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Abstract

“Do Carroll particles move?” The answer depends on the characteristics of the particle such

as its mass, spin, electric charge, and magnetic moment. A massive Carroll particle (closely

related to fractons) does not move; its immobility follows from the Carroll boost symmetry. A

strictly massless Carroll particle may propagate by following the Hall law consistently with partial

breaking of their Carroll boost symmetry. In d = 2 space dimensions, the Carroll group has a

two-fold central extension which allows us to generalize the dynamics to massive and massless

particles, including anyons. The anyonic spin and magnetic moment combine with the doubly-

extended structure parameterized by two Casimir invariants interpreted as intrinsic magnetization

and non-commutativity parameter. The extended Carroll particle subjected to an electromagnetic

background field moves following a generalized (anomalous) Hall law which includes a Zeeman

force. Our theory is illustrated by massless, uncharged anyons with doubly-centrally extended

structure (we call “exotic photons”) which move on the horizon of a Kerr-Newman Black Hole,

giving rise to an anyonic spin-Hall Effect.

Key words: Carroll symmetry, Hall motions, fractons, anyonic spin-Hall effects, motion on Black

Hole horizon.

PACS numbers: 04.20.-q Classical general relativity;
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I. INTRODUCTION

The Carroll algebra is a contraction of the Poincaré algebra in which the speed of light is

sent to zero [2–4]. In this limit particles do not move, because they would otherwise violate

the causality constraint imposed by special relativity [2–7].

Interest in Carrollian dynamics has long been delayed, precisely, due to this “no-go”

statement. The situation started to change after physical applications were found [8–10].

The celebrated Bondi-Metzner-Sachs (BMS) group of General Relativity [11] is, for example,

a conformal extension of the Carroll group [12–16]. Carrollian hydrodynamics has attracted

considerable recent attention [17–19]. Further applications include plane gravitational waves

and the “memory effect” [20–23, 25]. The geometric approach is nicely complemented from

the Lie algebra point of view [26].

A recent development which overturns the negative assessment mentioned above comes

from condensed matter physics. As it will be explained in sec.III B, the limited mobility of

quasiparticles called fractons [24, 27] follows from that they are indeed Carroll particles [30].

Incredibly, the “original sin” of Carrollian physics has turned into a virtue!

A sprain to the “no-motion-for-Carroll” tenet comes from recent study of an “exotic

photon” i.e., a massless Carroll particle with spin, magnetic moment but with no electric

charge on the horizon of a Kerr-Newman black hole (see sec. IVF). In [31, 32] we found

that an “exotic photon” can move, namely by following a Hall-type law.

The particular interest of our “exotic photon” is underlined by that they can in principle

be imitated using appropriate meta-materials and thus studied in laboratories [25, 33].

From the theoretical point of view, the celebrated move-or-not-to-move-dilemma is re-

markably related to the behavior under Carroll boosts,

x → x, s→ s− b · x , (I.1)

where x is the position and s is Carrollian time [5, 30, 32].

This paper is devoted to a comprehensive study of Carroll dynamics and its applications

to general relativity and condensed matter physics.
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Historically, the archetype of Hall-type motions arises when a charged particle is put into

combined perpendicular electric field and magnetic fields in such a way that the electric and

the Lorentz forces compensate each other. This requires the particle to move forcelessly

with the Hall velocity [34–37],(
dxi

dt

)Hall

= ϵij
Ej

B
, i, j = 1, 2, B ≡ B3 , (I.2)

where the motion is considered in a d = 2 plane normal to the direction of magnetic field

B = (0, 0, B3). To fix our terminology, we shall agree that a Hall motion is one which

satisfies relation (I.2).

Many years after Hall’s original discovery, an anomalous Hall Effect (i.e. one with no

magnetic field) was observed in certain ferromagnetic crystals and explained by an anomalous

current [38]. A similar effect was proposed, even later, for massive particles with spin [39]

and then further extended to light [40–42] and to chiral fermions [43–45]. Spin-Hall effects

in curved space were considered in [46–49].

Reviewing 150 years of research of Hall-type Effects goes beyond our scope here. The

interested reader is advised the literature, see, e.g. [35–37]. Here we just mention that

a semi-classical explanation based on the two-parameter “exotic” central extension of the

planar Galilei group [50–54] was proposed using a Berry phase–extended framework [55–57].

The rôle of central extensions for physics has been first recognized by Bargmann in his

seminal paper [58]: for a massive non-relativistic system it is not the Galilei group itself

but its 1-parameter central extension by the mass (called the Bargmann group [59]) which

is physically relevant.

Unexpectedly, the dynamics is indeed even richer in the plane: Galilean systems admit

a second (“exotic”) central extension [1, 50, 60, 61] which yields non-commutating position

coordinates [1, 51, 52, 60–62], {
x, y
}
=

κ

m2
= θ , (I.3)

where κ is the extension parameter.

Returning to Carroll, a curious fact is that while in d ≥ 3 space dimensions the group

has no nontrivial central extension, in d = 2 it does admit one with two central parameters,

κexo and κmag [6, 31, 63] 1. The doubly extended Carroll group will be denoted by C̃. The

1 We changed our notation with respect to Ref. [31]: q1 → − 1
2κmag and q2 → + 1

2κexo . In this paper we
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associated dynamics has been worked out in [31].

In our investigations we are led by the remarkable analogy (called in [5] a “duality”)

between extended planar Carrollian dynamics outlined in Sec. IV below with its “exotic”

Galilean counterpart [50–53], highlighted by that the central charges combine, for both cases,

with the external magnetic field, B, into an effective mass:

m∗ =


m (1− θ eB) Galilei

m
(
1− κexo

m2
B∗
)

Carroll

(I.4)

where

B∗ = eB + κmag . (I.5)

The comparison of these equations allow us to clarify the physical sense of the double-

fold central extension: the parameter κexo in the Carrollian dynamics corresponds to the

noncommutativity parameter θ of its Galilean counterpart (with the identification θ ↔

κexo/m
2) while the parameter κmag generates a magnetic-field background by shifting the

physical background field2 eB → B∗ = eB + κmag.

The relationship between B∗ and B in Eq. (I.5) is reminiscent the relationship between

the magnetic fields B and H , and the magnetization M inside a media: B = H + 4πM ,

where we used Gaussian units. Within this interpretation, the parameter κmag corresponds

to the z-component of the intrinsic magnetization of the material, κmag = 4πMz.

The double-extension of the Carroll system has a peculiar relation with the anomalous

Hall Effect (AHE) which emerges in the absence of the background magnetic field B [38].

One could naively think that AHE is caused by the intrinsic magnetization κmag which could

play the role of a background magnetic B inside the system even when the external magnetic

field vanishes, B = 0.

However, the Casimir invariant κmag is not the origin of the anomalous Hall effect. It is the

other invariant, κexo, which is responsible for the AHE: it generates the non-commutativity

in the phase space, (I.3) with θ ̸= 0, which induces an anomalous velocity/momentum

relation (II.17a) and leads, in turn to, Hall-like motion even in the absence of the background

magnetic field [see [43, 44, 51–53, 56] and also Eqs. (IV.28) below].

provide also a “dictionary” from Souriau’s notations to a more commun language [64].
2 Notice that the fieldB∗ in Eq. (I.4) is defined without the standard electric charge factor e. This intentional

omission keeps the field B∗ finite in the neutral-charge limit e → 0.
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In the solid-state language, the AHE is produced by the Berry curvature of occupied elec-

tronic bands which appears due to the topology of Fermi surfaces in particular ferromagnets

when spin-orbit coupling is included [65].

When the effective mass vanishes, m∗ = 0, the system becomes singular and requires

Hamiltonian (alias “Faddeev-Jackiw”) reduction [51–53, 66]. In the Galilean case the only

allowed motions then obey the Hall law (I.2). The Carroll case is more subtle, as it is

explained in sections IV and VI.

Our paper is organized as follows. After a short reminder of the Souriau framework, we

recall how “exotic” (i.e., doubly extended) Galilean particles [50–52, 60, 61] are constructed

by the Kirillov-Kostant-Souriau (KKS) orbit method [59, 67, 68] applied to the Bargmann

group and conveniently studied in the “Eisenhart-Duval” framework [69–74].

Sec.III is devoted to non-centrally-extended Carroll particles [2–9]. The “no-motion-for-

fractons” statement [24, 30] follows at once from their relation to our massive Carrollian

model III B. The wave equation of free fractons, Eqn. (III.26) below, is indeed identical to

the Carrollian one studied in [31].

Doubly-extended Carroll particles [6, 31, 32, 63] are introduced in sec IV and then ex-

tended to massless particles. Theorems III.1-IV.7 address the recurrent “moving or not”

question with answers listed in Tables I and II, and illustrated in sec.IVF. The Carrollian

model is related to relativistic anyons in sec.V. Sect.VI illustrates the general results by a

comprehensive study of motion on the horizon of a black hole [16, 31, 32].

II. GALILEAN DYNAMICS

We start with a brief outline of the Souriau approach [59], spelled out in pedestrian terms.

The fundamental object is a “presymplectic” form i.e., a closed 2-form of constant rank σ

we call the Souriau form3 , which is defined on a manifold E called the “evolution space”.

The classical motions are determined by the kernel of σ. The closedness property dσ = 0

implies that σ = dϖ locally, and the “Cartan 1-form” ϖ may be used for a variational

interpretation [59, 76].

3 Souriau calls his 2-form σ the “Lagrange form”. He claims indeed to have found his framework hidden in

sect. V. of the second (1811) edition of “Mécanique Analytique” of Lagrange [75]. A physically relevant

example with a 3-dimensional kernel is given by massless relativistic particles with spin [43, 46, 59].
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For a non-relativistic system, for example, ker σ can be 1-dimensional, parametrized by

non-relativistic time, t. The restriction to t = t0 = const. of the evolution space, M0 ≡ Mt0 ,

is the “phase space at t0” and the restriction of σ to M0 is then a 2-form Ω0 = σ|M0
which

we call the “symplectic form at t0”. In a somewhat sloppy way, the choice of t0 is neglected

and one speaks of “the” phase space M endowed “the” symplectic form Ω.4

After the tacit choice of t0 (say t0 = 0), the Souriau 2-form can be split as

σ = Ω− dH ∧ dt , (II.1)

where H is the Hamiltonian. Note that while this decomposition does depend on the choice

of t0, different choices generate equivalent Hamiltonian structures.

The next step is to introduce minimal coupling to an electromagnetic field represented

by a closed 2-form on space-time, F =
1

2
Fµνdx

µ ∧ dxν = Eidx
i ∧ dt + 1

2
Fijdx

i ∧ dxj, where

the spatial components of the field strength tensor encode the magnetic field, Fij = ϵijkBk.

Then Souriau’s rule is to add F to the free form σ0 = dϖ0,

σ0 → σ = σ0 + eF , (II.2)

where e is the electric charge. For a free non-relativistic particle with mass m, for example,

σ0 = Ω0−dH0∧dt and H0 = p2/2m. In the static case, adding eF to σ0 as in (II.2) modifies

both the symplectic form and the Hamiltonian, respectively,

Ω0 → Ω = Ω0 +
e
2
Fijdx

i ∧ dxj and H0 → Hem =
p2

2m
+ eV . (II.3)

The vector gauge field A and the electrostatic potential V determine the magnetic and

electric fields,5

∇×A = B , ∇V = −E , (II.4)

respectively.

Poisson brackets can be introduced when Ω = 1
2
Ωαβdz

α∧dzβ is regular (where the zα are

coordinates on “the” phase space, M). They involve the inverse matrix Ωαβ, ΩαβΩ
βγ = δγα,

{f, g} = Ωαβ ∂f

∂zα
∂g

∂zβ
. (II.5)

4 Notice that σ = π∗Ω, where π is the projection from the evolution space E onto E/ kerσ called the “space

of motions” [59].
5 Space and time are treated symmetrically in (II.2) but not in (II.3), which is in general different from the

naive “minimal coupling” rule pµ → pµ − eAµ with Aµ = (A0 ≡ V,A). A counter-example is provided,

e.g., by an “exotic” Galilean particle [51, 52] see Sec. II B.
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A. The massive Galilean model

For the sake of comparison and also for later use, we spell out how the massive Galilean

model is obtained. Instead of Souriau’s original approach [59], we start with the Bargmann

group, i.e. the 1-parameter (non-trivial) central extension of the Galilei group by the mass

[58] denoted by G̃, represented by the matrices,
Aij b 0 c

0 1 0 h

−biAji −b2/2 1 f

0 0 0 1

 (II.6)

with (Aij) ∈ SO(d), b, c ∈ Rd, h, f ∈ R representing rotations, boosts, space translations,

time translations, and “vertical” translations along the central extension. Then the coadjoint

orbit method of Kirillov, Kostant, and of Souriau (KKS) can be used to build the evolution

space E [59, 67, 68].

In the Galilean case a non-relativistic spinless massive particle with internal energy E0

and mass m is obtained by contracting the Maurer-Cartan form g−1dg with the basepoint

µ0 = (0, 0, 0, E0,m) chosen in the dual Lie algebra. The KKS method then yields the Cartan

resp. Souriau forms,

ϖGal
0 = µ0 ·Θ = −E0dt−mds+ p · dx− p2

2m
dt , (II.7a)

σGal
0 = dp ∧

(
dx− p

m
dt
)
. (II.7b)

These forms are defined on the extended evolution space with coordinates
(
x,p, t, s

)
, where

t is non-relativistic time and s is the “vertical coordinate” along the central extension.

The equations of motion are given by the kernel of the Souriau form [59]; for (II.7b) one

of these equations requires, in particular, the velocity relation

dx

dt
=

p

m
(II.8)

to be satisfied. The construction is completed by applying the coupling rule (II.2). Massive

nonrelativistic systems are conveniently studied in the “Bargmann” framework [69–71, 73,

74].
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The well-known conserved quantities associated with Galilean symmetry will not be re-

produced here with the exception of the boost momentum,

gGal = m
(
x− p

m
t
)
, (II.9)

we record for later comparison with (III.10b), (III.46) and (IV.3b).

