

m−2
m ≤ c(1 + ∥k∥Hm

♯
)1+

2σ
m .

(6.48)

In order to complete the proof, note that estimate (6.15) and the interpolation
inequality imply the estimate

∥∇m−2
s k∥H0

♯
≤ c+ c∥k∥Hm−2

♯
≤ c+ c∥k∥1−

2
m

Hm
♯
.

Combining this estimate with (6.48) and (6.40) we finally obtain the inequality

|I2i(t)| ≤ c(1 + ∥k(t)∥Hm(t))
1+ 2σ

m (1 + ∥k(t)∥Hm
♯
)1−

2
m ≤ c(1 + ∥k(t)∥Hm

♯
)2−

2(1−σ)
m ,

which along with expression (6.39) yields desired estimate (6.38).

6.3.2 Estimates of N3 and N4

In order to complete the proof of Theorem 3.5 it remains to estimate the re-
minders N3 and N4 given by (6.26). The result is given by the following lemmas.

Lemma 6.13. Assume that all assumptions of Theorem 3.5 are satisfied. Let
an integer m ≥ 4 and σ ∈ (1/2, 1). Then there is c depending on m and σ, such
that

|N3| ≤ c

∫ T

0

(1 + ∥k(t)∥2−
2(1−σ)

m

Hm
♯

). (6.49)

Proof. Recall that

N3 =

∫ T

0

∫
Γ(t)

∇m−4
s

(
(k · ∇2

sk) k
)
· ∇m

s k dsdt.

Hence out task is to estimate the integrand in the right hand side of this formula.
To simplify the notation we omit the symbol t. By the Cauchy inequality, we
have∣∣∣ ∫

Γ

∇m−4
s ((k · ∇2

sk)k) · ∇m
s k ds

∣∣∣ ≤ ∥∇m−4
s ((k · ∇2

sk)k)∥H0
♯
∥∇m

s k∥H0
♯
. (6.50)

Notice that k = K n and ∇2
sk = ∂2sK n, which yields

(k · ∇2
sk)k = K2∂2sK n, ∇m−4

s ((k · ∇2
sk)k) = ∂m−4

s (K2∂2sK)n.

From this we conclude that

∥∇m−4
s ((k · ∇2

sk)k)∥H0
♯
≤ ∥K2∂2sK∥Hm−4

♯
. (6.51)
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The Moser inequality, and continuity of the embedding Hσ
♯ ↪→ L∞(0,L) imply

the estimate

∥∇m−4
s ((k · ∇2

sk)k)∥H0
♯
≤

c∥K∥2L∞(0,L)∥K∥Hm−2
♯

+ c∥∂2sK∥L∞(0,L)∥K∥L∞(0,L)∥K∥Hm−4
♯

≤ c∥K∥2Hσ
♯
∥K∥Hm−2

♯
+ c∥K∥H2+σ

♯
∥K∥Hσ

♯
∥K∥Hm−4

(6.52)

Since the ∥K∥H0
♯
is uniformly bounded, the interpolation inequality yields

∥K∥Hσ
♯
≤ c∥K∥

σ
m

Hm
♯
, ∥K∥Hm−2

♯
≤ c∥K∥1−

2
m

Hm
♯
,

∥K∥H2+σ
♯

≤ c∥K∥
2+σ
m

Hm
♯
, ∥K∥Hm−4

♯
≤ c∥K∥1−

4
m

Hm
♯
.

Substituting this inequalities into (6.52) we obtain

∥∇m−4
s ((k · ∇2

sk)k)|H0
♯
≤ c∥K∥1−

2(1−σ)
m

Hm
♯

(6.53)

Next, inequality (6.15) in Lemma 6.5 leads to the estimate

∥K∥Hm
♯

≤ c+ c∥∂mK∥H0
♯
= c+ c∥∇m

s k∥H0
♯
≤ c+ c∥k∥Hm

♯
,

which along with (6.53) yields the estimate

∥∇m−4
s ((k · ∇2

sk)k)|H0
♯
≤ c(1 + ∥k∥Hm

♯
)1−

2(1−σ)
m (6.54)

Applying again inequality (6.15) we obtain

∥∇m
s k∥H0

♯
≤ c(+∥k∥Hm

♯
).

Substituting this inequality and inequality (6.54) we finally arrive at the esti-
mate ∣∣∣ ∫

Γ(t)

∇m−4
s ((k(t) · ∇2

sk(t))k(t)) · ∇m
s k(t) ds

∣∣∣ ≤ c(1 + ∥k(t)∥2−
2(1−σ)

m

Hm
♯

,

which obviously yields desired estimate (6.49)

Now our task is to estimate the reminder

N4 = −
∫ t0

0

∫
Γ(t)

∇m−2
s Υ · ∇m

s k dsdt+

∫ t0

0

∫
Γ(t)

∇m−4
s

(
(k ·Υ) k) · ∇m

s k dsdt,

(6.55)

where

Υ =
1

2
|k|2 k − k + dJ.

The result is given by the following lemma
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Lemma 6.14. Assume that all assumptions of Theorem 3.5 are satisfied. Let
an integer m ≥ 4 and σ ∈ (1/2, 1). Then there is c depending on m and σ, such
that

|N4| ≤ c

∫ T

0

(1 + ∥k(t)∥2−
2(1−σ)

m

Hm
♯

). (6.56)

Proof. Introduce the functions

M1 = −1

2
∇m−2

s (|k|2k) + 1

2
∇m−4

s (|k|4k),

M2 = −∇m−2
s (k) +∇m−4

s (|k|2k),
M3 = −∇m−2

s (dJ) +∇m−4
s ((k · dJ)k).

(6.57)

It is easily seen that

N4 =

3∑
i=1

∫ t0

0

∫
Γ(t)

Mi(t) · ∇m
s k dsdt,

Estimate (6.15) in Lemma 6.5 implies

∥∇m
s k∥H0

♯
≤ c(1 + ∥k∥Hm

♯
).

From this and the Cauchy inequality we obtain the estimate

|N4| ≤ c

3∑
i=1

∫ t0

0

∥Mi(t)∥H0
♯ (t)

(
1 + ∥k(t)∥Hm

♯ (t)dt
)

(6.58)

Now our task is to estimate H0
♯ -norm of Mi First we derive estimate for the

quantity M1. We begin with the observation that

|k|2k = K3 n, (k · (|k|2k)) k = K5 n

∇r
s(K

3n) = ∂rs (K
3)n, ∇r

s(K
5n) = ∂rs (K

5)n,
(6.59)

where K = k · n is the scalar curvature and r ≥ 0 is an arbitrary integer. It
follows that from this and the Moser inequality that

∥∇m−2(|k|2k)∥H0
♯
≤ c∥K3∥Hm−2

♯
≤ c∥K∥2Hσ

♯
∥K∥Hm−2

♯
.

Since ∥K∥H0
♯
is uniformly bounded, we may apply the interpolation inequality

to obtain

∥∇m−2(|k|2k)∥H0
♯
≤ c∥K∥

2σ+m−2
m

Hm
♯

.

Note that Corollary 6.5 and the identity ∇m
s k = ∂ms K n imply the inequality

∥K∥Hm
♯

≤ c+ c∥∂ms K∥H0
♯
= c+ c∥∇m

s k∥H0
♯
≤ c+ c∥k∥Hm

♯
.

It follows that

∥∇m−2(|k|2k)∥H0
♯
≤ c(1 + ∥k∥Hm

♯
)2−

2(1−σ)
m . (6.60)
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Repeating these arguments and using identities (6.59) we obtain

∥∇m−4(|k|4k)∥H0
♯
≤ c (1 + ∥k∥2−

4(1−σ)
m

Hm
♯

).

