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1 Introduction

This paper is devoted to applications of the theory of geometric flows to shape
optimization problems. The beginning of the modern mathematical theory of
shape optimization was laid in monographs [21], and [7]. In the monographs, it
was first singled out as an independent scientific discipline. At present, the the-
ory of shape optimization includes a large number of various applied problems.

In this paper we deal with basic 2D shape optimization problem which ad-
mits the following formulation. Fix an arbitrary bounded simply connected
domain Q C R2. It is supposed to contain the inclusion €2; such that Q; C Q.
The shape of the inclusion is unknown and must be determined together with
the solution of the problem. Let a Jordan curve I' be the boundary of 2. In this
setting the interface I' split €2 into the inclusion €2; and the curvilinear annulus
Q. \ ;. Finally, fix an arbitrary constant ag > 0 and set

a(x)=ag in Q;, a=1in Q. (1.1)

As a basic example, we consider the single measurement identification problem
arising in the electrical impedance tomography, [3]. Electrical impedance to-
mography is used in medical imaging to reconstruct the electric conductivity of



a part of the body from measurements of currents and voltages at the surface.
The problem can be formulated as follows
For given g, h : 9 — R satisfying the condition

g e L*09Q), heW'Y?2(H9), / gds =0 (1.2)
o0

it is necessary to find I' and an electric potential u : 2 — R satisfying the
equations

div (aVu) =0 in Q, aVu-vr=g, u=h on 09,

where v is the outward normal vector to 0€). More generally, the problem
of identification is to determine the shape of an inclusion by the additional
boundary condition. This inverse problem is ill-posed and in general case has no
solution. Its approximate solution can be found by using the shape optimization
approach. Thus we come to the following variational problem. Denote by
v,w : 2 — R the solutions to boundary value problems

div aVu =0 divaVw =0 in Q, (1.3)
aVv-v=g w=nh on 01, (1.4)

/aQdezo . (1.5)

Next, define a positive objective function that vanishes if and only if v = w =: u.
The most successful choice of the objective functional is the Kohn-Vogelius
energy functional, which is given by the formula, [10],

J(I) = /QaV(v —w) - V(v—w)dz. (1.6)

Note that for fixed h and g, it depends only on T'.

Unfortunately, shape optimization problems as stated with no additional
geometric constrains are ill-posed, see [17], [22] for examples. The reason is
that microstructures tend to form, which are associated with a weak converges
of the characteristic functions along a minimizing sequence Q*, m > 1. Indeed,
in the absence of strong compactness of the minimizing sequences of designs,
the optimal state should be attained by a fine mixture of different phases.

The widely used the method to cope with these difficulties is to penalize the

shape perimeter by adding a regularizing term to the objective functional:
eplL+J (1.7)

Here L is the perimeter of ;, €, > 0 is the regularization parameter. If I' = 9Q;
is a regular curve, then L is the length of I'".This penalization was proposed in
[5] by analogy with the Mumford-Shah functional, [15], in the theory of image
segmentation processes. The stronger regularization may be obtained if we
impose constrains on the curvatures of I'. This approach also was motivated by



the theory of image processing, [16]. The only possible geometrically invariant
penalization functional depending on curvatures is the 1-dimensional Willmore
functional (Euler elastica) defined by the equality

£.0) = ¢ / k]2 ds, (18)

where k is the curvature vector of I'. Therefore, we can define the strong regu-
larization of an objective function as follows

E+J, where £ =¢€.E +¢p L. (1.9)

Here €; are some positive constants. Note that the penalization term can be
interpreted as the cost of structure manufacturing. Hence €; are not necessary
to be small. Without loss of generality we will assume that ¢; = 1, which leads
to the following expression for £

1
5:/ (§|k|2+1) ds=E.+ L. (1.10)
I

The most important question of the theory is the construction of a robust al-
gorithm for the numerical study of shape optimization problems. The standard
approach is to use the steepest descent method based on the shape calculus
developed by Sokolowski and Zolesio (1992), [21]. See also Delfour and Zolesio
(2001), [7], and references therein. The shape calculus works for inclusions €;
with the regular boundary I" = 0€);. In this setting, the objective function J is
considered as a functional defined on the totality of smooth curves I'. This as-
sumption is natural from the practical point of view. Without loss of generality
we may restrict our considerations by the class of twice differentiable immer-
sions (parametrized curves) f : S' — R? with I' = f(S!) diffreomorphic to the
circle S'. In this framework, we will use the denotation J(f) along with the
denotation J(T'). The main goal of the shape calculus is to develop the method
of differentiation of objective functions with respect to shapes of geometrical
objects.

The shape derivative of an objective function is defined as follows. Choose
an arbitrary vector field X : S4~! — R¢ and consider the immersion

L) = f(6) +tX(6), te(-1,1), Hesi L

The curves I't = f4(S!), t € (—1,1), determine 1-parametric family of pertur-
bations of T'. The shape derivative J of .J in the direction X is defined by the
equality

d

(D) [X] = — J(TY)| . 1.11
Jr)x) = S| (1.11)
If it admits the Hadamard representation
J(I)[X] = /¢n-de, ¢ € LYT), (1.12)
r
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where n is the inward normal to I' = 9€2;, then the vector field
dJ(9) := ¢(0)n(h), 6¢cS', (1.13)

is said to be the gradient of J at the point f.
For the transmission single measurement identification problem, the gradient
dJ of the Kohn-Vogelius objective function (1.6) is defined by the equality, see

(3],
dJ = 2(a8nv [anv} — a&nw[anw])n — [aVv - Vv —aVw - Vw} n, (1.14)

where v, w are solutions to problem (1.4), [ . ] denotes the jump across I'.

The similar definition holds for the geometric energy functional £ (see Lemma
3.3 in Section 3). Note that that the shape gradient can be regarded as a normal
vector field on T'.

If f is sufficiently smooth, for example f € C?*®, then the mapping f +
§dJ (f) defines an immersion of S' into R? for all sufficiently small § > 0. In
the steepest descent method, the optimal immersion f and the corresponding
shape I' = f(S!) are determined as a limit of the sequence of immersions

for1 = fu =0 (dE(fo) +dJI(fa)), n >0, (1.15)

and the corresponding sequence of curves I',, = f,,(S!). Here the energy & is
defined by (1.10), ¢ is a fixed positive number, usually small, fy is an arbi-
trary admissible initial shape. Relation (1.15) can be considered as the time
discretization of the Cauchy problem

Ocf(t) = —(dE(f(1) +dJu(f(1))), f(0) = fo. (1.16)

Note that here ¢ is an artificial quasi-time related to the steepest descent method.
Since E(f(t)) + J(f(t)) is a decreasing function of ¢, a solution to problem
(1.16) can be considered as an approximate solution to the penalized variational
problem
min (5 +J )

Hence the existence of a solution to Cauchy problem (1.16) guarantees the well-

posedness of the steepest descent method. In its turn, the existence of the

limit tlim f(t) guarantees the convergence of the method. Hence the task is
—00

to investigate the well posedness of Cauchy problem (1.16). The main goal of
this paper is the proof of the existence of global smooth solution to the Cauchy
problem (1.16) for an arbitrary smooth initial data, see Section 3. The paper is
organized as follows.

In Section 2, we give basic definition and characterize the elementary properties
of curves with finite elastic energy. We also collect the basic facts from the
theory of Sobolev spaces, which will be used throughout the paper.

In Section 3 we formulate the main result on existence of global solution to
Cauchy problem (1.16). We give the outline of the proof and formulate the
main a priori estimates of solutions. Furthermore, we consider in details the



dependence of smoothness of the gradient dJ on the curvature of the interface
I'. In Section 5, we give the proof of main estimates for the gradient of Kohn-
Vogelius functional. In Sections 6 and 7, we give the proof of a priori estimates
for the gradient flow of penalized Kohn-Vogelius functional. In Appendix, we
collect auxiliary results which are used throughout of the paper.

2 Preliminaries

In this section we collect the basic facts on the theory of planar curves and the
theory of Sobolev spaces on the real axis.

2.1 Geometric lemmata

Further we will consider special class of immersions f : S — R? satisfying the
conditions

/(%|k|2+1)dsSEo, I = f(s). (2.1)
T

Our consideration are based on the following elementary lemmas on the proper-
ties of such immersions. The first gives the double-side estimates for the length
L in terms of the energy bound Ej.

Lemma 2.1. The estimate 9
Eo

hods true for every curve T' satisfying condition (2.1).
Proof. The proof is given in Appendix A. O

The second lemma provides the local graph representation of planar curves
with square integrable curvature. Let us consider the following construction.

Choose an arbitrary immersion satisfying condition (2.1). Let z = f(6,) € T
be an arbitrary point. Fix arc-length coordinate s such that

s(z) =0 and —L/2<s<L/2.
For every 0 < k < L/2, denote by T',; the arc
x=f(s), —K<s<RK.

Next, introduce the Cartesian coordinates (z1,z2) with origin at z such
the axis of abscissa is directed along the tangent vector 7(6,) and the axis of
ordinate is directed along the normal vector n(6,). The consequent results do
not depend on the choice of z. Now our task is to show that the curve I' locally
can be represented as a graph of C'*® function in a neighborhood of z.



Lemma 2.2. Under the above assumptions, there exist positive numbers k, a,
B, and ¢, depending only on the constant Eq in (2.1),and the function n €
CY(—~a, B), n(0) = 0, with the following properties

0<ct<sapB<c< oo, (2.3)
17" lc(~atpha,py < 1/6, " llL2(-ap) < cllEll2(rs..)- '

Here n/(x1) = Op,n(z1). Moreover, the mapping 1 — (z1,n(z1)) defines C-
parametrization of the arc I's,, and takes diffeomorphically the interval (—a, )
onto this arc.

Proof. The proof is given in Appendix A. O

Lemma 2.2 gives the simple criterium of the absence of self intersections of
curves I' satisfying the energy condition (2.1).

Corollary 2.3. Let an immersion f : S' — R? meets all requirements of Lemma
2.2. Furthermore assume that there is v > 0 with the property

dist (F \ an, Fgﬁ) Z V. (24)

Then T' has no self-intersections. Conversely, if T' has no self-intersections,
then inequality (3.10) holds for some v > 0.

Proof. The corollary is an obvious consequence of Lemma 2.2. O

The second corollary extends the previous results to the case of families of
immersions with finite elastic energy. Let us consider a family of immersions
f(t,)): St — R?% t € [0,T). Every immersion f(t,-), satisfying condition (2.1),
defines L(t)- periodic function of the arc-length variable s,

f(t,s) = [f(t,0(s)).

Note that the periods L(t) are uniformly bounded from below and above by
the constants 2/Ey and Ey. Moreover, the functions 92 f(s,t) are uniformly
bounded in L2(—L(t)/2, L(t)/2). Tt follows that the set of the mappings f(t,-),
t € [0,T], satisfying (2.1), is relatively compact in C*(R).

Assume that a family of immersions f(¢), t € [0,T], satisfies the following
conditions

G.1 The curves I'(t) = f(t,S!) have no self-intersections.

G.2 The immersions f(t) satisfy energy condition (2.1) with the constant Fy
independent of .

G.3 The set of the mappings f(t,-), t € [0, 7] is compact in the space C(S*, R?).

It follows from Lemma 2.2 that for every f(¢,6), t € (0,T), there is s €
(0,2/Ey) which meets all requirements of this lemma and is independent of ¢.



Corollary 2.4. Let a family of immersions f(t,-) : St — R? satisfies conditions
G.1- G.3. Then there is v > 0 such that

dist (T'(t) \ T'sx(t), Tax(t)) > v (2.5)
for allt € [0,T] and for all arcs T's,;(t) given by Lemma 2.2.
Proof. The proof is given in Appendix A O

2.2 Functional spaces

Sobolev spaces of periodic functions. For every integer » > 0, denote by
Hy, the Sobolev space of all £ -periodic mappings with the finite norm

L
I = [ (512 + 10517 . (26)

For real v > 0, the space Hj is defined by the interpolation. Note that the
equivalent norm in Hy may be defined by the equality

117y = D A+ mf)|fml?,

mEZ

where the Fourier coefficients

fm f/ e Fmi f(s)ds

If I is a rectifiable Jordan curve of the length £, then the curvature of I', the
gradient of Kohn-Vogelius functional, tangent and normal vectors of I' can be
regarded as L-periodic functions of the arc-length variable s. By this reason,
we will use the parallel denotations for Hy:

=W,? = H"(I) = W"*(T). (2.7)

Remark 2.5. In Sections 3, 6, and 7, we will consider one-parametric families
of curves I'(t), t € (0,T), with the lengths uniformly bounded from above and
uniformly separated from 0. In this case the Sobolev spaces of periodic functions
depend on the temporal variable t and should be denoted by Hg(t) By abuse of
notation, further we omit the symbol t and will write Hy instead of Hﬁr(t)

Inequalities Further, we will use the simplest one-dimensional versions of
the Sobolev, interpolation, and Gagliardo-Nirenberg inequalities. The first is
the embedding inequality

[fllL>(0.c) < el fllug forall o >1/2; (2.8)

the second is the standard interpolation inequality

1-2
1fllag < e llfllz2o,c) ”fHH’ forall 0<o<m (2.9)



and the third is the Gagliardo-Nirenberg inequality, [18],

1021 2 < eIl Il forall 0<o<r. (2.10)

s 00 =

We also will use the Moser inequality
luvllay < cllulleo,e) I0llay +cllvllze(o,e) lully, 0<r<oo. (211)

Here the constant ¢ depends only on £ and the exponents o, g, r

Sobolev spaces on real line. For every integer r > 0, denote by H"(R), the
Sobolev space of mappings f : R — R with the finite norm

HN%m:AWPH&NMs (2.12)

For real r > 0, the norm in H"(R) may be defined by the equality

- = [ (+IER 17O de.

where the Fourier transform
£ —55 [

&)= gz [ a6

We also will use the denotation

H"(R) = W"2(R).

3 Results

3.1 Estimates of Kohn-Vogelus functional

The existence of smooth solutions to the gradient flows equations for shape op-
timization problems guarantees that the steepest descent method is well defined
and give the robust algorithm for numeric calculations of an optimal shape. In
this section we give outline of main ideas of the proofs of existence and smooth-
ness results for the gradient flows in the shape optimization theory. In order to
be clear, we restrict our considerations to the single measurement identification
problem for the Kohn-Vogelius functional. Recall the formulation of this prob-
lem given in Section 1. Let simply connected bounded ”hold all” domain Q C R?
contains an inclusion ; C Q bounded by a Jordan curve I'. The interface T
splits  into the simply connected inclusion §2; and two-connected curvilinear
annulus Q. = Q\ Q;. Define the conductivity coefficient a by the relations

a=1in Q., a=ag=const. >0 in €. (3.1)



Finally, choose an arbitrary function g, h : 92 — R satisfying the conditions
he WY22(0Q), ge L*(Q), /aﬂgds =0. (3.2)
The Kohn-Vogelius energy functional is defined as follows, [10]
J(Q) = /QaV(v —w)-V(v—w)dx. (3.3)

Here v, w : 0 — R satisfy the equations and boundary conditions

div aVv =0 div aVw =0 in €,
aVv-n=g w=h on 0f, (3.4)

/vadx:() . (3.5)

Under the above assumptions, boundary value problem (3.4) has the only weak
solution v, w € W12(0) satisfying the orthogonality condition

[vllwrz) < cllglle@eo),  lwllwiz@) < cllhllwizzon- (3.6)

Here ¢ depends only on € and the constant ag in the definition (3.1) of a. Hence
the Kohn-Vogelius functional is well defined as a function of ; or equivalently
of T.

Assume, in addition, that the data have additional smoothness properties

oNT € C*e, heC?0Q0), ge o), ac(0,1). (3.7)

Denote by v—,w™ the restrictions of v, w on Q. and by v, w™ the restrictions
of v, w on €2;. It follows from the Schauder estimates for solutions to elliptic
equations that v~ ,w™ € C?T%(Q,) and v, wt € C*+*(();). For every function

® with @~ and ®* continuous in Q. and €2;, the denotation [q)}, stands for the
jump of @ across T,

[@](z)= lim @ (y)— lim ®T(y) forallz €T.

