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A model is presented for the bouncing dynamics of a fluid-immersed sphere impacting
normally a textured wall with micro-pillars. By taking into account the hydrodynamic
and contact interactions between the smooth sphere and the textured wall, the complete
motion of the sphere is recovered when approaching, colliding with and bouncing off the
wall. We demonstrate that the critical Stokes number for the bouncing transition, Stc is
the sum of two contributions corresponding to dissipation prior and during the collision,
both contributions being critically influenced by the geometrical parameters of the model
roughness. The experimental data obtained from interferometric measurements are found
in agreement with the theoretical predictions. In the bouncing regime, the coefficient
of restitution is also derived analytically and shows a linear evolution with the Stokes
number St just above the bouncing transition, in agreement with the experimental data
obtained very close to Stc.

1. Introduction

Collisions of particles in fluids occur in many natural flows and industrial processes such
as sediment transport or fluidized beds. These collisions are important in the complex flow
dynamics displayed by dispersed media, as for the different regimes of sediment tranport
(bed load, saltation, suspension load) or of gravity driven avalanches (dense or aerosol
regimes, debris flows). The coefficient of restitution of the collision, corresponding to the
ratio of the rebound velocity to the impact velocity is a key parameter characterizing the
collision process. For dry collisions, some dissipation may arise from different mechanisms
making the coefficient of restitution to be smaller than the value one corresponding to an
idealized elastic Hertz contact [Johnson (1985)]. These different mechanisms are namely
the viscoelasticity and plasticity of materials, and the excitation of vibrational modes
as shown, e.g. by Falcon et al. (1998), Ruiz-Angelo, Roshankhah & Hunt (2019) and
King et al. (2018), respectively. For wet collisions, however, the interstitial fluid plays a
major role in the dissipation. Dealing with the complex elastohydrodynamic process of
particle collisions in fluids, Davis, Serayssol & Hinch (1986) introduced two dimensionless
parameters: the Stokes number St, ratio of the particle inertia relative to viscous forces,
and an elasticity parameter ε, ratio of viscous to elastic forces. In this first theoretical
approach and the following works of Lian, Adams & Thornton (1996) considering a
simplified Hertzian-like profile of the elastic spheres and of Marshall (2011) considering
the corner flow associated to the varying contact region, idealized smooth particles are
made to rebound from a lubrication film. In these elastohydrodynamic models, bouncing
occurs without solid contact, due to particle deformation induced by the high lubrication
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pressure that arises between closely approaching smooth surfaces. The coefficient of
restitution depends namely on the Stokes number, with a zero value corresponding to no
bouncing below some critical value Stc and an increasing value with St above Stc. In the
experiments of Barnocky & Davis (1988), the observations of dry spheres falling in the
air onto a target wall covered by a thin layer of viscous liquid validated the importance
of the Stokes number for wet collisions of particles. Using fast video cameras, Joseph
et al. (2001) and Gondret, Lance & Petit (2002) measured the coefficient of restitution
of liquid-immersed particles: a critical number Stc ' 10 was found for the bouncing
transition and the coefficient of restitution increases with the Stokes number from zero
to an asymptotic value corresponding to dry collision. However, the surface roughness was
also shown by Joseph et al. (2001) to lead to significant dispersion in the results. Surface
roughness is an important parameter as it regularizes the divergence of the lubrication
force when the sphere/wall gap vanishes and lead to a solid contact in a finite time:
Smart & Leighton (1989) showed that the measurement of the settling time for sphere
in initial solid contact with a wall gives access to a so-called “hydrodynamic surface
roughness”. Computations for a two-dimensional wedge made by Cawthorn & Balmforth
(2010) together with lubrication theory and an approximate analytical solution all predict
a logarithmic divergence of the force with the minimum separation, which leads to the
conclusion that an object falling vertically under gravity will therefore make contact with
an underlying plane surface in finite time if roughened by asperities with sharp corners.
The influence of surface roughness on the sphere/wall hydrodynamic interaction was
considered theoretically by Yang & Hunt (2008) and numerically by Ardekani & Rangel
(2008), Simeonov & Calantoni (2012), Izard, Bonometti & Lacaze (2014) and Costa et al.
(2015). The question of the solid-on-solid contact in the sphere-wall collision in a viscous
fluid was investigated recently by Birwa et al. (2018) using an electrical experimental
set-up: a voltage was applied between the plate and the sphere, and when the sphere
makes or breaks electrical contact with the plate, the circuit closes or opens. Birwa et al.
(2018) have observed that the ball makes direct mechanical contact with the plate during
the bounce, in contrast to expectations based on elastohydrodynamic theory. The solid-
on-solid contact occurs even just below the threshold of bouncing characterized by the
critical Stokes number value Stc ' 6. Birwa et al. (2018) conclude that the mechanical
contact between two colliding liquid-immersed objects is generic and will occur for any
realistic surface roughness.

To investigate experimentally the influence of a surface roughness on the approach
and bouncing dynamics of a sphere in a liquid, Chastel (2015) used an interferometric
technique providing high resolution in time and space. The technique is based on a
metallic sphere settling in a viscous fluid, that acts as a moving mirror reflecting a laser
beam. Interference fringes are formed that move according to the sphere motion, the
later is thus measured with a spatial resolution of about 0.2 µm. This settling sphere
interferometer was first developed by Lecoq et al. (1993) and later used by Lecoq et al.
(2004) for measuring the dynamics of a sphere settling towards a corrugated wall at
vanishing Reynolds number. With the same technique the dynamics of a sphere was
investigated subsequently when approaching a smooth surface at finite Reynolds number
[Mongruel et al. (2010)], a wall covered with micro-pillars at vanishing Reynolds number
[Chastel & Mongruel (2016)] and at finite Stokes number below the bouncing transition
[Chastel & Mongruel (2019)]. In the bouncing regime, Chastel, Gondret & Mongruel
(2016) recorded the sphere/wall collision dynamics onto micro-textured walls with a
time resolution of 2 µs, and developed an elastic contact model between sphere and
micro-pillars. The contact force derived by Chastel, Gondret & Mongruel (2016) is a
generalization of the elastic foundation model of Johnson (1985) and leads to analytical
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Figure 1. (a) Sketch of the studied sphere/wall configuration when the sphere is approaching
the textured wall and (b) when the sphere is in contact with the wall. (c) Image of a typical
textured wall.

predictions for the penetration depth and the time of collision of the sphere onto the
textured wall, with scalings slightly different from the classical Hertz scalings. The
measurements of both the sphere penetration depth and time of collision on the textured
wall from the high spatial and time resolution of the interferometric technique have been
found in good agreement with the theoretical scalings. However, as the fluid dissipation
during the collision was not taken into account in the elastic model, the penetration
depth was slightly overestimated and the collision time slightly underestimated.