Since σ ∈ (1/2, 1), we conclude from this and expression (6.57) for M1 that

∥M1∥H0 ≤ c(1 + ∥k∥Hm)1−
2(1−σ)

m . (6.61)

Arguing as before we obtain the estimate

∥M2∥H0
♯
≤ c(1 + ∥k∥Hm

♯
)1−

4(1−σ)
m . (6.62)

It remains to estimate H0
♯ -norm of M3. Recall that dJ is a normal field and set

dJ = ψ n, ψ = dJ · n, which yields (k · dJ)k = K2ψ n.

Thus we get

∇m−2
s dJ = ∂m−2

s ψ n, ∇m−4
s

(
(k · dJ)k) = ∂4s (K

2ψ),

which leads to the inequality

∥M3∥H0
♯
≤ c∥ψ∥Hm−2

♯
+ ∥K2ψ∥Hm−4

The Moser inequality and the embedding theorem imply the estimate

∥M3∥H0 ≤ c∥ψ∥Hm−2
♯

+ c∥K∥2Hσ
♯
∥ψ∥Hm−4

♯
+ c∥K∥Hσ

♯
∥ψ∥Hσ

♯
∥K∥Hm−4 .

Since ∥ψ∥H0
♯
= ∥dJ∥H0

♯
and ∥k∥H0

♯
are uniformly bounded, we may apply the

interpolation inequality to obtain the estimate

∥M3∥H0
♯
≤ c∥ψ∥1−

2
m

Hm
♯

+ ∥K∥
2σ
m

Hm
♯
∥ψ∥1−

4
m

Hm
♯

+ ∥K∥
σ
m

Hm
♯
∥ψ∥

σ
m

Hm
♯
∥K∥1−

4
m

Hm . (6.63)

Next notice that by virtue of estimate (6.15), we have

∥K∥Hm
♯

≤ c(1 + ∥∂ms K∥H0
♯
) = c(1 + ∥∇m

s k∥H0
♯
) ≤ c(1 + ∥k∥Hm

♯
).

Recall that ∥dJ∥H0 and ∥k∥H0 are uniformly bounded. From this and estimate
(6.14) in Lemma 6.4 with r = m and Φ = dJ we conclude that

∥ψ∥Hm
♯

≤ c(1 + ∥∂ms ψ∥H0
♯
) = c(1 + ∥∇m

s dJ∥H0
♯
) ≤ c(1 + ∥k∥Hm

♯
+ ∥dJ∥Hm

♯
).

By virtue of Theorem 3.2, we have

∥dJ∥Hm+β
♯

≤ c ≤ c(1 + ∥k∥Hm
♯
), β ∈ [0, 1/2).

which gives
∥ψ∥Hm

♯
≤ c(1 + ∥k∥Hm

♯
)
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Substituting the obtained estimates for ∥K∥Hm
♯

and ∥ψ∥Hm
♯

into (6.63) and

noting that σ ∈ (1/2, 1) we finally obtain

∥M3∥H0
♯
≤ (1∥k∥Hm

♯
)1−

2
m (6.64)

Combining estimates (6.59), (6.62) and (6.64) we arrive at the inequality

3∑
i=1

∥Mi(t)∥H0(t) ≤ (1 + ∥k∥Hm(t))
1− 2(1−σ)

m

Substituting this inequality into (6.58) we obtain desired estimate (6.56)

6.4 Proof of Theorem 3.5

We are now in a position to complete the proof of Theorem 3.5. We begin from
the observation that the estimates of Ni given by Lemmas 6.12, 6.13, and 6.14
imply the inequality

4∑
i=1

|Ni| ≤ c

∫ t0

0

(1 + ∥k(t)∥2−
2(1−σ)

m

Hm
♯

) dt

Since σ ∈ (1/2, 1) we may apply the Young inequality to obtain

4∑
i=1

|Ni| ≤ cϵt0 + ϵ

∫ t0

0

∥k(t)∥2Hm
♯
dt, (6.65)

where ϵ ∈ (0, 1) is an arbitrary number and the constant cϵ depends on ϵ. Next,
estimate (6.15) in Corollary 6.5 yields the inequalities

∥∇m−2
s k∥H0

♯
≥ (1−2ϵ)∥k∥2

Hm−2
♯

−cϵ, ∥∇m
s k∥H0

♯
≥ (1−2ϵ)∥k∥2Hm

♯
−cϵ. (6.66)

Substituting these inequalities in the main integral identity (6.24) we arrive at
the estimate

1− 2ϵ

2
∥k(t0)∥2Hm−2

♯

+ (1− 2ϵ)

∫ t0

0

∥k(t)∥2Hm
♯
dt ≤

cϵ(1 + t0) +
1

2

∫
Γ(0)

|∇m−2
s k(0)|2 ds.

Setting ϵ = 1/6 we finally obtain

∥k(t0)∥2Hm−2
♯

+

∫ t0

0

∥k(t)∥2Hm
♯
dt =

c(1 + t0) +
3

2

∫
Γ(0)

|∇m−2
s k(0)|2 ds.

This completes the proof of Theorem 3.5
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7 Proof of Theorem 3.6

Since k = ∂2sf and f , it follows from estimate (3.27) in Theorem 3.5 that

sup
[0,T ]

∥f(t)∥Hm
♯

≤ c(T + 1) + Em (7.1)

Recall that the length of the curve Γ(t) is uniformly bounded from below and
above by the constants 2/E0 and E0. Hence the embedding theorems holds in
the spaces Hr

♯ , r ≥ 0, t ∈ [0, T ] with embedding constants independent of t.

Since the embedding Hm(t) ↪→ Cm−1(0,L(t) is continuous, it follows from from
this and (7.1) that f and k as a function of variables t and s admits the estimate

sup
[0,T ]

∥f(t)∥Cm−1(0,L(t)) + ∥k(t)∥Cm−3(0,L(t)) ≤ c(T + 1) + Em. (7.2)

Notice that s is an auxiliary variable and the basic independent variable is
θ ∈ S1. Hence our task is to estimate the derivatives of f as a function of the
variable θ. To this end, note that

∂s(t, θ)

∂θ
=
√
g(t, θ), where

√
g(t, θ) = |∂θf(t, θ)|. (7.3)

Let us estimate the length element
√
g. It is easily seen that

∂t
√

g(t) =
1

|∂θf |
(∂θf · ∂θ∂tf) = (∂sf · ∂s∂tf)

√
g(t)

Notice that

∂sf · ∂s∂tf = τ · ∂s∂tf = −∂sτ · ∂tf = −k · V = −1

2
π2,

which yields the ordinary differential equation for
√
g:

∂t
√
g = −1

2
π2

√
g or

√
g(t) =

√
g0 e

− 1
2

∫ t
0
π2dt. (7.4)

It follows from estimate (6.21) in Lemma 6.7 that

∥π2∥Hm−4
♯

≤ c(1 + ∥k∥Hm−2
♯

)1+
σ

m−2

which gives
sup
[0,T ]

∥π2(t)∥Cm−5(0,L(t)) ≤ c. (7.5)

Next we have for every integer r ≥ 1

∂rθπ2 =

r∑
ρ=1

∂ρsπ2
∑
α

cρα(∂θs)
α1 (∂2θs)

α2 . . . (∂rθs)
αr ,
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where the interior sum is taken over all nonnegative integer vectors α such that

