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Non colliding paths in the honeycomb dimer model and the Dyson process

In this paper we describe a natural family of random non-intersecting discrete paths in the dimer model on the honeycomb lattice. We show that when the dimer model is going to freeze, this family of paths, after a proper rescaling, converge to the extended sine process, obtained traditionally as the limit of the Dyson model when the number of particles goes to infinity.

Introduction

The Dyson model is a dynamic version of the Gaussian Unitary Ensemble in random matrix theory. It models a collection of identical charged particles diffusing, but repelling one another by electrostatic interaction. The trajectories of these particles are thus forced not to intersect. If we put these particles in an harmonic well of potential, the system reaches an equilibrium. When the number of particles grows to infinity, and in equilibrium, the system is invariant by translation in time and in space. It is described by a determinantal process, known as the extended sine process.

The dimer model belongs to discrete statistical mechanics. This system was introduced in the 1930's [START_REF] Fowler | Statistical theory of perfect solutions[END_REF] to model the adsorption of diatomic molecules on the surface of a crystal, and consists in a probabilistic study of perfect matchings of a graph. It is remarkable that this model is exactly solvable when no supplementary interaction between edges is imposed. The partition function as well as correlation functions can be expressed explicitly, and have a determinantal form: this is a model of discrete free fermions. We will look at a particular case, when the graph is (a subgraph of) the honeycomb lattice G.

It has been noticed several times that dimer models have some properties very similar to those of random matrices. In presence of boundary conditions, the dimer model may exhibit several behaviours. In some regions (called liquid regions, usually far from the boundary) correlations decay polynomially, and in some cases, the kernel used to 1 compute correlations between dimers along a given line is the discrete sine kernel (see for example [START_REF] Baik | Uniform asymptotics for polynomials orthogonal with respect to a general class of discrete weights and universality results for associated ensembles: announcement of results[END_REF][START_REF] Johansson | Non-intersecting paths, random tilings and random matrices[END_REF][START_REF] Okounkov | Random skew plane partitions and the pearcey process[END_REF]). Under a proper scaling, the continuous determinantal sine process is recovered, describing the bulk of large Gaussian Hermitian matrices [START_REF] Johansson | Non-intersecting paths, random tilings and random matrices[END_REF][START_REF] Boutillier | The bead model & limit behaviors of dimer models[END_REF]. In other regions, the configuration is frozen: there the configuration is almost deterministic. The behaviour of the system near the frontier between a frozen and a liquid region are related to the Airy process and thus to the statistics of the largest eigenvalue of a large Gaussian Hermitian matrix [START_REF]The arctic circle boundary and the Airy process[END_REF][START_REF] Ferrari | Step fluctuations for a faceted crystal[END_REF][START_REF] Okounkov | Random skew plane partitions and the pearcey process[END_REF]. See also [START_REF] Johansson | Eigenvalues of gue minors[END_REF][START_REF]The birth of a random matrix[END_REF] for other interesting results enforcing the relations between these objects. That is why dimer models are sometimes considered as discrete analogues of random matrices [START_REF] Kenyon | What is . . . a dimer?[END_REF].

In this article, we add to that list another example by relating the dimer model on the infinite honeycomb lattice with the Dyson model. A dimer configuration on the honeycomb lattice G can be described by the paths obtained by following the non horizontal dimers. The dimer model on G is endowed with a two-parameter family of ergodic Gibbs measure that are conditionally uniform. The two parameters can be seen as the drift of a path, and the average vertical distance between two successive paths.

We show that the extended sine process, obtained at the limit of the Dyson process in the bulk and in the steady regime, when the number of particles becomes infinite, is also obtained as the limit of Gibbs measures on dimer configurations of the infinite honeycomb lattice, after a proper scaling, when the drift is zero and the average distance goes to infinity.

Theorem 1. The family of discrete non-colliding paths in the honeycomb dimer model converges weakly, after a proper scaling, to the extended sine process.

The precise meaning of this convergence is explained in the beginning of Section 3. A possible strategy is to use Lindström-Gessel-Viennot [START_REF] Gessel | Binomial determinants, paths, and hook length formulae[END_REF]'s approach (see also [START_REF] Karlin | Coincidence probabilities[END_REF]) to describe the combinatorics of the non-intersecting paths in terms of determinants. However, we will make use of the technology introduced by Kasteleyn [START_REF] Kasteleyn | Dimer statistics and phase transitions[END_REF] and developed in [START_REF] Kenyon | Local statistics of lattice dimers[END_REF][START_REF] Kenyon | Dimers and amoebae[END_REF] to compute correlations between dimers.

The Dyson model, and thus the extended sine process can be obtained as the scaling limit of another statistical mechanical model, called the random vicious walks introduced by Fisher in [START_REF] Fisher | Walks, walls, wetting, and melting[END_REF] (see for example [START_REF] Katori | Functional central limit theorems for vicious walkers[END_REF]). In that model, a finite number of walkers on Z start at time T 0 from even integers and end at T 1 . The measure on these paths is the uniform measure on all configurations without intersections. What differs in this work from the vicious walkers case is that due to the ergodicity property of the Gibbs measures on dimer configurations, the family of path is already at the discrete level infinite, and invariant by (discrete) translations.

The paper is structured as follows: in Section 1, we give a brief description of the Dyson model, and the extended sine process, its limit when the number of particles goes to infinity, in the steady regime. In Section 2, we present some aspects of the dimer model on the infinite honeycomb lattice and its Gibbs measures, as well as the correspondence with a family of discrete non-colliding paths. In Section 3, we prove the weak convergence of the probability measures on the random paths in the dimer model to the extended sine process. The proof of two propositions used in that section are postponed to Section 4 and Section 5.