We mention for completeness that by changing the basepoint µ0 the Souriau model can

be extended to: (i) spinning particles [40, 59, 76] and (ii) to massless particles, in both the

Relativistic and Galilean frameworks [59] including curved space. Light which propagates

in an optical medium can, in particular, be viewed as a massless particle which moves in a

curved manifold [41, 42, 47, 77]. The optical index of the medium, n(x), allows us to define

a metric

gij = n2(x) δij (II.10)

on space such that the gradient, ∇(1/n), plays the rôle of an effective “electric” force. When

n = const. the motion is free and instantaneous (as seen above). For light with spin s, the

non-uniformoptical index n = n(x) yields an anomalous velocity term with approximate

equations of motion Eqn. # (14) of [41],

ṙ ≈ p− s

k
∇
(
1

n

)
× p, ṗ ≈ −n3k2∇

(
1

n

)
, (II.11)

consistently with [40].

B. Exotic Galilean dynamics in the plane

In the plane the Galilei group has been known to admit a second, central extension [50]

which allows for an extended “exotic” dynamics [51–54, 60, 61]. Now we spell out the

Souriau framework for the “exotic” (i.e. doubly-centrally extended) Galilean particle with

mass m subjected to the background electromagnetic field. Setting θ = κ/m2 as in (I.3),

the “exotic” Souriau 2-form

σGal
exo = (dpi − eEidt) ∧ (dxi − pi

m
dt) + 1

2
eB ϵij dx

i ∧ dxj︸ ︷︷ ︸
σGal
em

+ θ ϵij dp
i ∧ dpj︸ ︷︷ ︸

exotic

(II.12)
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is defined on the evolution space E = R2 × R2 × R =
{
x,p, t

}
. It can be split as σGal

exo =

ΩGal
exo − dH ∧ dt , where

ΩGal
exo = dp ∧ dx+ e

2
Fijdx

i ∧ dxj︸ ︷︷ ︸
Ωem

+
κ

2m2
ϵij dp

i ∧ dpj︸ ︷︷ ︸
exotic

, Hem =
p2

2m
+ eV . (II.13)

The system is regular when the determinant of the symplectic form does not vanish,

det(ΩGal
ij ) =

(
m∗

m

)2

̸= 0 , where m∗ ≡ m∗
G = m

(
1− θ eB

)
. (II.14)

Here m∗ is an effective mass [51, 52]. Dropping the suffix G, the Poisson brackets associated

with (II.12) are, for m∗ ̸= 0,

{xi, xj} =
m

m∗ θϵij {xi, pj} =
m

m∗ δij, {pi, pj} =
m

m∗ eB ϵij , (II.15)

or equivalently,

{xi, xj} =

(
1

1− θeB

)
θϵij, {xi, pj} =

(
1

1− θeB

)
δij, {pi, pj} =

(
1

1− θeB

)
eBϵij .

(II.16)

In particular, the coordinates do not commute when θ ̸= 0. The associated Hamilton

equations are

m∗

m
ẋi =

pi
m

− θϵijEj , (II.17a)

ṗi = eEi + eBϵijẋ
j . (II.17b)

Note the velocity and the momentum cease to be parallel when θE ̸= 0. For θ = 0 we

recover the usual expressions for a charged particle in a constant magnetic field and for B = 0

we get the exotic expression #(2.3) in [52]. The system becomes singular when the effective

mass vanishes, m∗ = 0, and Hamiltonian (alias “Faddeev-Jackiw”) reduction [52, 66] yields

[51–53]. The behavior when the effective mass changes sign is studied conveniently using

chiral decomposition [78, 79]. We have:

Theorem II.1. Eqn. (II.17) implies that when its effective mass (II.14) vanishes,

m∗ = 0 , (II.18)

then an “exotic” Galilean particle follows the Hall law (I.2).
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The Souriau form (II.12) is locally σGal
exo = dϖGal

exo , where the Cartan 1-form ϖGal
exo corre-

sponds to the “exotic” phase space Lagrangian [52] 6,

L Gal
exo = (p− eA ) · dx

dt
− Hem dt︸ ︷︷ ︸

Lem

+
θ

2
p× dp

dt︸ ︷︷ ︸
exotic

. (II.19)

We record for further reference that in a constant B-field the conserved angular momentum

is [52]

ℓ = x× p+ 1
2
eBx2 + 1

2
θp2 + χ , (II.20)

where the real constant χ is identified as the anyonic spin [80–82]. The relation to planar

vortex dynamics [83] will be studied elsewhere.

C. Galilean anyons with spin-field coupling

The planar model can be further extended. In d = 2 spatial dimensions, the anyonic spin

is just a constant χ, and a term involving the spin-field Hamiltonian7,

Hany = −µχB , (II.21)

where µ is a magnetic momentum can be added to the spinless expression (II.12). Then we

end up with the Souriau form of a massive, exotic anyon with spin in an em field,

σGal=

(dpi − eEidt) ∧ (dxi − pi

m
dt)︸ ︷︷ ︸

electric

+ 1
2
eB ϵij dx

i ∧ dxj︸ ︷︷ ︸
magnetic

+
θ

2
ϵij dp

i ∧ dpj︸ ︷︷ ︸
exotic

+µχdB ∧ dt︸ ︷︷ ︸
spin−field

. (II.22)

The new term merely shifts the force,

eEi → E∗
i = eEi + µχ∂iB, (II.23)

and the equations of motion become again (II.17) up to this shift.

Note the important role which is played by the magnetic field B in Eq. (II.23). The

gradient of B behaves as an effective electric field which adds up to the background electric

6 In d = 2 spatial dimensions, the vector product is a pseudoscalar, a× b = ϵija
ibj .

7 For an “exotic photon”, the spin-field term (II.21) plays a particular role on the horizon, see Sec. VI.

Another example is studied in [84].
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field E in Eq. (II.23). The effective electric field appears from the interaction of the anyonic

spin with the background magnetic field described by the Hamiltonian (II.21). The spin-field

interaction plays the same role as the electrostatic potential eV in the Hamiltonian (II.3)

for a usual electrically charged particle. This analogy identifies the effective electrostatic

potential for the anyons, eVeff = −µχB. The inhomogeneities in the latter produce the

force on the anyon which can be described, according to Eq. (II.4), via an effective electric

field Eeff = (µχ/e)∇B.

When the effective mass vanishes, m∗ = 0, the system becomes once again singular.

However then the magnetic field, B = Bcrit = m2/eκ, is necessarily constant and therefore

the new, µ-term drops out: the anyonic spin has no impact on the (Hall) motions.

Massless Galilean particle models can also be constructed by the KKS method by choosing

appropriately the base point µ0 in the dual Lie algebra. They can be spinless (“Fermat

particle”– see sec.III C), or can also carry spin [41, 42, 59]. The same method works also in

the relativistic case. Such a particle can be coupled to a background metric [46, 47, 49].

The “exotic” model introduced in [51, 52] has anomalous gyromagnetic factor g = 0.

More general cases are studied in [85]. An optical medium can be viewed also as a special

metric [42]; then for massless particles we get a Spin-Hall effect for light [40–43].

III. CARROLL DYNAMICS

After our brief review of the Galilean case, henceforth we focus our attention at Carroll

particles which are indeed our main objects of our interest. The label {·}Carr analogous to

{·}Gal will be omitted; all our formulae refer to the Carroll case in what follows.

Let us first recall that a Carroll structure [5, 8, 9, 13, 14, 71] is a triple (M, g, ξ) composed

of:

1. a manifold M of dimension d+ 1 ;

2. a degenerate twice symmetric covariant tensor (gµν) such that dimker(gµν) = 1 ;

3. a nowhere vanishing vector field (ξµ) in the kernel, gµνξ
ν = 0 .

Its “isometries” – i.e., transformations which preserve both (gµν) and ξ – span an infinite-

dimensional group. A finite dimensional group is obtained if, mimicking the Galilean case

13



[86], a connection is chosen. A strong Carroll structure is then obtained by completing the

above definition to a quadruple (M, gµν , ξ
µ,∇) with:

4. a (non unique) connection ∇ compatible with both the “metric” (gµν) and the vector

field ξµ, i.e. ∇(gµν) = 0 and ∇µξ
µ = 0.

A Carroll manifold is obtained, for example, by constraining a Bargmann space [69–72] to

a t = t0 = const. submanifold [5]. More generally, any null-submanifold is a Carroll manifold

[73, 74]. The isometries of the flat strong Carroll structure are conveniently represented by

(d+ 2)× (d+ 2) matrices, 
Ai

j 0 ci

−bkAk
j 1 f

0 0 1

 , (III.1)

where (Aij) ∈ SO(d) is a rotation, c is a space translation, b is a boost, and f is a “Carrollian

time translation”. The matrix acts on the Carrollian coordinates by matrix multiplication,
x

s

1

→


Ax+ c

s− b · Ax+ f

1

 , (III.2)

where we denoted Carrollian time by s to distinguish it from Galilean time, t.8 The im-

plementation (III.2) highlights the characteristic feature of Carroll structures: unlike in the

Galilean case, boosts leave the position invariant and shift instead Carrollian time, s, cf.

(I.1).

The dynamics of a Carroll particle in an electromagnetic field can be derived in two steps

as outlined in section II: first a free model is constructed by the KKS method IIA applied to

the Carroll group [5, 6, 14, 31, 59], which is then coupled to the em field by the rule (II.2).

An element g = g(A,b, c, f) of the Carroll group is parametrized by d(d+3)
2

+ 1 numbers.

Dual to them are the “moments” [59], which are the physical parameters that describe

the state of a particle at a point. A moment is µ = µ(ℓ,g,π,m) where ℓ ∈ so(d)∗ is the

angular momentum, g represents the boost momentum [center of mass], π is the conserved

momentum, and m is the mass of the particle. Notice that the mass is not an externally

given quantity but a moment and a Casimir invariant associated now not with a central

8 Our notation is consistent with the Bargmann framework [69–72].
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extension as for Galilei/Bargmann theory, but with (Carrollian) “time” translations along

Carrollian time s. It is a sort of “Carrollian energy” cf. (III.3).

The word “momentum” has indeed three related but somewhat different meanings here.

Firstly, one has p, which we define to be always mv. Secondly there is the canonical or

generalized momentum, defined as P = ∂L /∂x′. For a non relativistic particle in a magnetic

field, for instance, P = mv − eA. At last, “momentum” is also the conserved quantity dual

to space translation symmetry (a “moment” in Souriau’s terminology [59]), which we shall

call here “impulsion” and denote by π. The three definitions coincide in some simple cases

but not always, see, e.g., (IV.3).

The dynamical description for Carroll particles is readily found by embedding the Carroll

group C (III.1) as a subgroup of the Bargmann group G̃ (II.6) by “freezing out” (Galilean)

time translations [5, 22],

h = 0 . (III.3)

The moments allow us, e.g., to define Casimir invariants. As said above, the first one is

m, the mass of the particle.

Carroll particles can also carry spin, defined as an additional Casimir invariant. However

the planar case discussed in Sec. IV will be sufficient for our purposes here.

A. Massive Carroll particles

We consider first the free massive case m ̸= 0 [with no spin]. The dt -terms in (II.7) are

switched off and we end up (consistently with # (A.9) and (A.10) in [5]), with,

ϖ0 = p · dx−mds , (III.4a)

σ0 = dϖ0 = dp ∧ dx . (III.4b)

Note that Carrollian time, s, does not appear in the Souriau form. These forms are defined

on “Carroll evolution space”

E = Rd × Rd × R =
{
x,p, s

}
. (III.5)

Compared to the Galilean theory of sec.II A, not only E0, the internal energy is lost but,

even more importantly, the usual kinetic term (p2/2m) dt in (II.3) of the Galilean theory

15



is missing from the Cartan form (III.4a) (or equivalently, from the Hamiltonian H (III.6)

and/or from the L Lagrangian (III.11)).

Note that the usual −(p/m)ds is “missing” from behind the dx in σ0, leaving p and

dx/ds unrelated : the Galilean velocity relation (II.8) is lost. This difference between

Galilei/Bargmann and Carroll systems would not be altered by adding further (electro-

magnetic or central extension) terms.

Splitting the Souriau form into symplectic form and Hamiltonian as in (II.1),

σ0 = Ω0 − dH0 ∧ ds with Ω0 = dp ∧ dx and H0 ≡ 0 , (III.6)

shows that a free massive Carroll particle has an identically zero Hamiltonian. The corre-

sponding Hamilton equations read as follows:

(xi)′ = {xi,H0} = 0, p′i = {pi,H0} = 0 , (III.7)

where the prime,

{ · }′ = d/ds , (III.8)

denotes a derivative with respect to Carrollian time. Equations (III.7) imply therefore:

Theorem III.1. A massive free Carroll particle does not move,

x(s) = x0, p(s) = p(0) , (III.9)

cf. (A.11) in [5].

A free massive particle is a Carroll-symmetric by construction. The associated conserved

quantities (Souriau’s “moment” [59]) in d = 2 spatial dimensions are as follows:

ℓ = x× p angular momentum, (III.10a)

g = mx boost momentum, (III.10b)

π = p linear momentum. (III.10c)

Comparison with the Galilean boosts in (II.9) shows that the difference comes, once again,

from the decoupling of position and momentum. These expressions will later be compared

with (IV.3). See also [30].

Corollary 1. The conservation of the boost momentum g in (III.10b) implies, consistently

with Theorem III.1, that a massive particle with Carroll boost symmetry can not move.
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Lagrangian formulation

The Carrollian dynamics can also be described by a Lagrangian. In the free massive case,

viewing p and x′ as independent variables on the evolution space E , the Euler-Lagrange

equation of the system

L0 = p · x′ , (III.11)

confirm the “no motion” conclusion (III.9).