α1 + α2 + . . . αr = ρ, α1 + 2α2 + · · ·+ rαr = r,

and cρα are some constants. In particular, we have

∂rθπ2 =

r∑
ρ=1

∂ρsπ2
∑
α

cρα(
√
g)α1 (∂θ

√
g)α2 . . . (∂r−1

θ

√
g)αr ,

Differentiating both sides of equation (7.4) with respect to θ we obtain

∂t(∂
r
θ

√
g) = −1

2
π2 (∂

r
θ

√
g) +Rr, (7.6)

where

Rr = −cσ
r−1∑
σ=0

∂σθ
√
g
( r−σ∑

ρ=1

∂ρsπ2
∑
α

cρα(
√
g)α1 (∂θ

√
g)α2 . . . (∂r−σ−1

θ

√
g)αr

)
,

where

α1 + α2 + . . . αr−σ = ρ, α1 + 2α2 + · · ·+ rαr−σ = r − σ,

Notice that Rr contain only the derivative ∂jθ
√
g of order j ≤ r − 1. Moreover

by virtue of (7.5), we have

|∂rsπ2(t, θ)| ≤ c for all t ∈ [0, T ] and r ≤ m− 5,

which yields the estimate

|Rr| ≤ c
(
1 +

r−1∑
i=0

|∂iθ
√
g|
)N
, (7.7)

where the integer N depends only on r. It follows from this and (7.6) that

sup
[0,T ]×S1

|∂rθ
√
g| ≤ c sup

S1
|∂rθ

√
g0|+c sup

[0,T ]×S1

(
1+

r−1∑
i=0

|∂iθ
√
g|
)N

for all 1 ≤ r ≤ m−5.

(7.8)
It follows from the conditions of Theorem 3.6 that

sup
S1

|∂rθ
√
g0| ≤ c for all r ≤ m− 5

On the other hand, we have

√
g =

√
g0e

− 1
2

∫ t
0
π2 , which yields

√
g
±1 ≤ c.

From this, (7.8), and the induction principle we conclude that

sup
[0,T ]

∥
√

g(t)∥Cm−6(S1) ≤ c (7.9)
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This inequality along with the relation

∂θs(t, θ) =
√
g(t, θ)

leads to the estimate
∥s(t)∥Cm−5(S1) ≤ c.

Combining this result with (2.11) we arrive at a priori estimate (3.28) for f ,

∥f∥C(0,T ;Cm−5(S1) ≤ c.

Employing equation (3.22) and repeating the previous arguments we obtain
desired estimate (3.28) for ∂tf . This complete the proof of Theorem 3.6

A Proof of Lemmas 2.1, 2.2, and Corollary 2.4

Proof of Lemma 2.1. It suffices to estimate L from below. The estimate
from above obviously follows from (5.11). Since Γ is a C1 Jordan curve, the
degree of the mapping τ : Γ → S1 equals 1. Hence there exists s∗ ∈ (0,L) such
that τ(s∗) = −τ(0). We have

2 = |τ(s∗)− τ(0)| ≤
∫ s∗

0

|k| ds ≤
√
L
(∫ L

0

|k|2 ds
)1/2

≤
√
2
√
L
√
E0,

which implies the estimate
√
L ≥

√
2/E0. THese completes the proof of Lemma

2.1

Proof of Lemma 2.2 We will consider the immersion f = (f1, f2) as a
function of the arc-length variable s ∈ [−L/2,L/2]. Obviously it can be regarded
as L-periodic function on R. We have ∂sf1 = τ1, ∂sf2 = τ2. In the Cartesian
system of coordinates associated with z, we have τ(0) = (1, 0). Notice that τ is
L-periodic and

∥∂sτ∥L2(−L/2,L/2) = ∥k∥L2(−L/2,L/2) ≤
√

2E0.

It follows from this and embedding theorem that

∥τ∥Cα(−L/2,L/2) + ∥f∥C1+α(−L/2,L/2) ≤ c(α,E0) (A.1)

for all α ∈ [0, 1/2). This means that the curve Γ belongs to the class C1+α and
its smoothness properties depends only on α and E0. In particular, there is a
positive κ, depending only on E0, such that

|∂sf1(s)− 1| ≤ 1

12
, |∂sf2(s)| ≤

1

12
for all s ∈ [−3κ, 3κ]

and
0 < c(E0)

−1 ≤ κ ≤ c(E0) <∞
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Therefore, the mapping x1 = f(s), s ∈ [−3κ, 3κ] is diffeomorphic. We denote
its image by [−α, β]. The mapping

η(x1) = f2(f
−1
1 (x1)), x1 ∈ [−α, β]

is well defined and continuously differentiable. Moreover, the identity η′ =
∂sf2(∂sf1)

−1 yields the desired estimate (2.3) for η′. Next, we have

η′′(x1) = (∂2sf2(∂sf1)
−2)(s(x1))− 2(∂sf2(∂sf1)

−3∂2sf1)(s(x1)).

Since the absolute values of the derivatives (∂sf1)
±1, ∂sf2 does not exceed 2 on

the segment [−3κ, 3κ], it follows that∫ β

−α

|η′′|2 dx1 ≤ c

∫ 3κ

−3κ

|∂2sf |2ds ≤ cE0.

This completes the proof of the lemma.

Proof of Corollary 2.4 By virtue of Corollary 2.3, we have for every t ∈
[0, T ],

ν(t) = inf
z∈Γ(t)

dist (Γ(t) \ Γ3κ(t), Γ2κ(t)) > 0,

Here Γ3κ(t) and Γ2κ(t)) are the arcs centered at z and defined by Lemma 2.2
with Γ replaced by Γ(t).

It is necessary to prove that inft ν(t) > 0. Suppose , contrary to the our
claim that there are sequences tn and zn ∈ Γ(tn) such that

dist (Γ(tn) \ Γn
3κ(tn), Γ

n
2κ(tn)) → 0 as n→ ∞.

Here Γn
3κ(tn) and Γn

2κ(tn) are the arcs centered at zn and defined by Lemma 2.2
with Γ replaced by Γ(tn).

After passing to a subsequence we may assume that tn → t∞ ∈ [0, T ] and
zn → z∗ ∈ R2 as n→ ∞. It follows that there are sequences z′n ∈ Γ(tn)\Γ3κ(tn)
and z′′n ∈ Γ2κ(tn) such that |z′n − z′′n| → 0 as n → ∞. Choose the arc-length
coordinates on Γ(tn) such that the corresponding arc-length coordinates equal
zero at zn. It follows that

z′n = f(tn, s
′
n), z′′n = f(tn, s

′′
n),

where
s′n ∈ (−L(tn)/2,L(tn)/2) \ (−3κ, 3κ), s′′n ∈ (−2κ, 2κ).

Passing to a subsequences we may assume that

s′n → s′∞ ∈ (−L(t∞)/2,L(t∞)/2) \ (−3κ, 3κ), s′′n → s′∞ ∈ (−2κ, 2κ).

It follows from condition (iii) that

z′n = f(tn, s
′
n) → f(t∞, s

′
∞) and z′′n = f(tn, s

′′
n) → f(t∞, s

′′
∞)

Hence
f(t∞, s

′
∞) = f(t∞, s

′′
∞) and s′∞ ̸= s′′∞. (A.2)

On the other hand, Condition H.2 implies that the curve Γ(t∞) has no self-
intersections. This contradicts to relations (A.2).
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B Sobolev spaces

B.1 Anisotropic spaces

The proof of the basic results of Section 4 required the analysis classes of func-
tions which have different smoothness properties with respect to different space
variables. In this subsection we collect the basis facts about such spaces. The
results will be used in Sections C and D.