In the present paper, we extend the latter model by taking into account the peculiar
viscous dissipation arising during the sphere collision with the micro-pillars and compare
to our experimental data. In section 2, we analyse the hydrodynamic and contact
interactions between a sphere and a wall covered by a regular array of micro-pillars, and
we derive the equations describing the whole collision process: the approach, the collision
and the subsequent bouncing of the sphere. The analysis of the results demonstrates
that the elastohydrodynamic deformation of the pillars is negligible so that solid contact
occurs between the sphere and the pillars. In section 3, we derive an expression for
the critical Stokes number taking into account the sphere/wall configuration, with two
contributions arising from the dissipation prior and during the collision. The influence on
this critical Stokes number of the geometrical parameters of the wall texture, that can be
considered as a model wall roughness, is then discussed. In section 4, the dependence of
the coefficient of restitution with the Stokes number is then derived and compared with
the experimental data. We finally conclude in section 5.

2. Bouncing dynamics of a sphere on a textured wall in a
surrounding fluid

The configuration studied here is sketched in figure 1: a solid sphere of radius R and
density ρs is normally driven by gravity towards a micro-textured wall in a viscous
liquid of density ρ and dynamic viscosity η . The texture is made of a regular array
of vertical pillars of height e, width 2b, and periodic spacing L, with thus the surface
density φ = (2b/L)2. The sphere position is defined as the distance from the top of the
pillars to the bottom of the sphere. This distance is denoted h > 0 when the sphere is not
touching the pillars (figure 1a) and δ > 0 (δ = −h) when the sphere is in contact with
the pillars (figure 1b). The different spheres and micro-pillars used in the experiments
of Chastel, Gondret & Mongruel (2016), referred as CGM 2016 in the following, are
summarized in table I with the values of the density ratio ρs/ρ, the diameter 2R, the
Archimedian number Ar, the surface density φ, the height and the width 2b of the square
pillars. The aspect ratio of the pillars lies in the range 0.5 . e/2b . 2.3. The fluid is
a silicon oil (Rhodorsil 47V1000) of density ρ = 978 kg/m3 and kinematic viscosity
ν = η/ρ = 10−3 m2/s. The texture is completely wetted by the oil. The roughness ξ
of the sphere surface and of the pillar surface is smaller than 0.1 µm, thus negligibly
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ρs/ρ 2R Ar φ e 2b Data
(mm) (µm) (µm) symbol

7.97 [10.5, 15.9] [9.9, 34.3] 0.05 [21, 130] 56 •
7.97 [14, 15.9] [23.5, 34.3] 0.15 [60, 117] [55, 60] N
7.97 [15, 15.9] [29,9, 34.3] 0.30 [57, 121] [102, 106] �
15.95 8 9.4 0.05 [57, 130] 56 H
15.95 8 9.4 0.15 [60, 117] [55, 60] �

Table 1. Parameters values for the different experimental sphere/microtexture configurations
of Chastel, Gondret & Mongruel (2016), and data symbols used in figures 6a, 8, and 10.

small compared to the height e and the width 2b of the pillars (ξ � e, 2b). In addition,
the geometrical sizes of the textures, e, 2b and L are much smaller than the radius
of the sphere (e, 2b, L � R). The pillars have an elastic modulus E = 1.4 GPa much
smaller than the one of the sphere, so that the sphere may be considered as rigid. The
range of the Archimedian number Ar = ρ(ρs − ρ)gR3/η2 is between 9.4 and 34.3. As
Ar = (9/4)ReSt where ReSt = ρVSt(2R)/η is the Reynolds number based on the Stokes
velocity VSt = 2(ρs − ρ)gR2/(9η) corresponding to the settling velocity of a sphere in
an infinite fluid at low Reynolds number, the values of Ar larger than 9/4 in Table 1
mean that fluid inertia plays a non negligible role in these experiments. The sphere is
initially maintained at rest by a magnet at the top wall of the cell located at the distance
H = 40.8 mm above the bottom wall, and released with a zero velocity. The release
distance h0 = H − 2R for the sphere bottom thus varies in the range 24.9 6 h0 6 32.8
mm depending on the sphere size. With the interferometric technique of spatial resolution
0.2 µm and time resolution 2 µs used by CGM 2016, the maximum sphere velocity that
can be measured is 100 mm/s, which allows us to explore the sphere dynamics below or
close above the bouncing transition but not far above.

2.1. Typical experimental V (t), h(t) and V (h) curves

Figure 2 shows typical experimental curves obtained from the interferometric technique
described in details in CGM 2016. The instantaneous position h+ δs of the sphere, mea-
sured from the final rest position −δs on the deformed micro-pillars, and its instantaneous
downward velocity V = −dh/dt are plotted as a function of time in figures 2a and 2b for
a steel sphere of density ρs = 7800 kg/m3 and diameter 2R = 14 mm settling in silicon
oil towards a microtextured wall with square pillars of surface fraction φ = 0.15, of height
e = 60 µm and width 2b = 57 µm. In figure 2(c), the instantaneous velocity V (t) is plotted
as a function of its instantaneous position h(t)+δs. When approaching the textured wall,
the sphere velocity V decreases from about 50 mm/s at 25 µm from the wall towards zero
at a minimal and negative position corresponding to its maximal penetration distance
into the pillars δm ' 3.5µm before rebound. The final sphere position corresponds to its
rest position on the deformed pillars with a static penetration distance of δs ' 1.1µm. In
the case of fig. 2, the sphere touches the top of the pillars at h = 0 with an impact velocity
Vi ' 19 mm/s. The rebound velocity when the sphere just bounces back off the wall at
h = 0 is Vr ' −4 mm/s, leading to the velocity ratio −Vr/Vi ' 0.2. The later ratio
defines the microscopic restitution coefficient of the solid collision taking into account
only the dissipation during the sphere-pillar contact. The contact time (corresponding
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Figure 2. (a) Position h+ δs of the sphere to the wall relative to its final position −δs and (b)
velocity V as a function of time t for a steel sphere of diameter 2R = 14 mm settling in 47V1000
silicon oil toward an horizontal textured wall with square pillars of surface fraction φ = 0.15,
height e = 60 µm and width 2b = 57 µm, impacting it at the Stokes number Sti = 0.25. (c)
Instantaneous velocity V of the sphere as a function of its instantaneous position h+δs. The (a)
horizontal and (c) vertical red dotted lines indicate the position of the top of the underformed
textures (h = 0) with here δs = 1.1µm. The two vertical dotted lines in (a,b) indicate the times
of initial and final solid contact corresponding to the time duration τ = 9.6 ms. The solid curves
correspond to model equations (2.1) and (2.3) with α = 0.9 and s = 35µm.

to h 6 0) is here τ ' 0.95 ms. Note that the sphere bouncing off the wall leads here to
a tiny rebound of less than 1µm, which means that the present case is very close to the
bouncing transition.

2.2. Modeling the sphere motion during the approach phase

When the sphere is near but not touching the wall (h > 0), the forces acting
on it are the constant driving gravity force Fg = (4/3)πR3ρsg and the fluid forces,
which can be decomposed into three parts : (i) the static part corresponding to the
constant Archimedian buoyancy force FA = −(4/3)πR3ρg from the static pressure field,
(ii) the (quasi-)steady part of the drag force FD(t) = − CDw 6πηRV (t), and (iii)
the unsteady part of the drag force corresponding to the added-mass term Fam(t) =
− Cam (4/3)πR3ρ dV/dt. The two last fluid force terms are modified by the near wall as
follows.