Coupling our Carroll particle to an electromagnetic (EM) field by the rule (II.2) amounts

to

p → p− eA and 0 ≡ H0 → Hem = eV (III.12)

which yields, in Lagrangian form,

Lem = (p− eA) · x′ − eV . (III.13)

Variation w.r.t. p and x viewed as independent variables implies the equations of motion

# (3.21a-b) of Ref. [31],

x′ = 0 , p′ = eE . (III.14)

Note that the magnetic field does not play any role in the derivation. To understand how

this comes about, note that the variational equations are,

(xi)′ = 0 and p′i = eEi + eBϵij(x
j)′ . (III.15)

The first equation here switches off the Lorentz-force in the second one. In words: “no

motion” implies “no Lorentz force”, allowing us to state the “no-motion theorem” which

generalises Theorem III.1:

Theorem III.2. A massive charged Carroll particle does not move in the electromagnetic

background field :

x = x0 = const. (III.16)

We notice that while the presence of the electric field E ̸= 0 produces the change in the

momentum p of the particle, it does not affect its position, x, in the course of the evolution

of the system with Carrollean time s.
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For completeness we record also the Souriau form obtained by the rule (II.2),

σem = σ0 + eF = dp ∧ dx+ e
2
Fijdx

i ∧ dxj + eEidx
i ∧ ds , (III.17)

whose kernel yields again (III.14)9.

B. Fractons

The Carrollian particles are closely related to fractons which, associated with immobile

(or partially mobile) quasiparticles in condensed matter systems, attract much current at-

tention [24, 27, 30]. The fracton phase of matter can be described by complex scalar field

theories endowed with dipole symmetry [24].10 The simplest Lagrangian which describes the

interacting fractons has the following form:

L = |∂sΦ|2 −m2|Φ|2︸ ︷︷ ︸
L0

−λ (∂iΦ∂jΦ− Φ∂i∂jΦ)(∂iΦ
∗∂jΦ

∗ − Φ∗∂i∂jΦ
∗)︸ ︷︷ ︸

self−interaction Lint

, (III.18)

where Φ(x, s) is a complex scalar field [30]. We denote, for reasons which will be clear later,

the time variable by s. The model (III.18) possess the Aristotelian spacetime symmetries

since it is invariant under spacetime translations and spatial rotations but not under the

boosts.

In the absence of interactions, λ = 0, the model (III.18) possess the trivial energy spec-

trum:

εk = m, (III.19)

implying that the group velocity of the excitations is zero:

vk =
∂εk
∂k

= 0. (III.20)

Similarly to the massive Carrollian particles, the quasiparticles described by the free La-

grangian L0 in Eq. (III.18) do not move [24, 27, 30].

9 We also get E ·x′ = 0 i.e., that the velocity is perpendicular to the electric field. However this is reduced

to an identity because of the first relation in (III.14). The spinning Carroll equations in d = 3 spatial

dimensions were first presented in [31].
10 The term “fractons”, which is now widely accepted to be associated with immobile excitations in condensed

matter systems, has been earlier used to denote particles that carry fractional charges [28] and collective

quantized phonon-like excitations on a substrate with a fractal structure [29]. These two objects should

not be confused with the immobile excitations which are also called “fractons” [24, 27, 30].
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The independence of the particle energy level on its momentum is the characteristic of

the so-called flat bands, the subject which is under staring interest in condensed matter

physics. The flat bands appear in the magic-angle bilayer graphene [104], which hosts

unconventional superconductivity at low temperatures [105]. The fermionic models and the

relation to Carroll physics of flat bands has been very recently discussed Ref. [103].

The full Lagrangian (III.18) is invariant under rigid and linear-in-the-position rotations

of the phase of Φ,

Φ (x, s) → Φ̂ (x, s) = ei(β0−β⃗1·x⃗)Φ (x, s) , (III.21)

or infinitesimally,

δΦ(x, s) = iβ0Φ(x, s), (III.22a)

δΦ(x, s) =− i(β1 · x) Φ(x, s) (III.22b)

where we separated the transformations parameterized by the coordinate-independent pa-

rameters β0 and β1. We have |Φ̂|2 = |Φ|2 and |∂sΦ̂|2 = |∂sΦ|2 from which we infer that the

free Lagrangian L0 is left invariant.

Let us now recall the Noether theorem for a general scalar field theory: if the action

S =

∫
L (ϕ)

√
gdD+1x (where g is the determinant of the metric on the manifold upon

which ϕ is defined) changes under a transformation ϕ → ϕ + δϕ by a surface term, δS =∫
∂αK

αdd+1x, then we have the conserved current

Jα = −
δ
(√

gL
)

δ (∂αϕ)
δϕ+Kα, ∂αJ

α = 0 , (III.23)

and thus a conserved charge,

Q =

∫ (
−
δ
(√

gL
)

δ (∂0ϕ)
δϕ+K0

)
d3x⃗ . (III.24)

Applied to the free Lagrangian L0 (III.18) yields the conserved quantities which correspond

to the symmetry transformations (III.22a) and (III.22b), respectively,

q =
i

2

∫
(Φ∗ ∂sΦ− Φ ∂sΦ

∗)d3x , (III.25a)

g =− i

2

∫
(∂sΦ

∗xΦ− ∂sΦxΦ∗)d3x , (III.25b)

which are interpreted as the electric charge and the dipole moment carried by the field Φ.
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To get more insight, we note that variation of L0 yields the truncated Klein-Gordon

equation

∂2sΦ = −m2Φ (III.26)

from which the kinetic term |∇Φ|2 is missing11. Here we recognize the free quantum equation

of a Carroll particle [31] mentioned in the Introduction.

The surprising forms (III.18) and (III.26) can actually be derived from the relativistic

theory by a contraction familiar from the Carroll theory [5, 31]. Let us indeed start with

the Klein-Gordon equation for a free relativistic particle of mass m in 1+d dimensions with

coordinates x0, x1 . . . xd and metric (−1, 1, . . . , 1︸ ︷︷ ︸
d

),

∂µ∂
µΦ−m2C2Φ = 0 , (III.27)

where the parameter C has a dimension of velocity and is, in general, different from the

physical speed of light c. Introducing Carroll time, s, by putting x0 = s/C [5, 31] (III.27)

becomes, [ 1

C2
△−∂2s −m2

]
Φ = 0 . (III.28)

Then letting C → ∞ we end up with (III.26). Alternatively, we rewrite the Klein-Gordon

Lagrangian in terms of Carroll time s,

LKG = C2
(
∂sΦ∂sΦ

∗ +
1

C2
|∇Φ|2 −m2ΦΦ∗

)
. (III.29)

The overall factor C2 can be dropped and the C → ∞ limit of the bracketed quantity is L0

in (III.18).

We now relate fractons to Carroll particles through the relativistic Klein-Gordon theory

by passing through the Bargmann space. We start with the free case. Eqn. (III.26) can

indeed be solved as12,

Φ(x, s) = eimsΨ(x) , (III.30)

where Ψ(x) is an arbitrary function of x only. We then note that (III.30) is defined on the

Carroll slice C =
{
(x, t = 0, s)

}
(naturally extended to Bargmann space) as an equivariant

function w.r.t. Carroll time, ∂sΦ = imΦ.

11 The absence of |∇Φ|2 from the Lagrangian (III.18) and/or space derivatives in (III.26) is reminiscent of

the absence of the kinetic term p2/2m in the classical Carroll dynamics and anticipates the analogy to be

discussed below.
12 We choose positive mass solutions, m > 0.
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The subgroup of the Bargmann group which leaves the slice C invariant is the Carroll

group, (III.2). Viewing (III.30) as defined on Bargmann space, the action of the Carroll

group on C induces,

Φ(x, s) → e−im(b·(x−c)+f)Φ
(
A−1(x− c), s

)
. (III.31)

For A = Id, c = 0, f = 0, the infinitesimal version of (III.31) is the Carroll boosts

(III.22b). Dipole moment conservation thus follows from Carroll boost invariance of the

massive Carroll model [2, 5, 30]. Therefore the “fractons do not move” statement is a

rephrasing of our Theorem III.1, itself consistent with the conservation of g in (III.10b).

The free Lagrangian (III.18) is indeed invariant under BMS-like symmetries [30]. The

transformation

Φ (x, s) → Φ̂ (x, s) = eiT (x)Φ (x, s) (III.32)

leaves indeed L0 manifestly invariant for any supertranslation T (x).

We proceed by adding yet another remark about the celebrated “no-motion” property.

Let us observe in fact that for any solution (III.30) of the wave equation (III.26) the particle

density is independent of Carrollian time,

|Φ(x, s)|2 = |Ψ(x)|2 , (III.33)

which is indeed the field-theoretical analog of immobility.

This same conclusion can also be obtained by looking at the conserved dipole moment

alias Carroll boost moment g in (III.25b). Evaluated on a solution (III.30), we get the

field-theoretical analog of (III.10b),

g = m

∫
|Ψ(x)|2x d2x , (III.34)

which does not depend on s. For completeness, we record also the conserved charge (III.25a),

q = −m
∫

|Φ|2dx = −m
∫

|Ψ(x)|2dx . (III.35)

Turning to the full Lagrangian (III.18), we note that the self-interaction term Lint is

invariant under both transformations in (III.21),

Lint(Φ) = Lint(Φ̂) . (III.36)
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Thus (III.22) are symmetries for (III.18), as said in Ref. [30]. Then the Noether theorem

shows that the free expressions (III.25) are indeed correct for the full dynamics.

Let us now consider how the free fractons described by the Lagrangian L0, Eq. (III.18)

with λ = 0, move when coupled to the background electromagnetic field. One immediately

recognizes that due to the absence of the spatial derivative ∇ in the free Lagrangian L0,

the vector part of the gauge potential, A, does not enter the Lagrangian picture. The

electrostatic potential V = V (x) does appear via the formal extension of the derivative,

∂s → ∂s − ieV (x), but it only modifies the phase of the solution (III.30):

Φ(x, s) = ei(m+eV (x))sΨ(x) , (III.37)

without affecting the particle density (III.33). Therefore, in the simplest Lagrangian pic-

ture (III.18), free fractons do not perform a Hall-like motion neither in the massless nor in

the massive case. This is the field-theoretical version of the classical “no-motion”.

Then one can wonder if the BMS-type higher symmetry survives the addition of the

λ ̸= 0-term in (III.18). Plugging the Ansatz (III.32) into (III.18), we readily see that

L → L̂ = L + λΦ4(∂i∂jT )(∂i∂jT ) . (III.38)

Not being a total derivative, the shift breaks the symmetry, unless

∂i∂jT = 0 (III.39)

for all i, j. Thus only terms up to linear order in x, T (x) = β0 − β⃗1 · x⃗ survive in general,

as in (III.21). Similarly, a dilation, Φ → Φ̂ = ΛΦ, Λ = const. breaks the scale invariance of

the free Lagrangian,

L0 → L̂0 = Λ2L0 but Lint ⇒ Λ4Lint . (III.40)

C. Massless Carroll particles

Massless Carroll particles can also be constructed along the KKS lines [14]. There are

in fact, two classes. The conserved norm of their momentum |π| is promoted to a Casimir

invariant. However massless particles with zero or with non-zero momentum behave differ-

ently, providing us with two different classes of massless Carroll particles as will be seen

below.
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Consider first massless particles with non-zero conserved momentum,

π ̸= 0 . (III.41)

Then the KKS algorithm yields the spinless “Fermat particles” of geometrical optics —

which are indeed both Galilean and relativistic [14, 41, 42, 59]. This is because the coadjoint

orbits of interest for us of the Galilei, Poincaré and Carroll groups are in fact those of their

common Euclidean subgroup, obtained when boosts and time translations are dropped [42].

Geometric Optics is Euclidean — both in direct and historical sense [87].

“Spinless light” [alias Fermat particle] does move: it propagates instantaneously along

the light rays of geometrical optics. In detail, the geometrical model of Ref. [59] describes

a light ray by a pair (x,u), where x is an arbitrary point on the ray and u is a unit vector

such that π = ku is oriented along the ray. The “evolution space” E =
{
(x,u)

}
, is thus

5-dimensional.

Coadjoint action of the euclidean group.

An element (A, c) of the euclidean group acts on µ0 = (ℓ,π) in the dual euclidean algebra

e∗ labeled as,

ℓ → Aℓ− c× Aπ , π → Aπ . (III.42)

The Casimir invariants are,

|π| = k, ℓ · π
k

= j , (III.43)

where the non-zero constant k is Souriau’s “color” [59], which corresponds to the absolute

value of the conserved momentum (our “impulsion”). j is the spin of the particle. Choosing

the basepoint µ0 = (0,π) ∈ e∗, the KKS algorithm [59, 67, 68] endows E with the Cartan

resp. Souriau forms13 [42, 59],

ϖ0 = ku · dx , σ0 = k du ∧ dx . (III.44)

A light ray is determined by the characteristic foliation of σ0 in (III.44), δu = 0 and

δx ∝ u , which is indeed a straight line oriented along u. The description by (u,x) is

however redundant: x1 and x2 lie on same ray if they differ by a multiple of u. A light ray

13 Equivalently, with the Lagrangian L0 = π · x′ = ku · x′, cf. (III.11).
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is thus labeled ultimately by the two orthogonal vectors,

u and q = x− (u · x)u , u · q = 0. (III.45)

The “space of motions” of a Fermat particle is thus M = TS2, the tangent bundle of the

2-sphere, depicted in Fig. 1. In conclusion:

R3

q

u

x

0

TS2

q

u

0

(a) (b)

FIG. 1: (a) A Fermat particle in flat space moves along oriented straight lines. The unit vector u

gives its direction and the vector q points to its closest point to a (chosen) origin. x is any point

on the ray. (b) The space of motions is thus the tangent bundle of the unit 2-sphere, endowed with

k-times its canonical symplectic form.