Let
Qm = (−κm, κm)× (−ρm, ρm), m ∈ [1, r]

be a rectangular defined by (3.1). Fix an arbitrary smooth function ϕ : Qm → R
compactly supported in (−κm, κm). Assume that ϕ is extended by 0 to the strip
R× (−ρm, ρm). Introduce the norm

∥ϕ∥X∞ = sup
y1∈R

∥ϕ(y1, ·)∥L2(−ρm,ρm),

∥ϕ∥2Y j = ∥ϕ∥2L2(Qm) + ∥∂j1ϕ∥2L2(Qm)

(B.1)

Since ϕ(·, y2) is smooth and compactly supported in R, we can rewrite this

definition in terms of the Fourier transform. The Fourier transform ϕ̂(ξ, y2),
(ξ, y2) ∈ R× (−ρm, ρm), is defined by the equalities

ϕ̂(ξ, y2) =
1√
2π

∫
R
e−iξy1ϕ(y1, y2) dy1, ϕ(y1, y2) =

1√
2π

∫
R
eiξy1 ϕ̂(ξ, y2) dξ.

With this notation definition (B.1) for Y j-norm can be written in the equivalent
form

∥ϕ∥2Y j =

∫ ρm

−ρm

(∫
R
(1 + ξ2)j |ϕ̂(ξ, y2)|2 dξ

)
dy2. (B.2)

Using (B.2) we can define Y β-norm for any β ∈ R:

∥ϕ∥2Y β =

∫ ρm

−ρm

(∫
R
(1 + ξ2)β |ϕ̂(ξ, y2)|2 dξ

)
dy2. (B.3)

Notice two elementary inequalities for the introduced norms.

Lemma B.1. Let ϕ be a smooth function compactly supported on Qm. Assume
that it is extended by 0 to R. Then

∥ϕ∥X∞ ≤ c(σ) ∥ϕ∥Y σ for every σ > 1/2, (B.4)

∥ϕ∥Y γ ≤ c(σ) ∥ϕ∥1−
γ
σ

L2(Qm) ∥ϕ∥
γ
σ

Y σ for every σ > 0 and 0 < γ < σ. (B.5)

Proof. In order to prove the first estimate (B.4) in Lemma B.1, note that

sup
y1∈R

|ϕ(y1, y2)| ≤
1√
2π

∫
R

|ϕ̂(ξ, y2)| dξ.
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Thus we get

∥ϕ∥2X∞ = sup
y1∈R

∫ ρm

−ρm

|ϕ(y1, y2)|2 dy2 ≤
∫ ρm

−ρm

{
sup
y1∈R

|ϕ(y1, y2)|
}2

dy2 ≤

c

∫ ρm

−ρm

{∫
R
|ϕ̂(ξ, y2)| dξ

}2

dy2.

(B.6)

Since σ > 1/2, the Cauchy inequality implies the estimate{∫
R
|ϕ̂(ξ, y2)| dξ

}2

≤
∫
R
(1 + ξ2)−σ dξ

∫
R
(1 + ξ2)σ ∥ϕ̂(ξ, y2)|2 dξ

≤ c

∫
R
(1 + ξ2)σ |ϕ̂(ξ, y2)|2 dξ.

Substituting this estimate into (B.6) we finally arrive at the inequality

∥ϕ∥2X∞ ≤
∫ ρm

−ρm

∫
R
(1 + ξ2)σ |ϕ̂(ξ, y2)|2 dξ dy2,

which along with (B.3) yields the desired estimate (B.4).
It remains to prove the interpolation inequality (B.5). We begin with the

observation that

(1 + ξ2)γ |ϕ̂(ξ, y2)|2 = (|ϕ̂(ξ, y2)|2)1−ϑ
(
(1 + ξ2)γ |ϕ̂(ξ, y2)|2)ϑ

)
, ϑ = γ/σ.

From this and the Hölder inequality we conclude that∫
R
(1 + ξ2)γ |ϕ̂(ξ, y2)|2 dξ ≤

( ∫
R
|ϕ̂(ξ, y2)|2 dξ

)1−ϑ ( ∫
R
(1 + ξ2)σ|ϕ̂(ξ, y2)|2 dξ

)ϑ
(B.7)

Combining this inequality with (B.2) and applying the Hölder inequality we
finally arrive at the estimate

∥ϕ∥2Y γ =

∫ ρm

−ρm

{∫
R
(1 + ξ2)γ |ϕ̂(ξ, y2)|2 dξ

}2

dy2 ≤∫ ρm

−ρm

{( ∫
R
|ϕ̂(ξ, y2)|2 dξ

)1−ϑ ( ∫
R
(1 + ξ2)σ|ϕ̂(ξ, y2)|2 dξ

)ϑ}
dy2 ≤(∫ ρm

−ρm

∫
R
|ϕ̂(ξ, y2)|2 dξdy2

)1−ϑ (∫ ρm

−ρm

∫
R
(1 + ξ2)σ|ϕ̂(ξ, y2)|2 dξdy2

)ϑ
=

∥ϕ∥2(1−ϑ)
Y 0 ∥ϕ∥2ϑY σ

Recalling that ϑ = γ/σ and

∥ϕ∥2Y 0 =

∫ ρm

−ρm

∫
R
|ϕ̂(ξ, y2)|2 dξdy2 =

∫ ρm

−ρm

∫
R
|ϕ(y)|2 dy1dy2 = ∥ϕ∥2L2(Qm)

we obtain the desired interpolation inequality (B.5).
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B.2 Proof of Lemma 5.5

Without loss of generality we may assume that L = 2π. For the sake of sim-
plicity, introduce the temporary notation:

F = u, F♯ = v =

∞∑
k=−∞

u(s+ 2kπ). (B.8)

It is necessary to prove that

∥v∥
H

m+1/2
♯

≤ ∥u∥Hm+1/2(R). (B.9)

Step 1. New norm in Hm+1/2(R). It is convenient to introduce the
equivalent norm on the space Hm+1/2(R). Recall that

∥u∥2Hm+1/2(R) =

∫
R
(1 + |ξ|2)m+1/2 |û(ξ)|2 dξ. (B.10)

Introduce the pseudodifferential operators S and T defined in terms of the
Fourier transform by the equalities

Ŝu(ξ) =
1

(1 + |ξ|2)1/4
û(ξ), T̂u(ξ) = T (ξ) û(ξ), (B.11)

where

T (ξ) =
(−iξ)m+1

(1 + |ξ|2)1/4
û(ξ). (B.12)

It is clear that
T = (∂s)

m+1 S (B.13)

Introduce the Hilbert norm defined by

|u|2Hm+1/2(R) = ∥u∥2L2(R) + ∥Tu∥2L2(R), (B.14)

or equivalently

|u|2Hm+1/2(R) =

∫
R
(1 + |T (ξ)|2) |û(ξ)|2 dξ. (B.15)

Since
c−1(1 + |ξ|2)m+1/2 ≤ 1 + |T (ξ)|2 ≤ c(1 + |ξ|2)m+1/2,

the norms ∥ · ∥Hm+1/2(R) and | · |Hm+1/2(R) are equivalent, i.e.,

c−1∥u∥Hm+1/2(R) ≤ |u|Hm+1/2(R) ≤ c∥u∥Hm+1/2(R). (B.16)

Finally introduce the function

Φ(ξ) = T (ξ) û(ξ), ξ ∈ R. (B.17)

It is clear that
|u|2Hm+1/2(R) = ∥û∥2L2(R) + ∥Φ∥2L2(R). (B.18)
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Step 2. New norm in H
m+1/2
♯ . It is convenient to introduce the equivalent

norm on the space H
m+1/2
♯ . Recall that

∥v∥2
H

m+1/2
♯

=

∞∑
k=−∞

(1 + |k|2)m+1/2 |vk|2 (B.19)

where the Fourier coefficients are defined by

vk =
1√
2π

∫ π

−π

e−iks v(s) ds.