The Dyson model and the sine process

The Dyson model [START_REF] Dyson | A Brownian-motion model for the eigenvalues of a random matrix[END_REF] is defined as the motion of n identically charged diffusive particles λ 1 (t), . . . , λ n (t) repelled one from another by an electrostatic force, but attracted to the origin by an elastic force. This is a Markov process whose evolution kernel p(t, λ, µ) satisfies the following equation

∂p ∂t = 1 2 k j=1 ∂ 2 p ∂λ 2 j - ∂ ∂λ j ∂Φ(λ) ∂λ j p , (1) 
where the potential

Φ(λ) = -n j=1 λ 2 j + i<j log |λ j -λ i |. When n = 1, this is the Ornstein-Uhlenbeck process.
This process can be interpreted as the evolution of the eigenvalues of a random Hermitian matrix, where the diagonal entries evolve as an Ornstein-Uhlenbeck process with speed 2 and the real and imaginary parts of the entries above the diagonal , as an Ornstein-Uhlenbeck process with speed 1, all these motion being independent. The statistics of the eigenvalues at a fixed time are those of a random matrix from the Gaussian Unitary Ensemble (GUE) [START_REF] Mehta | Random matrices[END_REF]. This process is an example of a determinantal process where the correlation functions are given by determinants of the extended Hermite kernel, a space-time extension of the Hermite kernel appearing in the analysis of the GUE.

If we scale the Dyson process in the bulk when n goes to infinity, we get the sine process, a determinantal process associated with the extended sine kernel defined as

S(t -t, y -y) =        1 0 e -(t -t)φ 2 /2 cos φ(y -y) dφ π if t ≤ t - +∞ 1 e -(t -t)φ 2 /2 cos φ(y -y) dφ π if t > t (2)
When t = t , this reduces to the usual sine kernel sin(y -y) π(y -y) . The sine process describes an infinite system of particles repulsing each other by Coulomb force, and which is homogeneous both in space and time. Such a system has been studied in [START_REF] Dyson | A Brownian-motion model for the eigenvalues of a random matrix[END_REF][START_REF] Spohn | Interacting Brownian particles: a study of Dyson's model[END_REF][START_REF] Katori | Infinite systems of non-colliding Brownian particles[END_REF].

Statistics of occupation of the process can be expressed in terms of S: given τ 1 < • • • < τ k and (I j ) k j=1 a sequence of Borel sets of R, the probability that the number N I j (τ j ) of curves crossing I j equals n j at time τ j , for all j ∈ {1, . . . , k} is given by the following expression

P ∀ j ∈ {1, . . . , k}, N I j (τ j ) = n j = p∈N k (-1) |p| p! n! • • • (τ 1 ,I 1 ) n 1 +p 1 ו••×(τ k ,I k ) n k +p k det |n+p| S(ξ i -ξ j ) d n+p ξ (3)
where ξ i stands for the variables (τ, y) ranging over the ith factor of the Cartesian product (τ 1 , I 1 )

n 1 +p 1 × • • • × (τ k , I k ) n k +p k .
In this expression, we used multi-index notations:

n! = k j=1 n j !, |n| = k j=1 n j .
It will be convenient in the sequel to use also for z = (z 1 , . . . , z k )

z n = z n 1 1 • • • z n k k , ∂ n ∂z n = ∂ n 1 ∂z n 1 1 • • • ∂ n k ∂z n k k ,
and

{τ } × I = {τ 1 } × I 1 , . . . , {τ k } × I k ), ({τ } × I) n = ({τ 1 } × I 1 ) n 1 × • • • × ({τ k } × I k ) n k .
The probabilities in (3) can be seen as derivatives of a generating function for the joint distribution of N I 1 (τ 1 ), . . . , N I k (τ k ) : posing

Q(z) = Q {τ }×I (z) = E   k j=1 (1 -z j ) N I j (τ j )   = n∈N k (-z) n n! E N I j (τ j )! N I j (τ j ) -n j )! = n∈N k (-z) n n! ({τ }×I) n det |n| S(ξ i -ξ j ) d n ξ,
we have

P ∀ j ∈ {1, . . . , k}, N I j (τ j ) = n j = (-1) |n| n! ∂ n ∂z n Q {τ }×I (z) z=(1,...,1) . ( 4 
)
Thus, all the information about the N I j (τ j ) is encoded in the function Q {τ }×I .

The dimer model on the honeycomb lattice

Let G be the honeycomb lattice. Since all the cycles are even, there is a bipartite coloring of the vertices of G in white and black. The group Z 2 acts by color-preserving translations on G, generated by x and ŷ, and the fundamental domain contains one white vertex w 0 and one black vertex b 0 . They are represented in Figure 1. All the vertices of G are images of vertices of the fundamental domain under some translation of Z 2 . We label them by their color and element of Z 2 . We thus denote by

w x,y = w 0 + (x, y), b x,y = b 0 + (x, y).
the white vertex and the black vertex in the fundamental domain with coordinates (x, y). The edges of G are classified in 3 types, a, b and c, according to their orientations around a white vertex (see Figure 1b).

A dimer configuration C of G is a subset of edges such that every vertex of G is incident with exactly one edge of C. An example of a dimer configuration on a piece of the honeycomb lattice is presented in Figure 2. We now define probability measures on the set of all dimer configurations of G.