Theorem III.3. A free, mass, spin and charge-less Carroll particle is equivalent14 to the

previously considered euclidean “Fermat particle” and moves, instantaneously, along the

oriented straight lines of geometrical optics.

An intuitive explanation is that there is no canonical quantity with the dimension of

velocity in that theory, so either they do not move at all, or they move instantaneously.

Since we know that they do move (the trajectory is a ray), it has to be instantaneous.

Another way to see how such “spinless light” may escape the “no-motion-for-Carroll”

tenet is to recall that Carroll boosts, (I.1), leave the free Souriau-form σ0 in (III.44) obviously

14 Up to interchanging Galilean and Carrollian times, t ↔ s.
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invariant; the associated conserved quantity is [14],

g ≡ 0 (III.46)

cf. eqn. # (VI.17) of [14], consistently with putting m = 0 into the conserved quantities

(III.10). Thus, unlike in the massive case, we can not now infer from the conservation of

the boost momentum that x is fixed [30] — consistently with what we had found above.

Extension to spin in d ≥ 3 space dimensions (which allows us to study the “spin-Hall

effect for light”, see [40–42]) is not considered in this paper.

Anyonic spin in d = 2 will be studied in sec. IV. The description of Carroll particles can

be extended to curved space [7].

Coupling to a background electromagnetic field.

A free particle constructed by the KKS method can be coupled to an electromagnetic

field by the rule (II.2). The Carrollian version can be obtained by taking the Carrollian

limit [88]. One starts with the relativistic electromagnetic tensor

F = Fijdx
i ∧ dxj + Ei

c
dxi ∧ dx0 . (III.47)

However, rescaling the electric field as Ei 7→ Ẽi = Ei/(cC) one gets, after introducing

Carrollian time by x0 = s/C (so that C → ∞ is the Carrollian limit),

F = Fijdx
i ∧ dxj + Ẽidx

i ∧ ds (III.48)

where Carroll time, s, was replaced the usual time coordinate15.

The electric and magnetic fields defined above satisfy the Carroll-Maxwell laws [5], either

in their electric version, ϵijk∂jE
k + ∂sB

i = 0 , ∂iB
i = 0

∂sE
i = 0 , ∂iE

i = 0
electric (III.49)

or in their magnetic version, ∂sB
i = 0 , ∂iB

i = 0

ϵijk∂jB
k − ∂sE

i = 0 , ∂iE
i = 0

magnetic (III.50)

respectively 16.

15 The same result is obtained [5, 73] by switching to light-cone coordinates u and v. Then the restriction

to the u = const. null hypersurface is again (III.48) with Ẽi = Ei − Fiz.
16 When compared to Galilean electromagnetism [5, 88] the words “electric” and “magnetic” are inter-
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On may wonder then what would happen when we couple (hypothetical) massless Carroll

particle with non-zero “color” k in (III.43), and endowed also with an electric charge to

electromagnetism . Such particles would be described by the Souriau 2-form

σ = k dui ∧ dxi +
e

2
Fijdx

i ∧ dxj + eEidx
i ∧ ds , (III.51)

whose integral leaves (δx, δu, δs) ∈ kerσ are given by,
eEiδx

i = 0 ,

δx ∝ u ,

kδu− eEδs+ eB× δx = 0 ,

(III.52)

augmented with the constraint |u| = 1.

Such a model looks similar to a massive, non relativistic charged particle in a background

electromagnetic field, — but with the color k playing the role of a mass, and u playing that

of its momentum. The only formal difference is that here u is a unit vector.

The upper two relations in (III.52) imply that the propagation is orthogonal to the electric

field,

Eiu
i = 0 . (III.53)

The system (III.52) has several kinds of motions. First, one should note that such particles

cannot exist in a pure electric field, as the equations of motion become inconsistent for

k = const.. Then, as for standard Newtonian mechanics of charged particles subject to the

Lorentz force in a pure magnetic field, we get helical motion. The motion becomes straight

if the initial velocity is parallel to the magnetic field while the helical motion degenerates

into a circle if the initial velocity is orthogonal to it.

While pure electric fields are forbidden, the system (III.52) admits Hall-type solutions.

To see this let us assume, for example, that the fields E = const. and B = const. are as in

the usual Hall scenario where E is in the plane and B is the third component of the magentic

field perpendicular to the plane. Let us assume, moreover, that the ray’s direction is fixed,

u = const. ̸= 0 . (III.54)

changed, underlining the dual nature of Carrollian vs Galilean physics. These equations are written in

d = 3 spatial dimensions.
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Then from the third equation in (III.52) we deduce that

δxi

δs
= ϵij

Ej

B
, (III.55)

which means Hall motion. We notice also that for vanishing electric field, E = 0 but B ̸= 0,

we get the circular motion.

D. Immobility and Carroll boost symmetry

(Im)mobility and Carroll symmetry are closely related [2, 5, 30], as said before. We first

recall the description by a 2d + 1 dimensional evolution space E =
{
(x,v, s)

}
, which is

invariant under Carroll boosts. The Cartan 1-form is 17,

ϖ = Ai(x,v)dx
i +Bi(x,v)dv

i − H (x,v, s)ds , (III.56)

which is the most general 1-form on E with A and B do not depend explicitly on time.

Then Carroll boost-invariance requires the Cartan 1-form to obey LXϖ = df for some f

and X = βix
i∂s, implying dLXϖ = 0. Then

dLXϖ = βj
(
∂xiH dxj ∧ dxi − ∂viH dxj ∧ dvi

)
+ β · x

(
∂s∂xiH ds ∧ dxi + ∂s∂viH ds ∧ dvi

)
(III.57)

which vanishes if 18

∂xiH = 0 and ∂viH = 0 . (III.58)

Thus H (s)ds is exact and can be dropped (i.e., H is gauge-equivalent to H0 = 0). The

system can thus be described by a Carroll-boosts-invariant Cartan 1-form. Thus assuming

that the system is regular, the equations of motion are,

dx

ds
= 0 and

dv

ds
= 0 .

In conclusion, the invariance under Carroll boosts prevents motion [2, 5, 30].

Non-trivial motion requires to introduce an external electromagnetic field, which breaks

the Carroll boost invariance.

17 In a more standard language, H here is in fact the Hamiltonian.
18 Note that the second condition is the one which forbids the kinetic mv2/2 term in the Lagrangian of

Carroll systems.
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Remarkably, the limited mobility of Carroll particles is related to partial breaking of the

Carroll symmetry. Indeed, if one considers a planar system with a broken Carroll boost

symmetry in (say the x) direction, then we see from (III.57) that H must not depend on

the orthogonal (i.e. y) variable (as well as satisfy some restrictions on the time dependence of

H ). There is no restriction on H in the remaining (i.e. x) direction, leaving the possibility

for motion in that direction.

The allowed resp. forbidden directions can also be identified using the conserved quanti-

ties. For the example considered above, the conserved quantity associated to the remaining

boost symmetry is iXϖ = βxxH (x) which forbids motion in the unbroken x-boost direc-

tion. Motion is instead allowed in turn along the broken Carroll boost in the y-direction. In

conclusion,

Theorem III.4. A regular dynamical system which is invariant under Carroll boosts in at

least 2 directions cannot move. If all but one Carroll boosts are broken, motion is forbidden

in the unbroken, but is possible in the broken boosts’ directions.

free Carroll no charge e = 0 charged e ̸= 0 in EM field in curved metric

m ̸= 0 no motion no motion no motion

m = 0, k = 0 no motion Hall motions no motion

m = 0, k ̸= 0 instantaneous motion helical/Hall motions geometric optics

Fermat particle straight lines

TABLE I: Motion of an unextended Carroll particle with vanishing spin, s = 0.

E. “No-particle” motion

So far we assumed that the momentum π does not vanish. However a curious degenerate

case arises for

π = 0, (III.59)

for which the KKS algorithm would yield identically zero Cartan (and thus Souriau) forms,

ϖm=0 ≡ 0 and σm=0 ≡ 0 , (III.60)
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respectively, — and thus no dynamics at all. However coupling “it” naively to electro-

magnetism by the rule (II.2) yields . . . a Carroll dynamics with a “purely electromagnetic

Souriau form ,

σ(0) =
e

2
Fijdx

i ∧ dxj + eEidx
i ∧ ds, (III.61)

whose characteristic foliation, in 2+1 dimensions, yields neverthess non-trivial equations of

motion. Remarkably, the electric charge drops out (as long as it does not vanish), leaving

us with

Corollary 2. Coupling minimally a charged degenerate “no-particle” with vanishing con-

served momentum, π = 0 (III.59) and therefore no free dynamics, (III.60), the system will

move by following the Hall law (I.2):

(xi)′ = ϵij
Ej

B
. (III.62)

How can a “no-particle” have non-trivial motion ? The mystery is clarified by observing

that belonging to the kernel of σ(0) means simply that the combined forces vanish along the

trajectories and perpendicularly to the “electric” direction the motion is thus “free”.

Alternatively, from the symmetry point of view, a Carroll boost X = β · x ∂s with

β = (βx, βy) is implemented on the Souriau 2-form (III.61) as,

LXσ
(0) = (E× β)dx ∧ dy , (III.63)

whose vanishing is consistent with Thm III.4 above.

The weird-looking “naked” electromagnetic Souriau form (III.61) can actually be derived

from the massive 2-form (III.17). Replacing p by mv we get,

σ(m) = mdv ∧ dx+ e
2
Fijdx

i ∧ dxj + eEidx
i ∧ ds . (III.64)

Then letting here m → 0 switches off the first term, leaving us just with (III.61). Using a

more conventional language, putting p = mv into the massive Carroll Lagrangian with EM

coupling (III.13) to get

Lem = (mv − eA) · x′ − eV , (III.65)

whose variational equations are, instead of (III.15)

m(xi)′ = 0 and mv′i = eEi + eBϵij(x
j)′ . (III.66)

Then letting here m → 0 switches off the first equation leaving (xi)′ undetermined, while

the second one becomes the Hall law, (III.62).
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F. Carroll “no motion”: interpretation through General Relativity

Carroll structures implying Carroll dynamics are plentiful in General Relativity: in fact,

any null hypersurface of a Lorentzian spacetime carries a Carroll structure [5, 73, 74].

Finding null hypersurfaces amounts to finding null geodesics; Carroll structures are thus

characterized by the motions of massless particles. Let us look at such particles in flat

spacetime. Their geodesic motion is given by the set of first order equations,

Ẋµ = P µ , (III.67)

Ṗ µ = 0 , (III.68)

where the dot denotes the derivative with respect to some affine parameter. Pick coordi-

nates (x, y, z, t) such that the momentum for outgoing massless particles be P = (0, 0, 1, 1) ,

yielding the spacetime diagram in figure 2.

z

ct

v
=
co
ns
t. u

=
const.

FIG. 2: Spacetime diagram. The light-cone is in blue. Photon trajectories are either outgoing

(ż > 0) depicted in green or ingoing depicted in red.

In- and outgoing null geodesics define new coordinates that are well suited for the study
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of null trajectories. Let us then introduce null coordinates u and v such that

u =
ct+ z

2
, v =

ct− z

2
. (III.69)

The next step is to compute the geodesic equation of motion (III.67) for a massless

particle, for an “outgoing” particle with momentum P chosen as above, for instance. We

readily see from (III.69) that u̇ = 1 and v̇ = 0, meaning that outgoing massless particles have

their trajectories along a v = const. hypersurface, while u is a natural evolution parameter.

Conversely, an ingoing massless particle would follow u = const. hypersurfaces, with v the

evolution parameter. The situation is depicted in figure 2. The other equations of an

outgoing particle are, from (III.67), given by,

dx

du
= 0 ,

dy

du
= 0 , (III.70)

where we used u as the evolution parameter.

What is said above allows us to understand why the “no-motion” statement for Carroll

particles is so natural: the v = const. hypersurfaces define the Carroll structure. Such a

structure would be described by 2 spatial coordinates x and y and by another one “along”

the null direction, u. Geometrically, u would be what we called the “Carroll time”. The

outgoing massless particles stay on these Carroll structures, and their equations of motion

are thus induced from the ambient spacetime (III.70). Thus there is “no motion” in the

(x, y) plane, as the induced momentum vanishes in the spatial directions, as expected for

Carroll dynamics.

For the Carroll structures that are found as null hypersurfaces in lorentzian spacetimes,

the intrinsic statement that Carroll particles do not move mean simply that particles move

in the null direction that defines the hypersurface, i.e. , that it follows a null geodesic in the

ambient spacetime. The massless particle has all its momentum directed toward the null

direction, and has no spare momentum left to deviate in the other directions. In that sense,

the statement of the Red Queen makes perfect sense for Carrollian physics.

So in a sense, we can think of Carroll structures/dynamics as an effective description of

phenomena which follow null geodesics. This also implies that finding Carrollian motion

means finding potential deviations from null geodesics.
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G. On the role of the mass

Comparison of the behaviors in the massive/massless cases yields further insight:

Eqn. (III.14) implies that the mass m ̸= 0 “glues” our particle to a fixed position. However

in the massless limit the particle is “liberated” and moves as in (III.62). The system has

obviously the half-broken Carrollian boost symmetry found earlier in Theorem III.4. This

non-analytical behavior of the mass-induced spatial “confinement” of the Carroll particle

has similar features with the conventional Hall effect (I.2) in two spatial dimensions.

