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Abstract: This work is a survey on approximate computing and its impact on fault tolerance,
especially for safety-critical applications. It presents a multitude of approximation methodologies,
which are typically applied at software, architecture, and circuit level. Those methodologies are
discussed and compared on all their possible levels of implementations (some techniques are applied
at more than one level). Approximation is also presented as a means to provide fault tolerance and
high reliability: Traditional error masking techniques, such as triple modular redundancy, can be
approximated and thus have their implementation and execution time costs reduced compared to the
state of the art.

Keywords: approximate; computing; reliability; safety-critical

1. Introduction

Approximate computing has been proposed as an approach for developing energy-efficient
systems [1], saving computational resources and presenting better execution times, and has been used
in many scenarios, from big data to scientific applications [2]. It can be achieved from a multitude
of ways, ranging from transistor-level design to software implementations, and presenting different
impacts on the integrity of the hardware and the quality of the output. Many systems, however,
do not take precision and accuracy as an essential asset. Those are the ones that can profit from this
computational paradigm [3].

Even on systems where quality and accuracy are essential, the mere definition of a good quality
result can be malleable. On image processing, for instance, the final output is evaluated through
human perspective (the quality of the image). This perspective is subjective: Some people are more
capable of analyzing the quality of an image than others, and the definition of a “good enough” quality
is even more debatable. Typical error-resilient image processing algorithms can indeed accept errors of
up to 10% [4], which would be unacceptable for a military system calculating the trajectory of a ballistic
projectile. However, this margin of error acceptance can be exploited to improve energy consumption
and execution performance.

The weak definition of “error acceptance” can also be used by approximate computing for quality
configuration. Given that different systems have different quality requirements, a designer might make
use of just the necessary energy, hardware area, or execution time, to meet the needs of his project.
An excellent example of how a circuit can be configured in that manner is by using different refresh rates
for memories [5], or different precision for data storage and representations [6]. The image processing
domain is particularly interesting because it is an example of how approximation can be implemented
on different levels. A minor loss in precision can be accepted by applying approximation via hardware,
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by reducing the refresh rates of eDRAM/DRAM and the SRAM supply voltage, which reduces energy
consumption [7]. On a higher level of implementation (i.e., at software level), the approximation can be
used by loop-perforation (finishing a loop execution earlier than expected) [8] or by executing specific
functions on neural accelerators [9].

The common point among the above-listed approximation techniques is the reduction of the
“intrinsic reliability” of the application. Thus, the hidden cost of approximation techniques is the
reduction of the inherent fault tolerance of the application itself [10]. This cost has never been quantified
and taken into account as a metric by approximation techniques. However, it must be considered
specifically when the approximated application runs on a safety-critical system. Safety-critical systems
often deal with human lives and high-cost equipment and therefore shall provide high dependability.
Those systems are constantly subject to faults, given the dangerous environment they are subjected
(e.g., radiation for aerospace systems). When a fault affects the system in a way that is perceived by
the user or other parts of the system, we say that an error occurs [11]. A soft error occurs when it does
not permanently damage a system. A soft error is also called a single event upset (SEU). In some cases,
such as when there is exposure to intense radiation environments, electronic systems are affected by
multiple bits upset (MBU), but those cases are rare.

Various methods for approximation and their impacts will be presented in the next section.
Furthermore, the implementation of approximation on safety-critical applications is also discussed.

2. Approximation Methods and Their Impacts

Approximation techniques can be applied to all the computation stack levels. Figure 1 divides
approximation techniques into three groups that define their implementation level: Software,
architecture, and hardware. As Figure 1 shows, some approximation methods can even be implemented
on more than one level. Load value approximation, for example, can be both implemented by purely
software approaches or at memory control units. Figure 1 presents only some of the most used
approximation methods and the most discussed in the literature. However, there are uncountable ways
of approximating an application, and the very definition of what is to be considered an approximation
or not is debatable.