Qedy—z Q;dy—x
For strong solutions to transmission problem (3.4) we have
[adnv] = [aVv] -n=0, [adnw] = [aVw] -n=0, [v]=[w]=0. (3.8)

With this notation the gradient dJ of the Kohn-Vogelius objective function (1.6)
is defined as follows, see [3],

dJ = 2((18”1) [(’hﬂ)} — ad,w [&m}])n — [aVv - Vv —aVw - Vw] n, (3.9)

10



3.1.1 Estimates of dJ

In this section we consider in details the gradient dJ of the Kohn-Vogelius
functional. Our goal is to derive the estimates of dJ in the Sobolev spaces
H{ in terms of the geometric characteristics of the interface I By virtue of
representation (3.9), the normal vector field dJ : I' — R? is the quadratic
form of the derivatives of solutions v, w to boundary value problem (3.4) First
we derive the estimates for a general transmission problem. Assume that the
interface I' satisfies the following conditions

H.1 The Jordan curve I' C 2 satisfies the energy condition
1

/ \k?|ds + L < Ej.
2 Jr

H.2 There is v > 0 with the property
dist (F \ ].—W3,<;7 ].—‘QK) 2 v, (310)
for every arcl's, with k, defined by Lemma 2.2

H.3 There is p > 0 such that dist (I, 002) > p.

By virtue of Corollary 2.4, every curve I' satisfying Conditions H.1- H.3 is a
Jordan curve of the class C'** 0 < a < 1/2. It splits the domain Q into
two parts. The first ; € Q (inclusion) is a simply connected domain with
boundary I'. The second is the curvilinear annulus Q. = Q\ Q; bounded by
I' and 99Q. For simplicity, we will assume that 0f) is a Jordan curve of the
class C*°. We adopt the convention that I" has the positive orientation. This
means that the point z(s) goes along I' in the counter-clockwise direction while
s increases. In its turn, the tangent vector 7 and the normal vector n form the
moving orthonormal frame with the positive orientation. This means that n is
inward normal vector to 9€Q); =T.

Next, introduce the piece-wise constant function a : Q — RT (conductivity)
defined by the equalities

a=1in Q. a=ag in Q. (3.11)
Model transmission problem Let w € W2(Q) be a weak solution to the

equation
div (aVw) =0 in Q.

We do not impose boundary conditions on w. Denote by w~ and w™ the
restrictions of w onto subdomains €2, and €2;,

w i=w in Q, wh:=w in Q.

If T is sufficiently smooth, then w is continuous on I'. In other words, w™ = w™
on I'. However, the normal derivative of w has a jump across I'. Next set

Opw™ =Vw™ -n, OwT=Vw"-n on T.

11



Our task is to estimate d,w™® via the curvature of I'. The following theorem on
the estimates of 9,,w* is the first main result of this section. Recall definition
(2.7) of the Sobolev spaces H; = H"(T') of periodic functions.

Theorem 3.1. Under the above assumptions, the estimate
||5nwiHH;n+1/2 < c(1+ 105kl 2(ry ) [[wllwr2(e) (3.12)

holds for every integer m > 0. Here ¢ depends only on m and on the constants
FEy, v, p in Conditions H.1-H.3.

Estimates of dJ. Note that the solutions v,w to problems (3.4) meet al
requirements of Theorem 3.1 and admit the estimates

lvllwr.2) + lwllwiz@) < (g, h)

This result along with representation (3.9) and the multiplicative estimates in
Sobolev spaces leads to the following theorem, which is the second main result
of this section.

Theorem 3.2. Assume that a curve I' satisfies conditions H.1-H.3 and k €
H{ for some integer r > 1. Then for every 3 € [0,1/2), there is a constant c,
depending on r, B, and constants Ey, v, p in conditions H.1-H.3, the gradient
dJ(s) of the Kohn-Vogelius functional admits the estimate

ldJT | gr+s < e(1+ ||kHHu) (3.13)
In particular, we have
[05dT || La0,c) < (1 + [|Ellay)- (3.14)

for every q € [1,00). In this case the constant ¢ depends in addition on q.

3.2 Gradient flow. Existence theory
3.2.1 Problem formulation

The standard formulation of the geometric flow equations deals with immersions
(parametrized curves). Further we will assume that the interface T' admits the
representation I' = f(S'), where the immersion f : S — R? is unknown and
should be defined along with the solution to the gradient flow problem (1.16).
Note that f is a 27 periodic function of the angle variable § € R/27Z. The
element of the length of I' equals

ds = \/g(0)dd, g=10f|?,
where g is the only nontrivial coefficient of the first fundamental form of the
curve I'. In this setting, the derivative with respect to the arc-length variable s

1

%= 750

Os
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becomes the nonlinear differential operator depending on f.
Hereinafter we assume that the point f(6) is going around T in the positive
counterclockwise direction while the parameter 6 increases. The tangent vector

7(0) = 9:£(0) == 0 17" Do f(0),
and the normal vector
n(0) = 7(0) = (=72, 1),

form the positive oriented moving frame on I'. Notice that n is the unit inward
normal vector to 9€; = I'. The curvature vector k is defined by the equalities

k(9) = 0.7(6) = 921 6). (3.15)

Notice that the curvature vector field & is orthogonal to 7 and is directed along
the normal vector n.
The Euler elastic energy &, and the perimeter £ are defined by the equalities

Se:/r—ds L= /ds_/%\fde (3.16)

We take the penalization energy in the form
k‘2
g:se+£=/(§+1)ds, (3.17)
r

The gradient of £ is given by the following lemma.

Lemma 3.3. Under the above assumptions, we have

1
dE(f) =VVsk+ 5|k|2 k, dL=—Fk, (3.18)

1
dE(f) = ViVsk+ S|k k= k. (3.19)

Here the connection Vg for every vector field ® : I' — R?, is defined by the
equality
Vi®=0:P— (0:,P-7)7. (3.20)

Identities (3.19) are classic (see for instance [8]). They are very particular
case of the 3D Willmore variation formula.
We are now in a position to specify the gradient flow equation

Ouf +dE+dJ =0, £(0)=fo. (3.21)

for the penalized Kohn-Vogelius functional. Applying Lemma 3.3 we can rewrite
equation (3.21) in the form

1
Of + VVsk+ 5|k|2 k—k+dJ=0fort>0, f(0)=fo. (3.22)
The gradient dJ is defined by relation (3.9) and can be regarded as nonlinear

nonlocal operator acting on I'. Hence (3.22) is a nonlinear operator equation.
It may be considered as a nonlocal perturbation of the elastic flow.
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3.2.2 Existence theorem

In this subsection we prove the main theorem on the existence of global smooth
solution to problem (3.22). Assume that the initial data satisfy the following
conditions:

I.1 The even integer number m > 10

1.2 The initial curve 'y = fo(S!) satisfies conditions H.1-H.3 of Theorem
3.1.

1.3 There is a constant F,, such that

|07 ko|?> ds < E,, for all 0<r<m. (3.23)

o
1.4 The length element /gy = |0y fo| satisfies the condition
llv/8ol

Theorem 3.4. Assume that the initial data satisfy Conditions 1.1-1.4. Then
there is a mazimal T € (0, 00] with the following properties. For every e > 0,
problem (3.22) has a solution such that

Cm=5(S1) < ¢y < 0. (324)

feco,1;cm>3Sh), o.f €C,T;C™%SY)) for every 0 <T' < T.
(3.25)
Moreover, the Jordan curves '(t) = f(t,S'), t € [0,T), are separated from O
and have no self-intersections. If T < oo, then there is a sequence f(t;), t; =T
as j — 00, such that dist (I'(t;),00) — 0, or (and) f(t;) converge in C*(S')
as j — oo to some immersion foo such that foo has a self-intersection.

The proof is standard and consists of three steps. The first is the proof of
the local solvability of problem (3.22) on the small time intervals. The second
most important step is the proof of the global a priori estimates for smooth
solutions to problem (3.22) in Sobolev and Holder classes. These estimates and
the extension method entail the existence of smooth solution which meets all
requirements of Theorem 3.4.

A detailed proof of short-time existence is outside of the scope of this paper.
Note that equation (3.22) is a degenerate parabolic equation with added low
order operator dJ. In our case the local existence result can be obtained as
writing the flow as a graph over the initial date. In particular, the problem can
be reduced to a scalar parabolic equation for the distance function, [6]. See also
[8] and [11] for useful arguments.

Hence out main task is to derive global a priori estimates for solutions to
problem (3.22). This part of the proof is technical and lengthy. Our approach is
based on the estimates for Kohn-Vogelius functional given by Theorem 3.2 and
methods developed in [1], [8], and [12]. The results are given by the following two
theorems. The first constitutes the Sobolev a priori estimates for the curvature
k as a function of the arc-length variable s.
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Theorem 3.5. Let f:[0,T] x St — R? be a smooth solution to problem (3.22)
with initial data satisfying condition

/ O kolPds < By < 00, £(0) < By < o0, (3.26)
r(o)

where m > 6 is an even integer. Furthermore assume that there are two pos-
itive constants v and p with the following properties. For every t € [0,T],
the curve T'(t) satisfies Conditions H.1-H.3 with some fived constant v and
dist (T'(¢),0) > p independent of t. Then there is a constant ¢, depending
only on Ey, v, p, T, and m, such that

T
Sup. [(0) |2 s + / Vo)) dt < B +c(1+T).  (3.27)
t€[0,T 0
Proof. The proof is given in Appendix 6. O

The second theorem gives the a priori estimates for solutions to problem
(3.21) in the Hoélder classes.

Theorem 3.6. Let a smooth solution to problem (3.21) meets all requirements
of Theorem 8.5 with even integer m > 10. Furthermore assume that the initial
data satisfies conditions 1.1-1.4 of Theorem 3.4. Then there is a constant c,
depending only on T, v, p, m and the constants E,,, c4 in conditions 1.1-1.4,
such that

[fllco,rom-s@) + I fllororom-o@st)) < e (3.28)

Proof. The proof is given in Section 7. O

In order to complete the proof of Theorem 3.4 we use the extension method.
Without loss of generality we may assume that fo € C°°(S'). Hence the problem
has a C'*°- solution f defined on some small interval (0, T'). By virtue of Theorem
3.6, this solution meets all requirements of Theorem 3.4 for every even m < oco.
Moreover, every immersion f(t), t € [0,T), satisfies conditions H.1-H.3 of
Theorem (3.2) with some constants v(t) > 0 and p(¢t) > 0. Let (0,7") be the
maximal interval of existence of such a solution. There are two possibilities

either liminfuv(t)p(t) >0 or liminfv(¢)p(t) =0.
t—T t—>T
Let us prove that 7' = oo in the first case. Assume contrary to our claim
that T' < oo. There is 6 > 0 such that quantities v(¢) and p(¢) are uniformly
separated from zero on the interval [T —§,T), i.e.,

v(t)>v >0 p(t)>p>0

for some v and p. Hence f(t) meet all requirements of Theorem 3.6 on the
interval [T — §,T) with the initial data f(T — d). It follows from this theorem
that

ILf(@&)||cm—s(s1y + 10cf (t)][cm—o(s1y < c(m) forall t e [T —A,T)
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Recall that here m > 10 is an arbitrary even integer. Hence the immersions
f(t) converges in every space C™(S') to some immersion f., € C*°(S') which
obviously satisfies conditions H.1-H.4. The local existence theory implies the
existence of smooth solution to equation (3.21) with initial data f(T) = f for
some interval [T, T + ¢). This contradict the maximality of T'.

It remains to consider the case when T < oo and hence lim inf v(¢)p(t) = 0.
Obviously there exist a sequence ¢; such that

v(tj)p(t;) =0, t; =T as j— o0

If p(t;) — 0 as t; — T, then dist (I'(¢;),0Q) — 0 as t; — T and the assertion
follows. Let us consider the case

v(t;) >0, t; T as j— o0 (3.29)

Recall that the immersions x = f(¢,s), s € [0, L(t), are uniformly bounded in
C*[0, L(t)]. Moreover, the bound depends only on the constant Ey. More-
over, by virtue of Lemma 2.1, the perimeters L(t) are uniformly bounded from
above and uniformly separated from 0. After passing to a subsequence we may
assume that the sequence L(t;) converges to some positive L, as t; = T. The
immersions f(t;,s converges in C; norm to an immersion fo(s) on the every
compact interval of [0, L). It is clear that the energy of the correspondent
curve ', dies not exceed Ey. It remains to prove that the limiting curve '
has an self-intersection. To this end, note the the set of curves {I'(¢;)} U T'co is
compact in the uniform metric. If the limiting curve has no self- intersections,
then every curve from this set has no-self-intersections. From this and Corol-
lary 2.5 we conclude that v(t;) > v > 0 for some v independent of j, which
contradicts to relation (3.29). This completes the proof of Theorem 3.4.

Since the energy £(t;) of the curve I'(¢;) is bounded by the constant Ey,
it follows from Lemma 2.2 that the functions f;(s) = f(¢;,s) are uniformly
bounded in C*** norm for 0 < o < 1/2. Hence after passing to a subsequence
we may assume that I'(¢;) convege uniformly to C' curve I's;. Obviously either
', has a self- intersection or (and) it touch 992. This complete the proof of
Theorem 3.4.

4 Model transmission problem

4.1 Transmission problem. Notation. Results.

Let us consider the following construction. Fix an arbitrary positive x an p and
introduce the rectangular

Qo = (=2k,2k) x (=2p,2p), Q= (=K, k) x (=p,p) (4.1)
in the plane of variable y = (y1,y2). Next, fix an arbitrary integer » > 1 and
introduce the systems of of numbers

m

m
KmZIi(Q—?), pm:p(2—7), 1<m<r.
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and the corresponding domains
Qm = (=Km, Fm) X (=pm; pm),  Qr = Q. (4.2)
Choose an arbitrary function ¢ such the properties
pelP(Q), 0<p<1l ¢=11in Q/2, Jy¢ =0 fory, =0. (4.3)
and a system of functions ¢,,, 1 < m < r, such that

@mecgo(Qm)a 0<pom <r—1,

om=11n Qumy1 for 1<m<r—1, ¢, =¢. (44)
Next, introduce 2 x 2- matrix N(y1) with the properties
N=NT, CN'I<N<CNL |IN|lwrzon2m < Cn, (4.5)
where C'y is some fixed constant. Finally set
a(y2) =1 for y» <0, a(y2) =ap = const. >0 for yp > 0.
Let u : Qo — R be a solution to the elliptic equation
div (aNVu) =0 in Q. (4.6)

We do not impose any boundary conditions on u. Instead of this we assume
that it admits the estimate

[ull22(@o) + [VullL2(Qe) < Cu < 00 (4.7)

Now set
v=@u where ¢ is defined by (4.3) . (4.8)

The main goal of this subsection is to estimate the one-side co-normal derivatives
of v on the interface {x2 = 0}. To this end we introduce the system of functions

Um = @mu, 1<m<r (4.9)
where ¢,, are given by (4.4).
Proposition 4.1. Under the above assumptions, we have
() the functions vy, = pmu, 1 < m <r, admit the estimates

107" Vom|l2@) < e(1+ 107" Nl 12(~2x,2x))- (4.10)

(B) the function v = v, = pu satisfies the equality
8{ div (an) = div 81u + 810'7 (411)
where p and o are compactly supported in QQ and admit the estimate

Vil z2) + lollzz ) < eI+ [[07 N || L2 (—2x,26))- (4.12)
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Here the constant ¢ depends only on r, ¢, and the constants Cy, C,, in (4.5)
and (4.7).