Gibbs measures and correlations in the honeycomb dimer model

When the graph is finite, one can easily define the uniform probability measure on dimer configurations. But since the honeycomb lattice is an infinite periodic graph, it is not possible to construct directly a uniform measure. However, it was proved in [START_REF] Kenyon | Dimers and amoebae[END_REF][START_REF] Sheffield | Random Surfaces: Large Deviations Principles and Gradient Gibbs Measure Classifications[END_REF] that there exists a two-parameter family of Gibbs measures on the set of dimer configurations, having the following properties:

• they are ergodic under the action of Z 2 by translation,

• they are conditionally uniform: if the configuration is fixed in some annular region of the graph, the configurations outside and inside the annulus are independent, and the measure induced inside is the uniform measure.

These measures are obtained as weak limits of grand-canonical probability measures on dimer configurations on tori G/nZ 2 , with different activities a, b and c for the different kinds of edges. The measure P a,b,c obtained this way depends only on the ratios b/a and c/a. This model is exactly solvable. The free energy as well as the correlation functions can be computed explicitly. Following Kasteleyn's ideas [START_REF] Kasteleyn | Dimer statistics and phase transitions[END_REF][START_REF]Graph theory and crystal physics[END_REF], Kenyon [START_REF] Kenyon | Local statistics of lattice dimers[END_REF] proved that under P a,b,c , the probability that the edges e 1 = (w

x 1 ,y 1 , b x 1 ,y 1 ), . . . , e n = (w x n ,y n , b x n ,y n )
are covered by dimers in the random configuration has a determinantal form and is given by the following formula

P a,b,c e 1 , • • • , e n = n i=1 weight(e i ) det 1≤i,j≤n K -1 (b x i ,y i , w x j ,y j ) . ( 5 
)
where weight(e) equals a, b or c depending of the type of the edge e, and

K -1 (b x ,y , w x,y ) = K -1 (b x -x,y -y , w 0 ) = |z|=|w|=1 z -(y -y) w x -x a + 1 w (b + cz) dz 2iπz dw 2iπw . (6)
K -1 is the inverse of the weighted bipartite adjacency matrix K, whose rows are indexed by white vertices and columns by black vertices.

K w,b = weight(e) if e = (w, b), 0 otherwise.
Kasteleyn discovered that this matrix K encodes all the combinatorics of the model. K is named after him the Kasteleyn operator. K -1 is called the inverse Kasteleyn operator.

The entries of K -1 are computed using Fourier transform where z (resp. w) is the multiplicator associated with translations in the y direction (resp. -x).

The decay of the entries of K -1 is directly related to the presence of singularities of the integrand on the unit torus T 2 = {(z, w) ∈ C 2 ; |z| = |w| = 1}. Depending on the weights, the behavior of the integral defining K -1 , and thus properties of the model can be drastically different:

• If a weight is greater than the sum of the two others, then with probability 1, we only see edges of one type (the type with highest weight). We say that the system is frozen. There are three frozen phases, each one corresponding to a type of edges.

• If (a, b, c) satisfy the triangle inequalities, then the density of each type of dimers is positive with probability 1, and correlations between dimers decay polynomially with the distance. The system is said to be in the liquid phase.

We will be interested in the phase transition between the liquid phase and the frozen a-phase, when b = c and a approaches b + c from below.

Non colliding paths in the honeycomb dimer model

The dual graph of the honeycomb lattice is the triangular lattice. This duality allows to define a bijection between dimer configurations of the honeycomb lattice and tilings of the plane by rhombi with a π 3 angle: one can associate to each edge the rhombus obtained by the union of the two dual faces corresponding to the endpoints of the edge. It will be convenient to use those two points of view.

The three types of rhombi, corresponding to the three types of edges, are also called a, b and c. To describe a tiling, it is sufficient to give the positions of tiles of type, for Figure 2: An example of a dimer configuration on a piece of the honeycomb lattice G. The corresponding tiling with rhombi is drawn in dotted lines.

example, b and c, forming left-to-right non-intersecting paths1 (see Fig. 3). A measure on dimer configurations can be viewed equivalently as a measure on tilings on the plane as well as a measure on non-colliding left-to-right paths.

When a approaches b + c from below, one sees more and more a-tiles, and the b/cpaths are more and more dilute : the average distance between two paths goes to infinity. The probability of seeing a piece of such a path in a finite window goes to zero as we approach the phase transition. To see something non trivial in the limit, one needs to rescale correctly the lattice in the same time as we let a go to b + c. To find the correct regime, it can be enlightening to look at the behavior of one single path.

Looking at a single path near the transition

In what follows, we will take b = c = 1 and a = 2 cos ε 2 . We will denote by P ε the Gibbs measure for these weights and K -1 ε the corresponding inverse Kasteleyn operator. For this particular choice of weights, after the change of variables u = w/ √ z and e iθ = z, K -1 ε has the following form:

K -1 ε (b x,y , w 0 ) = K -1 ε (x, y) = = π -π e iθ(-y+x/2) S 1 u x 2 cos(ε/2)u + 2 cos(θ/2) du 2iπ dθ 2π
.

The pole at u = -cos(θ/2) cos(ε/2) is outside of the unit disk if and only if 2 cos(θ/2) > a, i.e. if and only if θ ∈ (-ε, ε). The integral over u in the definition of K -1 ε can be computed Figure 3: A piece of a tiling of the plane with rhombi, in bijection with a dimer configuration on G. One can distinguish two left-to-right paths made of rhombi of type b and c corresponding to non horizontal dimers.

using residues, and we get the following expressions for the entries of that operator