Concerning the coefficient of the added-mass term, its value Cam = 1/2 from potential
flow theory for an isolated sphere far from any boundary is increased by the near wall.
The modified value for a sphere in normal motion relative to a flat wall wall can be
calculated from potential flow theory using images and is given as a series with Cam =
1/2 + 3R/16(R + h) at first order [Milne-Thomson (1968)] and with the approximate
expression Cam ' 1/2+0.8(1.9+h/R)−3.9 values proposed by Ardekani & Rangel (2008)
for all h/R. In the present case where the sphere is very close to the wall with vanishing
h/R values, this coefficient can be considered as constant with the value Cam ' 0.56,
only 12% larger than the usual far value 0.5.

The (quasi-)steady drag force term is also increased by the near wall. For a smooth
sphere at vanishing Re number in normal motion close to a smooth solid wall (h/R� 1),
the huge wall-correction factor to the Stokes force FSt = −6πRηV is CDw = R/h,
leading to the well-known lubrication drag force FD = −6πR2ηV/h, that diverges at
vanishing h for smooth surfaces. Here, due to the wall textures, the lubrication force is
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regularized during the whole dynamics by a characteristic length s, and writes FD =
−6πR2ηV/(h + s). Hence, the drag on the sphere at the distance h from the top of the
micro-pillars is the same as near an imaginary smooth wall that would be located at
a slightly larger distance h + s. The characteristic length s is the near-field (valid for
h � L) shift length introduced by Chastel & Mongruel (2019), which depends on the
geometrical parameters of the pillar array (e, L and 2b or φ), as reported and discussed
in details in Appendix A. A semi-empirical correlation based on theoretical arguments
developed in Seiwert, Clanet & Quéré (2011) and Chastel & Mongruel (2016) gives
s ' e(1− φ)[1 + β(φ)(e/L)2]−1/3, where the coefficient β, which can be estimated from
the work of Kuwabara (1959), varies from about 14 to 90 for φ varying from 0.05 to 0.30.
This shift length s, which can be seen as an effective hydrodynamic roughness, varies
between 17 and 71 µm in the experiments considered here. It is thus much smaller than
the size of the sphere but much larger than its surface roughness.

In the case of finite Reynolds number, Mongruel et al. (2010) have observed that
the sphere velocity varies linearly with the distance h as V = V0h/R in the last regime
before contact, but with a typical velocity V0 slightly larger from VSt. Hence, an additional
numerical prefactor α = VSt/V0 sligthly smaller than one is needed to fit the experimental
data. The coefficient αmeasured for spheres approaching a smooth surface varies typically
between 0.95 and 0.85 with an average value 0.9 for the experiments considered here.
This prefactor may reflect some complex unsteady effect such as the integral history
force.

The sphere motion can thus be modeled by the equation

4

3
πR3(ρs + Camρ)

dV

dt
=

4

3
πR3(ρs − ρ)g − 6πR2ηαV

h+ s
. (2.1)

This equation can be written in a dimensionless form with the sphere radius R for the
length scale, the impact velocity Vi for the velocity scale and the ratio R/Vi for the time
scale :

2

9

(ρs + Camρ)RVi
η

dṼ

dt̃
=
VSt
Vi
− αṼ

h̃+ s̃
, (2.2)

where Ṽ = V/Vi, h̃ = h/R, s̃ = s/R and t̃ = tVi/R. Two dimensionless numbers appear in
this dimensionless equation: the impact Stokes number Sti = 2(ρs+Camρ)RVi/9η based
on the impact velocity and taking into account the added mass effect as introduced
by Legendre et al. (2006), and the velocity ratio VSt/Vi = 4Ar/9Rei, where Rei =
ρVi(2R)/η is the Reynolds number based on the impact velocity Vi. Following Izard,
Bonometti & Lacaze (2014), the three dimensionless numbers that governs the approach
dynamics of the sphere towards the micro-textured wall numbers can be either the a
priori known Ar and density ratio ρs/ρ or the a posteriori known Sti and Rei, together
with the dimensionless shift length s/R that characterizes here the hydrodynamic effect
of the micro-pillars. The consequences of the shift length s are a finite pressure and
drag force, and a non-zero velocity for the sphere at h = 0. An estimation of elastic
deformation of the wall textures detailed in Appendix B gives very small deformation,
typically between 0.001 and 0.1 µm, which is smaller or of the order of the microscopic
roughness of the sphere surface and texture surface. In the present modeling, we thus do
not consider any pillar deformation when h > 0 and consider that solid contact occurs
at h = 0.
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2.3. Modeling the sphere motion during the contact phase

When h 6 0, the sphere is thus considered to be in solid contact with the textured wall.
For a wall covered by an array of micro-pillars, CGM 2016 has derived a contact model by
considering that the pillars behave as independent springs. The non-linear contact force
is Fw = −πφERδ2/e, where δ = − h corresponds now to the wall deformation, with a
power exponent 2 for δ, which is different from the exponent 3/2 for the classical Hertz
force valid for a sphere in contact with a smooth elastic half-plane. This contact force,
validated experimentally by CGM 2016 and then by Maruoka (2019), has been derived
under different assumptions : (i) an elastic response of the pillars, (ii) a quasi-static
deformation, and (iii) a contact area embedding several pillars. In the set of experiments
considered here, these assumptions are satisfied : (i) the relative deformation δm/e of
the pillars remains smaller than 10−1, thus in the elastic regime. (ii) The solid collision
time τ ' 1 ms remains much larger than the propagation time of the deformation in the
pillars e/c ' 0.1µs where c = (E/ρw)1/2 ' 103 m/s is the sound velocity in the pillars.
Following the criterion (Vi/c)

3/5 � 1 expressed by Hunter (1957) in terms of a velocity
ratio rather than of a time ratio for the Hertz collision of a sphere onto a smooth wall,
the present quasi-static criterion, which is satisfied for the present sphere collision onto
the textured wall, can be expressed as (Viφρwe

2/cρsR
2)1/3 � 1. (iii) The number of

pillars embedded in the solid collision within the contact disk area of radius (2Rδm)1/2,
and which can be thus estimated as N ' 2πRδm/L

2, is in the range 3 . N . 37. The
contact force derived by CGM 2016 is a generalization of the elastic foundation model
of Johnson (1985) for solid fraction φ 6= 1, but it would not be valid at the opposite
limit of vanishing φ where only one pillar would be embedded in the contact [Ledesma-
Alonso et al. (2016)]. Assuming that the added-mass force and the drag force discussed
in section 2.2 remain unchanged during contact, the sphere motion can thus be modeled
by the equation

4

3
πR3(ρs + Camρ)

dV

dt
=

4

3
πR3(ρs − ρ)g − 6πR2ηαV

s− δ
− πφERδ2

e
. (2.3)

This equation governs the sphere motion when h 6 0 during the supposed contact with
the pillars until the solid contact breaks with a non zero rebound velocity −Vr at h = 0,
or until the sphere stops (with V = 0 and dV/dt = 0) at its final resting position

δs/R = [4e(ρs − ρ)g/3φE]
1/2

, resulting from the balance of apparent weight and elastic
contact force. The corresponding dimensionless equation writes

Sti
dṼ

dt̃
=

4Ar

9Rei
− αṼ

s̃− δ̃
− φER2

6eηVi
δ̃2, (2.4)

where δ̃ = δ/R. Three main dimensionless numbers appear in this dimensionless equation:
the impact Stokes number Sti, a gravito-viscous number corresponding here to the
velocity ratio VSt/Vi = 4Ar/9Rei, and an elasto-viscous parameter φER2/6eηVi. The
later parameter corresponds to the inverse of the elastic parameter introduced by Davis,
Serayssol & Hinch (1986) for the collision of an elastic sphere onto a smooth wall but
is somewhat different here due to the micro-pillars. Note that this elastic parameter is
very large as the dimensionless deformation δ̃ remains very small.