The second main result of this section is the following proposition, which
constitute the estimates for the conormal derivatives of v on the interface {y2 =
0}. Split the rectangular @ into to parts

Q_ = (_Ka"i) X (_/0’ 0)7 Q+ = (_HaK) X (07P)7
separated by the interface segment
= (—k,r) x {0}.

Denote by u® and v* the restrictions of the functions u and v = pu on Q*.
We also denote by Oyu® and dyv* the conormal derivatives

8Nui = (N2181 + NQQ@Q) ui, a]\ﬂ}i = (N2161 + Nggaz)’l}i on 1 (413)

We will consider the conormal derivatives as a function defined on the interval
(k, k). Since the function ¢ vanishes for |y;| > &, we may assume that Ooyu®
and Oyvt are extended by zero to R. Now recall definition of Sobolev spaces
H*(R) in subsection 2.2

Proposition 4.2. Assume that all assumptions of Proposition 4.1 are satisfied.
Then the estimate

||(paNUi||Wr71/2,2(R) <c(l+ ||8{N||L2(,,{7,€) (414)
holds true for all v > 1.

The rest of the subsection is devoted to the proof of Propositions 4.1 and
4.2.

4.2 Proof of Proposition 4.1

We proceed with the induction principle estimating step by step the function
Um- Our first step is do derive the recurrent system of elliptic equations for
these functions and their derivatives.

4.2.1 Extended system of equations.

It is easily seen that the functions v,,, 1 < m < r satisfy the following recurrent
system of differential equations

div (aNVvy,) = divBp—14Cm-1 in Qo, 1<m<r, (4.15)
which is understood in the sense of distributions. Here vg = v and

Bm—l = Um-1 aNV(pma Cm—l = av‘Pm “N Vupg_1. (416)
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Indeed, we have
/ aNVvy, -V(dy = / aNV(pnu) - V{dy =

/ aNvVy,_ 1V, - V(dy + / aNp,Vu-V(dy =
Qo

0

/ aNvy 1V, - V(dy — / V1NV, - V(dy
0 0
+/ aNVuV (¢ pm)dy =
0
/ aNvy,_ 1V, - V(dy — / aNV o, Vo, _1(dy,
0 0
for every ¢ € C§°(Qo). Thus we get

/ aNVuv,, -V({dy = / a1 NV, - V(dy — / aNV o, Vo, _1(dy,
0 0

0

which obviously yields (4.15). We are interested the smoothness properties of
solutions to system (4.15)-(4.16) with respect to the variable y;. To this end,
notice that

o div (aNva) = div O"By—1 + 07"Cp—1 in Qo, 1<m<r, (4.17)

and
o7*div (aNVup,) =div (aNVO"vy,) +  div Ay, (4.18)
Here . ,
Am= Y A7, A7 =ad|N Vv, (4.19)
itj=m,j>1

Further we also will consider the quantity
D1 =07 By (4.20)
Thus we get
div (aNV@}"vm) =—div A, + div 97"B—1 + 07"C1 in Q. (4.21)

for every 1 < m < r. Now our task is to estimate the quantities A,,, By,_1,
Cm—1, and D,,_1.

4.2.2 Basis of induction. Auxiliary Lemma

In this subsection we prove the following lemma, which gives the basis of the
induction process. In what follows, we will denote by ¢ various constants de-
pending on the rectangular Qq, 7, @, and the constants Cy and C,, in (4.5)
and (4.7).
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Lemma 4.3. Under the above assumptions,

01 Vi llL2 gy < e (4.22)

Proof. The proof is given in Appendix C. O
Remark 4.4. Notice that

10181 L2(qQy) + IC1ll2(@)) < e (4.23)

Auxiliary lemma. Now we have to organize the induction process. To do
this, we have to derive the recursion system of estimates for the quantities A,,,
By, and Cy,—1. Notice that for m = 1 the desired estimates follows from Remark
4.4. Hence it suffices to consider the case m > 2.

Lemma 4.5. For every integer m € [2,r] and o € (1/2,1), there is a constant
¢ such that

[ Amll 2@,y < (U4 107 N L2 (<) + 107 VOl 22(0.00); (4.24)
where \=(m—2+o0)/(m—-1) <1,

107 Cn—1ll22(@u) <

m—1 m—1 (425)
(L4107 N L2(= ) + 107 Vom_1llL2(@,) )
107" Bi-1ll22(0,) + IVDm—1ll22(@,n) < (4.26)
(L + 107 N 22 (=) + 107 Vom—ill 2@ 1)
Proof. The proof is given in Appendix D O

4.3 The proof of Proposition 4.1

We are now in a position to complete the proof of Proposition 4.1. We start
with the proof of estimate (4.10) in assertion («). Recall the denotations for
the rectangular ) and @y,

Q= (—k,K) X (=p,p), Qo= (—2k,2r) x (=2p,2p).

Let us consider the sequences of domains QQ = @, C Q,—_1... C Qg and functions
©m, 0 < m < r, defined by relations (4.2)-(4.4). Recall that ¢, = ¢. Let us
also consider the sequence of the functions v,, = @,,u. It is necessary to prove
that the estimate

107" Vom|l2(q) < e(1+ |07 N 22 (—r,x)) (4.27)

holds true for all 1 < m < r. Notice that for m = 1, this estimate obviously fol-
lows from estimate in Lemma 4.3. Now we proceed with the induction principle.
Assume that the inequality

107" V-1l z2(@u-1) < (L + 107 Nlz2 (s 1)) (4.28)
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holds for some m > 2. Notice that the function v,, satisfies equation (4.21) that
reads

div (aNV@{nvm) =—div A, + div 9"B—1 + 7" Cr1 in Qp,  (4.29)

where A,,, Bn—1, and C,,—1 are given by (4.16) and (4.19). Recall that the
positive matrix aN is uniformly bounded from below and above. Multiplying
both sides of (4.29) by 0*v,,, integrating the result by parts over Q,,, and
applying the Cauchy inequality we arrive at the estimate

107 Vol £2(@m) < Mmllz2(@u) + 107 Brm—1llz2(@u) + 107 Conmtllz2(@u) -
It follows from estimates in Lemma 4.5 that
107" NV om | 12(Qm) < ¢+ 07" Vomll72(g,)+
/DT NI L2 (<) + ClOT ™ Vo 1ll2(Q,0_1))s
where 0 < A < 1. From this and the induction hypothesis we conclude that
107" VumllL2(@,) < € (1+ 107Nl 22— i) )-

This completes the proof of the induction step. Applying the induction principle
we obtain desired estimate (4.10)for all m € [1,r].

Let us turn to the proof of assertion (). To this end, notice that ¢ = ¢,
and v = pu = v,. From this and relation (4.17) we conclude that equality (4.11)
holds true for

N:Drfla g :C'r71~
It is clear that estimate (4.12) is a straightforward consequence of Lemma 4.5.

This completes the proof of Proposition 4.1.

4.4 Conormal derivative. Proof of Proposition 4.2.
Split the rectangular @ into to parts
Q™ = (=k,5) x (=p,0), Q" = (=K, k) x (0,p),
separated by the interface segment
L= (—k,k) x {0}

Denote by u® and v* the restrictions of the functions u and v = wu on Q*.
We also denote by Oyu® and vt the conormal derivatives

8Nu:t = (N21(91 + N22(92) ui, 8NU:|: = (N2181 + Nggag)’ui on /. (430)

We will consider the conormal derivatives as a function defined on the interval
(—k, k). Since the function ¢ vanishes for |x1| > &, we may assume that pdyu*
and Oyv* are extended by zero to R. Recall that for every s > 0, the Sobolev
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space W*2(R) is defined as the completion of the space C§°(R with respect to
the norm

el = / (1+€2)° a6 de. (4.31)

where @ is the Fourier transform of u.
We estimate dyu~. The proof of inequality (4.14) for pOnu™ is similar.
First we show that this inequality holds true for Oyv~. It suffices to prove that

‘/a{(amr)cdxl‘ < cl|Cllwr/za ) (4.32)
R

Choose an arbitrary function ¢ € W1/22(R). By virtue of the extension theorem
for Sobolev functions, the function { can be extended to the strip Qs = R X
(—p,0) such that the extension ¢* admits the estimate

cHCwrzew < NC lwrz@n) < cllCllrze - (4.33)

Let p and o are defined by Proposition 4.1. Note that the coefficient a = 1
in @, and the functions v~, p, o are compactly supported in the rectangular
Q. Multiplying both the sides of (4.11) by ¢ and integrating the result by parts
over (Q— we arrive at the integral identity

/ O10nv™ Cdxy = / O p(z1,0) - ea (day
® ® (4.34)

+/ OJNVv™ - V(" dx — Blu-VC*dm—/ o 01(*dx.

o-
It follows from (4.12) that

(s O lwir2my < ellmllwrz @) < e (14 107N |2 () )
which yields

| [ 0umla1.0)- 2 Car| < el 0y [€lhuaage

< (14 107N L2 (—rm) ) ICllwrr22my-  (4.35)
Next, estimate (4.12) implies

| oV da| < || Vll2@ ) V¢ 2@ <
¢ (LT N £2(=n) € w12y <
L+ 0N 12y ) Il wraszzcay- (4:36)

Again employing estimate (4.12) we obtain

| [ oo da| < clolirg) IV iz <
o
¢+ 107Nl L2(—n,m) 1€ wr2g-) <
¢( 1+ 107N p2(—ewy ) [¢llwrrezm). (4.37)
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Let us estimate the second integral in the right hand side of (4.34). It is easy
to check that
I1(NVv) = NVOjv+ A,, (4.38)

where A, is given by equality (4.19) with a =1 in Q~. It follows from estimate
(4.15) in Lemma 4.5 and estimate (4.10) in Proposition 4.1 that

A I2(@) < e(1+ 107N L2 (=) ) + cllOT VolI720) (4.39)
< C( 1+ ||8{N||L2(—n,n))-

On the other hand, estimate (4.10) yields

||NV6{’UHL2(Q) < C( 1+ ||(r“)i-NHL2(,,€7,{) )
Combining this estimate with inequality (4.39) and identity (4.38) we obtain
107 (NV)l|22(@-) < INVOTv][L2(@) + A L2y < e(1+ 10T N2y )-
Recall that the function (* is extended by zero from @~ to the strip Q. It
follows from this and the Cauchy inequality that

FNV) - V¢ do | < e(1+ TN () ) V€ N 22(@0)

‘ o (4.40)

<L+ 107N L2 (= nm) ) €Nz @y
Inequalities (4.35), (4.36),(4.37), and (4.40) give estimates for all integrals in

the right hand side of (4.34). These estimates along with identity (4.34) finally
yields the desired estimate (4.32). In particular we have

10n v w2y < e(1+ 10N 2 )- (4.41)

It remains to obtain the similar estimate for the function pdyu~. Recall that
v = u, where ¢ is an arbitrary function of the class C§°(Q). Now we specify ¢.
To this end, choose an arbitrary function ¢ € C§°(—k, ) and fix the function
t(x2), T2 € R, such that

t € C°(R), t(xe) =1 for |xe| <p/3, t(xe)=0 for |x2|>2p/3.

Now set
¢ = pr = ¢(x1)t(z2).
With this notation we have

aNU7 = QsaNui —+ 31¢N21u7 = ¢8NU7 + 81@’0;71 on E, (442)

since u coincides with v,._; on the support of V. Recall that v,,, 0 < m < r,
are defined by (4.4) and (4.9). Since the function ¢ is compactly supported in
Q, we have

010 vr—1llwr—1/22((— k0 x f0}) < C”a;_l(alwUT—l)||W1/2v2((7n,/-c)><{0}) <
|0y (Vo vr1)llwrzo-) < cldf (aVove_1) w2
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On the other hand, relations (4.16) and (4.20) imply
81_1(achvr_1) =D, ;.
From this and estimate (4.26) for D,,—; in Lemmad4.5 we conclude that
1010 vr—1llwr—1/22((—r,m)x0}) < lPr-1llwr2(@)
S IVDr-allza@) < e+ 10T N L2y + 107 Voroalz2, )

Combining this result with estimate (4.27) we arrive at the estimate

01 vr—1llwr=1/22((— i m)xfor) < 1+ 10T N L2~k k),
which along with identity (4.42) and estimate (4.41) gives

I ONvllwr-1/22((—rmyxgor) < (L +1OTN L2~ )

This completes the proof of Proposition 4.2

5 Kohn-Vogelius functional. Proof of Theorems
3.1 and 3.2

Recall the formulation of the problem. Our goal is to derive estimates of the
gradient dJ of the Kohn-Vogelius functional J in terms of the geometric char-
acteristics of the interface I'. The results are based on the normal derivatives
estimate for solutions to transmission problem given in the previous section.
These estimate establish the dependance of the smoothness properties of so-
lutions to a transmission problem and the the smoothness properties of the
interface I'. Recall the conditions H.1-H.3 imposed on T

H.1 The Jordan curve I' C 2 satisfies the energy condition

%/F |k2|ds + L < Ej.
H.2 There is v > 0 with the property
dist (I'\ '3, I'2) > v,
for every arcl's,, with k, defined by Lemma 2.2

H.3 There is p > 0 such that

v dist (T, 0Q) > p.
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By virtue of Corollary 2.4, every curve I' satisfying thise conditions is a Jordan
curve of the class C17 0 < o < 1/2. It splits the domain © into two parts.
The first ; € Q (inclusion) is a simply connected domain with boundary T.
The second is the curvilinear annulus 2, = Q \ Q; bounded by I' and 9. For
simplicity, we will assume that 9 is a Jordan curve of the class C'*°.

Next, recall that the piece-wise constant function a : @ — R (conductivity)
defined by the equalities

a=11in Q. a=ag in ;.

5.1 Proof of Theorem 3.1

Let w € WH2(Q) be a weak solution to the equation

div (aVw) =0 in Q. (5.1)

Denote by w~ and w™ the restrictions of w onto subdomains Q. and Q;,
w i=w in Q, wr:=w in Q. (5.2)
If T is sufficiently smooth, then w is continuous on I'. In other words, w™ = w™

on I'. However, the normal derivative of w has a jump across I'. The following
remark is important for the further analysis. Set

Omw™ =Vw™ -n, Gpuw"=Vw"-n on T. (5.3)
Our task is to to prove the estimate (3.12):
10w sy < (14 107 Klxqry ) ool 2y

where m > 0 is an arbitrary integer, ¢ depends only on m and on the constants
Ey, v, p in Conditions H.1-H.3. We split the proof of estimate (3.12) into three
steps. First, we define a standard neighborhood of an arbitrary point z € I and
the special mapping which takes diffeomorphically the standard neighborhood
onto rectangular. Next we employ Proposition 4.2 in Section 4 in order to
obtain the local version of estimate (3.12). Finally, we use the local estimate
end partition of unit to complete the proof of (3.12).

5.1.1 Standard neighborhood and standard mapping

Note that the immersion f and the curve I' = f(S!) satisfy all conditions of
Lemma 2.2. Choose an arbitrary z € I and consider the subarc I's,, of the arc
'3 defined by Lemma 2.2. It follows from this lemma that I's,, admits the
representation

Dop i xo =n(x1), x1 € (—7,0)
with positive =, §, depending only on k. Next, assume that I" has no self
intersections and is compactly embedded into a bounded domain Q C R2. Set

2p = min {v, dist (I',00)} > 0, (5.4)

where v > 0 is given by Corollary 2.3.
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Definition 5.1. Under the above assumptions, the standard neighborhood %o
of the point z is the curvilinear quadrangle defined in the Cartesian coordinates
system associated with z by the equalities

Sow ={z=(21,22) : =y <1 <6, —2p+n(z1) <z2 <2p+n(z1). (5.5)

Our next task is to define the special mapping, which takes the standard
neighborhood onto the rectangular. To this end introduce new variables

y1=8(71), Y2 =z2 —1n(71). (5.6)

Tt is easy to see that the mapping y = y(x) takes diffeomorphically the standard
neighborhood Y5, onto the rectangular

Qo = (—2k,2kK) x (—2p,2p). (5.7)
Introduce the matrices M and N defined by the equalities
2
Apy@)<V1ﬁW 0), N=(detM)"MM". (58)
—n 1

Notice that these matrices depend only on 27 and hence only on s € (—2k, 2k).
Introduce the function © : (—2k,2x) — R defined by the equalities

O(s) = arctann’(z1(s)), ©(0) =0, (5.9)

in the Cartesian coordinates associated with z. Recall that + = 0 and s = 0 at
the chosen point z.