Introduce the operators S♯ and T♯ defined in the Fourier basis by the equalities

(S♯ v)k =
1

(1 + |k|2)1/4
vk, (T♯ v)k = T (k) vk, (B.20)

where T is defined by (B.12). It is clear that

T♯ = (∂s)
m+1 S♯. (B.21)

Introduce the Hilbert norm defined by

|v|2
H

m+1/2
♯

=
∑
k

|vk|2 +
∑
k

|T (k)|2 |vk|2. (B.22)

Arguing as before we conclude that the norms ∥ · ∥Hm+1/2♯ and | · |
H

m+1/2
♯

are

equivalent, i.e.,

c−1∥v∥
H

m+1/2
♯

≤ |v|
H

m+1/2
♯

≤ c∥v∥
H

m+1/2
♯

. (B.23)

Finally introduce the sequence

Φ♯(k) = T (k) vk, −∞ < k <∞. (B.24)

It is clear that
|v|2

H
m+1/2
♯

=
∑
k

|vk|2 +
∑
k

|Φ♯(k)|2. (B.25)

Hence we can rewrite inequality (B.9) in the form

|v|
H

m+1/2
♯

≤ c|u|Hm+1/2(R).

From this and representations (B.18), (B.25) for the norms in the spacesH
m+1/2
♯

and Hm+1/2(R) we conclude that this equality is equivalent to the following∑
k

|vk|2 +
∑
k

|Φ♯(k)|2 ≤ c(∥û∥2L2(R) + ∥Φ∥2L2(R)). (B.26)
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Step 3. Relation between Φ and Φ♯. Let a compactly supported function u
and a periodic function v are connected by relation (B.8). Furthermore assume
that Φ and Φ♯ are defined by (B.17) and (B.24). Then we have the identity

Φ♯(k) = Φ(k), −∞ < k <∞. (B.27)

Indeed, we have

Φ♯(k) = T (k) vk = T (k)
1√
2π

∫ 2π

0

e−iksv(s) ds =

∞∑
j=−∞

T (k)√
2π

∫ 2π

0

e−iksu(s+ 2πj) ds=

∞∑
j=−∞

T (k)√
2π

∫ 2π(j+1)

2πj

e−iksu(s) ds

= T (k)
1√
2π

∫
R
e−iksu(s) ds = Φ(k).

Similarly we have
vk = û(k), −∞ < k <∞. (B.28)

Substituting (B.27) and (B.28) into (B.26) we conclude that it suffices to prove
the inequality∑

k

(|û(k)|2 + |Φ(k)|2) ≤ c

∫
R
(|û(ξ)|2 + |Φ(ξ)|2) dξ. (B.29)

Step 4. The proof of inequality (B.29) is based on the following lemma

Lemma B.2. Under the above assumptions we have

∥Φ∥H1(R) ≤ ∥û∥L2(R + ∥Φ∥L2(R), ∥û∥H1(R) ≤ ∥û∥L2(R) (B.30)

Proof. Recall that

Tu = ∂m+1
s Su, Ŝu = (1 + |ξ|2)−1/4 û.

The operator S is the Bessel potential of order 1/2. It admits the integral
representation

Su(s) =

∫
R
b(s− t)u(t) dt, (B.31)

where the Bessel kernel b has the following properties, see [2], Ch. 1. On the
interval (−κ, κ) it has the representation

b(s) =
c(κ)√
|s|

+ o(s), o ∈ C∞[−κ, κ], (B.32)

Outside of this interval the kernel b(s) admits the estimate

|∂rsb(s)| ≤ c(r)e−β|s| for all |s| ≥ κ, r ≥ 0. (B.33)
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Choose an arbitrary function ζ ∈ C∞
0 (R) such that

ζ(s) = 1 for |s| ≤ 2κ, ζ(s) = 0 for |s| ≥ 3κ.

We have
Tu = ζTu+ (1− ζ)Tu

Obviously we have ∫
R
|s ζ Tu|2 ds ≤ cκ2

∫
R
|Tu|2 ds (B.34)

Recall that u is compactly supported in the interval (−κ, κ). From this and
estimate (B.33) we conclude that the inequalities

|Tu(s)| =
∣∣∣ ∫

R
∂m+1
s b(s− t)u(t) dt

∣∣∣ ≤
c

∫
R
e−β|s−t|u(t) dt ≤ ce−β|s|

∫
R
|u| dt ≤ ce−β|s| ∥u∥L2(R).

hold for every s with |s| ≥ 2κ.
Since (1 − ζ)Tu equals zero in the segment [−2κ, 2κ], it follows from this

that ∫
R
|s(1− ζ)Tu(s)|2 ds ≤ c

∫
R
s2 e−2β|s| ds ∥u∥2L2(R)

≤ c∥u∥2L2(R).

Combining this estimate with (B.34) we obtain∫
R
|sTu|2 ds ≤ c

(
∥u∥2L2(R) + ∥Tu∥2L2(R)

)
. (B.35)

Next notice that

ŝTu =
1

i
∂ξT̂u =

1

i
∂ξΦ, T̂u = Φ.

From this, (B.35), and the Plancherel equality we obtain∫
R
|∂ξΦ|2 dξ ≤ c

(
∥û∥2L2(R) + ∥Φ∥2L2(R)

)
,

which gives the desired estimate (B.30) for Φ. Repeating these arguments with
essential simplifications we finally obtain estimate (B.30) for û, and the lemma
follows.

We are now in a position complete the proof of Lemma 5.5. To this end, it
suffices to prove inequality (B.29). Notice that

|Φ(k)|2 ≤ 2|Φ(ξ)|2 + 2|Φ(ξ)− Φ(k)|2
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Next we have

|Φ(ξ)− Φ(k)| ≤
(∫ k+1

k

|∂ξΦ|2 dξ
)1/2

for ξ ∈ [k, k + 1].

It follows that

|Φ(k)|2 ≤ 2|Φ(ξ)|2 + 2

∫ k+1

k

|∂ξΦ|2 dξ for ξ ∈ [k, k + 1].

Integrating both sides of these inequality over the segment [k, k + 1] we arrive
at the inequality

|Φ(k)|≤2
∫ k+1

k

(|Φ(ξ)|2 + |∂ξΦ|2 dξ.

Summation this inequality with respect to k gives

∞∑
−∞

|Φ(k)|2 ≤ 2

∫
R
(|Φ(ξ)|2 + |∂ξΦ|2) dξ = ∥Φ∥2H1(R).

From this and Lemma B.2 we conclude that

∞∑
−∞

|Φ(k)|2 ≤ c (∥û∥2L2(R) + ∥Φ∥2L2(R)). (B.36)

Repeating these arguments gives

∞∑
−∞

|û(k)|2 ≤ c ∥û∥2L2(R). (B.37)

Combining (B.36) and (B.37) we obtain desired inequality (B.29). This com-
pletes the proof of Lemma 5.5.

C Proof of Lemma 4.3

We begin with the observation that the function u satisfies the divergent elliptic
equation

div (aN∇u) = 0 in Q0,

with the matrix aN bounded from below and above by the constants, depending
on CN and a0. It follows from this, inequality

∥u∥L2(Q0) + ∥∇u∥L2(Q0) ≤ Cu <∞

and di-Giorgi-Nash-Moser estimate for the Hölder norm of solutions to the di-
vergent elliptic equations we conclude that the estimate

∥u∥Cα(Q′) ≤ c(Q′) for some α ∈ [0, 1),
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holds for every compact set Q′ ⋐ Q0. We thus get the estimate

∥v1∥C(Q1) ≤ c ∥u∥C(Q1) ≤ c. (C.1)

For m = 1, equation (4.21) reads

div
(
aN∇∂1v1) = − div (a∂1N∇v1)+

div
(
∂1u aN∇φ1 + ua∂1(N∇φ1)

)
+ ∂1(a∇φ1 ·N∇u) in Q1

(C.2)

Now we estimate every term in the right hand side of this equation. Since a is
bounded and N is independent of y2, we have

∥a∂1N∇v1∥L2(Q1) ≤ c ∥∂1N∇v1∥L2(Q1) ≤
ñ∥∂1N∥L2(−κm,κm) sup

y1∈(−κm,κm)

∥∇v1∥L2(−ρm,ρm) =

c∥∂1N∥L2(−κm,κm) ∥∇v1∥X∞ ≤ c∥∇v1∥X∞ .