The motion of a particle with a nonvanishing (even infinitesimally small, but nonzero)

electric charge e ̸= 0 is radically different from that of a particle with an exactly zero

charge e = 0. In the first case, the electromagnetic field generates the Hall motion of the

particle (I.2), while in the second case, the background field does not affect the motion

at all. Moreover, despite the paramount requirement of the nonvanishing electric charge

e ̸= 0, the Hall motion does not depend explicitly on the actual value of the electric charge

e (I.2). In the Hall conditions (with perpendicular electric and magnetic fields), the motion

is non-analytic in e as e = 0 and e ̸= 0 cases are qualitatively different.

The “no-particle” motion of the Carroll particle is a non-analytical phenomenon but now

in the particle mass rather than in the electric charge: the motion is radically different for

massive (m ̸= 0) and massless (m = 0) cases. The second similarity appears because the

actual value of the mass does not enter the solution of equations of motion for the Carroll

particle, similarly to the electric charge in the Hall effect.

IV. DOUBLY-EXTENDED CARROLL DYNAMICS

A. Free massive doubly-extended particle

A fact which escaped attention until recently is that that, in d = 2 space dimensions, the

Carroll group admits a two-parameter central extension [6, 31, 63]. Its central charges shall

be denoted by κexo and κmag, respectively whose non-vanishing will henceforth be assumed.

Such additional charges are allowed by the theory and they may play an important role for

planar systems with Carroll symmetry.

The doubly-extended group, C̃, can be represented by 6×6 matrices (Eqn # (2.9) in [31])
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to be compared with (III.1),

Ai
j 0 ci 0 ϵikb

k

−bkAk
j 1 f 0 Aexo

0 0 1 0 0

ckϵ
k
lA

l
j 0 Amag 1 −(f + b · c)

0 0 0 0 1


, (IV.1)

where Amag and Aexo are new parameters associated with the double extension. The extended

algebra has a 8-parameter moment map, µ(ℓ,g,π,m, κmag, κexo) with commutators,

[J3, Ki] = ϵijKj , [Ki, Kj] = ϵijAexo , [J3, Pi] = ϵijPj , [Ki, Pj] = δijP0 ,

[J3, P0] = 0 , [Ki, P0] = 0 , [Pi, Pj] = ϵijAmag , [Pi, P0] = 0 ,
(IV.2)

where J3 is the rotation, the (Ki) are boosts, the (Pi) spatial translations, (P0) is time

translation, and Aexo and Amag are the exotic and magnetic extensions, respectively.

More insight into the extended algebra structure is obtained by comparison with previ-

ously considered extensions. The one with Aexo is plainly the same as the “exotic” extension

considered for the planar Galilean algebra [50–52].

On the other hand, the “magnetic” extension which implies the non-commutativity of

spatial translations, [Pi, Pj] = ϵijAmag, does not appear in the Galilei algebra — while it can

appear instead in the extension of the planar Euclidean algebra, which is a subalgebra of

both of the Carroll and the Galilei algebras. Then one may wonder why does the magnetic

extension appear for Carroll, but not for Galilei.

Let us recall that in order to be a Lie algebra, the bracket operation should respect

the Jacobi identity, which imposes strong constraints. For the Galilei algebra, the Jacobi

identity for a time translation, a boost in one and a spatial translation in the other direction,

0 = [P0, [K1, P2]] + [K1, [P2, P0]] + [P2, [P0, K1]] = [P2, [P0, K1]] = [P2, P1]

requires the magnetic extension to vanishes. For the Carroll algebra instead, this identity is

trivially realized because Carroll time translation commutes with boosts.

The free doubly-extended model obtained by the KKS algorithm is, by construction,

symmetric w.r.t. the doubly-extended Carroll group C̃, with associated conserved quantities,
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ℓ = x× p+ 1
2
θp2 + 1

2
κmagx

2 + χ , angular momentum (IV.3a)

gi = m
(
xi + θ ϵijpj

)
, boost momentum (IV.3b)

πi = pi − κmag ϵijx
j , “impulsion” (IV.3c)

completed with m, κexo , κmag, cf. # (3.18) in [31] and sec.III for the terminology.

These quantities are analogous to the “exotic” Galilean expressions in a constant magnetic

field [51, 52]. The real constant χ in (IV.3a) is Carrollian/anyonic spin, defined in (IV.4).

The boost momentum g (IV.3b) plays a particularly important role, as it will be explained

below.

The unusual form of the “impulsion” π in (IV.3c) deserves a comment. First we note

that Ai = −1
2
(κmag/e)ϵijx

j is a vector potential for κmag viewed as a (constant) “internal

magnetic field”. Then π has the unexpected form πi = pi + 2 eAi, where p is just a

coordinate. However in terms of the canonical momentum Pi = pi − 1
2
κmagϵijx

j obtained

from the Lagrangian (IV.12), πi = Pi − 1
2
κmagϵijx

j = Pi + eAi.

Casimirs. When the mass does not vanish, m ̸= 0, we have four Casimirs [31]: κmag, κexo,

the mass, m, and the anyonic spin, χ, defined by,

m∗χ = m∗ℓ− g × π +
κexo
2m

π2 +
κmag

2m
g2 , (IV.4)

where

m∗ = m
(
1−κexo

m2
κmag

)
(IV.5)

is an effective mass, analogous to m∗
G in (II.14) in the Galilean case.

Eqn. (IV.4) is valid also form∗ = 0 when both the spin χ and the total angular momentum

ℓ drop out. In this case, realized for a special relation between the Casimir invariants

κmag · κexo = m2, we get:

1

m
g × π − 1

2κmag

π2 − 1

2κexo
g2 = 0 . (IV.6)

Multiplying (IV.4) by m2 ̸= 0 and then letting m→ 0 yields in turn the expression valid

in the massless case

χ = ℓ− π2

2κmag

− g2

2κexo
, (IV.7)
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where the Casimir invariants κmag and κexo are assumed to be nonvanishing. Equation (IV.7)

implies that the Carrollian anyonic spin χ is given by the angular momentum ℓ with contri-

butions coming from the impulsion π and the boost momentum g.

The KKS construction applied to C̃ yields, for a particle with mass m ̸= 0, the Cartan

resp. Souriau-forms with two additional terms [31],

ϖexo = p · dx +
θ

2
p× dp +

κmag

2
x× dx , (IV.8a)

σexo = dp ∧ dx+ 1
2
θ ϵijdp

i ∧ dpj︸ ︷︷ ︸
exotic

+
κmag

2
ϵijdx

i ∧ dxj︸ ︷︷ ︸
“internal magnetic′′

, (IV.8b)

defined on Carroll evolution space E (III.5), cf. # (3.10) in [31]. The constant

θ =
κexo
m2

(IV.9)

here is interpreted as the non-commutativity parameter, see (IV.11) below.

The terms with θ ∼ κexo in (IV.8) are those of exotic Galilean dynamics, (I.3), and are

in fact present also for relativistic anyons from which the Galilean model can be deduced

as it will be shown in sec. V. The terms with κmag are reminiscent of a (constant) “internal

magnetic” field, as mentioned above. Cf. also (II.12).

Eqn. (IV.8) is formally Ωexo − dH0 ∧ ds with zero Hamiltonian,

Ωexo = dp ∧ dx+
θ

2
ϵijdp

i ∧ dpj + κmag

2
ϵijdx

i ∧ dxj and H0 ≡ 0 , (IV.10)

cf. (III.6). Ωexo is a closed and regular (i.e. symplectic) 2-form on the s = s0 = const.

submanifold R2 × R2 =
{
x,p, s0

}
of the Carroll evolution space E .

When the effective mass m∗ is non-zero, m∗ ̸= 0 , i.e. κexo · κmag ̸= m2, the associated

Poisson brackets [6]

{
xi, xj

}
=

(
1

1− θκmag

)
θϵij ,

{
xj, pi

}
=

(
1

1− θκmag

)
δ j
i , (IV.11)

{
pi, pj

}
=

(
1

1− θκmag

)
κmag ϵij
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are identical with Eqn. (II.16) of the “exotic” Galilei case under the replacement κmag ∼ eB.

The first relation implies that the coordinates do not commute when κexo ̸= 0 and the last

one implies noncommuting momenta for κmag ̸= 0.

Alternatively (and equivalently when m∗ ̸= 0) we can consider the doubly-extended

Carroll Lagrangian defined on the evolution space E in (III.5) which has, two more terms

added to the free unextended Carroll Lagrangian L0 (III.11),

Lexo = p · x′︸ ︷︷ ︸
L0

+ 1
2
θ ϵijp

i(pj)′︸ ︷︷ ︸
exotic

+ 1
2
κmag ϵijx

i(xj)′︸ ︷︷ ︸
magnetic

. (IV.12)

The associated variational equations (which are valid without the assumption m∗ ̸= 0)

(xk)′ + θ ϵkl(pl)
′ = 0 , (pi)

′ − κmag ϵij(x
j)′ = 0 , (IV.13)

are integrated at once to yield the conserved vectors

xk + θϵklpl =const. = Qk , (IV.14a)

pi − κmagϵijx
j =const. = πi . (IV.14b)

In particular, the 2-vector Q = (Qk) in (IV.14a) is identified as the guiding center [37, 79].

The conservation of the boost momentum g in (IV.3) alone does not now imply immobility

for x – however it does imply that of Q in (IV.14a). Combining with the conservation of π

(IV.14b) then yields the pair of decoupled equations which involve the effective mass (IV.5),

m∗ (xi)
′ = 0 , m∗ (pi)

′ = 0 (IV.15)

which allow us to infer:

Theorem IV.1. A free doubly-extended Carroll particle with non-vanishing effective mass,

m∗ ̸= 0 in (IV.5), does not move.

However when the effective mass vanishes,

m∗ = 0 i.e. θ κmag = 1 i.e. κexoκmag = m2 , (IV.16)

then no conclusion can be drawn from (IV.15). Form∗ = 0 the determinant of the symplectic

form19,

det
(
Ωij

)
=

(
m∗

m

)2

= (1− θκmag)
2 (IV.17)

19 Compare with (II.14).
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becomes indeed zero, highlighting the fact that the variational system is singular, requiring

“Faddeev-Jackiw” reduction [51, 52, 66]. The dimension of the phase space drops from 4 to

2. The variables x and p become redundant however their (fixed) combination Q = (Qk) in

(IV.14a) is still a physical quantity. In its terms the reduced free symplectic form is simply

Ωred = κmag dQ
1 ∧ dQ2 =

1

θ
dQ1 ∧ dQ2 . (IV.18)

The reduced Poisson brackets and variational forms are thus{
Q1, Q2

}
red

= −θ , ϖred =
1

2θ
ϵij Q

idQj , Lred =
1

2θ
Q×Q′ . (IV.19)

The Hamiltonian H is identically zero and the equations of motion, Q′
i = {Qi,H }, are

therefore,

Q′
i = 0 ⇒ Q = Q0 = const. (IV.20)

consistently with (IV.14a). In conclusion,

Theorem IV.2. When the effective mass of a massive system vanishes, m∗ = 0, our free

massive doubly-extended particle model becomes singular. The dynamics of x and of p can

not be separately determined, however the guiding center Q in (IV.14a), remains fixed. The

conserved quantities in (IV.3) are expressed in terms of the guiding center alone,

ℓ =
1

2θ
Q2 angular momentum (IV.21a)

g = mQ boost momentum (center of mass) (IV.21b)

πi = − 1

θ
ϵikQ

k “impulsion” (IV.21c)

consistently with the loss of two physical degrees of freedom.

For m∗ = 0 the (no-)motion of the guiding center, (IV.20), follows directly from the

conservation of g or of π, themselves proportional to Qk.

We conclude that extended Carroll symmetry plays for the extended model a role analo-

gous to that of Carroll in the unextended case, with the effective mass m∗ (IV.5) replacing

the “naked” mass, m.

B. Massless doubly-extended particles

Let us now study the double extension of the massless Carroll particles discussed in section

III C. The coadjoint action of the Euclidean group (III.42) extends to one of the doubly
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extended Carroll group. The group element
(
A,b, c, f, Aexo, Amag

)
∈ C̃ is implemented on

µ̃0 = (ℓ,g,π,m = 0, κexo, κmag) ∈ c̃
∗
as,

ℓ→ ℓ− c× Aπ + b× Ag − 1
2
κexo b

2 − 1
2
κmag c

2 , (IV.22a)

gi → (Ag)i + κexo ϵijb
j (IV.22b)

πi → (Aπ)i − κmag ϵijc
j , (IV.22c)

whilem = 0, κexo, κmag are left invariant, [31]. Having κmag ̸= 0 in (IV.22b) then implies that

the norm of the momentum is not a Casimir invariant anymore [31]. We thus have only one

kind of massless doubly-extended particle — namely the trivial one associated with π = 0.

Put in another way, the “color” k in a chosen basepoint can be eliminated by a translation

which carries µ̃0 to the origin of the dual algebra, whose contribution to the KKS symplectic

form is therefore obviously zero. Thus the first term in (IV.8a) disappears, leaving us with

the “truncated” or “purely exotic” Cartan and Souriau forms,

ϖexo =
κexo
2

v × dv + 1
2
κmagx× dx , (IV.23a)

σexo =
1
2
κexo ϵijdv

i ∧ dvj︸ ︷︷ ︸
exotic

+ 1
2
κmag ϵijdx

i ∧ dxj︸ ︷︷ ︸
magnetic

, (IV.23b)

where we reverted to the v-notation since p = mv is not well-defined anymore20 which

further extends the “no-particle” model discussed in subsec. III E. Had we set the extension

parameters to zero we would find vanishing forms and thus no particle trajectories, as we

had observed before in section III C. However keeping the terms induced by the central

extension, we do find “trajectories”: the equations of motion become trivial and yield fixed

positions21,

(xi)′ = 0 , (pi)
′ = 0 ⇒ x(s) = x0 = const., p(s) = p0 = const. (IV.24)

Theorem IV.3. A “purely exotic” free massless doubly-extended Carroll particle (IV.23)

which has π = 0 does not move: the double extension eliminates the free motions we studied

in sec.III C.