Lemma 5.2. Under the above assumptions, we have
0 € Wh2(—2x,2x), |0] < 118 (5.10)

7(s) = (cos O, sin®), n(s) =(—sin®, cosO), k(s)=0"(s)n(s). (5.11)

Moreover, the matrices M and N admit the representation
L 0 1 1 sin ©
M= N=— : B . 5.12
(fssfa 1>’ wel e T7) 6w
Proof. Introduce the function

A(s(x1)) = n(x1), s € (—2k,2kK).

We have

N(s)\/1+n/(21)? =n'(z1) and hence N ()2 =n(z1)> — N (s)27/(z1)°,
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which gives
N 2 1
(= 149" = ISR (5.13)

In particular, we have

=9

2

M=| VIZX . (5.14)
A

V1- N2

Next notice that
1
T=——=Ln)=(V1- M2 X)) = (cos O, sin ©) (5.15)
vV1i+n
with
© = arctann’ = arcsin \
We thus get the following formulae for the curvature vecor k and the normal &
k=07 =0"(s)n, n=(—sinO,cosO).

Identity implies that the matrices M and N admit representation (5.13). It
remains to note that |[tan®| = |n’| < 1/6, which yields the estimate || <
w/18. O

Corollary 5.3. Under the assumptions of Lemma 5.2, the estimate
||8;nNHL2(72mZN) < C(m)(l + ||azn71k||L2(72n,2/1)) (516)
holds for every integer m > 1.

Proof. Since |©| < 7/18, it follows from the estimates of composite functions in
Sobolev spaces that

HagnN”Lz(—Qn,Qn) < C(CN)(l + ||a;n@||L2(—2n,2fc)v

where .
Cn = sup |95 N (O)].
kzzo lo|<n/18
It remains to note that 9O = 9™~ 'k. O

5.2 Local estimates

In this paragraph we prove the local estimates of the normal derivative of a weak
solution to equation 5.1. The result is given by the following proposition. Fix
an arbitrary point z € I'. Without loss of generality we may assume that the
arc-length variable s equals zero at z. Let k, depending only on the constant
Ey in Condition H.1, be given by Lemma 2.2. Choose an arbitrary function
¢ € C5°(—k, k). Furthermore, assume that the functions ¢(s) and ¢(s)d,w™(s)
extended by zero to the real axis R

27



Proposition 5.4. Under the above assumptions, the estimate

||¢ 8nwi||wm+1/2,2(]R) < C( 1+ ||8;nkHL2(_2,{72,{) ) ||wHW12(Q) (517)

holds for every integer m > 0. Here ¢ depends only on m and on the constants
Ey,v, p in Conditions H.1-H.3 of Theorem 3.2.

Proof. Notice that estimate (5.17) is invariant with respect to dilation w. Hence
without loss of generality we may assume that [w||y1.2() = 1. For an arbitrary
fixed z € T', denote by X5, the standard neighborhood determined by Definition
5.1. Split Xy, into two disjoint parts 35, and Z;‘K defined by the equalities

. = {3: = (z1,22): —y<x1 <90, nr1)—2p <z <n(21) },

" (5.18)
Si.={z=(z1,22): —y <z <0, n(x1) <az2<2p+n(z1)}

Here (21, z2) is the local system of Cartesian coordinates associated with z and
defined in Lemma 2.2. Notice that the ordinate axis x5 is directed inside 2; and
hence

E;n = Y. NQ, Z;K =0 Ny, Xox = E;n U Z2+m UTg,.

In particular, the coefficient a equals 1 in 5, and equals ag in ¥3,_. The function
w serves as a solution to equation (5.1) and the integral identity

/ aVw-V{dx =0, (5.19)
Yok

holds for all ¢ € W, 2(25,). The standard change of variables
y1 =s(x1), y2 =x2 —n(71).
takes diffeomorphically the standard neighborhood X5, onto the rectangular
Qo = (—2k,2K) X (—2p,2p).

In its turn, the standard change of the variables (5.6) takes diffeomorphically
curvilinear quadrangles EQiK onto the rectangles

Qo = (—2k,2k) x (—2p,0), QF. = (—2k,2k) x (0,2p)
We have
Qo = Qy UQ¢ N ¢, where the interval ¢ = (—2x,2k) x {0}.

Now set

u(y) = w(z(y)), u*(y)=w*(z(y) =u(y) o (5.20)

Notice that w serves as a weak solution to equation (5.1) in the standard neigh-
borhood Y. In particular, it satisfies integral identity (5.19). Notice that

Vow(z(y)) = M'V,u(y), de=(det M) 'dy
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The change of the variables x — y in (5.19) leads to the following integral
identity for the function u : Qy — R,

/ aNVu-VCdy =0 forall ¢ e W,?*(Qo) (5.21)
Yok

Here the matrix N is given by Lemma 5.2. The conormal derivative dyu~ on
the segment £ is defined by the equality

1

onu~ = N218y1u_ + Nggayz’u,_ = @

(= 0yu” sin®+9y,u”), (5.22)
where O(s) is given by Lemma 5.2. It is easily seen that N and u meet all
requirements of Proposition 4.2. Now choose an arbitrary ¢ € C§°(—«, k) and
assume that the function ¢dyu~(s) extended by 0 to the real axis. Applying es-
timate (4.14) in Proposition 4.2 and estimate(5.16) in Corollary 5.3 we conclude
that the inequality

||¢8Nu_||W7‘71/2(R) <c(l+ 8§NHL2(_2,172K)) <c(1+ ||(9;_1/€||L2(_2,§72,£) (5.23)

holds for every integer r > 1.
Recall that s = y;. Next, formulae (5.11) and (5.12) in Lemma 5.2 along
with formula (5.22) imply

n(s) - Vew™ (z(y)) = n(s)M' - Vo~ =

1
) —— —tan®
(—sin®,cos O) - < co(s)@ ) ) Vu = (5.24)

0056(_ sin © 9y, u + Oy, u) = Onu~ on /.

It follows that for every ¢ € C§°(—k, k), we have
d(s)Opw™ (s) = ¢(s)Onu™ (s) for s € (—2k,2k).

From this and and estimate (5.23) we obtain desired estimate (5.17). O

5.3 Globalization

Now we employ Proposition 5.4 in order to complete the proof of Theorem 3.1.
To this end, we use the method of partition of unit.

Partition of unit. Let I' satisfies all conditions of Theorem 3.1 and k €
(0,£/2) be given by Lemma 2.2. Recall that £ and x depends only on the
constant FEj in the energy condition H.1. Choose a finite collection of points
2z € T with the arc-length coordinates s such that

k

sk= L 0Sk<SN-1, (5.25)
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where N is an arbitrary integer satisfying the condition

<

=

1

N

Now choose an arbitrary function ¢ € C§°[—L/2, £/2) with the properties
P(s) >0, P(s)=0 for |s| >k, (s)=1 for |s| <rk/2. (5.26)

We will consider ¢(s) as a function defined on I'. In other words, it can be
regarded as L-periodic function defined on R. For every integer k € [0, N — 1],
define the function

Vi(s) = (s — sg).

The function ¥ : I' — R is compactly supported on the arc of the length 2x
centered at zi. Moreover, ¥, = 1 on the arc of length k centered at z;. These
arcs cover the whole curve T'. Tt is easily seen that for every z € T', at least one
of the functions ¥, equals 1 at z.

Now set

(s

=N
> Vi
7=0

(5.27)

Tt is clear that every nonnegative function ¢ € C°°(T") is compactly supported
in the arc of length 2« centered at z; and

N—

—

¢r =1 (5.28)
k=0

Introduce the functions wy with the properties

wr = opOpw™, Opw™ = szlwk. (5.29)
k=0
It is clear that for every m > 0, we have
N—1
100w ™ | pgms1r2ey <D Nkl grmer/2(ry- (5.30)
k=0

See Subsection 2.2 for the definition of spaces H"(I') = Hj.

Global estimates of the normal derivatives. It follows from (5.30) that it
suffices to estimate wy, in the space H™*1/2(T). To this end we use the following
construction. Choose an arbitrary compactly supported function F' : (—k, k) —
R. There are two ways to extend F' to the real line. The first way is to extend
F by zero to R. We denote this extension by F,

F(s)=F(s) for |s| <k, F =0 otherwise.
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The second way is to extend F' L-periodically to R. We denote this extension
by Fy. These extension are connected by the relation

Fy(s) = i F(s+kL). (5.31)

k=—oc0

The following lemma constitutes the connection between Sobolev norms of F
and F; f-

Lemma 5.5. There is the constant ¢ depending only on L and m such that

||Fﬁ||H§n+1/2 S C||F||HV,YL+1/2(R) fOT’ all m Z 0. (532)

The norms in the spaces H;nﬂ/z and H™/2(R) are defined in Subsection 2.2
Proof. The proof is given in Subsection B.2 O

We are now in a position to complete the proof of Theorem 3.1. To this end,
it suffices to prove that every function wy defined by (5.29) admits the estimate

k| grm+120y < ¢ (14 105" kll 2 () lwllwz(q)- (5.33)

Fix an arbitrary integer k € [0, N — 1] and the corresponding point z; = f(sg).
After the shift of the coordinate s we may assume that sy = 0. Let the arc T'y
centered at zj is defined by Lemma 2.2 with z replaced by zx. Introduce the
function F : ', — R given by the equality

F = ¢p(s) Opw™(s), s€(—kK,K) (5.34)

Notice that ¢ € C§°(—k, k). Let F be the extension by 0 to the real line. It
follows from estimate (5.17) in Lemma 5.5 that

[ENl i@y < e (L4107l L2 ry) lwllwrzq)- (5.35)
On the other hand, relations (5.29) and (5.31) imply the equality
Fy=w; on T.
From this, estimate (5.35), and estimate (5.32) in Lemma 5.5 we finally obtain

||wk||Hm+1/2(F) = HFﬂHH"”*lﬂ(I‘) < CHF||H’”+1/2(]R) <
(L4 105kl L2 0y) [wllw2 (e,

which yields desired estimate (5.33). This completes the proof of Theorem 3.1.
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5.4 Proof of Theorem 3.2
Recall that Kohn-Vogelius functional is defined by the formula

J(I) = / aV(v —w) - V(v —w)dz. (5.36)
Q
Here v, w : 0 — R satisfy the equations and boundary conditions
divaVu =0 divaVw =0 in Q, (5.37)
aVv-n=g w=nh on O09. (5.38)

Tts gradient dJ is defined by equality (1.14),
dJ =2(aVv-n[d,v] — aVw - n[d,w])n - [aVv- Vv —aVw - Vw|n, (5.39)

Let a curve I' satisfies conditions H.1-H.3 and the curvature k € H"(T)
with integer > 0. It is necessary to prove that for every § € [0,1/2), the
gradient d.JJ admits the estimate

dJ || rrs 0 < e(1+ [|05K] L2(r)), (5.40)

where the constant ¢ depends on r, 3, and constants Fy, v, p in conditions
H.1-H.3. Note that estimate (5.40) and the embedding theorems imply the
inequality

10dT || Lory < e(1 + (0Kl L2(r))- (5.41)

which holds for every ¢ € [1,00). In this case the constant ¢ depends in addition
on q. The rest of the section is devoted to the proof of estimate (5.40). The
key observation is that this estimate is straightforward consequence of Theorem
3.1. In particular, it follows from inequalities (3.6) that the solutions v and w
to problems (5.38) admit the estimate

[vllw2(@) + [wllw2@) < clg, h)

Hence they meet all requirements of Theorem 3.1. Applying this theorem we
conclude that estimates

1800 | zrmsr/2(ry + 100w | grmsrsary < € (14 0™k L2y ) (5.42)

holds true for all integer m > 0. Next, it follows from (5.39) that dJ is a
quadratic form of the normal derivatives 9, v and 9,,w®. Hence it suffices to
estimates the products d,v* 9,,w* and 9,,v* 9, wT. Let us estimate Opv~ 0 —.
The the proof of estimates of other terms are similar. It is necessary to show
that

|Onv™ Opw™ ||Hm+6(l“) <c ( 1+ ||8mk}||L2(F) ) (5.43)

for all integer m > 1 and for all 8 € [0,1/2). It follows from the Moser inequality
that

[0 v™ Opw™ || gmtsry < € ||3nv:||L°°(1“) ||3nw:HHm+ﬂ(r) (5.44)
+c (100w ||Loe 0y |00 || rm+5 (1) -
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By virtue of the embedding theorem , the inequalities It follows from the em-
bedding theorem that the inequalities

10007 [ Lo () < (@) 1007 1240 (rys (100w [[Loe )y < €(0) [|0nw™ | 17240 (1

hold for every ¢ > 0. Applying the interpolation inequality to the right hand
sides of these estimates we obtain

_ _l-= <
Hanv HH1/2+U(F)SC||87LU ||H1;g(r) ||8nv |‘]7-;m+1/2(1")7

_ S - -2
P oy R | S
Inequality (5.42) with m = 0 implies
10n0™ (| g2y + 100w [ 172y < e

We thus get for m > 1,

|‘8nU7HL°°(F) <c ||6nvi||%m+1/2 s

A (5.45)
[0nw™ || Lo (ry < cl|Onw ||}£}m+1/z(p)~
Next, the interpolation inequality implies

1l —Li_
nL(z :3) ||6n/U_||L m(2 B)

10007 [ zrmss (ry < ¢ [|Onv7 |

H1/2(F) m+1/2(1")7
— ) == (3-8
[|Onw ”Hmﬂf(l“) < c¢[|Onw HH1/22(1") [|Onw ||Hm+1/22(1")'
It follows that
_ e Ges)
Haﬂv HHm‘H’(F) <c ||a7lv ||Hm+1/22(1") )
_ s
”aﬂw HH"H'B(F) <c Hanw ||H7n.+1/22(1") .

Substituting these inequalities along with inequalities (5.45) into (5.44) we ob-
tain

_ _ - —l=m (3-8
Hanv Onw ||Hm+ﬁ‘(1“) <c Hanv “[—fm,+1/2(r) Hanw ||Hm+l/22(r‘) (5.46)
= = w(-8) '
+| 0w ||Hm+1/2(p) [[Onv ||Hm+1/22(1“)'
Now set 1
o
= - — A= —.
773 B m
We have )
T2 1-—(3-8)=1-2
m m
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From this and (5.46) we conclude that
||3n1173nw7||1{m+ﬁ(1“) <c Hanfo?Ime(F) H8nw7||}{_,3‘+1/2(r)
+||anw7||/\Hm+1/2(1") ||an”7||}{_73\+1/2(r)'
Applying the Young inequality we arrive at the estimate
[0nv™ Opw™ || m+e(ry < € |0p0 | mta/zry + € [[Onw™ | grmsr/2(r).-

It remains to note this inequality along with inequality (5.42) obviously imply
desired estimate (5.43). This completes the proof of Theorem 3.2.

6 A priori estimates. Proof of Theorems 3.5

In this section we prove theorem 3.5. To this end, we have to derive the Sobolev
a priori estimates of solutions to the Cauchy problem

2
atf+V§k+|%—k+dJ:0 in (0,7) x S,
£(0,0) = fo(0), 0eS!

for an immersion f(t,0) ,t > 0, § € R/27Z. Here 0 is the angle variable on S!,
and hence f is 2m-periodic function of §. Recall that s is arc-length variable on
the curve I'(t) = f(t,S!) associated with f. We have

1
=8y, V=05 —(7-0,)T,
EXin ( ) (6.2)

T=0sf, k=02f=0,r.