K -1 ε (x, y) =        (-1) x+1 2 cos(ε/2) [-ε,ε] cos(θ/2) cos(ε/2) x e iθ(-y+x/2) dθ 2π if x < 0 (-1) x 2 cos(ε/2) [-π,π]\[-ε,ε] cos(θ/2) cos(ε/2) x e iθ(-y+x/2) dθ 2π if x ≥ 0 (7)
From ( 5), the probability of seeing an edge of type a is aK -1 ε (0, 0) = 1 -ε π . As a goes to 2, the non-intersecting paths become more and more distant, and one can believe that in the limit, these paths will behave almost like simple random walks, at least locally. This is indeed the case, as stated in the following lemma: Lemma 1. When b = c = 1, and in the limit a → 2 -, the left-to-right paths locally behave like simple random walks. More precisely, for any fixed n > 0, the distribution of n successive steps -up ( ) or down ( ) -in a left-to-right path converges to the uniform measure on { , } n . Proof. Let (0, y 0 ),. . . ,(n, y n ) be a sequence of Z 2 such that |y k+1 -y k | = 1 for all k ∈ {0, . . . , n -1}. For the sake of simplicity, we will write b j and w j instead of b j,y j and w j,b j . The sequence (y k+1 -y k ) can be interpreted as a sequence ω = (ω n ) of n steps: +1 for up, and -1 for down.

The fact that a left-to-right path of rhombi covers b 0 and then follows the sequence of steps ω can be formulated in terms of dimers as follows: the edge (w 0 , b 0 ) is not covered by a dimer, and the edges (b 0 , w 1 ),. . . ,(b n-1 , w n ) are covered by dimers.

Thus by formula (5), the probability that, given that a path covers b 0 , it follows the succession of steps ω, can be expressed as a determinant:

1 1 -aK -1 ε (b 0 , w 0 ) det    K -1 ε (b 0 , w 1 ) • • • K -1 ε (b n-1 , w 1 ) . . . . . . . . . K -1 ε (b 0 , w n ) • • • K -1 ε (b n-1 , w n )    . ( 8 
)
Using the explicit expressions for K -1 ε given in [START_REF] Fowler | Statistical theory of perfect solutions[END_REF], one sees that

K -1 ε (b j , w j ) = 1 2 + o(1), and K -1 ε (b j , w i ) = ε 2 + o(ε) for j < i.
The determinant in ( 8) is equal up to higher order terms to det

        0 1 2 • • • 0 0 1 2 . . . . . . . . . . . . . . . 0 0 1 2 ε 2 0 • • • • • • 0         = ε 2 n
and hence, the probability (8) equals

1 ε + o(ε) ε 2 n + o(ε) = 1 2 n + o(1) (9) 
When ε goes to zero, this conditional probability converges to the corresponding probability for a simple random walk.

Close to the phase transition, we are left with an infinite collection of random paths that individually behave locally like a random walk, but that are conditioned not to intersect with one another.

This individual random walk behavior is an indication that if we want to get a nontrivial model in the limit, we have to choose the same regime as the one giving a non trivial limit for the simple random walk: the diffusive regime.

Convergence to the extended sine process

For a fixed ε, we represent our paths of rhombi by continuous functions as follows. We first embed the honeycomb lattice H in the plane correctly. Recall that the vectors defining the coordinates on H are not orthogonal and that the horizontal direction is that of the vector ŷ -2x. In order to rescale the horizontal direction by a factor ε 2 and the vertical direction by a factor ε, we map every white vertex with coordinates (x, y) to the point with usual cartesian coordinates ε 2 8 x, ε 2 (2y -x) . This diffusive scaling seems natural since the paths of rhombi behave like random walks at small scales.

A path of rhombi is then encoded by the piecewise linear path joining all the white vertices covered by this path. We get a bi-infinite family of paths (X ε n (t)) n∈Z , indexed by time t ∈ R. By convention, the path corresponding to the index 0 is the one passing the closest to y = 0 at time 0.

Such a family of paths is in bijection with a random tiling with rhombi. The Gibbs measure P ε on tilings (or equivalently on dimer configurations of G) can therefore be viewed as a probability measure on C(R ∞ ), the set of continuous functions on R with values in

R ∞ = x = (x j ) j∈Z |∀j ∈ Z x j ∈ R . The space R ∞ is a complete separable metric space with the metric dist(x, ȳ) = +∞ k=-∞ 1 2 |k| |x k -y k | 1 + |x k -y k |
The topology induced by this distance is the topology of coordinatewise convergence, and the sets

B k,ε (x) = ȳ ; ∀ j ∈ {-k, . . . , k} |y j -x j | < ε
form a basis for this topology. One can then define a topology on C(R ∞ ), using the || • || ∞ norm with respect to that distance on R ∞ , which allows to define the notion of weak convergence of probability measures on C(R ∞ ): a sequence of probability measure (P ε ) on C(R ∞ ) converges weakly to P if for all functions f on C(R ∞ ) continuous for the topology defined, lim

ε→0 E ε [f (X)] = E[f (X)],
where E ε and E are the expectations with respect to P ε and P respectively, and X represents the random family of paths. The aim of this section is to prove the main result of this paper Theorem 2. The probability measures (P ε ), as measures on bi-infinite families of continuous paths on R, converge weakly in C(R ∞ ) to the sine process.

The proof of the convergence of the ensemble of paths to the sine model is based on precise asymptotics of the inverse Kasteleyn operator when ε goes to zero, that are proved in Lemma 2. These asymptotics allow us to prove that the finite dimensional distributions of P ε converge to those for the sine process in Proposition 1. Then we prove that (P ε ) is tight in Proposition 2. A key point of the proof of this proposition is a simple comparison between probability for paths of rhombi and for simple random walks given by Lemma 3.

Since the proofs of Proposition 1 and 2 are rather long and technical, they are exposed separately, in Section 4 and 5 respectively.

Let us begin with the asymptotics of the kernel in the scaling regime described above, when ε goes to zero.