Here we use estimate (4.5) for ∂1N . From this and inequalities (4.4)-(4.5) with
ϕ = ∇v1 we conclude that for every fixed σ ∈ (0, 1),

∥a∂1N∇v1∥L2(Q1) ≤ c∥∇v1∥X∞ ≤ c∥∇v1∥Y σ

≤ c∥∇v1∥1−σ
L2(Q1)

∥∇v1∥σY 1 ≤ c∥∇v1∥σY 1 .
(C.3)

Let us estimate the second term in the right hand side of (C.2). Recall that
L2-norm of ∇u and ∂1N are uniformly bounded by the constants CN and Cu.
In its turn, the L∞ norms of u and N are bounded by Cn and the constant in
inequality (C.1). It follows from this that

∥a∂1uN∇φ1 + ua∂1(N∇φ1)∥L2(Q1) ≤
c∥∇u∥L2(Q1) + c∥∂1(N∇φ1)∥L2(Q1) ≤ c.

(C.4)

It remains to estimate the third term in the right hand side of (C.2). We have

∥a∇φ1 ·N∇u∥L2(Q1) ≤
c∥∇u∥L2(Q1) ≤ c.

(C.5)

Multiplying both sides of (C.2) by ∂1v1 and integrating the result by parts we
arrive at the equality∫

Q1

aN∇∂1v1 · ∇∂1v1dy = −
∫
Q1

a∂1N∇v1 · ∇∂1v1 dy+∫
Q1

(∂1uaN∇φ1 + ua∂1(N∇φ1)) · ∇∂1v1 dy +
∫
Q1

(a∇φ1 ·N∇u)∂21v1 dy.

Applying the Cauchy inequality in the right hand side and employing estimates
(C.3)-(C.5) we obtain∫

Q1

aN∇∂1v1 · ∇∂1v1dy ≤ c(∥∇v1∥σY 1 + 1)∥∇∂1v1∥L2(Q1). (C.6)
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Recall that the matrix aN is bounded from below by the constant depending
only on CN and a0, which gives∫

Q1

aN∇∂1v1 · ∇∂1v1dy ≥ c−1∥∇∂1v1∥2L2(Q1)
.

Obviously we have

∥∇v1∥σY 1 ≤ c(∥∇1v1∥L2(Q1) + ∥∂1∇1v1∥L2(Q1))
σ

≤ c(1 + ∥∂1∇1v1∥L2(Q1))
σ ≤ c+ c∥∂1∇v1∥σL2(Q1)

.

Substituting the obtained estimates into (C.6) we arrive at the inequality

∥∇∂1v1∥L2(Q1) ≤ c(∥∇∂1v1∥σL2(Q1
+ c, σ ∈ (0, 1),

which obviously yields the desired estimate (4.22).

∥∂1∇v1∥L2(Q1) ≤ c

D Proof of Lemma 4.5

D.1 Proof of estimate (4.24) for Am.

Introduce the temporary notation

H = ∂1N, w = ∂1vm.

Since φ1 = 1 on the support of φm, it follows from the definition (4.9) of vm
and condition (4.5) that

∥H∥L2(−κm,κm) + ∥w∥L2(Qm) ≤ c. (D.1)

We have
Am =

∑
i+j=m−2,i,j≥0

a∂j1N∂
i
1∇w + a∂m1 N∇vm,

which yields

∥Am∥L2(Qm) ≤
∑

i+j=m−2,i,j≥0

Fij + ∥∂m1 N∇vm∥L2(Qm), (D.2)

where
Fij = ∥∂j1H ∂i1 w∥L2(Qm).

Let us estimate Fij . We have

F 2
ij =

∫
Qm

|∂j1H|2 |∂i1w|2 dy ≤{∫ κm

−κm

|∂j1H|2 dy1
}{

sup
y1∈(−κm,κm)

∫ ρm

−ρm

|∂i1w(y1, y2)|2 dy2
}
.
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Recalling the definition (B.1) of norms X∞, Y j and inequality (B.4) we obtain

Fij ≤ c∥H∥W j,2(−κm,κm) ∥∂i1w∥X∞ ≤ c∥H∥W j,2(−κm,κm) ∥∂i1w∥Y σ . (D.3)

Next, we employ the interpolation inequality in Sobolev space and the special
interpolation inequality (B.5) to obtain

∥H∥W j,2(−κm,κm) ≤ c∥H∥1−
j

m−1

L2(−κm,κm) ∥H∥
j

m−1

Wm−1,2(−κm,κm) ≤ c∥H∥
j

m−1

Wm−1,2(−κm,κm)

and

∥∂i1w∥Y σ ≤ ∥w∥Y i+σ ≤ ñ∥w∥1−
i+σ
m−1

L2(Qm) ∥w∥
i+σ
m−1

Y m−1 ≤ c∥w∥
i+σ
m−1

Y m−1 .

Substituting these inequalities in (D.3) we arrive at the estimate

Fij ≤ c∥H∥
j

m−1

Wm−1,2(−κm,κm) ∥w∥
i+σ
m−1

Y m−1 .

Notice that

j

m− 1
+

i+ σ

m− 1
=
j + i− σ

m− 1
=
m− 2 + σ

m− 1
= λ < 1

Thus we get

Fij ≤ c
(
∥H∥αWm−1,2(−κm,κm) ∥w∥

β
Y m−1

)λ
,

where

α+ β =
1

λ
(

j

m− 1
+

i+ σ

m− 1
) = 1.

Applying the Young inequality we obtain

Fij ≤ c
(
∥H∥λWm−1,2(−κm,κm) + ∥w∥λY m−1

)
. (D.4)

It remains to estimate the last term in inequality (D.2). By virtue of estimate
(4.22) in Lemma 4.3, we have

∥∂m1 N∇vm∥L2(Qm) ≤ c ∥∂m1 N∥L2(−κm,κm) ∥∇vm∥X∞

≤ c∥∂m1 N∥L2(−κm,κm) ∥∇vm∥Y 1 ≤ c∥∂m1 N∥L2(−κm,κm).

Substituting this estimate and estimate (D.4) into (D.2) we arrive at the in-
equality

∥Am∥L2(Qm) ≤ c∥H∥λWm−1,2(−κm,κm) +

v∥w∥λY m−1 + c∥N∥L2(−κm,κm). (D.5)

Since

w = ∂1∇vm and ∥w∥Y m−1 ≤ c(∥w∥L2(Qm) + ∥∂m−1
1 w∥L2(Qm),
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it follows from estimate (4.22) in Lemma 4.3 that

∥w∥Y m−1 ≤ c
(
1 + ∥∂m1 ∇vm∥L2(Qm)

)
. (D.6)

On the other hand, the equality H = ∂1N and inequality

∥H∥Y m−1 ≤ c
(
1 + ∥∂m1 N∥L2(−κm,κm)

)
. (D.7)

Substituting (D.6) and (D.7) we obtain desired inequality (4.24).

D.2 The proof of estimate (4.25) for Cm−1.