(6.1)

s

Note that the time derivative d; is calculated for fixed angle variable . With
this notation ds and V4 become a nonlinear differential operators.
Further we will denote by L£(t) the length

27
c= [ = [ VaEO. VBl (63)
of I'(t) = f(t,Sh).

Now fix an arbitrary even integer m > 6. Throughout of the section we will
assume that all conditions of Theorem 3.5 are satisfied. In particular, there are
two positive constants Eg and E,, such that the initial curvature ko = 92 fo(s)
satisfies the inequalities

1
/ Likol2 + 1)ds < By, / O™ 2ko[2 ds < Ep. (6.4)
r(0) 2 r(0)

The proof of Theorem 3.5 falls into six steps. Our first task to introduce the
necessary notation and collect the auxiliary material.
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6.1 Commutators and connections
6.1.1 Commutators

The proofs of a priori estimates in Theorem 3.5 is based on the multiplication
both sides of equation (6.1) by the higher order derivative of k and integration
of the resulting equality by parts. This procedure requires the calculation of the
commutator of spatial and time derivatives. In order to do this, we introduce
some notation. Let us consider a one-parametric family of immersions f : [0, 7] x

S!. Set 1
V = 8t f, g = 2V . k, m = 58571'2. (65)

Denote by II and V; a projection and differential operator defined by the equal-
ities

e =0—(r-®)r, V,d=1I10,P, (6.6)

where ® : [0,7] x S! :— R? is an arbitrary smooth vector field. In particular,
we have

Vi® =00 — (7:0:P)7 =110:P, V& =0P— (7-0,P)7 =119,P.
The following lemma gives the expression for the operator 92 9;.
Lemma 6.1. Under the above assumptions, we have
1020, f = Vik — mo k. (6.7)

Proof. Let ® : [0,T] x S' :— R? be an arbitrary smooth vector field. We have

! 1

(asat - 61585)@ = mae atq) . at<m aeq)) _
1 1

=0 (1g,77) 0@ = 7 (@0f - 00.1) 20 =

(01 0.00) 08 = (2] - 0.) 08 = 572 0,2,

Here we use the relation Osf - 0, f = 7 - 0,f = 0, which follows from equation
(6.1). Thus we get

83875@ = 87585(1) — %7’(’2 63‘1) (68)
Next, we have
020,® = 05(050:® — 0;0,P) + (050;(0sP) — 0;05(0s®) + 0,02 .

From this and (6.8) we obtain

20,8 = 0,0°® — %as(@as@) — %@agcb.
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Substituting ® = f in this relation and recalling the equalities 7 = 9, f, k = 92 f
we arrive at the identity

1
638tf = th — 583(71'2)7' - 7T2k?.
Applying to both sides of this identity the projection II and noting that
o, =V, lr=0, HOk=k

we obtain the desired equality (6.7).
0

Now we calculate the commutator of the differential operators V2 and V.
The result is given by the following lemma.

Lemma 6.2. Let ® : [0, 7] x S be a smooth normal field, i.c., ® is orthogonal
to the tangent vector T. Then we have

ViV® = V, V20 — 1V20 — 1V, D. (6.9)

Proof. Following Lemma 2.1 in [1], Lemma 2.1 in [8], and Lemma 1 in [12] we
have the identity
V2V® = V,V20 — Cy — C; — Co, (6.10)

where Cy = mV2® and

Ci=(k ViV +Vk-V)Vi®+2( (k- V@)V, V — (V,V-V@)k),
Co= ((Vsk- @)V, V — (V,V-®)V,k) + ((k- ®)V2V — (V2V - D)k ).

Notice that C; are orthogonal to 7 since Vs and k are parallel to n. It is easy
to see that
(Vsk - ®)V,V —(V,V-®)V,k) - © =0.
Note that the multipliers in this equality are parallel to n. Hence, either (V4k -
D)V, V — (VsV - ®)V,k =0 or @ is orthogonal to the normal vector n. In the
latter case ® is orthogonal to n and 7 and hence ® = 0. From this we conclude
that
(Vsk - @)V V — (V, V- D)V k=0

Next we have
((k-@)V2ZV —(V2V-®)k) - @ =0

Arguing as before we conclude that either (k-®)V2V —(V2V - ®)k =0 or ® = 0.
We thus get
(k- ®)V2V — (V2V - ®)k = 0.

Combining the obtained results we conclude that Cy = 0. Now consider the
quantity C;. We have

((k-V®)V,V — (V,V-V,®)k)- V& =0.
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Repeating the previous arguments we conclude that either (k-V @)V, V—(V,V-
V:®)k =0 or V@ =0 is orthogonal to n and 7. Hence

(k- V@)V, V — (V,V - Vd)k =0

and
C1=(k-VV+Vik - V)V;0.

Since V' and k are orthogonal to 7, we have
E-VV4+Vsk-V=Ek-0,V+0sk-V=0sk-V)=m,

which yields the equality C; = 71 V®. Combining this result with the equalities
Co = mV2®, Cy = 0, and relation (6.10) we obtain the desired identity (6.9). [

6.1.2 Relation between V, and J;. Estimates of ;.

Relation between J; and V. The important ingredient of the theory are
estimates Hy- Sobolev’s norm of the curvature k via L?-norm of the connection
Vik. In this section we consider this problem in many details. We begin with
the observation that every smooth normal vector field ® : S! — R2? admits the

representation
bd=pn, =& -n (6.11)

It is easily seen that for every integer r > 0 we have
Vid =0 pn. (6.12)
The following lemma is the main result of this section.

Lemma 6.3. Let ® : S — R? be an arbitrary smooth vector field and o €
(1/2,1). Then for every integer r > 0, there is a constant ¢, depending only on
o, r, and Egy, such that

|7 ® — V7]l <
1—

- 1_l=c
" (Il + NElmy) T (6.13)

1+
c(I @l + 1] zo)

Proof. The proof is given in Appendix E. O

If we assume that L?-norms (H, t? -norms) of ® and k are uniformly bounded,
then Lemma 6.3 leads to the efficient estimate of the deviation 9,® — V ®. The
corresponding result is given by the following

Lemma 6.4. Let under the assumptions of Lemma 6.3,
[l < Cay IFllmy < Eo.

Then for every e € (0,1), there is a constant C, depending on Ey, Cs, integer
r > 1, and € such that

(=)@l g —ellklla; —C < ViRl L2(0,2) < (1+6€) (|| ry +el|k| y +C (6.14)
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Proof. Estimate (6.13) and the conditions of lemma imply the inequality
107 — V1@l o < C (1] + K1)~
Since 1/2 < ¢ < 1 it follows from this and the Young inequality that
1050 — VIl < O+ (| ]y + k)
We thus get the inequality
[ 10501 ag = IVE@l o | < C + e(ll®llzry + 1] 12)-

which yields

107 @ g — (1] + [1*llar;) — € < V70| g

< 105 @/l g + e(ll®llay + 1Kl y) + C-

Noting that
1@y — Co < 1050ll120,2) < |91y + Co,

we arrive at desired estimate (6.14). O

Corollary 6.5. Let ||k||r2(0,c) < V2Eo and an integer r > 1. Then for every
€ € (0,1) there exists a constant C, depending only on Eqy, 7, € such that

(1 =20)|[kllay — C < [[Vikllmg < (1 +2¢)[|k|lmy +C (6.15)

Proof. Tt suffices to note that ® = k and Cp = /2FEy meet all requirements of
Lemma 6.4. O

Estimates of ;. In this paragraph we give estimates for the coefficients m;
defined by (6.5). The result is given by the following Lemmas.

Lemma 6.6. Under the assumptions of Theorem 3.5 for every integer v > 0,
there is a constant ¢ depending on r, such that

VOl < e+ [[k@)] gy+2)- (6.16)
Proof. Notice that
V=0f=V2%k+ %|k|2k — k +dJ. (6.17)
By virtue of Corollary 6.5
IV2klmy < c+ c||V’;+2k||Huo <c+ chHH;H. (6.18)
Next, the Moser inequality (2.10) implies the estimate

k2Kl iy < ellkIe oz 1Ry
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Now choose an arbitrary o € (1/2,1). Recall that the embedding H{ —
L>(0,L) is continuous. From this, the interpolation inequality, and the es-
timate ||k| 2(0,z) < ¢ we obtain

20 _r_
1Kkl < e g Iy < e Ikl IR =
2o (6.19)
T2

c ||k

H+? <c(l+ ||k||HuT+2)

Finally, Theorem 3.2 on the estimates of the Kohn-Vogelius functional and es-
timate (6.15) in Corollary 6.5 imply

ldT ey < e+ el ViRl o < e+ clklla;. (6.20)

Combining estimates (6.18) - (6.20) and recalling the expression we arrive at
desired estimate (6.16) O

We are now in a position to estimate the quantities m;. Thew result is given
by the following lemma.

Lemma 6.7. Assume that all assumptions of Theorem 8.5 are satisfied. Let
an integer r > 0 and o € (1/2,1). Then there is ¢ depending on r, o and the
constants v, p, v in Theorem 3.5, such that

1+ I+

2 ()]my < e(1+ ||k(t)||H5~+z )y Mm@y < 1+ |‘k(t)”H;+3 ) (6.21)

forallt € (0,T).

Proof. Since m = —0,my/2, it suffices to estimate mo. To shorten notation, we
omit the symbol ¢. Notice that me = k- V. From this, the Moser inequality, and
continuity of the embedding Hf — L> (0, £) we conclude that

w2l ey < cllkllag IVIIay + 1 ElLag 1V g - (6.22)

By the interpolation inequality and estimate (6.16) in Lemma 6.6, we have

1—2 o _ o a
IVllae < IV VI < et lkllm) ™" (1 klpe) ™

Since _ ) ,
1Bl 7z < IIkIIH;f“ IIklll}}% <c IIkll,}}iz,

we have

% 1-Z o
Vily <e(@+I1klIZR) " (U 1kl ggee) ™ < el (1] gpee)”,

r+2
Hy

where
2 o o 240

1— )4+ = =
r+2( T)Jrr r+42




From this and the inequality

1——r_ _r_ _r_
Whllry < e llllgry ™ 1Kl e < cllkll e,

we obtain

1Bl 1V |y < e llkl\;?ia (L +[I&llpry+2)" < e +cllk]

I+
r42 -
Hy

(6.23)

Next, the interpolation inequality implies

g _
2

e S cllk H]

1-7%5
”kHHé’ <c HkHH? +2 Hk Hg~+2 >

which along with estimate (6.16) in Lemma 6.6 gives

I+t
g2
#t

1kl g (V']

my <cllk

ﬁQ (14 [|k|| gr+2) < c+ ||k
# t

Substituting this estimate and estimate (6.23) into (6.22) we arrive at desired
estimate (6.21). O

6.2 Main integral identity.

Now we use formulae (6.7) and (6.9) in order to derive the main integral identity
for solutions to problem (6.1). The result is given by the following proposition.

Proposition 6.8. The following integral identity holds for every smooth solu-
tion f : [0,T] x St to problem (6.1), for every to € (0,T], and for every even
mteger m > 6.

1 to
7/ |v;”*2k(t0)|2ds+/ / |V k(t)|* dsdt =
2 Jr(to) o Jru

. ) (6.24)

>N+ 7/ IV 25:(0)|? ds.

T 2 Jro
Here the quantity N; defined by the equalities
m—2 m—2
2 to 1 Tt

Nl - ; /O Igl(t) dt + §Im_2, NQ = ; /0 Igi_l(t) dt,

Ini(t) = / VIR (V) VT 2k ds, (6.25)
I(t)

L 1(t) = ( VP22 (V2 k) - VI 2k ds,
I'(t)

to
N3 = / VI (k- V2k) k) - VT dsdt,
0 I'(t)

to tO
N4:f// VT*2T~Vdesdt+// VI ((k-Y) k) - VI'k dsdt,
0 Jr(@) 0 JI'(?)
(6.26)
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where )
T = §|k|2k — k + dJ.

Proof. Multiplying both sides of (6.1) by 92V2™~4k and integrating the result
with respect to s and t we arrive at the equality

to
/ / (at f02V2mi 4 V2 afvzm—‘*k) dsdt+
0o Jre)

t (6.27)
0 1
/ / (f|k|2k - k+d.]) L2V dsdt = 0.
0o Jrw) ‘2
The rest of the proof falls into a sequence of lemmas.
Lemma 6.9. Under the assumptions of Proposition 6.8, we have
to 1
/ ouf - VP~ ds = 7/ VT2 k(to)|* ds
0 Jrw 2 Jr(to) (6.28)

1
”/ V2 B(0)[2 ds — Ny — N,
2 Jr(o)

Proof. Notice that V] = —d,II and V"~2k = IIV™~2k. Since m is even, it
follows that

onf - 02V2m L ds :/ (VIHm=2020, f - TIV™ 2k ds =

L(t) L'(¢)

/ V21020, f - V™ k ds.
T'(t)

Recall that the integer m is even. From this and identity (6.7) in Lemma 6.1
we obtain

Ouf - VP~ ds = v;n*Qatk.v;n*desf/ VT 2 (rmy k) - VI 2k ds.
() r(t) r(t)

Recalling the expression for Io;(t) we can rewrite this equality in the equivalent
form

/ Of - 92V ds :/ V20, k- VT 2kds — Io(t). (6.29)
r() I(t)

Let us consider the integral in the right hand side of this equality. Using identity
(6.9) in Lemma 6.2 with ® replaced by k& we obtain

/ V20, k- VT 2 kds = / VA9V k- VT 2k ds—
I'(t) I'(t)
/ VT (moV2ik) - VT 2k ds — VT (Ve k) - VT 2k ds
T'(t) T'(t)
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or equivalently
/ V20, k- VT kds = / VA9V k- VT 2k ds — Io(t) — I (t).
I'(t) ()

Repeating this process we finally obtain

m—2
2

/ V20, k- VT 2kds = VIV P hds — Y (Ii(t) — Iai—a ().
I'(t) I'(t) i=1

Combining this equality with (6.29) we arrive at the identity

o onf - 02V2m A ds = o XV k- VT 2kds
t t
m—2 m—2 (630)

— Z IQZ(t) - Z I2i71(t))'
1=0 =1

Now consider the integral
to
/ VT2 VT 2k dsdt.
0 Jre)

Our task is to integrate by parts with respect to ¢. The difficulty is that the
curve I'(t) and ds depend on the time variable. In order to cope with this
difficulty we rewrite this integral in terms of the original independent variable
0. The change of variable s — 6 leads to the equality

to to p2om
/ VT2 VT 2k dsdt = / VT2 VT 2k /g didt,
0 I'(t) 0 0

where /g = |0y f|. Integrating by parts gives the equality

to 27
/ VT2 VT 2k /g didt =
0 0

1 o m—2 2 1 o m—2 2

5/0 [V k(to)| \/g(to)dﬂfg/o V72 k(0)]> /g(0)do  (6.31)
1 fo o m—2 2
5[] wr koo anar

Next we have

1
O/ g(t) = m(aef 090t f) = (Osf - 0s0: f)/8(t)
Notice that
0.f 00 =7 0.0 = 07 f = —k-V =~
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which yields

[ wrkopaa@ma =L [T vr o r e am -
0 0

1

) (6.32)
—5/ VT2 k(t)|> o ds = —5Im,2(t).
()

Next, we have

1

2m 2m
_ 1 m—
5 [ VR k)P Vs - 5 [ 9 KO)P Vl0)do =
0 0
1 1
7/ (VT2 k(to)]* ds — 7/ V72 k(0)]* ds.
2 Jro) 2 Jro
Substituting this equality along with equality (6.32) into (6.31) we obtain
t() 27

to
/ VT2 VT 2k dsdt = / VT T2k T2k /g dOdt
0 T'(t) 0 0

1 1 1 [to
— §/ VT2 k(to)|* ds — 5/ V=2 k(0)]* ds — 5/ L _o(t) dt.
I(to) (o) 0
(6.33)

Integrating both sides of equality (6.30) and using relation (6.33) we arrive at
the desired equality (6.28)
O

Lemma 6.10. Under the assumptions of Proposition 6.8 we have

to to
/ / V2 2V2M 4 ds = / / VT k()2 dsdt — Ny, (6.34)
0o Jr() 0 JI(t)

Proof. Arguing as in the proof of Lemma 6.9 we obtain

/ vfkﬁfvfm*%ds:/ (VIm=192V2k - TIV Tk ds =
r() () (6.35)

/ VT—4Ha§v§k-v;ﬁkds=/ VAV, 0, V2 k- VT kds.
r(t) r(t)

Note that
OsV2k = Vik + (1-0,V2k) T,

Since V2 is orthogonal to 7, we have
0sV%k = V3k — (k- V2k) 7.
It is easy to check that

Ve((k-Vik)T) = (k-V2k) Ve = (k- Vik)k,
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which yields
V0sV2k = Vik — (k- VZk) k.