Lemma 2. For every

ε > 0, let (x ε , y ε ) ∈ Z 2 such that lim ε→0 1 8 ε 2 x ε = T ∈ R, lim ε→0 1 2 ε(2y ε -x ε ) = Y ∈ R. ( 10 
)
Recall that a = 2 cos ε 2 .

• If T = 0, then lim ε→0 (-1) xε+1 ε aK -1 ε (x ε , y ε ) = e T S(T, Y ). ( 11 
) • If x ε = 0 and y ε = 0, lim ε→0 -a ε K -1 ε (0, y ε ) = sin(Y ) πY = e 0 S(0, Y ). ( 12 
)
• If x ε = 0 and y ε = 0,

lim ε→0 1 -aK -1 ε (0, 0) ε = 1 π = e 0 S(0, 0). ( 13 
)
Moreover, the quantities aK -

1 ε (x ε ,y ε ) ε (or 1-aK -1 ε (0,0) ε if (x ε , y ε ) = (0, 0)) are uniformly bounded in ε.
This lemma shows that the discrete kernel for the dimer model on the honeycomb lattice converges, up to a factor e T and except for the third case, to the extended sine kernel. It is based on the exact formulae for K -1 ε given in Equation [START_REF] Fowler | Statistical theory of perfect solutions[END_REF].

Proof. Suppose first that T < 0. In this case, for ε small enough, x ε < 0 and

K -1 ε (x ε , y ε ) = (-1) x ε+1 a ε -ε 2 cos(θ/2) a xε e i(-y ε +x ε /2)θ dθ 2π = (-1) x ε +1 a ε -ε cos(θ/2) cos(ε/2) 8T ε 2 (1+o(1)) e -iθ Y ε (1+o(1)) dθ 2π = ε(-1) x ε +1 a 1 -1 cos εφ 2 cos ε 2 8T ε 2 (1+o(1)) e -iY φ(1+o(1)) dφ π = ε(-1) x ε +1 a 1 -1 1 - ε 2 (φ 2 -1) 8 + o(ε 2 ) 8T ε 2 (1+o(1))
e -iY φ+o (1) dφ 2π

When ε goes to zero, the integrand converges to e T e -φ 2 T e -iY φ . A simple application of Lebesgue dominated convergence theorem shows then that

lim ε→0 (-1) x+1 ε aK -1 ε (x ε , y ε ) = e T 1 -1 e -φ 2 T e -iY φ dφ 2π = e T 1 0 e -φ 2 T cos(Y φ) dφ π = S(T, Y ). ( 14 
)
When T > 0, then x ε > 0 for ε small enough, and we have

K -1 ε (x ε , y ε ) = (-1) x ε a [-π,π]\[-ε,ε] 2 cos(θ/2) a x ε e i(-yε+xε/2)θ dθ 2π (15) = (-1) x ε a π ε 2 cos(θ/2) a xε cos (-y + x/2)θ dθ π . ( 16 
) ( 17 
)
If we change the variable in the integral, defining φ = εθ, we get

K -1 ε (x ε , y ε ) = ε(-1) x ε a π/ε 1 cos εφ 2 cos ε 2 8T ε 2 (1+o(1)) cos(Y φ + o(1)) dφ π = ε(-1) x ε a A 1 cos εφ 2 cos ε 2 8T ε 2 (1+o(1)) cos(Y φ + o(1)) dφ π + ε(-1) x ε a π/ε A cos εφ 2 cos ε 2 8T ε 2 (1+o(1)) cos(Y φ + o(1)) dφ π
for a given large number A. The second integral can be bounded by

ε(-1) xε a π/ε A cos εφ 2 cos ε 2 8T ε 2 (1+o(1)) cos(Y φ + o(1)) dφ π ≤ Ce -T (A-1)+o(1) (18) 
uniformly in ε. Lebesgue's dominated convergence theorem shows that the first integral converges to

e T A 1 e -φ 2 T cos(Y φ) dφ π ( 19 
)
As a consequence, letting A go to ∞, we get

lim ε→0 (-1) x ε +1 ε aK -1 ε (y, x) = -e T +∞ 1 e -φ 2 T cos(Y φ) dφ π . ( 20 
)
When x ε = 0, K -1 (x ε , y ε ) given by

K -1 ε (0, y ε ) = 1 a π ε cos(y ε θ) dθ π . ( 21 
)
If

y ε = 0, then -a ε K -1 ε (0, y ε ) = - a ε sin(πy ε ) -sin(εy ε ) aπ = sin(Y ) πY + o(1). ( 22 
)
However, if

y ε = 0, K -1 ε (0, 0) = π-ε aπ and thus lim ε→0 1 -aK -1 ε (0, 0) ε = 1 π . ( 23 
)
The uniform bounds are obtained directly form the expression of K -1 ε given by ( 7). When T < 0,

a ε K -1 ε (x ε , y ε ) = 1 ε ε -ε 2 cos(θ/2) a x ε e iθ(-y ε +x ε /2) dθ 2π ≤ 1 π 1 -ε 2 2 -x ε /2 ≤ C. ( 24 
)
When T > 0,

a ε K -1 ε (x ε , y ε ) = 1 ε [-π,π]\[-ε,ε] 2 cos(θ/2) a x ε e iθ(-y ε +x ε /2) dθ 2π ≤ 1 π 1 -ε 2 2 -x ε /2 π ε 1 e -ε 2 x ε 8 t 2 dt ≤ C. ( 25 
)
When x ε = 0, the bound is obtained by a direct evaluation of [START_REF] Fowler | Statistical theory of perfect solutions[END_REF].

As in the case of the extended sine process, for given times τ 1 , . . . , τ k and unions of intervals I 1 , . . . , I k , we can compute for every ε the probability that for every j, the number N ε I j (τ j ) of paths in I j at time τ j equals n j . The following proposition states that these probabilities converges to the corresponding probabilities for the sine process.