Approximate Computing
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Use of Neural
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Memory Access
Skipping

Functional
Approximation

Function
Skipping Voltage Scalling Using Inexact or

Faulty Hardware
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Figure 1. Approximate computing classification.
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The loop-perforation technique is an excellent software approximation example, being able
to achieve useful outputs while not executing all the iteration of an iterative code. Similarly,
task-skipping consists of skipping code blocks during run-time following previously defined
conditions. Another approximation technique for software applications consists of reducing the
bit-width used for data representation. This technique impacts mainly the memory footprint of the
application. Indeed, data precision reduction can also impact the execution time performance of
the software, but that would depend on the hardware implementation of operations in use by the
application. Hardware-based approximation techniques usually make use of alternative speculative
implementations of arithmetic operators. An example of this approach is the implementation of
variable approximation modes on operators [12]. Hardware approximation is also present in the image
processing domain in the form of approximate compressors [13].

The techniques presented in Figure 1 are presented in detail and with implementation
examples below:

Function Skipping: In a system composed of tasks that complement each other in the sense of
providing a final result, some of the tasks can be skipped while maintaining a level of accuracy
and error resiliency defined by the user [14];
Memoization: Traditionally, memoization consists of saving outputs of functions for given inputs to
be reused later. Given that some input data are frequently reused, their calculated outputs can be
stored and used without the need for the re-execution of the function. Memoization can also be used
to approximate applications, if similar inputs provide similar outputs for a given function, it means that
the already-calculated function output can approximately cover a range of inputs. In [15], the authors
propose approximate value reuse for memoization, providing a very low accuracy loss;
Loop-Perforation: In loop-based algorithms, loop-perforation can be used to highly reduce the
execution time. An excellent example of this type of application is numerical algorithms.
The calculation of an integral using the trapezoidal method, for example, consists of calculating
the area of a high number of trapezoids under the curve of a function, providing an approximation
of the area beneath it. Reducing the number of calculated trapezoids, the final value will be less
accurate, but the program will finish earlier. The literature also presents techniques to apply this
approximation method on general-use algorithms, filtering out the loops that cannot be approximated
and using loop-perforation on those that can [8]. Authors claim that their approach typically delivers
performance improvements greater than a factor of two while introducing an output deviation
of less than 10%. Loop-perforation is an algorithm-based approximate technique, as it is only
applicable to loop-based code, which limits its applicability. It can be implemented both at software
and programmable hardware code. The difference is that, on programmable hardware, a loop
might be implemented either as many circuits executing in parallel (one being each iteration of the
loop) or one circuit that is re-executed in a timeline. Therefore the impact of loop-perforation on
software and hardware implementations can be very different. On software, it will mainly impact the
execution time of the application, while in a FPGA implementation, it could also affect the energy and
area consumption;
Functional Approximation: Some systems are composed of components that do not need to provide
accuracy as much as others. The idea is to take advantage of the fact that even inside an algorithm,
some components affect less the final accuracy than others. Those components can be approximated
to provide energy consumption reduction and improve execution time performance [16]. On the
architectural level, functional approximation can appear as alternative speculative implementations of
arithmetic operators. An example of this approach is the implementation of variable approximation
modes on operators [12]. When applied to software applications, approximate computing usually
consist of inexact computations, which provide results with lower accuracy than usual [17].
Most approximate computing techniques for software consist of modifying the algorithm so that it
executes approximately, providing a final result more rapidly. One of the problems with functional
approximation is that it introduces error on the system output that may be too big to be acceptable.