Substituting this relation into (6.35) we finally obtain

Vik-92V2n 1 ds =
r(t)

/ |v;"k|2ds—/ VI (k- V2k) k) - VIk ds.
I'(t) T'(t)

which along with the expression for A3 implies desired equality (6.28). O

Recall the denotation
1

T= §|k|2k —k + dJ.

Lemma 6.11. Under the assumptions of Proposition 6.8 we have
to
/ Y- 02VInTt = N (6.36)

0

Proof. The proof imitates the proof of Lemma 6.10. We have

/ Y02V ds = / (VIHm=192Y - IV ™k ds
I'(t) r'(t)

(6.37)
= / VT 4V,0, T - V™kds.
I(t)
Notice that Y is orthogonal to 7. It follows that Note that
0sT =V Y + (1-0,X) 7 = V,Upsilon — (k-T) .
Next we have
Vs((k-T)7)=(k-T)Ver = (k-T)k,
which yields
V.0, ¥ = V2T — (k-Y)k.
Substituting this relation into (6.36) we arrive at the identity
/ Y02V ik ds =
I(t)
VA VT ds — VI (k- T)k) - VI'kds.
T'(t) I'(t)
which along with the expression for A3 yields (6.36). O

We are now in a position to complete the proof of Proposition 6.8. To this
end, it suffices to substitute equalities (6.28), (6.34), and (6.36) into integral
identity (6.27).

O
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6.3 Estimates of reminders N
6.3.1 Estimates of N7 and N,.

Estimates (6.21) for m; leads to the basic estimates for the reminders A; in the
integral identity (6.24). The first result in this direction is given by the following

Lemma 6.12. Assume that all assumptions of Theorem 3.5 are satisfied. Let
an even integer m > 4 and o € (1/2,1). Then there is ¢, depending on m and
o, such that

2(1—0)

T
|M-|§c/ (14 KI5 ™) Jor i=12. (6.38)
0

Proof. The proof is based on Lemma 6.7 and Corollary 6.5. We give the proof
only for the quantity A;. The proof for A5 is similar. It follows from represen-
tation (6.25) for N; that

222 b
M= / I dt + 5T a(1),
i=0 Y0 (6.39)

Loi(t) = / V22 V2k ) - VI 2k ds.
I(t)
Hence it suffices to estimate Io;(¢). To simplify the notation, we omit the symbol
t. By the Cauchy inequality, we have
Lol < V2272 (928 | o IV 2] - (6.40)

Next notice that , '
V3 = md*Kn, K=k-n

and hence ' _ ' _
VI (m Vi) = 00 PP (m0 K n

It follows that

V22 (22 ) gy < 202K s (6.41)
The Moser inequality and the continuity of the embedding HY L>(0,L)
imply the estimate

||77263iK||H;n—2727' S C||7T2HH§an—2i H(()EZK”HB’ + C||772||Hé’ ||a§iKHH§n7272i

< elfmall a2t | Kl e + elim g |15 s

(6.42)

It follows from the interpolation inequality and estimate (6.21) in Lemma 6.7
that

[ A—
m—2

m—2 =
Hy

1——9o _
Imallzry < el o™l
1+2 \1— -2 1+2 -2 (643)

c(1+ ||k||H§2) 2 (14 ||l<:||Hum1'" )R
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Since | k|| HY is uniformly bounded, the interpolation inequality implies

2
1kl ez < ellFl -

Substituting this inequality in (6.43) we arrive at the estimate

172l ey < e(X+ 1k, (6.44)
where 5 -
o o o o o
¢ m( +2)( m—2)+( +m)m—2 m

Next notice that HK||H? = ||k||H§1 is uniformly bounded, which yields

m=2
1K L < el Kl 5

From this and (6.44) we obtain

242

Imallmg 1K s < e (1 [lLp) 5

- m=2
1] (6.45)

Next, estimate (6.21) in Lemma 6.7 and the interpolation inequality imply

||772||H;”*2*2i K”Hn%*" <c ( I+ ||k||Hm—2i ) K| g <
# #
(T Ikl )
which gives
1+'m.731i+<7 %
Imall e LK gz < 04 [ ) I < (6.46)

Substituting (6.45) and (6.46) into (6.42) and next into (6.41) we arrive at the
inequality

2420

, . m=2
V=272 (V) Iz 0.0y < e+ Kl ap) = (1K +

1+M 2i
oL+ Il ) K

Now out task is to estimate Hﬁr—norm of K via Hur—norm of k. To this end,
notice that the identity Vik = 97 K n and boundedness of L?>-norm of K = k-n
yields the estimates

K\ < e+ 10K lng = ¢ + | Vikll my,

which holds for every integer > 0. Applying estimate (6.15) in Lemma 6.5 we
arrive at the inequality

1Ky < ¢+ cl[k]|my -
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Substituting this inequality with » = m into (6.47) Leads to the estimates

m—2—2i i 1+m,7r2ni+a Qi’nﬁ
IV (V) g < (U Bl ™) (L4 (1Kl )
(6.48)

2420 —
™
m
#

£T<0 1 —2 20
(A Kl (U kllp) ™ < e+ (k)

In order to complete the proof, note that estimate (6.15) and the interpolation
inequality imply the estimate

_ -
IV kllarp <+ cllkll 2 < e+ e[k

Combining this estimate with (6.48) and (6.40) we finally obtain the inequality

_2(1-0)

20 _z 20-0)
|L2i(0)] < e+ 1K) | rrm ()7 (L4 Rz ) ™7 < e+ ROy )7,
which along with expression (6.39) yields desired estimate (6.38). O

6.3.2 Estimates of A5 and N}

In order to complete the proof of Theorem 3.5 it remains to estimate the re-
minders N3 and N given by (6.26). The result is given by the following lemmas.

Lemma 6.13. Assume that all assumptions of Theorem 3.5 are satisfied. Let
an integer m > 4 and o € (1/2,1). Then there is ¢ depending on m and o, such
that

T
9_201=0)
Mol <e [+ ROl ). (6.49)

Proof. Recall that
T
N3 = / VI ((k-V2k) k) - VI'k dsdt.
0 Jr()

Hence out task is to estimate the integrand in the right hand side of this formula.
To simplify the notation we omit the symbol ¢. By the Cauchy inequality, we
have

| [t O2R) - VEkds] < [V (k- V2R g (9T g (6.50)
r
Notice that k = K n and V2k = 82K n, which yields
(k-V2k)k = K20?°Kn, VT 4(k-V2k)k) =" 4 K20°K)n.
From this we conclude that

IVE =4 (k- VERE) g < [KPOK | gyoms. (6.51)
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The Moser inequality, and continuity of the embedding Hf — L~ (0, £) imply
the estimate

VS (k- VIR)E) o <
C||K||2Loo(0,,c)HK”H;L—2 JrCHagKHLOO(o,L)||K||LOO(0,L)||K||H,;"—4 (6.52)
< o K lag 1K g2 + el B gz 1 g 16 gves

Since the || K|| HY is uniformly bounded, the interpolation inequality yields

o 1—2
1Ky < el B s 1K g2 < ell K[y
2+0 1—4
s 1K e < el K]

1 2o < el B

Substituting this inequalities into (6.52) we obtain

_2(1-0)

IV =4 ((k - V2R)E) g < el Kl ™ (6.53)

#

Next, inequality (6.15) in Lemma 6.5 leads to the estimate
1Ky < e+ cll0™ K[y = ¢ +cl[Vk|go < e+ cllkllmym,

which along with (6.53) yields the estimate

_2(1-0)

VS~ (k- VEIR)E) o < e+ [lkllmp)' =7 (6.54)
Applying again inequality (6.15) we obtain
IVl < c(+[F]lm;)-

Substituting this inequality and inequality (6.54) we finally arrive at the esti-
mate

_2(=0)
m

| /m) VI k() - VIR)K) - () ds| < 1+ RO ™

which obviously yields desired estimate (6.49) O
Now our task is to estimate the reminder
t() tO
Ny = —/ VITRY L VT dsdt+/ / VI (k- Y) k) - VI'k dsdt,
0 Jr(@) 0 JI'(¢)
(6.55)

where )
T = §|k|2k — k + dJ.

The result is given by the following lemma
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Lemma 6.14. Assume that all assumptions of Theorem 3.5 are satisfied. Let
an integer m > 4 and o € (1/2,1). Then there is ¢ depending on m and o, such

that
2(1—0)

Wil < e / A+ B 5 7). (6.56)

m
#

Proof. Introduce the functions

1 1
My = —§V;"‘2(Ikl2k) + gv’s”“‘(lkl“k%
My = =V 2(k) + VI (kPR), (6.57)
Mz = —V7"72(dJ) + VT 4((k - dJ)k).

It is easily seen that

3 to
Ny = Z/ / M;(t) - V7 dsdt,
i1 J0 Jr)

Estimate (6.15) in Lemma 6.5 implies
192 kll g < (L + 1Kl ).

From this and the Cauchy inequality we obtain the estimate

3 to
Wa| < CZ/O M) rzo ey (1+ %)y oyt ) (6.58)
=1

Now our task is to estimate H?-norm of M; First we derive estimate for the

quantity M;. We begin with the observation that
|k]?k = K3n, (k- (k|?k))k=Kn (6.50)
Vi(K®n) = 9[(K®)n, Vi(K’n) =9 (K°)n, '

where K = k - n is the scalar curvature and r > 0 is an arbitrary integer. It
follows that from this and the Moser inequality that
IV 2R g < el B grn—e < el K |gg | K grye—-

Since || K || HY is uniformly bounded, we may apply the interpolation inequality
to obtain

20+m—2
m

IV 2B R) g < el K|y
Note that Corollary 6.5 and the identity VI'k = 07" K n imply the inequality
K|y < e+ cl|08 Klmg = ¢ + e[V Elng < ¢+ cllkllay
It follows that

_2(1-0)

IV 2 (UkPR) e < e+ [1Kllzg)*= 7 (6.60)
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Repeating these arguments and using identities (6.59) we obtain

—a

m— 9_4(1-9)
v 4(|k|4k)“H§]§c(1+”k”Hg" ).

Since o € (1/2,1), we conclude from this and expression (6.57) for M; that

_2(1-0)
Mo < (1 + ||kl gm )t~ (6.61)

Arguing as before we obtain the estimate

|Mallzp < e(1+ [kl ) =5 (6.62)
It remains to estimate Hj?—norm of Ms. Recall that dJ is a normal field and set

dJ =+mn, v =dJ n, whichyields (k-dJ)k = K*)n.
Thus we get
VTS =07 P, VT (k- dJ)k) = 95 (K2),
which leads to the inequality
1Ml g < clltoll pnms + 19| prm—a

The Moser inequality and the embedding theorem imply the estimate

1Msllz0 < cllll s + el K g 191l gryoms + el K g 1961 1K s

Since ||1/}HH§) = ||dJ||H€ and Hk'||H§) are uniformly bounded, we may apply the
interpolation inequality to obtain the estimate

1—2 1—4 1—4

20 s s
183llg < el + N F ol + M 0 1K . (6.63)
Next notice that by virtue of estimate (6.15), we have
Kz < (U4 1105 K[ ) = e(1+ IVl o) < (1 + [[El| )

Recall that ||dJ| go and ||k||go are uniformly bounded. From this and estimate
(6.14) in Lemma 6.4 with r = m and ® = dJ we conclude that

[y < (@ + 1108 lp) = c(U+ VS dT ) < (U + (||l + 1dT | m1y7)-
By virtue of Theorem 3.2, we have

[Tl ggess < €< e+ [Kllp), B €[0,1/2).

which gives
Wl < o1+ [llage)
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Substituting the obtained estimates for [|K|mp and [|¢]
noting that o € (1/2,1) we finally obtain

mp into (6.63) and

2
1Ml g < (LKl )"~ (6.64)
Combining estimates (6.59), (6.62) and (6.64) we arrive at the inequality

_2(1-0)

3
DM Ollmoey < U+ rllm)' ™
i=1

Substituting this inequality into (6.58) we obtain desired estimate (6.56) O

6.4 Proof of Theorem 3.5

We are now in a position to complete the proof of Theorem 3.5. We begin from
the observation that the estimates of N; given by Lemmas 6.12, 6.13, and 6.14
imply the inequality

(d=0o)

4 to 2_2
SNl < e [ kOl d
=1

Since o € (1/2,1) we may apply the Young inequality to obtain

4 to
SNl < o e [ IRy . (6.65)
0

i=1

where € € (0,1) is an arbitrary number and the constant ¢, depends on e. Next,
estimate (6.15) in Corollary 6.5 yields the inequalities

IV 2kl > (1- 2€)||k\|§{§n72 —ce. IV&klmp = (1—2€)|[k[[Frn —ce. (6.66)
Substituting these inequalities in the main integral identity (6.24) we arrive at
the estimate

1—
2

2¢ to
Ikt s + (1= 26) [ (O e <
1
Ce(1+t0)+*/ |V 2£(0))? ds.
2 Jro)

Setting € = 1/6 we finally obtain
to
Iito) s + [ IR ey e =

c(1 +tg) +§/ |V 2£(0))? ds.
2 Jr(o)

This completes the proof of Theorem 3.5
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7 Proof of Theorem 3.6
Since k = 92 f and f, it follows from estimate (3.27) in Theorem 3.5 that

up |0ty < e+ 1) + B (7.1)
0,T

Recall that the length of the curve I'(¢) is uniformly bounded from below and
above by the constants 2/E, and Ej. Hence the embedding theorems holds in
the spaces Hé", r >0, t € [0,T] with embedding constants independent of ¢.
Since the embedding H™(t) < C™~1(0, L(t) is continuous, it follows from from
this and (7.1) that f and k as a function of variables ¢t and s admits the estimate

sup 1fOllem-10.c¢) + 1k lcm-s0,c0) < (T +1) + Epn. (7.2)

Notice that s is an auxiliary variable and the basic independent variable is
6 € S'. Hence our task is to estimate the derivatives of f as a function of the
variable #. To this end, note that

asgée) = Va(t,6), where \/g(t,6) = [90f(1,6)]. (73)

Let us estimate the length element ,/g. It is easily seen that

1
\/g(t) = m(agf 090, f) = (0sf - 950, f)V/8(t)
Notice that
8sf . asatf =T asatf = 7857— : atf =-k-V= 7%7(-27

which yields the ordinary differential equation for ,/g:

1 L
/8 = 5™ VE or glt)=goe 3 Jy madt (7.4)
It follows from estimate (6.21) in Lemma 6.7 that
w2l s < oL+ ] gp-2) + 2

which gives
SUP] [m2()llom-5(0.c0)) < € (7.5)

Next we have for every integer r > 1

T

Opma = _0Pma Y Cpa(Dps)™ (055)72 ... (95s)"",

p=1
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where the interior sum is taken over all nonnegative integer vectors a such that
artas+...ap.=p, a1 +200+---F+ra, =7,

and c,, are some constants. In particular, we have
Opmy = Za ) Zcpa )1 (Do/8)2 ... (05 /&)™,

Differentiating both sides of equation (7.4) with respect to 6 we obtain

O (0g\/8) = —*72 (95/8) + R, (7.6)

where
r—1
Re=—co S 05 VE (Za ™2 Yo (VE)" (O0vE)™ @)™,
o=0

where
art+as+ ... Qg =p, o1+2000+ -F+1r0_6=1—0

Notice that R, contain only the derivative 3g\/§ of order j < r — 1. Moreover
by virtue of (7.5), we have

|0tma(t,0)| < c¢ forall t€[0,T] and r <m —5,

which yields the estimate

r—1
IR < c(1+ > 105vel)", (7.7)
1=0

where the integer N depends only on r. It follows from this and (7.6) that

sup |05v/8| < csup|9p+/8ol+c sup (1+Z 05/8] )N for all 1 <r <m-5.
[0,T]xS! st [0,T]xS! :

It follows from the conditions of Theorem 3.6 that )
s;p|ag\/§0| <c forall r<m-—5
On the other hand, we have
Vg = \/Qe_% Jom which yields \/gﬂ <ec.
From this, (7.8), and the induction principle we conclude that
up Ve @)llom-s(sty < ¢ (7.9)
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This inequality along with the relation

Ops(t,0) = \/g(t,0)
leads to the estimate

[s(E)llom-s@s) < c.