2.4. Comparison between model and experiments

Let us now compare the data with the modeling. The curves obtained by numerical
integration of the model eqs. (2.1) and (2.3) are very close to the data points of figure
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Figure 3. Instantaneous velocity V as a function of the instantaneous position h+δs relative to
its final static position −δs for a steel sphere of diameter (a) 2R = 15 mm impacting a textured
wall with micro-pillars of surface fraction φ = 0.30, height e = 57 µm and width 2b = 102 µm
(•) or e = 85 µm and 2b = 106 µm (�), and for (b) 2R = 14 mm, φ = 0.05, 2b = 56 µm, and
e = 57 µm (O) or e = 130 µm (4). Model equations (2.1) and (2.3) with α = 0.9 and with (a)
s = 24.5µm (—) or s = 26.5µm (—), and (b) s = 43µm (—) or s = 57µm (—).

2 all along the sphere motion, not only in the approach phase before the wall impact
but also during the contact and the subsequent bouncing. In particular, the penetration
distance δm and the bouncing height are remarkably well predicted. The dimensionless
number values for this case are Sti ' 0.25, VSt/Vi = 4Ar/9Rei ' 39, and φER2/6eηVi '
1.54 × 109. Note that the two corrections for the drag force used here are not fitting
parameters, but the near-field shift length s ' 35µm (s̃ ' 5 × 10−3) and the factor
α ' 0.9, obtained from previous experiments at small Reynolds number near the same
micro-pillars (Chastel & Mongruel 2019) and at finite Reynolds number near a smooth
wall (Mongruel et al. 2010), respectively. This shift length, which is smaller than but
of the order of the pillar height, s/e ' 0.58, corresponds to the effective hydrodynamic
roughness of the wall. Taking into account the drag force when the sphere is in solid
contact with the wall is crucial for modeling correctly the bouncing dynamics : ignoring
the drag force would indeed lead to a significant overestimation of the pillar deformation
(4.4 instead of 3.5 µm), and then a large overestimation of the subsequent rebound
velocity (-17 instead of -4 mm/s) and of the bouncing height in the fluid (5 instead of
0.5 µm). The very good agreement that is observed between modeling and experimental
data when taking into account all the terms in eqs. (2.1) and (2.3) is also observed for
many other cases, examples of which are depicted in figure 3 and figure 4 for the bouncing
motion of a steel sphere and a tungsten carbide sphere respectively, on pillar arrays of
various geometries.

Figure 3(a) shows two typical V (h) curves for a steel sphere of diameter 2R = 15 mm
colliding with a wall with micro-pillars of surface fraction (φ = 0.30) and of two different
heights (e = 57 and 85 µm) with about the same width (2b ' 100 µm). As expected,
the impact velocity is slightly larger for higher pillars : Vi ' 27 mm/s corresponding to
an impact Stokes number Sti ' 0.39 for e = 85 µm when compared to Vi ' 23 mm/s
(Sti ' 0.33) for e = 57 µm. The modeling uses a correction factor α ' 0.9, and shift
lengths s = 26.5µm and s = 24.5µm respectively for the higher and lowest pillars. In
the two cases, very small rebounds of about 2 and 3 µm are observed.
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Figure 4. Same as fig. 3 for a tungsten carbide sphere (2R = 8 mm) towards a textured wall
with pillars of (a) surface fraction φ = 0.15 and of height e = 60 µm and width 2b = 57 µm (•),
e = 91 µm and 2b = 60 µm (�), or e = 117 µm and 2b = 55 µm (�), (b) φ = 0.05, 2b = 56 µm
and e = 57 µm (N) or e = 130 µm (H). The two vertical dotted lines stand for the top of the
undeformed textures at h = 0 in each case. The solid curves corresponds to model equations
(2.1) and (2.3) with α = 0.85 and with (a) s = 35µm (—), s = 39µm (—) or s = 42µm (—)
and (b) s = 27µm (—) or s = 47µm (—).

Two other typical V (h) curves are shown in figure 3(b) for a steel sphere of diameter
2R = 14 mm colliding with a wall with micro-pillars of smaller surface fraction (φ = 0.05)
and of two different heights (e = 57 and 130 µm) with the same width (2b ' 56 µm).
Compared to figure 3(a), the effect of decreasing the pillar surface fraction and increasing
the pillar height is seen to amplify the rebound, leading to a larger impact velocity Vi ' 59
mm/s (Sti ' 0.79) for e = 130 µm. As expected, the static deformation is larger for the
higher pillars as the contact force is weaker: δs ' 3 for e = 130 µm compared to 2 µm
for e = 57 µm. Interestingly, the case e = 57 µm for which Vi ' 25 mm/s (Sti ' 0.33)
corresponds exactly to the bouncing transition as the maximal position of the sphere
after the collision is here h = 0, i.e. the sphere remains in contact with to the pillars.
The case at Sti ' 0.79 is clearly above the bouncing transition with a bouncing height of
about 7 µm. Using the correction factor α ' 0.9 together with the shift length s = 57µm
and s = 43µm for the highest and the lowest pillars, respectively, it can be seen that the
modeling does not fit perfectly the approach phase in the case e = 130 µm, but performs
very well in the contact and rebound phases.

Finally, figure 4a and 4b show various V (h) curves for a tungsten carbide sphere of
diameter 2R = 8 mm approaching a wall with micro-pillars of surface fraction φ = 0.15
and φ = 0.05 respectively, and of different heights e (ranging from 60 to 130 µm) with
about the same width 2b. Again, we observe that for a given pillar surface fraction,
increasing the pillar height amplifies the bouncing, with higher impact velocities and
hence larger penetration depths and also larger bouncing heights. For instance, at φ =
0.15 , Vi ' 38 mm/s (Sti ' 0.56) for e = 91 µm compared to Vi ' 51 mm/s (Sti ' 0.76)
for e = 117 µm . The same observation can be made when decreasing the pillar surface
fraction at a given pillar height: for e = 57 µm, Vi ' 30 mm/s (Sti ' 0.44) at φ = 0.15
compared to Vi ' 68 mm/s (Sti ' 1) at φ = 0.05. The modeling still gives correct results,
but it happens to overestimate the bouncing height or the penetration distance in some
cases.
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Figure 5. (a) Same as fig. 3 for steel spheres of diameter 2R = 10.5 (4), 12.7 (◦), 14 (�),
and 15 mm (O), towards a textured wall with pillars of surface fraction φ = 0.05 and of height
e = 21 µm and width 2b = 57 µm. The solid curves corresponds to model equations (2.1) and
(2.3) with s = 17µm and (a) α = 0.98 (—), 0.95 (—), 0.90 (—), 0.90 (—). (b) Zoom on figure
(a) with vertical dotted lines standing for the top of the undeformed textures at h = 0 with
δs = 0.86 (- - -), 1.04 (- - -), 1.15 (- - -), and 1.23 µm (- - -).