This no-motion conclusion will be modified when the particle is coupled to external fields,

see the section below.

20 The same result is obtained alternatively by putting p = mv in (IV.8a) and then letting m → 0.
21 The vector u in the Fermat model of sec. III C is now ill-defined: null vectors have no direction.
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C. Coupling to a gauge field: eppur si muove

The free model can be coupled to an em field by the rule (II.2). The external and

“internal” magnetic fields combine into the generalized magnetic field:

B∗ = eB + κmag , (IV.25)

and yield non-commuting coordinates and momenta [31],

σexo = dpi ∧ dxi +
θ

2
ϵijdp

i ∧ dpj + 1
2
B∗ϵijdx

i ∧ dxj + eEidxi ∧ ds , (IV.26a)

{xi, xj} =
m

m∗ θ ϵij , {xi, pj} =
m

m∗ δij , {pi, pj} =
m

m∗ B
∗ ϵij , (IV.26b)

where the Carrollian effective mass which generalizes (IV.5) now involves the combined field

(IV.25),

m∗ = m (1− θB∗) , (IV.27)

assumed not to vanish22. For a static scalar potential V = V (x), E = −∇V , for example,

the Hamilton equations are [31]),

(xi)′ =− θ

1− θB∗ ϵ
ijeEj , (IV.28a)

(pi)
′ =

1

1− θB∗ eEi . (IV.28b)

The position x splits off from p which is coupled to x through the electric field, — but its

dynamics does not effect the motion of x.

These equations are reminiscent of but different from their Galilean counterparts in

(II.17): pi is missing from the “velocity” relation (IV.28a) which is purely anomalous,

whereas the Lorentz force is missing from the purely electric p-equation (IV.28b). The

external magnetic field is hidden in m∗ through B∗.

Theorem IV.4. The position coordinate x of a massive doubly-extended Carroll particle in

a static EM field with non-vanishing effective mass, m∗ ̸= 0, moves, namely by following the

(anomalous) Hall law, (IV.28a).

However combining the equations (IV.28) implies,

22 Compare with (II.12), (II.14) and (II.16) in the Galilean case.
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Theorem IV.5. The guiding center Qi = xi + θ ϵijpj in (IV.14a) of a doubly-extended

particle with m∗ ̸= 0, coupled to an electromagnetic field does not move,

Q′
i = 0 ⇒ Q = Q0 = const. (IV.29)

When m∗ ̸= 0 the real-space motion is recovered by solving the p equation and using

(IV.14a),

xi(s) = Qi
0 − θϵijpj(s) . (IV.30)

For constant EM fields s.t. m∗ ̸= 0, for example, the motion is perpendicular to the electric

field,

xi(s) = Qi
0 − ϵij

( eθ

1− θB∗

)
Ejs . (IV.31)

For vanishing effective mass, m∗ = 0 the x-motion can not be recovered as said before (and

consistently with (IV.28) and (IV.31)).

Another example is obtained by a radial electric field E = f(|x|) x̂, where f(|x|) is a

function of the radius in the d = 2 plane. Multiplying (IV.28a) by x̂ shows that the motion

which is circular. In terms of the complex variables ζ = x1 + ix2 and Π = p1 + ip2,

ζ(s) = |x0| exp[−iΩs] where Ω =
eθ

1− θB∗(|x0|)
f(|x0|)
|x0|

, (IV.32a)

Π(s) = i
|x0|
θ

exp[−iΩs] + Π0 =
i

θ
ζ(s) + Π0 . (IV.32b)

Thus the momentum rotates around Π0 = const. (which can be absorbed into the guiding

center) with the same angular velocity Ω as ζ, but with a phase advance by π/2.

For m∗ = 0 but E ̸= 0 the eqns (IV.28) are ill-defined, however their guiding center, i.e.

their combination Q in (IV.14a) remains fixed when m∗ changes sign by sweeping through

zero,
m∗

m
(Qi)′ =

m∗

m

(
(xi)′ + θ ϵijp′j

)
= 0 (IV.33)

by (IV.29), including at m∗ = 0. See Fig. 3 for an insight into the “phase transition”. The

external forces vary the frequency Ω = Ω(|x|) but the trajectories remain circular with fixed

radius |x0|/θ for all values of m∗, cf. [79].
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FIG. 3: Trajectories for unit charge and exotic parameter in a radial electric field E = x/|x|3 in

the plane for effective masses passing from negative to positive, unfolded in Carroll time s. The

rotation around the fixed guiding center Q(s) = Q0 speeds up when the effective mass increases

from m∗ < 0. The motion is instantaneous for m∗ = 0 and changes orientation for m∗ > 0.

D. Extension to vanishing Carroll mass, m = 0

The above results can be extended from massive to massless particles, i.e., such that

their Carroll mass vanishes, m = 0. The clue is to rewrite (IV.28) for m ̸= 0 as,

(xi)′ =
1

B∗ −m2/κexo
ϵijeEj , p′i = m2 eEi

m2 − κexoB∗ . (IV.34)

Then letting m→ 0 we get:

Theorem IV.6. A massless, charged doubly-extended Carroll particle in a combined electric

and effective magnetic field B∗ = eB + κmag in (IV.25) moves according to the generalized

Hall law,

(xi)′ = ϵij
eEj

B∗ and p′i = 0 . (IV.35)

We record for later use that the Hall law above can be derived form the first-order

Lagrangian resp. of Souriau form,

L2+1 =
1
2
B∗ϵijx

i(xj)′ − eV (x) , (IV.36a)

σ2+1 =
1
2
B∗ϵijdx

i ∧ dxj + eEidx
i ∧ ds . (IV.36b)

Returning to the Souriau framework, coupling the free massless particle with “purely exotic

dynamics”, (IV.23), to an external EM field by the rule (II.2) yields,

σm=0 =
1
2
κexo ϵijdv

i ∧ dvj + 1
2
B∗ϵijdx

i ∧ dxj︸ ︷︷ ︸
Ωm=0

+ eEidx
i ∧ ds . (IV.37)
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Viewed in another way, rewriting the Souriau form σexo (IV.26a) in terms of v = p/m and

then lettingm→ 0 suppresses the first term and yields once again (IV.37). The determinant

of the symplectic form Ωm=0 in (IV.37) is,

det
(
Ωm=0

)
= (κexo)

2(B∗)2 . (IV.38)

Thus our previous conditions κexo ̸= 0 and B∗ ̸= 0 guarantee that Ωm=0 is regular. However

the dynamics trivially projects to Carroll spacetime
{(

x, s
)}

: the first term in (IV.37) is

switched off, leaving us with (IV.36) and “forgetting” about the “irrelevant” dynamics of p.

What can be the physical realization of these particles? Rigorously speaking, there are no

strictly massless charged fields in the Standard Model of fundamental interactions in its low-

temperature phase, which is relevant to present-day phenomenology [97]. While genuinely

massive constituents of the model can be treated as effectively massless particles at very

high energies (such as leptons and quarks in heavy ion collisions [98]), they propagate in

three spatial dimensions and, therefore, are not relevant for the peculiar features of two-

dimensional physics considered in this section.

However, suitable examples do exist in the condensed matter context: massless charged

particles in two spatial dimensions were realized in graphene, a two-dimensional crystal made

of carbon atoms, discovered experimentally in 2004 [99]. In this material, the dynamics of

the low-energy electronic excitations is described by the 2 + 1 massless Dirac Hamiltonian,

H = ψ̄iα(∇− ieA)ψ + eV , (IV.39)

where α = (γ0γ1, γ0γ2) and γµ are spatial Dirac matrices in 2 + 1 dimensions. Being

charged, the massless electronic quasiparticles interact with the background electromagnetic

field Aµ = (V,A), thus providing us with a system that exhibits equivalences with quantum

electrodynamics [100].

In the absence of background electromagnetic fields, the Dirac particle described by the

Hamiltonian (IV.39) possesses the ’relativistic’ Dirac particle-like dispersion, εp = vF |p|,

where p = (p1, p2) corresponds to a quasimomentum of the particle with the origin at the

tip of a Dirac cone. The particles propagate relativistically with the Fermi velocity, vF ,

which is typically hundreds of times smaller than the speed of light.

The massless nature of the excitations free-standing graphene is protected by the sym-

metries of the underlying carbon crystal lattice, thus making the massless nature (m = 0)
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of these charged excitations (e ̸= 0) a robust feature of the material [101]. Therefore, the

quasiparticles in graphene can be viewed as a charged, doubly-extended Carroll particle in

the massless limit described in this section.

E. Carrollian anyons

Carroll particles with anyonic spin, χ ̸= 0 in (IV.3), can also be studied along the same

lines. The Souriau 2-form σexo (IV.26a) is generalized by following the rule (II.2),

σany = dpi ∧ dxi +
θ

2
ϵijdp

i ∧ dpj + 1
2
eB∗ϵijdx

i ∧ dxj + E∗
i dx

i ∧ ds , (IV.40)

where the electric field and the gradient of the magnetic field are again combined (as in

(II.23) in the Galilean theory), into an effective electric term 23,

E∗
i = eEi + µχ∂iB . (IV.41)

The equations of motion take the form (IV.28) with eE replaced by E∗.

The extension to zero mass is obtained along the same lines as above:

Theorem IV.7. Both massive and massless Carrollian anyons move by following the Hall

law (I.2) but with the electric and magnetic fields replaced by the effective values E∗ and B∗,

(IV.41) and (IV.25), respectively,

(xi)′ = ϵij
(
eEj + µχ∂jB

eB + κmag

)
= ϵij

(
E∗

j

B∗

)
and p′i = 0 . (IV.42)

Note here the double role played by the magnetic field B.

The massless limit can also be discussed in the Souriau framework. We start with (IV.40)

with m ̸= 0 and eliminate p in favor of v = p/m. Then letting m → 0 we get a regular

Souriau form which, compared to (IV.23b), has an additional “effective electric” term,

σany =
1
2
κexo ϵijdv

i ∧ dvj + 1
2
B∗ϵijdx

i ∧ dxj + E∗
i dx

i ∧ ds . (IV.43)

The kernel of σany yields the equation of motion (IV.35) [with pi replaced by vi].

23 A constant shift of the magnetic field, B → B+const., produces no effect since the spin coupling involves

only the gradient of B.
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free extended Carroll in EM field in curved metric

m ̸= 0 no motion generalized Hall no motion

m = 0, e ̸= 0 no motion generalized Hall no motion

m = 0, e = 0, µχ ̸= 0 no motion generalized Hall no motion

m∗ = 0 Q fixed, x motion undetermined

TABLE II: Motion of doubly-extended Carroll particles in d = 2 spatial dimensions.

The generalized Hall law (IV.42) contains an “anomalous” anyonic contribution activated

by the inhomogeneities of the magnetic field (IV.41). For massive particles, the anyonic term

can be interpreted as a conventional Zeeman force

F = gµBs∇B , (IV.44)

exerted by the spatial gradient of the transverse magnetic field B ≡ Bz on the particle

propagating in the plane. Here g is the Landé factor, and µB is the Bohr magneton. A

comparison of Eqs. (IV.41) and (IV.44) provide us with the identification eµχ ≡ gµBs.

In spintronic devices, the electrons with different orientations of their spins s ≡ sz are

split by the Zeeman force (IV.44). This phenomenon lies in the heart of a mesoscopic

Stern-Gerlach effect which provides an efficient spin filter for a current traversing a specially

fabricated device that incorporates an inhomogeneous magnetic field B = Bz [102].

Thus, two-dimensional Carrollian anyons can be interpreted as spin-polarized charged

particles with a nonzero Landé factor.

F. A toy model

Let us recall that an “exotic photon” studied in Ref. [32] is defined by being uncharged,

carry magnetic moment, anyonic spin, and have non-vanishing “exotic charges”,

e = 0, µ ̸= 0, χ ̸= 0 κexo ̸= 0, κmag ̸= 0 , (IV.45)

which corresponds to the Carroll Hamiltonian of a spinning anyon,

H = −µχB . (IV.46)

cf. (II.21). Its motion on the horizon of a black holewill be revisited in Sec. VI.
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The exotic photon is a massless, electrically-neutral particle which has spin and possesses

a nonvanishing magnetic moment. Although this particle carries a “bosonic” name, it can

be of a fermionic or even anyonic nature as well.

A distant physical analogue of the exotic photon in relativistic fundamental field theory

can be played by Dirac or Majorana neutrinos which, being almost massless and neutral,

could possess a sizable magnetic moment in certain exotic scenarios [89, 90]. A non-vanishing

neutrino magnetic moment would have important astrophysical and cosmological conse-

quences [91].

In the condensed matter setup, neutral fermionic excitations appear in strongly corre-

lated electronic systems in Kondo lattice materials such as, for example, the newly found

compound YbIr3Si7. Neutral fermions cannot, evidently, carry electric charge while they

can support thermal energy transfer endowing the charge insulator with metallic thermal

conducting properties. This type of exotic materials is sensitive to the background magnetic

field implying that neutral fermions couple to the magnetic degrees of freedom [92]. The cor-

responding electrically-neutral massless excitations are remote condensed-matter analogues

of the exotic photons proposed in Ref. [32].

Here we illustrate our theory by a massless particle24, m = 0, e = 0 , µχ = κmag = 1 , put

into the electromagnetic field

E(x) = f(|x|) x̂ and B(x) =
|x|

(1 + |x|2)3
. (IV.47)

For (IV.45) κexo drops out and (IV.42) reduces to,

(xi)′ = (µχ) ϵij
∂jB

κmag

and p′i = 0 , (IV.48)

which is indeed the key formula we used on the horizon used of a black hole [32]. The external

electromagnetic fields are switched off by e = 0 but there remains an effective electric field,

E∗ = µχ∇B, coming from the spin-field coupling, (II.21), with µχ behaving as an effective

charge and B as an effective potential. The various fields and the Hall motion (IV.48) are

shown in 4a-b. Fig. 5 prefigures Fig. 10.