Proposition 1. The finite dimensional distributions of X ε converge to that of the extended sine process.

For all τ 1 , . . . , τ m ∈ R, and I 1 , . . . , I m ⊂ R finite unions of intervals,

lim ε→0 P ε N ε I 1 (τ 1 ) = n 1 , . . . , N ε I k (τ k ) = n k = P [N I 1 (τ 1 ) = n 1 , . . . , N I k (τ k ) = n k ] (26)
We prove also tightness of the family of probability measures (P ε ) in C(R ∞ ). Since R ∞ is a nice complete separable metric space, tightness is characterized by the following two properties [START_REF] Billingsley | Convergence of probability measures[END_REF] we have to check:

Proposition 2.
i) The sequence of distributions of (X ε (0)) is tight: for each η > 0, there exists a sequence of closed intervals

([-b k , b k ]) k∈Z such that ∀ε, P ε [∃ k ∈ Z, X ε k (0) / ∈ [-b k , b k ]] < η (27)
ii) For each L > 0, for each positive δ and η, there exists an α ∈ (0, L) such that

∀ε, P ε    sup -L/2<s,t<L/2 |s-t|<α dist X ε (s), X ε (t) > δ    < η (28)
Tightness and convergence of finite dimensional distributions of the family (P ε ) imply the weak convergence of this family to a probability measure on C(R ∞ ) whose finite distributions coincide with that of the sine process. The family of discrete random paths therefore converges weakly to the family of random continuous paths described by the sine process. This ends the proof of Theorem 2, modulo the proof of the two last propositions.

Proof of proposition 1

This section is devoted to the proof of the convergence of finite dimensional distributions of the family (P ε ). This is done by studying the convergence of generating functions Q ε for the distribution of the number of visits of a finite number of intervals at given times when ε goes to zero.

We denote by τ ε the quantity τ 8ε 2 and (I) ε τ the set of integers

(I) ε τ = y ∈ Z |ε(y - 1 2 τ ε ) ∈ I .
The set of white vertices with coordinates (x, y) ∈ {τ ε } × (I) ε τ are the closest to {τ } × I.

The function

Q ε of the variable z = (z 1 , . . . , z k ) ∈ C k defined by Q ε (z) = E ε   k j=1 1 -z j ) N ε I j (τ j )   = n∈N k E ε   k j=1 N ε I j (τ j )! N ε I j (τ j ) -n j !   (-z) n n! ( 29 
)
where

z n = k j=1 z n j
j , is a generating function for the probabilities we are interested in. Indeed, from (4), we have:

P ε N ε I 1 (τ 1 ) = n 1 , . . . , N ε I k (τ k ) = n k = p∈N k (-1) p n! p! E ε   k j=1 N ε I j (τ j )! N ε I j (τ j ) -(n j + p j ) !   (30) = (-1) n n! ∂ n ∂z n Q ε (z) z=(1,...,1) . ( 31 
)
We will show that Q ε converges to the corresponding generating function for the extended sine process. For this, we first compute the quantities E ε k j=1

N ε I j (τ j )! N ε I j (τ j )-n j !
and their limit when ε goes to 0. These quantities are given by the sum over all distinct n j -tuples of white vertices in {τ ε j } × (I j ) ε τ j for j ∈ {1, . . . , k} of the probability that these white vertices are covered by a path of rhombi of type b and c, or equivalently, that the horizontal edges with weight a incident with these vertices are not present in the random dimer configuration. We have

E ε   k j=1 N ε I j (τ j )! N ε I j (τ j ) -n j !   = j=1,...,k y (j,1) ,...,y (j,n j ) ∈(I j ) ε τ j distinct P ε a τ ε 1 ,y (1,1) , . . . , a τ ε 1 ,y (1,n 1 ) , . . . , a τ ε k ,y (k,n k ) / ∈ C
(32) where a x,y is the horizontal edge with weight a incident with the white vertex with coordinates (x, y) in H, and C is the random dimer configuration.

Using multilinearity of the determinant and an inclusion-exclusion argument, one can write each of these probabilities

P ε a τ ε 1 ,y (1,1) , . . . , a τ ε 1 ,y (1,n 1 ) , . . . , a τ ε k ,y (k,n k ) / ∈ C (33) as a determinant det δ i,j -aK -1 ε (τ ε i -τ ε j , y i -y j ) = det |n|          1-aK -1 ε (τ ε 1 -τ ε 1 ,y (1,1) -y (1,1) ) ••• -aK -1 ε (τ ε k -τ ε 1 ,y (k,n k ) -y (1,1) ) . . . . . . . . . . . . . . . . . . . . . -aK -1 ε (τ ε 1 -τ ε k ,y (1,n 1 ) -y (k,n k ) ) ••• 1-aK -1 ε (τ ε k -τ ε k ,y (k,n k ) -y (k,n k ) )          (34) 
where i and j belong to the following list of indices (1, 1), . . . , (1, n 1 ), . . . , (k, 1), . . . , (k, n k ) , (

and the angular brackets i of a couple i = (i 1 , i 2 ) represent its first factor i 1 .