All the results presented in figures 2, 3 and 4 concern cases where small bouncing
of the spheres off the wall is observed thus slightly above the bouncing transition. In
some cases, no bouncing of the spheres off the wall is observed as shown in figure 5.
In that figure, the experimental measurements of the sphere motion is plotted for four
different diameters of steel sphere impacting the same textured wall at a finite but very
low velocity. Indeed the impact velocity taken at the top of the underformed structure
(h = 0) is Vi ≈ 1.4, 1.8, 2.2, and 2.8 mm/s, corresponding to very low impact Stokes
number : 0.014 . Sti . 0.04. The model indeed predicts the “sticking” collision observed
experimentally : the spheres come to rest with a strong monotonic decrease of velocity
down to their final position h = −δs.

3. The critical Stokes number for bouncing

The fact that a sphere approaching a wall will rebound or not off the wall is here
related to viscous dissipation. This viscous dissipation arises during the two phases of
the sphere motion : (i) the approach towards the textured wall and (ii) the solid contact
with the micro-pillars during the collision.

Let us first consider the approach phase. As seen in fig. 5, the apparent weight can
be neglected when compared to the large lubrication force near the wall and the sphere
is thus strongly decelerated. The balance of sphere inertia (with the added-mass term)
and lubrication drag in eq. (2.1) yields a logarithmic variation of the velocity V (h) of the
sphere as a function of the distance h > 0 [Davis, Serayssol & Hinch (1986)]. With the
impact velocity Vi taken as the reference velocity at h = 0, one obtains

V (h)

Vi
' 1 +

α

Sti
ln

(
h+ s

s

)
. (3.1)

To obtain an estimate of the velocity V∞ far from the wall, we extrapolate eq. (3.1) up
to the distance h = R, at which the lubrication drag force due to the wall becomes of
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the order of the Stokes drag force in an infinite fluid (Cw ' 1). As R � s in our case,
the estimate V∞ = V (h = R) of the velocity V∞ far from the wall is thus given by:

V∞
Vi
' 1 +

α

Sti
ln

(
R

s

)
. (3.2)

Another typical velocity of approach is provided by the terminal settling velocity VT
resulting from the balance of the effective weight of the sphere and the drag force far
from the wall. In the present situation where fluid inertia is not negligible, the later drag
force is −6πηRV (1 + 3Re/16), i.e. the Stokes drag modified by the Oseen correction
for small fluid inertia (Re is here the Reynolds number based on the velocity V of the
sphere). The terminal velocity VT is thus smaller than the Stokes velocity VSt. In the
case of figure 2, the terminal settling velocity is VT = 376 mm/s whereas the estimate
velocity far from the wall is V∞ = 378 mm/s from equation (3.2) with Vi ' 19 mm/s
(Sti ' 0.25), R = 7 mm, s ' 35µm, and α ' 0.9. In that case, the two velocities V∞
and VT are very close to each other. In most cases, V∞ is slightly smaller than VT , in
the range 0.8VT . V∞ . VT , as the experimental cell is not high enough for the sphere
starting from rest at the top of the cell to reach its terminal velocity. We thus choose
here to use the characteristic approach velocity V∞ at the distance R from the wall, to
infer a macroscopic Stokes number St from the experimental conditions:

St = Sti
V∞
Vi
' Sti + α ln

(
R

s

)
. (3.3)

This Stokes number St = 2(ρs+Camρ)RV∞/9η is close to the one based on the terminal
velocity VT (Legendre et al. 2006; Ardekani & Rangel 2008; Izard, Bonometti & Lacaze
2014). In the case of figure 2, this global Stokes number is St ' 4.5, much larger than
the impact Stokes number Sti ' 0.25.

Let us now estimate the fluid dissipation during the sphere collision with the pillars.
During this collision, the contact force on the sphere comes into play and the sphere
motion is now given by eq. (2.3). Neglecting the gravity force, the corresponding equation
for the energy is given by

2

3
πR3(ρs + Camρ)V 2

i =
2

3
πR3(ρs + Camρ)V (t)2 +

π

3
φEw

R

e
δ(t)3 −

∫ δ

0

6πR2ηαV (t)

s− δ
dδ.

(3.4)
In this equation, the initial kinetic energy Eki = (1/2)MeffV

2
i of the sphere of effective

mass Meff = (4/3)πR3(ρs + Camρ) corresponding to its own mass and the fluid added-
mass is partly transferred to the pillars from elastic deformation with the potential energy

term Ep =
∫ δ
0
Fwdδ and is partly lost in the fluid flow from viscous dissipation with the

term Ed =
∫ δ
0
FDdδ. For a zero fluid dissipation (η = 0), the sphere motion deduced from

this equation would be given by the instantaneous velocity

V (t) = Vi

[
1−

(
δ(t)

δm0

)3
]1/2

, (3.5)

where

δm0 =

(
2ρseR

2V 2
i

φE

)1/3

(3.6)

would be the corresponding penetration distance as shown by CGM 2016. The energy
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dissipation stemming from viscous forces considering this conservative sphere motion
would be

Ed ' 2

∫ δm0

0

6πR2ηαV (t)

s− δ
dδ ' 12IπR2ηαVi, (3.7)

with

I =

∫ 1

0

(1− δ̂3)1/2

ŝ− δ̂
dδ̂, (3.8)

where δ̂ = δ/δm0 and ŝ = s/δm0. For large ŝ values, this integral term can be approxi-
mated by

I '
∫ 1

0
(1− δ̂3)1/2dδ̂

ŝ
' 0.84

ŝ
. (3.9)

Using the estimate of the fluid dissipation Ed given by eq. 3.7, one can infer a rough
estimate of the non bouncing condition for which the initial kinetic energy Eki of the
sphere will be dissipated completely. Writing Ed = Eki gives the critical impact velocity,
Vic, and hence the following estimation for the critical value Stic of the impact Stokes
number :

Stic ' 4αI, (3.10)

where I is the integral term given by eq. (3.8) or approximate eq. (3.9) for large ŝ.
The predicted evolution for Stic with ŝ is shown in figure 6a in the experimental range
2 . ŝ . 35. It can be seen that the approximate hyperbolic prediction Stic ' 3/ŝ (dashed
line) is not far from the complete prediction (solid line), with critical impact Stokes
number in the range 0.1 . Stic . 1.5. In figure 6a are also plotted all our experimental
data where a micro-rebound is observed (filled symbols) or not (open symbols). As our
measurements focused on the bouncing transition, most data points corresponding to
bouncing are slightly above the theoretical line with only a few data points slightly below.
The data corresponding to “sticking” collisions are significantly below the theoretical line,
which is quite satisfying.