An intuitive picture can be obtained by observing that the motion of our Carroll anyon in

24 In addition to photons and neutrinos in fundamental particle physics, uncharged and massless quasipar-

ticles also appear in the solid state context as phonon excitations in crystals and fluids.
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FIG. 4: (a) The planar magnetic field B(|x|) in (IV.47) (b) induces a radial effective electric field

E∗ = ∇B.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5
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0.5

1.0

E = B', m = 0, e = 0, κmag = 1, μχ = 1

FIG. 5: For uncharged particles the radial planar magnetic field B in (IV.47) induces a radial

effective electric field E∗. An “exotic photon” i.e. a mass and chargeless planar Carroll anyon

with nonzero spin χ, magnetic moment µ and magnetic charge κmag, (IV.45), rotates around the

origin along concentric circles, consistently with the generalized Hall Law, (IV.42). The rotation

stops on a ring of a fixed radius (marked by full dots in red) where the effective electric field

vanishes, E∗ = 0, and its direction is reversed when E∗ changes sign.

the effective electric field E∗ can can be pictured also as motion o,scrobed to the “Mexican

hat” potential −B(|x|) unfolded to three dimensions above the plane as shown in Fig. 6.
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FIG. 6: The motion of an anyon in the effective electric field E∗ can be lifted to “Mexican Hat”

potential surface −B(|x|) above the plane. The trajectories are horizontal “cords” (circles) starting

near the “top” with high velocities and, then decreasing progressively until we arrive at |x| = |x0|

where the force vanishes, E∗(|x0|) = 0, and the rotation stops. The “cord” degenerates to fixed

points around the “bottom rim”. Then, as we climb up the outer “flange” by letting |x| increase,

the anyon restarts to move with ever increasing velocity — however in the opposite direction. The

3D picture projects to Fig. 5.

For comparison, we consider also a charged particle,

e = 1 κmag = µχ = 1, κexo ̸= 0 . (IV.49)

As discussed above, such quasi-particles with might be relevant in Condensed Matter physics

(see also [27]).

Then we put both particles into the electric same electric field equal to the effective field

in the uncharged case,

E(|x|) = ∇B =
1− 5|x|2

(1 + |x|2)4
x̂ . (IV.50)

Then (IV.42) reduces to the usual Hall motion (I.2) with position-dependent frequency.

The magnetic and electric fields could be, in fact, chosen also independently, see (IV.25).

Pairing, for example, a constant electric field E = E0 = const., e.g., eE0 = eE0(1, 0) with

B = B(|x|) written in (IV.47),

E∗ = E0 + µχ
1− 5|x|2

(1 + |x|2)4
x̂ (IV.51)

yields Fig. 7.
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FIG. 7: Combining a constant external electric field E = E0 with ∇B induced by the spin-field

term (II.21) yields effective electric field E∗ (IV.41). Velocity and force are perpendicular, as

required by the Hall law. The number of equilibrium points has been considerably reduced.

V. CONTRACTION FROM RELATIVISTIC ANYONS

An insight into the physical origin of exotic Galilean symmetry has been provided by

its derivation from relativistic anyons [80] by a tricky contraction [81, 82]. Now we study

the Carrollian counterpart [2]: one defines the timelike coordinate x0 = s/c and then sends

c → ∞. We start with a massive and spinless particle, described by the Cartan 1-form

[59, 82],

ϖ = pµdx
µ = pidx

i −m

√
1 +

p2

m2c2
ds . (V.1)

Taking the limit c→ ∞, we readily recover the Cartan 1-form (III.4) for Carroll,

ϖ0 = pidx
i −mds . (V.2)

Notice that the Carroll limit is in fact more straightforward than the Galilean one, for which

the limit c → ∞ of mc2
√

1 + p2

m2c2
dt requires regularization, achieved in [82] by adding a

central extension i.e., working with the Bargmann model.

Now consider a massive relativistic model with spin. Generalizing the Jackiw-Nair ansatz

s = κc2 [81], we set s = χ+κc2 , whose Cartan form is (V.2) plus a term describing the spin
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state of the particle, ϖ = ϖ0 +ϖs. The rather complicated term ϖs can be read off from

# (4.1) in [82]. The result is seen not depend on the time coordinate. The Carrollian limit

of ϖs is therefore the same as in the Galilean case, and we end up with the Cartan form,

ϖany ≡ ϖ = pidx
i −mds+ κc2dϕ+ χdϕ+

θ

2
ϵijpidpj . (V.3)

The term κc2dϕ here diverges when c → ∞, however its exterior derivative behaves

regularly, yielding the exotic part of the symplectic form (IV.10) with κexo = κ,

Ωexo = dpi ∧ dxi +
κ

2m2
ϵijdpi ∧ dpj . (V.4)

Thus the exotic Carroll charge κexo is deduced from the relativistic anyon model, just as in

the Galilean case. The remarkably difference is however that we do not recover the second

charge, κmag by our contraction.

Some more insight can be gained by regularizing ϖ. We follow [82]. Consider a trivial

R-central extension to the Poincaré group. Its Cartan 1-form will be ϖ̃ = ϖ+αdθ. Now, we

choose α = −κc225 and θ = ϕ−w/c2 for some w ∈ R. This implies that αdθ = −κc2dϕ+κdw,

and thus,

ϖ̃ = pidx
i −mds+ χdϕ+

κ

2m2
ϵijpidpj + κdw . (V.5)

This expression is to be compared to ϖexo in (IV.8). The presymplectic structure has

gained one dimension, spanned by the parameter w. Such a situation arises in the “non-

exotic” Galilean case, where the infinite energy is regularized similarly [60, 82].

In conclusion, the exotic term is recovered (up to a total derivative), but the magnetic

term is missing, as it does also from the presymplectic 2-form dϖ, cf. (IV.8).

VI. HALL ON THE HOLE (MOTION ON THE HORIZON)

A genuine physical application of (possibly doubly-extended) Carroll dynamics is provided

by motion on the horizon of a black hole [15–19]. We first recall the following general

properties:

• A black hole is characterized by its mass M , angular momentum J and charge Q:

25 The quantity α has to be a constant (or depend only on θ) for αdθ to be exact.
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• The horizon H is a Carroll manifold [15–17];

• The horizon is a null hypersurface, therefore the geodesics constrained to it are neces-

sarily null [94],

ϵ = 1
2
gµν ẋ

µẋν = 0 , (VI.1)

see chapters 34.3 and 34.4 in [93].

• The geodesic dynamics can be extended by adding both exotic & spin-field (commonly

called spin-orbit) terms discussed in sec.IV.

This section is devoted to the study of an exotic photon defined in (IV.45) whose key

dynamical ingredients are, by (IV.43),

ϖspec =
1
2
κexo ϵijv

idvj + 1
2
κmag ϵijx

idxj + µχBdxids , (VI.2a)

σspec =
1
2
κexo ϵijdv

i ∧ dvj + 1
2
κmag ϵijdx

i ∧ dxj + µχ∂iBdx
i ∧ ds , (VI.2b)

Lspec =
1
2
κexo ϵijv

idv
j

ds
+ 1

2
κmag ϵijx

idx
j

ds
+ µχB . (VI.2c)

A. Schwarzschild Horizons

We first study the simplest black hole, which is the static and spherically symmet-

ric Schwarzschild metric, described by using (ingoing) Eddington-Finkelstein coordinates{
v, r, ϑ, φ

}
and natural units with the line element

g ≡ gµνdx
µdxν = −

(
1− 2M

r

)
dv2 − 2dvdr + r2(dϑ2 + sin2 ϑdφ2) , (VI.3)

where M is the mass of the Schwarzschild black hole. The Schwarzschild horizon, H, is the

hypersurface r = 2M , i.e. ,

H =
{
r = 2M, ϑ, φ, v

}
∼= S2 × R . (VI.4)

The dv2 component of the metric (VI.3) induced on H vanishes, whereas the radial com-

ponent disappears on the fixed-r hypersurface H, leaving us with the clearly degenerate

“metric”,

g̃ = g|r=2M = 0 · dv2 + 4M2(dϑ2 + sin2 ϑdφ2) . (VI.5)
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On the other hand,

ξ̃ = ∂v ≡ ∂s (VI.6)

is a nowhere vanishing vector which belongs to the kernel of g̃ where, to anticipate the role

of Carrollian time that it will play, we renamed v to s.

We conclude that the Schwarzschild horizon (S2 × R, g̃, ξ̃) has a Carroll structure [16]26,

as defined in sec. III.

The vector ξ̃ (called the generator of the horizon) is also a Killing vector field for the

Carroll metric in that Lξ̃ g̃ = 0. It is in fact a Killing vector field of the original Schwarzschild

spacetime, Lξ̃ g = 0, which becomes a null vector on the horizon,

g(ξ̃, ξ̃)|r=2M = 0 . (VI.7)

The Schwarzschild horizon provides us with an insight into the peculiarities of Carrollian

dynamics. One of them is that the horizon of (stationary) black holes can “trap” photons

i.e. , a photon may remain on the horizon forever. As a stationary horizon is always a null

hypersurface, and since photons travel in null directions, a photon could move along the

null direction defined by the (R component of the) horizon, thus staying on it forever. In

the Schwarzschild case for instance, this amounts to emit a photon right on the horizon and

radially outward, see Fig. 8. For details, see e.g. [93, §33.6].

“Photon trapping” is a nice thought experiment to understand Carroll geometries. Con-

sider a photon on a Schwarzschild horizon. We can look at its motion (or lack of motion)

intrinsically, on the horizon itself. On this surface, the photon is created at some point

(x0, s0) in (Carroll) time (where “Carroll time” is represented by the R-axis generated by

the null vector ξ = ∂s, and x0 ∈ S2). In order to stay on the horizon, the photon must have

its momentum directed along the generator ξ of the horizon. Its momentum is then zero in

the angular directions, and therefore the photon “stays in place” on S2. Its “trajectory” is

precisely the Carrollian “no-motion”, x(s) = x0.

The situation is illustrated by the Eddington-Finkelstein diagram on Fig. 8, cf. [93].

While this intuitive picture on the Schwarzschild horizon seems to imply no motion on this

instance of a Carroll structure, the horizon is 2+ 1 dimensional and thus might accomodate

doubly-extended (and potentially non-trivial) dynamics associated with the double central

26 Any null hypersurface in a Lorentzian spacetime is Carroll [13, 14, 73, 74].
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=

0
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2M

FIG. 8: Eddington-Finkelstein diagram of a Schwarzschild spacetime, with outgoing light rays

u = const. in green, highlighting key features such as the singularity, the horizon, and different

trajectories of outgoing photons. Infinitely far away from the black hole, space is Minkowskian.

However, the closer we get, the more the gravitational field bends the light cones inward, resulting

in outgoing photons taking an ever longer time to escape from the black hole region. Past the

horizon, the light cone is completely bent inward such that the only future-pointing directions are

toward the singularity. An outgoing photon emitted right on the horizon would have a vertical

trajectory, thus staying on the horizon.

extension discussed in sec.IV. However, it has been shown in [31] and recalled in section

IVC that the two charges κexo and κmag only couple to the electromagnetic field but not the

gravitational field. But the Schwarzschild spacetime carries no electromagnetic field. Hence,

Theorem VI.1. An uncharged massless (exotic or not) particle with purely outgoing mo-

mentum on the horizon of a Schwarzschild black hole stays fixed, but does not move.

This conclusion is valid also for spin-field interaction (IV.35) since B = 0

B. Motion on the Kerr-Newman horizon

Eqn. (IV.42) suggests that non-trivial motion may be possible on the horizon of a black

hole for a massless particle with magnetic moment µ ̸= 0, non-zero anyonic spin χ ̸= 0 and
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non-zero magnetic charge κmag ̸= 0, when the black hole has a non-uniform magnetic field

B ̸= 0 on the horizon.

Below we show that these conditions are met for a Kerr-Newman black hole , described

by its mass M , its angular momentum J , and its charge Q. In terms of Eddington-like

coordinates (v, r, ϑ, φ) [95], a Kerr-Newman metric can be written in the form 27,

g =− ∆

Σ

(
−dv + Σ

∆
dr + a sin2 ϑdφ

)2

+
sin2 ϑ

Σ

(
adv − (r2 + a2)dφ

)2
+ Σdϑ2 +

Σ

∆
dr2

(VI.8a)

Σ = r2 + a2 cos2 ϑ, ∆ = r2 + a2 +Q2 − 2Mr , (VI.8b)

where a = J/M . The (outer) horizon of a Kerr-Newman black hole is the a r = r+ = const.

hypersurface H defined by requiring28

∆ = 0 i.e. r =M +
√
M2 − (a2 +Q2) = r+ . (VI.9)

Then we consider again the 2 + 1 dimensional structure [16, 17] whose key ingredients are

the induced metric and a vector,

g̃ = g|∆=0 =
sin2 ϑ

Σ

(
a dv − (r2+ + a2)dφ

)2
+ Σdϑ2 , (VI.10a)

ξ = ∂v + ΩH∂φ where ΩH =
a

r2+ + a2
. (VI.10b)

Here ΩH is the angular velocity of the horizon.

The metric (VI.10a) is again singular, as seen from shifting the coordinates as (ϑ, φ, v) 7→

(ϑ, φ̃ = φ− ΩHv, v),

g̃ =
(r2+ + a2)2 sin2 ϑ

Σ
dφ̃2 + Σdϑ2 & ξ = ∂v . (VI.11)

The kernel is generated by the vector ξ which takes now the familiar form, g̃(ξ) = 0.

Thus we have a degenerate metric and a vector field in its kernel allowing us to conclude

that the horizon of a Kerr-Newman black hole carries indeed a Carroll structure (S2 ×

R, g̃, ξ̃). Viewed in the original spacetime, ξ is again null on the horizon and generates the

(R component of the) horizon.