Combining this result with (2.11) we arrive at a priori estimate (3.28) for f,

[ fllco.rom-sst) < c.

Employing equation (3.22) and repeating the previous arguments we obtain
desired estimate (3.28) for 9;f. This complete the proof of Theorem 3.6

A Proof of Lemmas 2.1, 2.2, and Corollary 2.4

Proof of Lemma 2.1. It suffices to estimate £ from below. The estimate
from above obviously follows from (5.11). Since I' is a C* Jordan curve, the
degree of the mapping 7 : I' — S! equals 1. Hence there exists s* € (0, £) such
that 7(s*) = —7(0). We have

2 irer) 0 < [ s < VE( [“hra) < VeV,

which implies the estimate VL > /2 /Ey. THese completes the proof of Lemma
2.1

Proof of Lemma 2.2 We will consider the immersion f = (f1, f2) as a
function of the arc-length variable s € [—L£/2, £/2]. Obviously it can be regarded
as L-periodic function on R. We have 9sf1 = 71, Osfo = 72. In the Cartesian
system of coordinates associated with z, we have 7(0) = (1,0). Notice that 7 is
L-periodic and

1057l 22(~2/2,0/2) = IEllL2(~£/2.2/2) < V2E0.

It follows from this and embedding theorem that

ITllco(—z/2,c/2) + 1 fllcrre(—z/2,c/2) < cla, Eo) (A1)

for all a € [0,1/2). This means that the curve I' belongs to the class C1T% and
its smoothness properties depends only on a and Ey. In particular, there is a
positive x, depending only on Ejy, such that

1

1
1l < = < _
|85f1(8) 1| = 12> |asf2(s)| =192 for all s € [ 3”33'%]

and
0<c(By) ! <k <e(BEy) < oo
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Therefore, the mapping z1 = f(s), s € [—3k, 3k] is diffeomorphic. We denote
its image by [—a, §]. The mapping

n(z1) = fo(fi '(21)), 21 € [~ f]

is well defined and continuously differentiable. Moreover, the identity ' =
05 f2(0s f1) ! yields the desired estimate (2.3) for ’. Next, we have

0" (1) = (02 f2(0s f1) ) (s(21)) — 2(0s f2(0s f1) 202 f1) (s(x1)).

Since the absolute values of the derivatives (9 f1)*", 9, f2 does not exceed 2 on
the segment [—3k, 3k, it follows that

B 3K
/ "% day < c/ 02 f|2ds < cEp.
—« —3kK

This completes the proof of the lemma.

Proof of Corollary 2.4 By virtue of Corollary 2.3, we have for every t €
[0,T7],

v(t) = Zeirllft) dist (T'(¢) \ T3 (t), Tax(t)) > 0,

Here T's,(t) and T'a(t)) are the arcs centered at z and defined by Lemma 2.2
with T replaced by I'(¢).

It is necessary to prove that inf; v(t) > 0. Suppose , contrary to the our
claim that there are sequences t,, and z,, € I'(¢,) such that

dist (T'(tn) \T'5.(tn), I'5.(tn)) = 0 as n — oo.

Here I'%, (t,,) and Ty, (¢,,) are the arcs centered at z, and defined by Lemma 2.2
with T replaced by T'(¢,).

After passing to a subsequence we may assume that ¢, — t € [0,7] and
2, — 2" € R? asn — oo. It follows that there are sequences z/, € I'(t,)\ T3 (tn)
and z]! € T'gx(t,) such that |z, — z)/| — 0 as n — co. Choose the arc-length
coordinates on I'(t,,) such that the corresponding arc-length coordinates equal
zero at z,. It follows that

Z;: :?(tnvsln)v Z;{ :?(th/ﬁ%
where

sh€ (=L(tn)/2,L(tn)/2) \ (—3K,3K), s € (—2k,2kK).

n

Passing to a subsequences we may assume that
s = st € (—L(too) /2, L(t0)/2) \ (—3K,3K), s — si, € (—2k,2k).
It follows from condition (ii¢) that
= f(tn, 5,) = fltoo, %) and 27 = f(tn, s7) = fltoo, 55)
Hence B B
Fltoos she) = FltoersL) and sy # slL. (A.2)

On the other hand, Condition H.2 implies that the curve I'(ts) has no self-
intersections. This contradicts to relations (A.2).
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B Sobolev spaces

B.1 Anisotropic spaces

The proof of the basic results of Section 4 required the analysis classes of func-
tions which have different smoothness properties with respect to different space
variables. In this subsection we collect the basis facts about such spaces. The
results will be used in Sections C and D.

Let

Qm = (_Hmyl‘fm) X (_pmapm>7 m E [1,7“]

be a rectangular defined by (3.1). Fix an arbitrary smooth function ¢ : Q,, — R
compactly supported in (—Ky,, k., ). Assume that ¢ is extended by 0 to the strip
R X (—pm, pm)- Introduce the norm

[l xec = sup [|9(y1, ) L2(—porpm)s
vieR (B.1)

16135 = I9l172(q..) + 10811 Z2(q,.)

Since ¢(-,y2) is smooth and compactly supported in R, we can rewrite this
definition in terms of the Fourier transform. The Fourier transform ¢(&,ys),
(&,y2) € R X (—pm, pm), is defined by the equalities

é(f,m) = \/%—W/R{@_igy%(yhyz)dyh ¢>(y1,y2) = %Aeigylé(f7y2)df~

With this notation definition (B.1) for Y/-norm can be written in the equivalent
form

ol = [ ([ € tote, vl de) die. (8.2

pm

Using (B.2) we can define Y2-norm for any 3 € R:

ol = [ ( [0+ 1ote. P de) die. B3

Notice two elementary inequalities for the introduced norms.

Lemma B.1. Let ¢ be a smooth function compactly supported on Q.,. Assume
that it is extended by 0 to R. Then

16l x < c(o) Igllye for every o >1/2, (B.4)
1-2

8y~ < (o) 10l 123, |19I5e for every o >0 and 0 <~y <o. (BS5)

Proof. In order to prove the first estimate (B.4) in Lemma B.1, note that

sup |¢><y1,y2>|s%2? /R (€. )| de.

y1€ER
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Thus we get

9 _ Pm 2d < Pm 2 d <
[¢[I% = sup |o(y1, y2) | dy2 < sup [o(y1,y2)| ¢ dy2 <

Yy1€ —Pm —Pm y1ER (B6)

/pp /"ZS & v2) |df} dys.

Since o > 1/2, the Cauchy inequality implies the estimate
in 2 2\—o 2\o || 1 2
{[1o€miac) < [arer=as [a+er 1oemP i
o [+ I de.
R

Substituting this estimate into (B.6) we finally arrive at the inequality

Pm
163 < / /1+s 1B(€, o) 2 de dy,

which along with (B.3) yields the desired estimate (B.4).
It remains to prove the interpolation inequality (B.5). We begin with the
observation that

(14 )D& y2)I* = (16(& 1)) (1L + )b, 12)[D)?), 0 =7/0.

From this and the Hoélder inequality we conclude that

Jaseriemias ([1oEmra) ([ a+eriemPi)
(B.7)

Combining this inequality with (B.2) and applying the Holder inequality we
finally arrive at the estimate

ot = [ { [ eriitemiac) a <
LA Lt mrae) ™ (o eriiemia)}an <
([ [acmpasan) " ([ [a+erioemr i) -

-9
8150~ llglI3%
Recalling that ¥ = v/o and

Pm . Pm
16120 = / N / (€. o) ? dedys = / / 16(0)? dyndye = [612cc.

we obtain the desired interpolation inequality (B.5). O

o7



B.2 Proof of Lemma 5.5

Without loss of generality we may assume that £ = 27. For the sake of sim-
plicity, introduce the temporary notation:

o0
F=u, Fy=v= Z u(s + 2km). (B.8)
k=—o00
It is necessary to prove that
Joll geve < ol ey (B.9)
Step 1. New norm in H™t1/2(R). It is convenient to introduce the

equivalent norm on the space H™+1/2(R). Recall that

il ) = / (14 622 fa(e)[? de. (B.10)

Introduce the pseudodifferential operators S and T defined in terms of the
Fourier transform by the equalities

- 1 _

Su(§) = A+ R a(§), Tu(§) =T()a(), (B.11)
where
T(e) = A i) (B.12)
e |
It is clear that
T = (9,)™ S (B.13)
Introduce the Hilbert norm defined by
[l 12y = lullZo) + I T ulliz), (B.14)
or equivalently
[l F 12 ) :/]R(1+ IT(E)) [a(©)] de. (B.15)
Since
LA )2 S T[T (O < e(1+ [€F)™ 2,
the norms || - || gm+1/2(r) and | - |gm+1/2(r) are equivalent, i.e.,

C_1||UHHm+1/2(R) < |U|Hm+1/2(R) < CHU||Hm+1/2(R). (B16)
Finally introduce the function

(&) =T(EuE), ek (B.17)

It is clear that
|u\?{m+1/2(R) = il 72y + 19l72 R)- (B.18)
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m+1/2

Step 2. New norm in H It is convenient to introduce the equivalent

norm on the space H, m+1/ : . Recall that

o0

Hvllfq;wwz = > (L [k o (B.19)

k=—o0

where the Fourier coefficients are defined by

v = e sy s)ds.

el

Introduce the operators Sy and Ty defined in the Fourier basis by the equalities

1
(Sgv)e = W vk, (Tyv)e =T (k) vx, (B.20)
where T is defined by (B.12). It is clear that
Ty = (95)™1! Sy. (B.21)

Introduce the Hilbert norm defined by

o = S ol + 30 TP ol (B.22)
k k
Arguing as before we conclude that the norms || - || gm+1/24 and | - | m+1/2 are
:
equivalent, i.e.,
C_1H’U||Hﬁm+1/2 S ‘U‘Hnm+1/2 S C||U||H;n+1/2. (B23)

Finally introduce the sequence
Qy(k) =T (k)vi,, —oo <k < oo. (B.24)

It is clear that

W = S lonl + 3 (@0 (B.25)
k k

Hence we can rewrite inequality (B.9) in the form
|U|H;n+1/2 S C‘U|H7n+1/2(R).

From this and representations (B.18), (B.25) for the norms in the spaces Hm'H/2

and H™1/2(R) we conclude that this equality is equivalent to the followmg

Z Jow]* + Z | ()[* < cllalfzm + 191172 @)- (B.26)
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Step 3. Relation between ® and ®;. Let a compactly supported function u
and a periodic function v are connected by relation (B.8). Furthermore assume
that ® and ®; are defined by (B.17) and (B.24). Then we have the identity

Oy(k) = B(k), —o0 <k < 0. (B.27)

Indeed, we have
1 27 )
Py(k) =T (k) v, = ’T(k)ﬁ/ e~ *y(s)ds =
0
o T (k) /2” ks , - T(k)/
— : +27j) ds= —
j;@o %= ), e ""u(s +2mj)ds j;oo 5 ),

= T(k)\/% /Re_iksu(s) ds = ®(k).

om(j+1)
~ksy(s)ds

e
j

Similarly we have
v = U(k), —oo<k<oo. (B.28)

Substituting (B.27) and (B.28) into (B.26) we conclude that it suffices to prove
the inequality

D (lak) + |@(k)*) < C/R(Iﬁ(f)l2 +[2(E)[) de. (B.29)

k

Step 4. The proof of inequality (B.29) is based on the following lemma
Lemma B.2. Under the above assumptions we have
[l ) < lldll2e + (| Rl 2@y, lallarw) < lallLz) (B.30)
Proof. Recall that
Tu=0"""Su, Su=(1+[¢?) *a.

The operator S is the Bessel potential of order 1/2. It admits the integral
representation

Su(s) = /R b(s — £)u(t) dt, (B.31)

where the Bessel kernel b has the following properties, see [2], Ch. 1. On the
interval (—k, k) it has the representation

b(s) = c(r) +o(s), o€ C®[—k, k|, (B.32)

Outside of this interval the kernel b(s) admits the estimate

|07b(s)| < e(r)e Pl for all |s| >k, r>0. (B.33)
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Choose an arbitrary function ¢ € C§°(R) such that
C(s) =1 for |s| <2k, ((s)=0 for |s|> 3k.

We have
Tu=(_Tu+ (1—-{)Tu

Obviously we have

/ |s ¢ Tul? ds < CI<;2/ |Tul? ds (B.34)
R R

Recall that u is compactly supported in the interval (—x, ). From this and
estimate (B.33) we conclude that the inequalities

|Tu(s)| = ’/8;”“b(s —tu(t)dt| <
R
c/ e Pls=ty(t) dt < ce™ P! / lu| dt < ce= Pl llull L2 (r) -
R R

hold for every s with |s| > 2k.
Since (1 — ¢) Tu equals zero in the segment [—2k,2k], it follows from this
that

[0 =0Tuts)ds < e [ e ds Julage
< dlful 22 m)-

Combining this estimate with (B.34) we obtain

[ 15T s < (lulf ey + Tulfage) ). (B.35)

Next notice that 1 1
sTu = -0:Tu = =02, Tu=2.
) )

From this, (B.35), and the Plancherel equality we obtain

/R 10cB[ de < c([|]2agm) + @122z ),

which gives the desired estimate (B.30) for ®. Repeating these arguments with
essential simplifications we finally obtain estimate (B.30) for @, and the lemma
follows. -

We are now in a position complete the proof of Lemma 5.5. To this end, it
suffices to prove inequality (B.29). Notice that

(k) < 2|12(5) + 2|2 () — @ (k)/*
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Next we have
k+1 1/2
(&) - B(k)]| < (/ G d) " for €€ [k k+ 1]
k
It follows that
k+1
B <20 +2 [ 08P ds for €< kiko+1)
k

Integrating both sides of these inequality over the segment [k, k + 1] we arrive
at the inequality

k+1
(k)| <2 / (1(©) + |00 de.
k

Summation this inequality with respect to k gives
Z [@(k)|* < 2/(\‘1’(5)\2 +10:@7) dg = || @[3 =)
From this and Lemma B.2 we conclude that
Z [D(R)* < c(lillZa) + 19l72m))- (B.36)
Repeating these arguments gives
Sk < el (B.37)

Combining (B.36) and (B.37) we obtain desired inequality (B.29). This com-
pletes the proof of Lemma 5.5.