The estimation for the critical value Stc of the global Stokes number can be written
simply as

Stc = Stic
V∞c
Vic
' α ln

(
R

s

)
+ Stic. (3.11)

In the above expression, the critical Stokes number appears as the sum of two terms:
a first term arising from the viscous dissipation during the approach phase towards the
array of micro-pillars, and a second term arising from viscous dissipation during the
contact with the micro-pillars. The first term depends only on the coefficient α and the
ratio R/s, thus on the micro-pillar array geometry and on the sphere size. The second
term corresponds to the value of Stic discussed above. The theoretical evolution of the
critical Stokes number Stc as a function of s/R is shown in figure 6b for α = 0.9 and
different Stic values from 0 to 1.5. As our experimental measurements focused on the
bouncing transition, all our experimental data points are in a narrow range of Stokes
number: 3.5 . St . 6.5. The data points for which a “sticking” collision is observed
(×) are all below the solid line which delineates the transition. The other data points
for which a (micro-)rebound is observed appear here with different open data symbols
depending on the range of Stic. All these data points are fairly observed just around the
corresponding theoretical line.



Collision with viscous dissipation 13

Figure 6. (a) Impact Stokes Sti as a function of the ratio ŝ = s/δm of the hydrodynamic
roughness s relative to the sphere penetration depth δm for the experiments (data symbols
of table 1) and theoretical predictions Stic = 4αI with α = 0.9 and eq. (3.8) for I (—)
or eq. (3.9) for I (- - -) at large ŝ. Filled symbols correspond to bouncing cases whereas
open symbols corresponds to non-bouncing cases. (b) Stokes number St as a function of the
hydrodynamic roughness/sphere size ratio s/R for the experiments with open symbols when
bouncing is observed for which 0.3 6 Stic 6 0.7 (◦), 0.8 6 Stic 6 1.2 (4), and 1.3 6 Stic 6 1.7
(�), and crosses (×) when no bouncing is observed, together with theoretical prediction
Stc = α ln(R/s) + Stic with α = 0.9 and Stic = 0 (—), Stic = 0.5 (– – –), Stic = 1 (- - -), and
Stic = 1.5 (· · ·).

4. The coefficient of restitution for the sphere/wall collision

We have seen that the sphere/wall collision process can be splitted into two parts: (i)
the close approach of the sphere towards the micro-pillars and (ii) the subsequent contact
of the sphere with the pillars. This second part of the collision can be characterized by
the ratio −Vr/Vi of the rebound velocity Vr of the sphere when leaving the solid wall
(at h = 0) with respect to the impact velocity Vi (at h = 0). This ratio −Vr/Vi can be
derived considering that the rebound kinetic energy Ekr = (1/2)MeffV

2
r is just reduced

from the initial kinetic energy Eki by the quantity Ed from viscous dissipation during
the collision, as the other force terms are conservative:

−Vr
Vi

=

(
1− Ed

Eki

)1/2

'
(

1− Stic
Sti

)1/2

. (4.1)

When Sti < Stic, all the kinetic energy of the sphere is dissipated in the fluid during
the contact so that no bouncing then occurs and the above expression is not valid. The
bouncing and validity of eq. (4.1) requires Sti > Stic. For large impact Stokes number
(Sti � Stic), the velocity ratio reduces at first order to −Vr/Vi = 1−Stic/2Sti, whereas
it reduces to −Vr/Vi = (Sti/Stic − 1)1/2 for small impact Stokes number close to the
bouncing/non bouncing critical value Stic (Sti ' Stic).

Note that the penetration distance is reduced by viscous dissipation. Considering an
energy loss of approximately Ed/2 with Ed given by eqs (3.7-3.8) corresponding to the
first part of the contact from δ = 0 to δm, the penetration distance δm is given by

δm
δm0

'
(

1− Stic
2Sti

)1/3

, (4.2)

where δm0 is the maximal penetration distance given by eq. (3.6) for a non dissipative
collision. Far above the bouncing transition where the dissipation is small (Sti/Stic � 1),
δm is only slightly smaller than δm0, and can be approximated by δm/δm0 ' 1−Stic/6Sti,
with, e.g., δm/δm0 ' 0.98 at Sti/Stic = 10. Closer to the bouncing transition where
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Figure 7. (a) Theoretical restitution coefficient of the global collision process ε = −Vr/V∞ as
a function of the global Stokes number St from eq. (4.5) for (a) Stic = 0 and R/s = 102 (—),
103 (– – –), 104 (- - -) or 105 (· · ·), and (b) for R/s = 102 and Stic = 0 (—), 1 (– – –), 2 (- - -)
or 4 (· · ·).

the dissipation is larger, δm is smaller but not so much, as δm/δm0 ' 2−1/3 ' 0.8 at
Sti = Stic. The experimental penetration distance δm reported by CGM 2016 close to
the bouncing transition varies between 0.5δm0 and 0.9δm0.

As both the velocity and the penetration distance are reduced by viscous dissipation,
the evolution of the collision time is not so intuitive. Following the simple estimation of the
typical time of collision τ0 ∼ δm0/Vi for a non dissipative collision with the penetration
distance δm0 at the typical velocity Vi, the typical time of collision for a dissipative
collision can be estimated as τv ∼ 2δm/(Vi − Vr) with the reduced penetration distance
δm at the typical reduced velocity (Vi − Vr)/2. From eq. (4.1) for −Vr/Vi and eq. (4.2)
for δm, the collision time τv for a dissipative collision writes as

τv
τ0
∼

2
(

1− Stic
2Sti

)1/3
1 +

(
1− Stic

Sti

)1/2 . (4.3)

Far above the bouncing transition where the dissipation is small (Sti/Stic � 1), τv can
be approximated by τv/τ0 ' 1 +Stic/12Sti, and is thus only slightly larger than τ0, e.g.,
τv/τ0 ' 1.01 at Sti/Stic = 10. Closer to the bouncing transition where the dissipation
is larger, τm is larger but does not diverge: τv/τ0 ' 22/3 ' 1.6 at Sti = Stic. The
experimental collision times τv reported by CGM 2016 close to the bouncing transition
indeed varies between τ0 and 1.6 τ0. Note that Birwa et al. (2018) also found an increase
of the contact time for decreasing Stokes number close to their critical value Stc ' 6 :
the contact time of a smooth steel sphere colliding onto a smooth steel wall into a
viscous silicon oil measured from their electrical set-up was observed to be constant for
1.3 . St/Stc . 5 and increases abruptely very close to Stc (1 . St/Stc . 1.3) by a
factor of about 4± 2.

If we consider the whole collision process embedding not only the sphere/pillars contact
but also the previous sphere approach close to the pillars, the global coefficient of
restitution corresponds to the ratio ε = −Vr/V∞ of the rebound velocity Vr to the typical
approach velocity V∞. With the use of the macroscopic Stokes number St = StiV∞/Vi
based on this approach velocity, the global coefficient of restitution is given by

ε =
−Vr
Vi

Vi
V∞
'
(

1− Stic
St

V∞
Vi

)1/2
Vi
V∞

, (4.4)
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Figure 8. Restitution coefficient of the global collision process ε = −Vr/V∞ (a) as a function
of the global Stokes number St with experimental data (data symbols of table 1) and model
equation ε = St/Stc − 1 for Stc = 4 (– – –), 5 (—) and 6 (- - -), and (b) as a function of the
reduced global Stokes number St/Stc.