The determinant is unchanged if we multiply each column i by e -τ i (-1)

τ ε i and each line by e τ j (-1) -τ ε j . It follows from Lemma 2 that this determinant is asymptotic to ε |n| det S(τ i -τ j , Y ε i -Y ε j ) , (36) 
where

Y ε j = ε(y j -τ ε j ) ∈ I j .
The sum (32) becomes a Riemann sum converging as ε goes to zero to the following integral

• • • (τ 1 ,I 1 ) n 1 ו••×(τ k ,I k ) n k det S(ξ i -ξ j ))d n ξ. ( 37 
)
Therefore, the coefficients of Q ε (z) converge to those of Q(z), the generating function for the sine process. By Lemma 2, the entries of the matrix in (34) are uniformly bounded, say by M . By applying Hadamard's lemma , we bound the sum (32) by

E ε   k j=1 N ε I j (τ j )! (N ε I j (τ j ) -n j )!   ≤   k j=1 I j n j   (|n|M 2 ) |n|/2 (38)
uniformly in ε. Thanks to the additional factor 1 n! , the general term of the series in (30) is uniformly bounded for ε sufficently small and z in a compact set, by the general term of an absolutely convergent series. Thus, by Lebesgue's dominated convergence theorem, all the derivatives of the series Q ε (z) converge uniformly on compact sets of C k to the corresponding derivatives of the generating function Q(z) for the sine process. In particular,

lim ε→0 P ε N ε I 1 (τ 1 ) = n 1 , . . . , N ε I k (τ k ) = n k = P [N I 1 (τ 1 ) = n 1 , . . . , N I k (τ k ) = n k ]
where P is the probability measure for the extended sine process, with the kernel S given by (2).

Proof of proposition 2

This section is devoted to the proof of the tightness of the family of probability measures (P ε ) ε>0 . First, we check the point i) of proposition 2. Let η > 0. We look for a sequence of segments such that

∀ε, P ε [∃ k ∈ Z, X ε k (0) / ∈ [-b k , b k ]] < η
is satisfied. If we take a sequence verifying that

∀ k ∈ N b k = b -k and b k+1 > b k (39)
then the condition ( 27) is equivalent to

∀ε > 0 P ε [∃ k ∈ N, N b k < 2k + 1] < η (40)
where

N b k = N ε [-b k ,b k ] (0)
is the number of paths crossing the interval [-b k , b k ] at time 0. We will use Chebyshev inequality to get a bound on the probability (40). For this, we need first to estimate and bound the average and the variance of the random variable

N L = N ε [-L,L] (0 
) for any L > 0. The average of N L under P ε is given by

E ε [N L ] = y∈[-L ε , L ε ]∩Z P ε [there is a path crossing at (0, εy)] (41) = y∈[-L ε , L ε ]∩Z (1 -P ε [a y ∈ C]), ( 42 
)
where a y = a 0,y is the horizontal edge whose white end has coordinates (0, y) in H. There are 2 L ε + 1 integer points in [-L ε , L ε ], and

P ε [a y ∈ C] = 1 -ε π . Therefore, E ε [N L ] = 2 L ε + 1 ε π = 2L π 1 + o(1) . ( 43 
)
Moreover, the variance of N L is given by

Var ε (N L ) =E ε N 2 L -E ε [N L ] 2 (44) =E ε [N L (N L -1)] -E ε [N L ] 2 + E ε [N L ] < E ε [N L ] (45) Indeed, E ε [N L (N L -1)] -E ε [N L ] 2 ,
given by the following expression

y,y ∈[-L ε , L ε ]∩Z y =y P ε a y , a y / ∈ C -    y∈[-L ε , L ε ]∩Z P ε [a y / ∈ C]    2 = (46) = y,y ∈[-L ε , L ε ]∩Z y =y det 1-aK -1 ε (0,0) -aK -1 ε (0,y-y ) -aK -1 ε (0,y -y) 1-aK -1 ε (0,0) - y∈[-L ε , L ε ]∩Z 1-aK -1 ε (0,0) 2 (47) = - y,y ∈[-L ε , L ε ]∩Z y =y a 2 K -1 (0, y -y ) 2 -(1 -aK -1 ε (0, 0)) 2 2 L ε + 1 < 0 (48)
is a sum of negative terms. By Chebyshev inequality, we get

P ε N L < L π ≤ P ε N L -E ε [N L ] < L π ≤ Var ε (N L ) (L/π) 2 ≤ 2π L 1 + o(1) . (49) Thus, for η ≤ 3π 2 2 , taking b k = 2π 3 (k+1) 2 3η
, using the fact that for k ≥ 0,

2k + 1 ≤ (k + 1) 2 ≤ b k π ,
we finally get that

P ε [∃ k ∈ N, N b k < 2k + 1] ≤ +∞ k=0 P ε [N b k < 2k + 1] (50) ≤ +∞ k=0 P ε N b k < b k π (51) ≤ +∞ k=0 2π b k (1 + o(1)) = η 2 (1 + o(1)) ≤ η, (52) 
for ε small enough, uniformly in η. Therefore, the family of distributions of (X(0)) under P ε is tight. The proof of point ii) goes as follows. First, as the topology on R ∞ is that of coordinatewise convergence, the condition (28) is equivalent to

∀ L > 0, ∀ η > 0, ∀ k ∈ N, ∃ α ∈ (0, L), ∀ ε > 0, ∀ j ∈ {-k, . . . , k} P ε     sup s,t∈(-L 2 , L 2 ) |s-t|<α |X j (s) -X j (t)| > δ     < η. (53)
It is therefore sufficient to check this condition for each path separately. It is well-known that this property is true for simple random walks: for any δ > 0, there exists an α > 0 such that the number of properly rescaled walks (Y ε ) with N = L/ε steps such that sup

s,t∈(-L 2 , L 2 ) |s-t|<α |Y (s) -Y (t)| > δ (54)
is less than η2 N uniformly in ε. Therefore, by the following, rather technical lemma 3, since the probability of a sequence of steps of X j is bounded by a constant times the same probability for a simple random walk, we get by decomposing the event realisation by realisation of the path X j from 0 to L,

P ε     sup s,t∈(-L 2 , L 2 ) |s-t|<α |X j (s) -X j (t)| > δ     < C L • η, ( 55 
)
where the constant C L depends only in L.