Recall that
Cm−1 = a∇φm ·N∇vm−1,

which yields

∥∂m−1
1 Cm−1∥L2(Qm) ≤ c

m−1∑
p=0

∥∂p1 (N∇vm−1)∥L2(Qm)

≤ c+ c∥∂m−1
1 (N∇vm−1)∥L2(Qm).

(D.8)

Notice that for m = 1 estimate (4.25) is obviously true. Next, it follows from
(D.8) that

∥∂1C1∥L2(Q1) ≤ c+ c∥∂1(N∇v1)∥L2(Qm) ≤
c+ c∥N∂1∇v1∥L2(Q1) + ∥∂1N∇v1∥L2(Q1).

From this, estimate (4.22) in Lemma (4.3), and inequality (4.5) we conclude
that

∥∂1C1∥L2(Q1) ≤ c+ c∥∂1(N∇v1)∥L2(Qm) ≤
c+ ∥∂1N∥L2(−κm,κm)∥∇v1∥X∞ ≤ c+ c∥∇v1∥X∞ .

Employing estimates (B.4) and (4.22) we finally obtain

∥∂1C1∥L2(Q1) ≤ c+ c∥∇v1∥Y 1 ≤ c+ ∥∂1∇v1∥L2(Qm) ≤ c.

Hence estimate (4.25) holds true for m = 1, 2. Let us consider the case m ≥ 3.
By virtue of (D.8), we have

∥∂m−1
1 Cm−1∥L2(Qm) ≤ c+ c∥∂m−1

1 (N∇vm−1)∥L2(Qm) ≤

c+ c∥∂m−1
1 ∇vm−1∥L2(Qm) +

∑
i+j=m−1,j≥1

∥∂j1N ∂i1∇vm−1∥L2(Qm).
(D.9)

Arguing as before we obtain

∥∂j1N ∂i1∇vm−1∥L2(Qm) ≤ c∥N∥W j,2(−κm,κm) ∥∂i1∇vm−1∥X∞ .
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Fix an arbitrary σ ∈ (1/2, 1). Estimate (B.4) implies

∥∂i1∇vm−1∥X∞ ≤ c∥∂i1∇vm−1∥Y σ ≤ c∥∇vm−1∥Y i+σ

Thus we get

∥∂j1N ∂i1∇vm−1∥L2(Qm) ≤ c∥N∥W j,2(−κm,κm) ∥∇vm−1∥Y i+1 . (D.10)

It follows from (4.5) and the interpolation inequality that

∥N∥W j,2(−κm,κm) ≤ ∥N∥
m−1−j
m−2

W 1,2(−κm,κm)∥N∥
j−1
m−2

Wm−1,2(−κm,κm)

≤ c∥N∥
j−1
m−2

Wm−1,2(−κm,κm). (D.11)

On the other hand, interpolation inequality (B.5) and estimate (4.22) imply

∥∇vm−1∥Y i+1 ≤ c∥∇vm−1∥
1− i

m−2

Y 1 ∥∇vm−1∥
i

m−2

Y m−1 ≤

c∥∇vm−1∥
i

m−2

Y m−1 ≤ c(1 + ∥∂m−1
1 ∇vm−1∥L2(Qm))

i
m−2 .

(D.12)

Substituting (D.11)-(D.12) into (D.10) and noting that

∥N∥Wm−1,2(−κm,κm) ≤ c(∥N∥L2(−κm,κm) + ∥∂m−1
1 N∥L2(−κm,κm))

≤ c(1 + ∥∂m−1
1 N∥L2(−κm,κm))

we arrive at the estimate

∥∂j1N ∂i1∇vm−1∥L2(Qm) ≤

c(1 + ∥∂m−1
1 N∥L2(−κm,κm))

j−1
m−2 (1 + ∥∂m−1

1 ∇vm−1∥L2(Qm))
i

m−2 .

Since
j − 1

m− 2
+

i

m− 2
=
i+ j − 1

m− 2
= 1,

we can apply the Young inequality to obtain

∥∂j1N ∂i1∇vm−1∥L2(Qm) ≤
c
(
1 + ∥∂m−1

1 N∥L2(−κm,κm) + ∥∂m−1
1 ∇vm−1∥L2(Qm)

)
.

Substituting this inequality into (D.9) we finally obtain desired estimate (4.25)

D.3 The proof of estimate (4.26) for Bm−1 and Dm−1

Since a are independent of y1, it follows from the expression (4.16) for B1 that

∥∂m1 Bm−1∥L2(Qm) ≤ c∥∂m1 (vm−1∇φm)∥L2(Qm)

+ c
∑

i+j=m,i≤m−1

∥∂j1N ∂i1(vm−1∇φm∥L2(Qm). (D.13)
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We have

∥∂m1 (vm−1∇φm)∥L2(Qm) ≤ c
∑

0≤p≤m

∥∂p1 (vm−1∇φm)∥L2(Qm−1)

which along with the Poincare inequality yields the estimate

∥∂m1 (vm−1∇φm)∥L2(Qm) ≤ c(1 + ∥∂m1 vm−1∥L2(Qm−1))

≤ c(1 + ∥∂m−1
1 ∇vm−1∥L2(Qm−1)).

(D.14)

For nonnegative integers i, j, satisfying relations i+ j = m, 0 ≤ i ≤ m− 1, we
have

∥∂j1N ∂i1(vm−1∇φm)∥L2(Qm) ≤
c∥∂j1N∥L2(−κm,κm) ∥∂i1(vm−1∇φm)∥X∞ .

(D.15)

Recall definitions (B.1) and (B.3) of the Banach spacesX∞ and Y s. Now choose
an arbitrary σ ∈ (1/2, 1). By the embedding inequality (B.5), we have

∥∂i1(vm−1∇φm)∥X∞ ≤ c∥vm−1∇φm∥Y i+σ

which along with (D.15) yields

∥∂j1N ∂i1(vm−1∇φm)∥L2(Qm) ≤ c∥∂j1N∥L2(−κm,κm) ∥vm−1∇φm∥Y i+σ . (D.16)

Next notice that by virtue of estimates (4.5) and (4.22), we have

∥N∥W 1,2(−κm,κm) + ∥vm−1∇φn∥Y 1 ≤ c.

From this an the interpolation inequality we obtain

∥∂j1N∥L2(−κm,κm) ≤ c∥N∥
j−1
m−1

Wm,2(−κm,κm), ∥vm−1∇φm∥Y i+σ ≤ c∥vm−1∇φm∥
i+σ−1
m−1

Y m

Since
j − 1

m− 1
+
i+ σ − 1

m− 1
= 1− 1− σ

m− 1
≤ 1,

it follows from (D.16) and the Young inequality that

∥∂j1N ∂i1(vm−1∇φm)∥L2(Qm) ≤
c(1 + ∥N∥Wm,2(−κm,κm) + ∥vm−1∇φm∥Y m).

(D.17)

Notice that
∥N∥Wm,2(−κm,κm) ≤ c(1 + ∥∂m1 N∥L2(−κm,κm)).

Arguing as in the proof of (D.14) we obtain

∥vm−1∇φm∥Y m ≤ c(1 + ∥∂m1 (vm−1∇φm)∥L2(Qm)

≤ c(1 + ∥∂m−1
1 ∇vm−1∥L2(Qm−1) )

Substituting these inequalities into (D.17) we arrive at the estimate

∥∂j1N ∂i1(vm−1∇φm)∥L2(Qm) ≤ c(1 + ∥∂m1 N∥L2(−κm,κm) + ∥∂m−1
1 ∇vm−1∥L2(Qm−1) ).

Combining this estimate with estimates (D.14) and (D.13) we arrive at the
desired estimate (4.26) for Bm−1.
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The proof of estimate (4.26) for Dm−1. Recall that Dm−1 = ∂m−1
1 Bm−1.