27 The metric and its inverse are regular at ∆ = 0, as the dr2 terms cancel each other out.
28 In fact, there are two hypersurfaces which satisfying ∆ = 0. We are only interested in the behavior at the

outer radius r+ .
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Now if we were to study the näıve photon trapping on the horizon of a KN black hole

as we did for Schwarzschild, we would arrive at the same negative conclusion: we would

find no motion. However the Carroll manifold H has 2 + 1 dimensions and therefore can

accommodate the 2-parameter extension yielding an “exotic photon” (IV.45), which may

again be coupled to the electromagnetic field and which can move, as we will see it below.

In Eddington-like coordinates (v, r, ϑ, φ) [95]29 the electromagnetic tensor in the Kerr-

Newman spacetime is given by,

F =
2aQr sinϑ cosϑ

(r2 + a2 cos2 ϑ)2

(
adv − (r2 + a2)dφ

)
∧ dϑ+

Q(r2 − a2 cos2 ϑ)

(r2+ + a2 cos2 ϑ)2

(
a sin2 ϑdφ− dv

)
∧ dr .

(VI.12)

The magnetic field is conveniently derived by using the Hodge operator which interchanges

the electric and magnetic fields, ⋆F = Bidx
i ∧ dv + . . .. We then identify the magnetic field

induced on the horizon (r = r+) as B = Br|∆=0 = (⋆F )rv, which yields, in our case,

B =
Fθφ√
| det g|

∣∣∣∣∣
∆=0

=
(
2aQr+(r

2
+ + a2)

) cosϑ

(r2+ + a2 cos2 ϑ)
3 . (VI.13)

We note for later reference that the magnetic field is a function of ϑ only, B = B(ϑ), as

it follows from the axial symmetry of the Kerr-Newman spacetime. Non-vanishing B is

obtained for non-zero angular momentum J = aM and charge Q.

The electromagnetic field induced on the horizon,

F̃ = F |∆=0 =
aQr+ sin 2ϑ

(r2+ + a2 cos2 ϑ)2

(
adv ∧ dϑ+

(
r2+ + a2

)
dϑ ∧ dφ

)
, (VI.14)

seems to have a non-vanishing electric field component,

Eϑ = Fuϑ = (a2Qr+)
sin 2ϑ

(r2+ + a2 cos2 ϑ)2
. (VI.15)

However switching to co-moving coordinates, (VI.11), the coordinate transformation φ →

φ̃ = φ− ΩHv with ΩH given in (VI.10b),

F̃ → F̂ =
(
aQr+(r

2
+ + a2)

) sin 2ϑ

(r2+ + a2 cos2 ϑ)2
dϑ ∧ dφ̃ , (VI.16)

eliminates the electric field (VI.15): E = 0 on the horizon. Thus we are left with the pure

magnetic field (VI.13), which is indeed left invariant under this coordinate transformation.

29 0 ≤ ϑ ≤ π is oriented with ϑ = 0 at the north pole.
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C. Dynamics on the Kerr-Newmanblack hole horizon

Turning to the dynamics of an “exotic photon” (IV.45) we recall that it has no electric

charge, and therefore the terms eE and eB are switched off, leaving us with the effective

fields,

B∗ = κmag , (VI.17a)

E∗
ϑ = µχ∂ϑB = −µχ

(
2aQr+(r

2
+ + a2)

) (r2+ − 5a2 cos2 ϑ)

(r2+ + a2 cos2 ϑ)4
sinϑ , (VI.17b)

respectively. The fields B and E∗ = ∇B are shown on Fig. 9.
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FIG. 9: (a) The magnetic and (b) the effective electric field, B = B(ϑ) and E∗ = ∇B, respectively,

on the horizon of a Kerr-Newman black hole .

Thus the general (Hall) equations of motion (IV.42) reduce to30

(xϑ)′ = 0, (xφ)′ =
(
µχ(2aQr+

)
(r2+ + a2)

)(r2+ − 5a2 cos2 ϑ)

(r2+ + a2 cos2 ϑ)4
sinϑ︸ ︷︷ ︸

E∗
ϑ

·
( 1

κmag

)
︸ ︷︷ ︸
(B∗)−1

(VI.18)

which is the general Hall law with the cast (VI.17). The forces and velocities are depicted

in Fig. 10. The trajectories are horizontal (ϑ = const.) circles; the velocity is determined by

E∗
ϑ, shown in Fig. 9b. The angular velocity is maximal on the equator and goes smoothly

to zero as we approach the poles. Curiously, the angular velocity depends on the radius of

the horizon roughly as r−3
+ , which implies higher speed for a smaller black hole.

In conclusion, we get:

30 Here the coefficient µχ is included into E∗ for convenience, cf. (IV.41).
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FIG. 10: The horizon of a Kerr-Newman black hole (topologically a two-sphere) rotates around its

vertical axis. For an uncharged particle the usual EM fields are switched off but the spin-field term

induces an effective electric field E∗ ∝ ∇B indicated by vertical blue arrows. The horizontal

red arrows depict the velocity, (VI.18), of a massless, uncharged doubly-extended anyon on the

horizon. The force and the velocity follow the Hall law (I.2) which, in the case of the Kerr-

Newman black hole, has the form of (VI.18).

Theorem VI.2. A massless uncharged anyon with non-vanishing exotic charges κexo and

κmag moves on the horizon of a Kerr-Newman black hole by following the Hall law (VI.18).

The rotation we found is reminiscent of the known frame-dragging by a rotating black

hole. It is however unrelated to it: frame-dragging is hidden in the coordinates we used in

(VI.18). Our “Carroll time” coordinate s is defined indeed through ∂s = ∂v + ΩH∂φ, see

(VI.10b), with ΩH the angular velocity of the horizon: our coordinates are comoving with

the horizon. Equations (VI.13)-(VI.18) and Figs. 9-10 should be compared with those in
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flat space, discussed in sec.IV.

One could, theoretically, consider massless particles with electric charge, extending our

flat-case study in sect.IV to the curved spaces. Combining the effective fields would yield

a distorted version. Massless charged (quasi)particles are considered in condensed matter

physics [27].

The general Carrollian equations of motion used to derive (VI.18) depend on the spin-

orbit Hamiltonian (II.21), inspired from its flat spacetime form. However we cannot be sure

of its the precise expression in curved spacetime until 2+1 dimensional dynamics are derived

from an established theory in the ambient spacetime — which does not exists yet, to our

knowledge.

One could consider a general Hamiltonian of the form H = −µχB(ϑ), for some yet

unknown B(ϑ). It is straightforward to see that the conclusion of this section would not

change: there would still be motion on the horizon of the black hole, of the same qualitative

form: particles would still display an azimuthal motion.

D. Partially broken Carroll and BMS on the Kerr-Newmanhorizon

Carroll manifolds have been discussed in connection with BMS symmetry [11] – for the

good reason that the BMS group is the conformal extension of the Carroll group [12–14].

Let us briefly summarize how the relation goes. For more details, the reader is advised to

consult [13, 14]. The conformal symmetries of a (general) Carroll structure (C = Σ×R, g, ξ)

are vectorfields on C s.t.,

LXg = λg, LXξ = µξ with λ+ 2µ = 0 . (VI.19)

Such an X has the form,

X = Y +

(
λ

2
s+ T (x)

)
∂s (VI.20)

where (x, s) are coordinates on C and Y is a conformal vector field of (Σ, gΣ). The T (x)

(called “the super translations”) are arbitrary functions of the coordinate x. So the sym-

metry group of (C = Σ × R, g, ξ) is the semi-direct product Conf(Σ, gΣ) ⋉ T with T the

group of supertranslations T . When λ and thus also µ vanish, such a transformation is a

Carrollian isometry, whose form is

X = Y + T (x)∂s (VI.21)
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where Y is a Killing vector of the singular Carroll “metric” g on Σ.

For the round sphere Σ = S2 with its usual metric, for example, one has that

Conf(S2, dΩ2) = SL(2,C), and thus we get the BMS group: SL(2,C)⋉ T .

For the Kerr-Newmanhorizon (S2, g̃) with g̃ as in (VI.11), the conformal isometries are

found by solving the system of PDE,

2a2Y ϑ sinϑ cosϑ+ (r2 + a2 cos2 ϑ)(λ− 2∂ϑY
ϑ) = 0 , (VI.22)

2(r2 + a2)Y ϑ cosϑ+ (r2 + a2 cos2 ϑ) sinϑ(2∂φ̃Y
φ̃ − λ) = 0 , (VI.23)

(r2 + a2)2 sin2 ϑ∂ϑY
φ̃ + (r2 + a2 cos2 ϑ)2∂φ̃Y

ϑ = 0 (VI.24)

with Y ϑ, Y φ̃ and λ functions of (ϑ, φ̃). For isometries λ (and thus µ) vanish. The Killing

vector of the (spatial part of the) horizon is a rotation around the axis of the black hole [93],

Y = ∂φ̃ , (VI.25)

The spatial isometries of the Kerr-Newmanhorizon H are thus the same as that of the full

Kerr-Newmann spacetime, SO(2)⋉ T , generated by the

X = ∂φ̃ + T (ϑ, φ̃)∂s . (VI.26)

The symmetries of the equations of motion (IV.42), (xi)′ = ϵij
(E∗

j

B∗

)
, and p′i = 0, spelled

out on the horizon are conveniently encoded in the Lagrangian (VI.2c) [or equivalently, in

the Cartan form (VI.2a)]:

Lspec =
1
2
κexo ϵijv

idv
j

ds
+ 1

2
κmag ϵijx

idx
j

ds
+ µχB dxi . (VI.27)

where x = (ϑ, φ). The magnetic field is a function of ϑ only, B = B(ϑ) as seen from (VI.13).

Recall now the mechanical version of the Noether theorem : a vector fieldX is a symmetry

if it changes the Cartan form / Lagrangian by a surface term, δL = dfX . Then

QX =
∂L

∂(xi)′
X i − fX (VI.28)

is a conserved quantity31.

31 For aficionados of the Souriau approach [59], LXϖ = dfX implies that QX = iXϖ − fX is conserved.
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• The only isometries of the black hole spacetime are “horizontal” rotations generated

by X = ∂φ for which we find δL = −d
(
κmagϑ/2

)
, which combines to yield

πφ = κmagϑ . (VI.29)

Its conservation is manifest: trajectories of (VI.18) are “horizontal” (ϑ = const.). This

unusual form agrees with the (3.18c) in [31].

• The zeroth order term of super translations, i.e. a (Carrollian) time-translation X =

∂s leaves the Lagrangian / Cartan form invariant, providing us with the conserved

quantity

Q0 = µχB = −H , (VI.30)

which is indeed the Hamiltonian (IV.46) of a Carroll anyon.

• For an general super-translation X = T (ϑ, φ)∂s we have, instead,

LXϖ =µχB ∂iT dxi, (VI.31)

which is not closed in general,

d
(
B dT ) = dB ∧ dT ̸= 0 .

Thus the magnetic field breaks the supertranslation symmetry in general. However

remembering that B = B(ϑ) on the horizon, cf. (VI.13), the obstruction vanishes

when the supertranslation is “vertical”,

T = T (ϑ) . (VI.32)

For a C-boost for example, the φ-component must vanish, T (ϑ) = −βϑ
1ϑ . The asso-

ciated Noether quantity

Qϑ = µχ

(
−Bϑ+

∫
Bdϑ

)
(VI.33)

# (V.8) in [32], is a combination of the Carroll Hamiltonian H (VI.30) and the integral

of B. Complicated as it is, Qϑ depends on ϑ only, therefore its conservation implies,

once again, that the trajectories must have ϑ = const. (as we had found it). On the

contrary, φ-boost are broken and thus do not obstruct motion in the φ direction.
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• If the supertranslation happens to be induced by the magnetic field itself, e.g.

T ≡ Tn ∝ Bn (VI.34)

for some n = 0, . . . , then, we get a conserved quantity for each n,

Qn ∝
(
µχB

)n+1
= H n+1. (VI.35)

VII. CONCLUSION

Our investigations are devoted to the study of particles with Carroll symmetry, and to

their rôle in Hall-type effects.

From the very beginning, a fundamental question has concerned the mobility of such a

particle [5, 30, 32]. In the massive case, the “no-motion” statement follows either directly

from the eqns of motion, (III.7) or alternatively, from the conservation of the quantity

(III.10b), associated with Carroll boosts.

After having long limited interest in the subject, the “no-motion property” of Carroll

particles [2–4] is now, conversely, attracting new attention, namely for quasiparticles called

fractons (sect. III B), studied in condensed matter physics.

Putting a Carroll particle into an external EM field, the C-boost symmetry (I.1) may

be broken in one, but remain unbroken in the perpendicular direction and implying “no-

motion” in one, but allowing motion in the perpendicular direction — and realizing the Hall

scenario in eqn. (I.2).

The “no-motion” property changes radically for massless particles (sec.III C). The con-

servation of the boost momentum in the free case, (III.46), does not prevent motion any

more.

A remarkably fact is that the Carroll group has, in d = 2 dimensions, a double central

extension [6, 31, 63] with additional parameters we denote by κexo and κmag, respectively.

Taking them into account, and also that in d = 2 we can have anyons with spin χ and

magnetic moment µ, provides us with additional terms in their dynamics which may exhibit,

under certain circumstances, quite surprising behavior, which is however consistent with

the general formula (IV.42) in Theorem IV.7. The motion of extended Carroll particle is

subjected to a generalized (anomalous) Hall law which includes a Zeeman force acting on

the particle in inhomogeneous fields.

60



After presenting intuitively appealing toy models in sec.IVF in sec. VI we illustrated our

theory in the gravitational context.

Note added. During the final stage to complete this study we were informed about related

investigations on magnetized black hole horizons [96].
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