In eq. (4.4), Vi/V∞ is the velocity ratio corresponding to the approach phase, and
writes from eq. (3.2) :

Vi
V∞
' 1− α ln (R/s)

St
. (4.5)

Finally, the global coefficient of restitution ε reduces (for St > Stc) to

ε '
(

1− Stic
St− α ln (R/s)

)1/2(
1− α ln (R/s)

St

)
, (4.6)

or

ε '
(

1− Stc
St

)1/2(
1− α ln (R/s)

St

)1/2

. (4.7)

Close to the bouncing transition, when St is only slightly larger than Stc, the coefficient
of restitution is close to zero and can be approximated by

ε ' (St− Stc)1/2 [St− α ln (R/s)]
1/2

Stc
. (4.8)

If one of the two dissipative processes can be neglected, the above expression can be
simplified and lead to different scaling laws. Indeed, when Stic � α ln(R/s) the global
coefficient of restitution reduces to ε ' St/Stc − 1 close to Stc, whereas it reduces to
ε ' (St/Stc − 1)1/2 when Stic � α ln(R/s).

The coefficient of restitution of the global collision process ε predicted by eq. (4.5) is
plotted as a function of the global Stokes number St in figure 7. In fig. 7(a), the relative
shift lengths s/R are varied keeping Stic=0, so that the critical Stokes number Stc varies
according to eq.(3.10), and the ε(St) curve changes accordingly, but only with a global
shift by keeping the same shape. Note that the set of curves of figure 7(a) is very similar
to the set of ε(St) curves shown by Izard, Bonometti & Lacaze (2014) for different
relative sphere roughnesses. When the dissipation during the solid collision is taken into
account in figure 7(b) at a constant s/R = 10−2, the critical Stokes number increases
with increasing dissipation so that the ε(St) curve changes accordingly, here with no
global shift but with a shape deformation. The two separate dissipation processes arising
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in the approach phase and in the solid contact have thus a very distinct influence on the
ε(St) curve.

In figure 8(a), the global coefficient of restitution ε is now plotted as a function of the
global Stokes number St for the experimental data together with the model equations
corresponding to three different Stc values: Stc = 4, 5 and 6. As the experimental data
are very close to the bouncing transition, the theoretical curves are very close to straight
lines of equation ε = St/Stc − 1 for St/Stc > 1. The experimental data for which a
rebound is observed (ε > 0) are within the band delimited by the two curves drawn for
Stc = 4 and 6 as we have already shown that 4.5 . Stc . 6 when bouncing is observed
(figure 6b).

Finally, ε is plotted in figure 8(b) as a function of the reduced Stokes number St/Stc.
The experimental data are in the quite narrow range 0.6 . St/Stc . 1.1 around the
critical transition value St/Stc = 1 It is very satisfying that the data without bouncing
(ε = 0) are observed to fall such as St/Stc < 1, and that the data with bouncing (ε > 0)
are quite close to the theoretical master curve of equation ε = St/Stc−1 for St/Stc > 1.
The bouncing transition is abrupt with a linear increase of ε with St just above Stc.

5. Conclusion

The normal impact of a liquid-immersed sphere on a micro-textured wall has been
analyzed taking into account the influence of viscous dissipation on the hydrodynamic
and solid contact interactions between the sphere and the textured wall. The wall texture
consists of an array of square micro-pillars. In our previous works, the separate effect of
the texture geometrical parameters on the elastic contact force (Chastel, Gondret &
Mongruel 2016) and lubrication drag (Chastel & Mongruel 2019) had been assessed
independently. Here, these effects are combined to yield a complete description of the
collision process. An equation of motion for the sphere is proposed, describing its whole
dynamics, that comprises the approach to the wall, the contact with the wall and also
the subsequent rebound. As the wall textures reduces the lubrication pressure, the pillar
deformation considered in the model does not result from the fluid pressure but from
the solid contact force that arises when the sphere touches the top of the textures with
a non-zero impact velocity. Experimental data previously obtained by high-frequency
interferometry can be now entirely described by the modeling with a good agreement.

An analytical expression is derived for the critical Stokes number for bouncing, Stc,
that arises from the sum of two contributions corresponding to dissipation prior and dur-
ing the contact. Both contributions are strongly influenced by the geometrical parameters
of the wall texture and the predictions are in agreement with the experimental data. An
analytical expression is also derived for the coefficient of restitution ε as a function of the
Stokes number St. The predicted linear evolution of ε with St− Stc just above Stc is in
found in good agreement with the experimental measurements.

The theoretical modeling developed in the present paper is for viscous fluids, i.e. when
viscous dissipation from the interstitial fluid flow is much larger than all the other possible
dissipation sources such as the viscoelasticity or plasticity of the solid materials or the
excitation of vibrational modes.

These finding are useful to understand precisely the influence of a surface roughness on
the viscous dissipation in the near-wall bouncing dynamics. The methodology presented
here could be extended to other surface roughness geometries. The present findings may
also be useful for the implementation of realistic collisional models in numerical methods
to simulate the flow of suspensions and liquid-immersed granular flows as in Biegert,
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Figure 9. Evolution of the near-field shift length s normalized by the periodic spacing of the
pillars L as a function of the normalized height of the pillars e/L. Data symbols correspond to
the experimental values from Chastel & Mongruel (2019) for φ = 0.05 (•), 0.15 (�), 0.30 (N),
and 0.45 (H), and the solid lines correspond to eq. (A4) without any fitting parameters.
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Appendix A. Dependence of the near-field shift length s upon the
geometrical parameters of the textured wall

The near-field (h� L) shift length s used throughout the modeling has been measured
by Chastel & Mongruel (2019). Figure 9 illustrates how this parameter depends on the
geometrical parameters of the pillar arrays. For a given value of pillar fraction φ, the
dimensionless shift length s/L increases with dimensionless pillar height e/L. Smaller
pillar fractions φ result in larger shift length values. In the following, we propose a
correlation between s/L, e/L and φ, that is based on simple scaling arguments. First,
in the limit of small pillar height (e/L � 1), far-field and near-field shift lengths must
coincide, which yields a linear dependence with pillar height, with a slope increasing with
decreasing φ (Chastel & Mongruel 2019):

s

L
= (1− φ)

e

L
. (A 1)

In the limit of large pillar heights (e/L ≈ 1), the viscous dissipation on the pillar lateral
walls has to be taken into account. This can be done through a bilayer model (Seiwert,
Clanet & Quéré 2011), in which the pillars and fluid around them are considered as a
continuum of effective viscosity ηeff = kη, where k is a dimensionless coefficient that
depends on the geometrical parameters (e/L and φ) of the pillar array:

k =
ηeff
η

= 1 + β(φ)
( e
L

)2
' β(φ)

( e
L

)2
. (A 2)

In the above equation, the coefficient β(φ) is related to the drag per unit length on
a pillar in the array of pillars. This coefficient is an increasing function of φ which
can be calculated by an analytical formula from Kuwabara (1959): β = 13.8, 36.2,
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Figure 10. Measured sphere penetration depth δm as a function of the estimated
elastohydrodynamic deformation of pillars δv for all the experiments (data symbols of table 1
with filled (open) symbols for (non) bouncing case), together with the line of equation δm = δv (-
- -) delineating the domain of elastohydrodynamic deformation from the domain of deformation
by solid contact.