Lemma 3. Let L > 0. There exists a c L > 0 such that for every ε small enough and every (ω n ) 0≤n≤ L/ε sequence of upward and downward steps, the probability that the first L/ε steps of a path of rhombi X ε j , conditioned on its starting position (x 0 , y 0 ), coincide with (ω n ), is bounded by

P ε first L ε steps of X ε j coincide with (ω n ) X ε j starts at (x 0 , y 0 ) ≤ c L 2 L/ε . (56)
If the number of steps was finite, one could have proceeded as in Lemma 1. However, here we want a control for a number of steps going to infinity as ε goes to zero.

Proof. Define g(x, y) = 1 2 ε -ε cos θ 2 x e iθ(-y+x/2) dθ 2π . ( 57 
) Since π -π 2 cos(θ/2) x e iθ(-y+x/2) dθ 2π = x k=0 x k π -π e i θ 2 (2k-x) e i θ 2 (-2y+x) dθ 2π = x y , (58) 
K -1 (x, y) can be rewritten as

K -1 ε (x, y) = -2 a x+1 g(x, y) if x < 0, -2 a x+1 g(x, y) -1 2 x+1 x y if x ≥ 0. ( 59 
)
Let N = L ε . Suppose that the sequence (ω n ) corresponds to a path covering the vertices

b 0 = b (0) y 0 , w 1 = w (1) y 1 , b 1 = b (1) y 1 , . . . , b N -1 = b (N -1) y N -1 , w N = w (N ) y N , (60) 
with y i+1 -y i = 1+ω i 2 . The probability that a path goes through these vertices is given by

P ε [ there exists a path through b 0 , w 1 , . . . , b N -1 , w N ] = det K -1 ε (b j-1 , w i ) = det K -1 ε ((j -1) -i, y j-1 -y i ) (61)
where the indices i and j refer to white and black vertices respectively and range from 1 to N . Multiplying simultaneously each column i of the matrix (61) by ( -a 2 ) -i and each row j by ( -a 2 ) j does not affect the determinant. This manipulation cancels the coefficients -2 a (j-1)-i+1 in the expression of K -1 (b j-1 , w i ), leading to a simpler expression for the determinant (61).

P ε [there is path through b 0 , w 1 , . . . , b N -1 , w N ] = det g((j -1) -i, y j-1 -y i ) - δ j>i 2 j-i j -1 -i y j-1 -y i , (62) 
where δ j>i = 1 is j > i and 0 otherwise. The matrix, the determinant of which we want to compute, is the sum of a matrix with entries g(x, y) = O(ε), and a strictly upper triangular matrix.

We have now to find an upper bound for the value of this determinant to get the estimate stated in the lemma. We will use the Hadamard inequality, but a direct application of it would give too approximative a bound. We will have to make some more manipulations on the rows and columns of this matrix.

First, note that for every x ∈ {-N, . . . , N }, and y = y or y + 1, 

uniformly in x. Therefore, replacing for j ∈ {2, . . . , N }, column C j by C j -C j-1 , we get on the diagonal and under it entries that are O(ε 3 ) (except in the first column). It is important to observe that after these operations, the module of the entries (i, j) strictly above the diagonal does not increase, at least at the leading order in ε, and are bounded from above by a constant times (j -i) -1/2 , since

1 2 x+1 x y - 1 2 x x -1 y ≤ 1 2 x+1 x y ≤ 1 2 x+1 x x/2 ≤ 1 √ 2πx . ( 64 
)
Now, we use the second column to put 0 instead of the first entries of columns C j , j > 2 by making the substitution C j ← C j + α j,2 C 2 for a suitable value of α j,2 in the determinant. From the bound on coefficients, we see that |α j,2 | = O (j -2) -1/2 and that therefore, the module of the entries of column C j , j ≤ 3 does not increase more than by O (j -2) -1/2 ε 3 = o(1).

(65)

We then continue this procedure, and for 3 ≤ k ≤ N -1, we use column C k to eliminate the entries of the k -1th row on columns C j , j > k.

After this succession of operations, the entries (i, j) of the matrix with j > i + 1 are 0. The module of the other entries of column C j , j ≤ 2 increased at most by

O ε 3 √ j -2 + O ε 3 √ j -3 + • • • + O ε 3 j -(j -1) = O(ε 3 j) ( 66 
)
The probability we are interested is given by the determinant det 

         O(ε) 1 2 + O( √ 2ε 3 ) 0 • • • 0 O(ε) O( √ 2ε 3 )
√ N ε 3 ) O(ε) O( √ 2ε 3 ) • • • O( √ N ε 3 )          . ( 67 
)
Hadamard inequality states that a determinant is bounded by the product of the 2 -norm of its rows. In this particular case, it gives (71) Since the probability that there is a path of rhombi starting from b 0 is of order ε, we obtain the wanted bound for the conditional probability P ε the first L ε steps of X ε j coincide with (ω n ) X ε j starts at (x 0 , y 0 ) ≤

c L 2 N . ( 72 
)
for some constant c L depending on L. This ends the proof of the last lemma, giving the last argument to end the proof of theorem 2.
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 1 Figure 1: a) A piece of the honeycomb lattice. The fundamental domain is represented by the shaded region. The two vectors x and ŷ generate the group of translations preserving the graph G and its bipartite coloring. b) Weights a, b, c are assigned to edges according to their orientation around a white vertex.
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These non intersecting paths can be seen directly in the dimer picture by superimposing on top of the random configuration, the frozen a-configuration.
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