C Proof of Lemma 4.3

We begin with the observation that the function u satisfies the divergent elliptic
equation
div (aNVu) =0 in Qo,

with the matrix a/N bounded from below and above by the constants, depending
on C'y and ag. It follows from this, inequality

[l L2(Qy) + IVullL2(y) < Cu < o0

and di-Giorgi-Nash-Moser estimate for the Holder norm of solutions to the di-
vergent elliptic equations we conclude that the estimate

ullce(qry < e(Q) for some « € [0,1),
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holds for every compact set Q' € Q. We thus get the estimate

il < cllullewn <e (C.1)
For m = 1, equation (4.21) reads

div (aNV@lvl) = — div (a0 NVuy)+

C.2
div (ﬁhu aNVyi + ua@l(Nng)) + 01(aVyy - NVu) in Q (C.2)

Now we estimate every term in the right hand side of this equation. Since a is
bounded and N is independent of y5, we have
||a81NV1)1 ||L2(Q1) S C ||81NV’[11 ||L2(Q1) S

POIN L2 =k ey SUP [IVUL 22— pripm) =

Y1E(—Km, ,Km

CH51N||L2(—Hm7ﬂm) |

Vuillxe < || Vo] xe.

Here we use estimate (4.5) for 0y N. From this and inequalities (4.4)-(4.5) with
¢ = Vv we conclude that for every fixed o € (0,1),

||aalNV’U1||L2(Q1) S C”V’Ul”Xoo S CHV’Ul”ya

< | VorllL 0, IV0L 5 < el Vo
Let us estimate the second term in the right hand side of (C.2). Recall that
L?-norm of Vu and 9; N are uniformly bounded by the constants C and C,,.
In its turn, the L* norms of u and N are bounded by C,, and the constant in
inequality (C.1). It follows from this that

(C.3)

|[ad1uN V1 + uady (NVer )| 2(q.) <

(C.4)
cl|VullL2(y + cllon(NVe1)l| L2 g, < e

It remains to estimate the third term in the right hand side of (C.2). We have

||aV<p1 . NVUHLZ(Ql) S

(C.5)
I Vull iz < e

Multiplying both sides of (C.2) by d1v; and integrating the result by parts we
arrive at the equality

/ aNVOjv - V@lvldy = —/ a0 NV - VO dy+

1

/ (01uaNV1 + uadi (NVer)) - Vorvr dy + / (aV1 - NVu)d?v; dy.

1 1

Applying the Cauchy inequality in the right hand side and employing estimates
(C.3)-(C.5) we obtain

/ aNV(’)wl . Valvldy S C(HV’U1HUyl + 1)||V61’U1HL2(Q1)- (C6)

1
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Recall that the matrix a/V is bounded from below by the constant depending
only on Cy and ag, which gives

/ aNVayvr - Voody > ¢ [V g, -

1

Obviously we have
[Vorlly: < c(IVivillzz@i) + 101 VivilL2)”
<c(1+ |01V p2(0.))” <c+ c||81V111||z2(Q1).
Substituting the obtained estimates into (C.6) we arrive at the inequality
VOl r2(q,) < c(l|VO1uil|T2q, ¢, o€ (0,1),
which obviously yields the desired estimate (4.22).

||81V7}1HL2(Q1) <c

D Proof of Lemma 4.5
D.1 Proof of estimate (4.24) for A,,.

Introduce the temporary notation
H:81N, w:@lvm.

Since ¢1 = 1 on the support of ¢,,, it follows from the definition (4.9) of v,
and condition (4.5) that

IH L2 (= i) F 0l 22000 < c (D.1)

We have ‘ ‘
Ay = > ad{NOiVw+ ad"NVuy,

i+j=m—2,i,j20
which yields
[Amllr2(Q,n) < > Fij + 107" NVom | 12q,.), (D.2)
i+j=m—2,i,520

where ‘ ‘
Fij = ||8{H8{ w||L2(Qm)o

Let us estimate F;;. We have

F2 = / O H? 0w ]? dy <

m

{/Hm |6fH|2dy1}{ sup /pm 1w (yy, yo)[? dm}.

—Km Y1E€(—Km km) J —pm
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Recalling the definition (B.1) of norms X>°, Y7 and inequality (B.4) we obtain
Fij < cllHllwia(- ) 1010l x 2 < el H w2 ) 1010]lyo. (D-3)

Next, we employ the interpolation inequality in Sobolev space and the special
interpolation inequality (B.5) to obtain

[H w2 (< im) < CHHIIL;( Ko sfom) IIHHWm L2 (- < CIIHHWm 12

Fom s Km) ( Mmﬂ‘ﬁm)
and
ito
Hal’w”Ya < ||w| yite < n”wHLQ(TZQ:,Ll ||w||;;1m11 < c”w”;;mll

Substituting these inequalities in (D.3) we arrive at the estimate

m—1

Fy < ol HIljk 12 (i) IIwHym .

Notice that

J +z'—|—a_j+i—a m—2+o0

= = =<1
m—1 m-1 m—1 m—1

Thus we get

o A

Fij < c( 1HSym-12( sy 10015ms )7
where . ) n
j i+o
= —(—— =1.
a+p )\(m—l er—l)

Applying the Young inequality we obtain
Fij < c( 1=y m12(— iy + l0l3010). (D.4)

It remains to estimate the last term in inequality (D.2). By virtue of estimate
(4.22) in Lemma 4.3, we have

107 NV vmlL2(Q,) < ¢ 107 Nl L2(=k, ) [[VVm ]l x>
< ellO Nl 22 (= i) IVOmllys < ellOF Nl L2 (<) -

Substituting this estimate and estimate (D.4) into (D.2) we arrive at the in-
equality

Al z2(Qu) < elH [fym—1.2(<,, ) +
vlwlm-s + ellNllz2—np ). (D.5)

Since

w =0V, and |Jwllyn-1 < c(fwlliaq,) + 107" wllz2(Q,),
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it follows from estimate (4.22) in Lemma 4.3 that

Jeollym s < e(1+ 107 Vol 2o )- (D.6)
On the other hand, the equality H = 9; N and inequality

1 [[y - < e(L+ 107" Nl L2, ) )- (D.7)

Substituting (D.6) and (D.7) we obtain desired inequality (4.24).

D.2 The proof of estimate (4.25) for C"™!.

Recall that
Cr1 = av‘pm *NVup_1,
which yields

m—1

107" Con -1l L2y < € D 10F (NVOm-1)ll22(q.0)
p=0

<+ |07 N VOm-1) | 12(Qu)-

(D.8)

Notice that for m = 1 estimate (4.25) is obviously true. Next, it follows from
(D.8) that

101C1llL2(Qu) < ¢+ cl|l01(NVv1)|12(q,,) <
c+ c||N81Vv1||Lz(Q1) + ‘|81NV’U1||L2(Q1).

From this, estimate (4.22) in Lemma (4.3), and inequality (4.5) we conclude
that

[01C1 2@y < ¢+ cl|01(NVu)|L2(@,) <
cH|O1N | L2 (= i) [ VU1 | x00 < €4 ]| VU1 X0

Employing estimates (B.4) and (4.22) we finally obtain
[01CillL2(@,) < ¢+ cl[Vuillyr < e+ (01 Vi 2@, < ¢

Hence estimate (4.25) holds true for m = 1,2. Let us consider the case m > 3.
By virtue of (D.8), we have

107 Con—ill L2 (@) < €+ ellO7 T NV Um_1)l22(@,) <
ctelloy  Vonalzgn + Y. I8N0Vl PV

i+j=m—1,j>1
Arguing as before we obtain

|0 N 0;Vom_1ll22(Qm) < CINIws 2 ) 101 VUm_1]lx0-
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Fix an arbitrary o € (1/2,1). Estimate (B.4) implies

101 VUm-1]lxe= < €clld} Vum-illys < ¢ Vo1

yite
Thus we get
O] N 9}V om 1|2 < ClINIWi2(— i) |VOm—1[lyisr- (D.10)
It follows from (4.5) and the interpolation inequality that
||N||WJ'«2 —Kmykm) = ||N||W1 2 (=Ko sKorm) || HWm L2(— ,im,,.;m)
< c||N||m : . (D.11)

Wm=b2(—KpmKm)

On the other hand, interpolation inequality (B.5) and estimate (4.22) imply

T Y e (D.12)
C”V’Um,lH{/ﬂ;il < C(l + ||8T71va,1||L2(Qm))m.

1-—to
[VUm—1llyitr < c||[Vom—illy:r ™ [[VUm—1

Substituting (D.11)-(D.12) into (D.10) and noting that

||N||W”"*1v2(—nm,fcm) < C(HN”L?(me,nm) + ||8in_lN||L2(7Hm7f{m))
< (14 07 NI L2 (ki)

we arrive at the estimate

||83N81va 1HLZ(Qm)

j—1 i

(L4 11077 Nl 2 (= i)) ™2 (LH 107 V]| 2(Qu)) 7

Since _ ) SR
J— n 7 :z—i—j— _,
m—-2 m-2 m—2

we can apply the Young inequality to obtain

“G{Naivvm—lnlﬁ(Q'nl) S
c(1+ 10" T Nl 2=y i) + 107 Vomillz2(Q,0) )-

Substituting this inequality into (D.9) we finally obtain desired estimate (4.25)

D.3 The proof of estimate (4.26) for 5,, 1 and D,,

Since a are independent of yy, it follows from the expression (4.16) for By that

101" Bin—1ll22(Q) < €llOf" (Um-1Vom)l22(Q,0)
+e Y. 0N O (vm-1Vemlz2(Q,). (D13)

i+j=m,i<m—1
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We have
”8{n(vm—1v§0m)“L2(Qm) <c Z ”af(vm—lv‘PM)”L?(mel)

0<p<m
which along with the Poincare inequality yields the estimate
101" (Vim-1Vom )l L2(Qm) < (L + (|07 vm-1llL2(Qp-1))
< e+ 10" Vom-i1llr2@m1))-

For nonnegative integers i, j, satisfying relations ¢ + 7 =m, 0 < < m — 1, we
have

(D.14)

|0Y N 0} (vim—-1Vom) | L2(Qm) <
O N L2 (=) 101 (Vm—1 V) || xoo-

Recall definitions (B.1) and (B.3) of the Banach spaces X°° and Y*. Now choose
an arbitrary o € (1/2,1). By the embedding inequality (B.5), we have

(D.15)

10} (Vm-1Vom)lx= < cllvm-1Vomllyito
which along with (D.15) yields
1OIN 0 (vm-1Vom)l12(@m) < ElOINI L2 (k) [Vm-1VPmllyise. (D.16)
Next notice that by virtue of estimates (4.5) and (4.22), we have
||N||W1v2(7nm,/{m) + va—IVSOnHYl <ec
From this an the interpolation inequality we obtain
ito—1

m—1
m

yito < C”UmfvaDmHY v

”a{NHLZ’(—Hm,Rm) < C||N||17/1n/;l1,2(,,€m’,ﬂm)a [vm—1V o]

Since ) )
7j—1 1—1—0—171 1—-0

= <1
m—1 m—1 m—1 "

it follows from (D.16) and the Young inequality that

b

N 0 (v 1Vom <
|01 N 01 (Vm—1Vom)llL2 (@) < (D7)
(L4 [INllwm2(—rmmm) T [Vm=—1VOm|lym).

Notice that
[N lwm2(—rp i) < €1+ N7 N L2(— ki 10m))-

Arguing as in the proof of (D.14) we obtain
[om—1V@mllym < (1 + 107 Wn1Vem)ll ()
< (14 107 V-1l L2(@u 1))

Substituting these inequalities into (D.17) we arrive at the estimate

101N 0] (vm-1Vpm)llz2(Q,) < €L+ 107N 2 )+ 107 VomillL2@u) )-

—Km;Kkm

Combining this estimate with estimates (D.14) and (D.13) we arrive at the
desired estimate (4.26) for B,,_1.
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The proof of estimate (4.26) for D,,_1. Recall that D,, 1 = 81”718m,1.
Hence the estimate of 9;D,,,—1 obviously follows from estimate (4.26) for B,,_1.
In order to estimate 95D,,_1 notice that

DDy 1 = O (aN vy 1 Vo) + 07 H(aN vy 1 VOapm)

Hence the desired estimate for 92D,,_1 is the straightforward consequence of
estimates (4.25), expression for C,,,—1, and estimate (4.26) for B,,—1 with Ve,
replaced with VOsp,,,.

E Proof of Lemma 6.3

Introduce the denotations
b=pn, k=Kn, ¢o=®-n, K=k-n, (E.1)

where K is the scalar curvature. We have
Ol — V., =0.(pn)—0ipn = Z <p8§*in.

Note that
8sn:837-l :kl, kl:(—kg,kl):—KT.

It follows that )

L0 — ViD= Ok, k. (E.2)

i=0
Let us estimate L?-norm of every term in the right hand side. First we consider
the case when
i>l,j=r—1—i>1

The Holder inequality implies the estimate

- = =
[ ioieriom < ([ 1wl as) ™ ( [ 1ok as) .
r r r
which can be written in the equivalent form
10;00 K z2(0.0) < 105|200 b ||8”€|| 20-m)
0,2 (0,£)

From this and the the Gagliardo-Nirenberg inequality (2.10) we obtain

103002 k| 2(0,2) (H@HLOO(O L)IIkI\Loo(o o) (”‘/’”m 1||k||Hr Do (E3)

It follows from the embedding inequality (2.8) that

H<PHL°°(0L C||80||H°

69



Next, the interpolation inequality gives
1—< oa 1 1—1
ety < Il lelis el < Ioliag.e Il
which yields
11—
ol Il < ellelgio ey Nl

where

o 1 1 o ) r—1 1
( r)( r—1)+r(r—1)’ b r( r—l)+ r r—1

Repeating these arguments we obtain

Hk”};oo(o L) ||k||H7‘ 1 < C”kH L2(0,L) Hk”

The quantities a; and §; are given by the formulae (E.4) with ¢ replaced by j.
From this and (E.3) we conclude that

1030 Oikll20.) < c(llelEo,) IEI o o)) ( W) (E5)
Since i + j = r — 1 we have
ditoy =147, firp=1-17
In other words, we have
= 1+ D), oy = (14 —D)at, B = (-8, B, = 1——0)3;,

where af +af =1 and 37 + 37 = 1. From this and the Young inequality we
obtain

l1—0o

lel% 0.0 115200,y < (I2ll20,) + Kl L2(0,0)) 7
i B;
ol 1IN < el + IklLar)

Combining these estimates with (E.5) we conclude that the inequality

0% angLZ(O,L) <
io _1-0o
cllellzzo,0) + 1kllz0,) 7 (lllmy + klmp) = (E-6)

holds for every 1 <¢ <r—2and j =r—1—:. It remains to consider the cases
t=0and i =7r—1. We have

o O Elzao.) + 10,70 Kllzago,cy < ellglg WEllgrse + cllElg ol g1
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Next, the interpolation inequality implies

1-2 2 ¥ -2
lellg < ellell o) el lellay- < clellizoo lellm;

The similar estimates holds true for k. It follows that

e 05 Kl 20,0y + 107 0 KllL2(0,c) <

-z o 1-g -
C(”ka(o,g)||<P||L2(o7g)) (&l " 1ol ")+

(el o, I¥l1 E2go.c) (el T
It follows that
o 05 Kl 20,0y + 1027 0 Kl r2(0,2) <
¢ (1125, ) N2 Eago,y + 105ty Wl aoey) (WM™ ol + il ez ™)-
Using the simple inequality
a b 4 a'br < MHE TR a b\ u >0,

we finally obtain the estimate

o 05 kllL2(0,c) + 105 kllL2(0,0) <
1—1=¢ 1-o

1+1770 3 1- [ 1_1770
C(”k”L?(o,L)"‘H‘PHm(o,g)) (Hk”H; +||90||Hnr )

It follows from this estimate and estimate (E.6) that the inequality

0% angLZ(O,L) <
1—1=¢

1-0
cllellzzo,c) + Ikl 20,0)) 7 lellay + lkllzg)' ~

holds for every 0 < ¢ < r —1and j = r — 1 — 4. Combining this result with
identity (E.2) we obtain desired estimate (6.13).
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