90.3, 107 for φ = 0.05, 0.15, 0.30, 0.45, respectively. In the bilayer model of Chastel &
Mongruel (2016), the radial pressure gradient in the squeeze flow between the sphere
and the top of the pillars is found to have a similar form as in classical lubrication theory:
dp(r)/dr = −6ηrV (h)/h̄(r), where h̄(r) is a function of e, k and h + r2/eR. Thus, h̄(r)
is a characteristic distance that yields the shift length as s = limh→0 h̄ = e/k1/3, leading
to the scaling law

s

L
∼
(

e

β(φ)L

)1/3

. (A 3)

An equation model based on the two limiting behaviours (A1) and (A3) can be built as :

s

L
' (1− φ)

( e
L

)[
1 + β(φ)

( e
L

)2]−1/3
. (A 4)

It can be seen in figure 9 that the experimental values of s are quite well described by
eq. (A4) over the whole range of geometrical parameters of the textures considered here.

Appendix B. On the possible elastohydrodynamic deformation

In this appendix, we look at the possible elastohydrodynamic deformation. The lu-
brication force exerted on the sphere during its approach close to the wall textures
is FD = −6πR2ηV (h)/(h + s). This effective viscous force, which stems from the
interaction of the sphere with the texture, results from an effective local pressure p(h, r) =
−3RηV (h)/(h+ r2/2R+ s)2 that may lead to a possible deformation of the pillars. The
maximum elastic deformation δv that would result from the maximal pressure p(0, 0) is

δv '
e

E
p(0, 0) ' 3ηeRVi

Es2
. (B 1)

In the experiments considered here, this elastohydrodynamic deformation δv would be
typically between about 0.001 and 0.1 µm, which is smaller or of the order of the micro-
scopic roughness ξ of the sphere surface and texture surface. Such an elastohydrodynamic
deformation may thus be neglected and solid contact may be considered to happen at
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Figure 11. Model forces as a function of time for the case of fig. 3b with 2R = 14 mm, φ = 0.05,
2b = 56 µm, and e = 57 µm. Viscous drag force FD (—), solid contact force Fw (- - -), and
apparent weight Fg +FA (— - —) of the immersed sphere. The two vertical dotted lines indicate
the times of initial and final solid contact.

h = 0. When neglecting gravity and any fluid effects, the elastic deformation from solid
contact has been shown by CGM 2016 to be

δm0 =

(
2ρseR

2V 2
i

φE

)1/3

. (B 2)

The ratio of the two elastic deformations from either viscous or solid interaction is thus

δv
δm0

' 3η

s2

(
φe2RVi
2ρsE2

)1/3

. (B 3)

In the experiments considered here, this ratio is in the range 0.001 . δv/δm0 . 0.02
meaning that the elastohydrodynamic deformation is negligible when compared to the
elastic deformation from solid contact. In the plot of fig. 10 where the measured defor-
mation δm is displayed as a function of the estimated elastohydrodynamic deformation
δv, one clearly see that all the data points are well above the line δm = δv, thus in the
domain of solid contact and not in the domain of elastohydrodynamics.

All the length scales embedded in the problem can be sorted as follows relative to the
spatial resolution of the measurements ∆ ' 0.2µm :

δv . ξ < ∆� δm � s(e, b, L)� R.

Appendix C. Time evolution of the difference force terms acting
during the approach and collision of the sphere with
the wall

We look here at the time evolution of the different forces and their relative importance
when the sphere is approaching and colliding with the wall. An example of such force
evolution is shown in figure 11 for the case of fig. 3b where the sphere bouncing is just
small enough so that the sphere does not bounce off the wall. It thus corresponds to the
data point where ε = 0 at St = Stc in figure 8b. Before solid collision (t . 5.5× 10−3 s),
the lubrication force |FD| is much larger than the apparent weight |Fg +FA|, so that the
sphere velocity decreases strongly. At the solid collision, the contact force |Fw| increases
strongly and reaches its maximum at t ' 6 × 10−3 s, corresponding to the maximal
penetration distance of the sphere where the sphere velocity is zero and the viscous drag
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is thus also zero. In the particular case of fig. 11 corresponding to the critical Stokes
number where the “rebound” of the sphere is just h = 0 at t ' 7 × 10−3 s, the sphere
then reaches its final static value for which the contact force just balances the apparent
weight at t ' 8× 10−3 s.
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Chastel, T. & Mongruel, A. 2016 Squeeze flow between a sphere and a textured wall. Phys.
Fluids 28 023301.

Chastel, T., Gondret, P. & Mongruel, A. 2016 Texture-driven elastohydrodynamic
bouncing. J. Fluid Mech. 805, 577–590.

Chastel, T. & Mongruel, A. 2019 Sticking collision between a sphere and a textured wall in
a viscous fluid. Phys. Rev. Fluids 4 014301.

Costa, P., Boersma, B.J., Westerweel, J. & Breugem, W.-P. 2015 Collision model for
fully resolved simulations of flows laden with finite-size particles. Phys. Rev. E 92, 053012.

Davis, R. H., Serayssol, J.-M. & Hinch, E. J. 1986 The elastohydrodynamic collision of
two spheres. J. Fluid Mech. 163, 479–497.

Falcon, E., Laroche, C. Fauve, S. & Coste, C. 1998 Behavior of one inelastic ball bouncing
repeatedly off the ground. Eur. Phys. J. B 3,, 45–57.

Gondret, P., Lance, M. & Petit, L. 2002 Bouncing motion of spherical particles in fluids.
Phys. Fluids 14, 643–652.

Hunter, S. C. 1957 Energy absorbed by elastic waves during impact. J. Mech. Phys. Solids 5,
162–171.

Izard, E., Bonometti, T. & Lacaze, L. 2014 Modelling the dynamics of a sphere approaching
and bouncing on a wall in a viscous fluid. J. Fluid Mech. 747, 422–446.

Johnson, K.L. 1985 Contact Mechanics., Cambridge University Press, Cambridge.
Joseph, G. G., Zenit, R., Hunt, M. L. & Rosenwinkel, A. M. 2001 Particle wall collisions

in a viscous fluid. J. Fluid Mech. 433, 329–346.
King, H., White, R., Maxwel, I. & Menon, N. 2011 Inelastic impact of a sphere on a massive

plane: Nonmonotonic velocity-dependence of the restitution coefficient. EPL 93, 14002.
Kuwabara, S. 1959 The forces experienced by randomly distributed parallel circular cylinders

or spheres in a viscous flow at small Reynolds numbers. J. Phys. Soc. Japan 14, 527–532.
Lecoq, N., Feuillebois, F., Anthore, N., Anthore, R., Bostel, F. & Petipas, C. 1993

Precise measurement of particle-wall hydrodynamic interactions at low Reynolds number
using laser interferometry. Phys Fluids A 5, 3–12.

Lecoq, N., Anthore, R., Cichocki, B., Szymczak P., & Feuillebois, F. 2004 Drag force
on a sphere moving towards a corrugated wall J. Fluid Mech. 513, 247–264.
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