Hence the estimate of ∂1Dm−1 obviously follows from estimate (4.26) for Bm−1.
In order to estimate ∂2Dm−1 notice that

∂2Dm−1 = ∂m−1
1 (aN∂2vm−1∇φm) + ∂m−1

1 (aNvm−1∇∂2φm)

Hence the desired estimate for ∂2Dm−1 is the straightforward consequence of
estimates (4.25), expression for Cm−1, and estimate (4.26) for Bm−1 with ∇φm

replaced with ∇∂2φm.

E Proof of Lemma 6.3

Introduce the denotations

Φ = φn, k = K n, φ = Φ · n, K = k · n, (E.1)

where K is the scalar curvature. We have

∂rsΦ−∇r
sΦ = ∂rs (φn)− ∂rsφn =

r−1∑
i=0

∂isφ∂
r−i
s n.

Note that
∂sn = ∂sτ

⊥ = k⊥, k⊥ = (−k2, k1) = −Kτ.

It follows that

∂rsΦ−∇r
sΦ =

r−1∑
i=0

∂isφ∂
r−1−i
s k⊥. (E.2)

Let us estimate L2-norm of every term in the right hand side. First we consider
the case when

i ≥ 1, j = r − 1− i ≥ 1.

The Hölder inequality implies the estimate∫
Γ

|∂isφ|2|∂jsk|2 ≤
(∫

Γ

|∂isφ|
2(r−1)

i ds
) i

r−1
(∫

Γ

|∂jsk|
2(r−1)

j ds
) j

r−1

,

which can be written in the equivalent form

∥∂isφ∂jsk∥L2(0,L) ≤ ∥∂isφ∥
L

2(r−1)
i (0,L)

∥∂jsk∥
L

2(r−1)
j (0,L)

From this and the the Gagliardo-Nirenberg inequality (2.10) we obtain

∥∂isφ∂jsk∥L2(0,L) ≤ c(∥φ∥1−
i

r−1

L∞(0,L)∥k∥
1− j

r−1

L∞(0,L)) (∥φ∥
i

r−1

Hr−1
♯

∥k∥
j

r−1

Hr−1
♯

). (E.3)

It follows from the embedding inequality (2.8) that

∥φ∥L∞(0,L) ≤ c∥φ∥Hσ
♯
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Next, the interpolation inequality gives

∥φ∥Hσ
♯
≤ ∥φ∥1−

σ
r

L2(0,L) ∥φ∥
σ
r

Hr
♯
, ∥φ∥Hr−1

♯
≤ ∥φ∥

1
r

L2(0,L) ∥φ∥
1− 1

r

Hr
♯

which yields

∥φ∥1−
i

r−1

L∞(0,L) ∥φ∥
i

r−1

Hr−1
♯

≤ c∥φ∥αi

L2(0,L) ∥φ∥
βi

Hr
♯

where

αi = (1− σ

r
)(1− i

r − 1
) +

i

r(r − 1)
, βi =

σ

r
(1− i

r − 1
) +

r − 1

r

i

r − 1
(E.4)

Repeating these arguments we obtain

∥k∥1−
j

r−1

L∞(0,L) ∥k∥
j

r−1

Hr−1
♯

≤ c∥k∥αj

L2(0,L) ∥k∥
βj

Hr
♯

The quantities αj and βj are given by the formulae (E.4) with i replaced by j.
From this and (E.3) we conclude that

∥∂isφ ∂jsk∥L2(0,L) ≤ c
(
∥φ∥αi

L2(0,L) ∥k∥
αj

L2(0,L)

) (
∥φ∥βi

Hr
♯
∥k∥βj

Hr
♯

)
. (E.5)

Since i+ j = r − 1 we have

αi + αj = 1 +
1− σ

r
, βi + βj = 1− 1− σ

r
.

In other words, we have

αi = (1+
1− σ

r
)α∗

i , αj = (1+
1− σ

r
)α∗

j , βi = (1−1− σ

r
)β∗

i , βj = (1−1− σ

r
)β∗

j ,

where α∗
i + α∗

j = 1 and β∗
i + β∗

j = 1. From this and the Young inequality we
obtain

∥φ∥αi

L2(0,L) ∥k∥
αj

L2(0,L) ≤ (∥φ∥L2(0,L) + ∥k∥L2(0,L))
1+ 1−σ

r ,

∥φ∥βi

Hr
♯
∥k∥βj

Hr
♯
≤ (∥φ∥Hr

♯
+ ∥k∥Hr

♯
)1−

1−σ
r

Combining these estimates with (E.5) we conclude that the inequality

∥∂isφ ∂jsk∥L2(0,L) ≤

c(∥φ∥L2(0,L) + ∥k∥L2(0,L))
1+ 1−σ

r (∥φ∥Hr
♯
+ ∥k∥Hr

♯
)1−

1−σ
r (E.6)

holds for every 1 ≤ i ≤ r− 2 and j = r− 1− i. It remains to consider the cases
i = 0 and i = r − 1. We have

∥φ ∂r−1
s k∥L2(0,L) + ∥∂r−1

s φ k∥L2(0,L) ≤ c∥φ∥Hσ
♯
∥k∥Hr−1♯ + c∥k∥Hσ

♯
∥φ∥Hr−1

♯
.
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Next, the interpolation inequality implies

∥φ∥Hσ
♯
≤ c∥φ∥1−

σ
r

L2(0,L) ∥φ∥
σ
r

Hr
♯
, ∥φ∥Hr−1

♯
≤ c∥φ∥

1
r

L2(0,L) ∥φ∥
1− 1

r

Hr
♯

The similar estimates holds true for k. It follows that

∥φ ∂r−1
s k∥L2(0,L) + ∥∂r−1

s φ k∥L2(0,L) ≤

c(∥k∥1−
σ
r

L2(0,L)∥φ∥
1
r

L2(0,L)) (∥k∥
1−σ

r

Hr ∥φ∥1−
1
r

Hr )+

c(∥φ∥1−
σ
r

L2(0,L)∥k∥
1
r

L2(0,L)) (∥φ∥
1−σ

r

Hr ∥k∥1−
1
r

Hr ).

It follows that

∥φ ∂r−1
s k∥L2(0,L) + ∥∂r−1

s φ k∥L2(0,L) ≤

c
(
∥k∥1−

σ
r

L2(0,L) ∥φ∥
1
r

L2(0,L) + ∥φ∥1−
σ
r

L2(0,L) ∥k∥
1
r

L2(0,L)

) (
∥k∥1−

σ
r

Hr
♯

∥φ∥1−
1
r

Hr
♯

+ ∥φ∥1−
σ
r

Hr
♯

∥k∥1−
1
r

Hr
♯

)
.

Using the simple inequality

aλbµ + aµbλ ≤ aλ+µ + bλ+µ, a, b, λ, µ ≥ 0,

we finally obtain the estimate

∥φ ∂r−1
s k∥L2(0,L) + ∥∂r−1

s φ k∥L2(0,L) ≤

c
(
∥k∥1+

1−σ
r

L2(0,L) + ∥φ∥1−
1−σ
r

L2(0,L)

) (
∥k∥1−

1−σ
r

Hr
♯

+ ∥φ∥1−
1−σ
r

Hr
♯

)
.

It follows from this estimate and estimate (E.6) that the inequality

∥∂isφ ∂jsk∥L2(0,L) ≤

c(∥φ∥L2(0,L) + ∥k∥L2(0,L))
1+ 1−σ

r (∥φ∥Hr
♯
+ ∥k∥Hr

♯
)1−

1−σ
r

holds for every 0 ≤ i ≤ r − 1 and j = r − 1 − i. Combining this result with
identity (E.2) we obtain desired estimate (6.13).
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