Electronics 2020, 9, 557 4 of 15

The works at the architectural level of approximate operators [12], for example, that do not present
a significant hardware implementation area reduction when compared to a traditional operator.
The size of the used area on programmable hardware devices has a direct impact on system
reliability [18]. Therefore, the quality loss (in this case manifested as errors in some operation results)
introduced by the approximation would only be acceptable by safety-critical systems if it sharply
reduced its area;
Read/Write Memory Approximation: It consists of approximating data that is loaded from or written
in to the memory, or the read/write operations themselves. This is primarily used on video and
image applications, for example, where accuracy and quality can often be relaxed, to reduce memory
operations [19,20]. In [6], the authors propose a technique that uses dynamic bit-width based on the
application accuracy requirements, where a control system determines the precision of data accesses
and loads. The authors claim that it can be implemented to a general-processor architecture without
the need for hardware modifications by communicating with off-chip memory via a software-based
memory management unit. Approximation can also be applied to the cache memory. In the event of
a load data cache miss, the processor must fetch the data from the following cache level, or at the main
memory. This can be a very time-consuming task. Load value approximation can be used to estimate
an approximate value instead of fetching the real one from memory. In [21], the authors present
a technique that uses the GPU texture fetch units to generate approximate values. This approximation
causes an error of less than 0.5% in the final image output while reducing the kernel execution
time in 12%. In [22], the authors propose an approximation technique for multi-level cell STT-RAM
memory technologies by lowering its reliability up to a user-defined accuracy loss acceptance. This
memory technology has a considerable reliability overhead, which can be reduced. They selectively
approximate the storage data of the application and reduce the error-protection hardware minimizing
error consumption;
Data Precision Reduction: Data precision reduction is one of the techniques that can be implemented
both at a software and architectural level. Reducing the data precision of an application (i.e.,
the number of bits used to represent the data) is a straightforward technique to reduce memory
footprint. Reducing memory usage also reduces energy consumption at the cost of accuracy (i.e.,
less data have to be transferred from/to the memory). In [23], the authors show that reducing
floating point precision on mobile GPUs can bring energy consumption reduction with image quality
degradation. This degradation, however, can be acceptable and even unperceivable for the human
eye. Lower memory utilization is suitable for safety-critical systems because it reduces the essential
and critical bit count, making them less susceptible to faults. Reducing the bit-width used for data
representation is also a popular approximation method [24]. The way data precision reduction can be
used to approximate software and FPGA applications is obvious: It is a matter of code modification.
In software, the precision of floating-point units can be easily modified with the use of dedicated
libraries, or even by merely changing the type of the variable. The same can be done at VHDL/Verilog
projects: A design can be adapted to process smaller vectors of data. Data precision reduction can
bring good improvements in area and energy costs for hardware projects, but frequently do not present
high costs reduction on software. Fixed-point arithmetic, for example, can be used to approximate
mathematical functions, such as logarithm, on FPGA implementations providing low area usage [25].
On software, however, it can increase the execution time of the application because all the operations
and data handling routines are implemented at the software level;
Use of Neural Networks: A neural network can learn how a standard function implementation behaves
in relation to different inputs via machine learning. In a complex system, the neural network can be
used to implement approximate functions via software-hardware co-design. Traditional approximable
codes can be transformed into equivalent neural networks that present a lower output accuracy but better
execution time performance [26];
Memory Access Skipping: Using a combination of the memoization and function skipping techniques,
it is likewise possible to skip memory accesses. Uncritical data can be omitted, as long as it will not
heavily damage the output accuracy. Approximate neural networks can skip reading entire rows of
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their weight matrices as long as those neurons are not critical, reducing energy consumption and
memory access, and improving performance [27];
Voltage Scaling: The supplied voltage level can be scaled at the circuit level, impacting the
computation timing of processing blocks inside the clock period. It affects the accuracy of the
final result and also energy consumption [28]. In [28], the authors propose the voltage overscaling of
individual computation blocks, assuring that the accuracy of the results will “gracefully” scale with
it. Voltage scaling can be implemented in hardware dynamically. Dynamic voltage and frequency
scaling (DVFS), for example, is a power management technique used to improve power efficiency,
reducing the clock frequency, and the supply voltage of the processor [29]. DVFS can cause data
cells to be stuck with a specific value because it diminishes the threshold between a logical one
and zero. This type of approximation impacts the integrity of the hardware and the precision of
the data. The voltage scaling technique can be applied at both the processor architecture level and
programmable hardware. At the architectural level, voltage scaling is implemented during the design
of the circuit. Most FPGA manufacturers make the voltage scaling of the device possible through
easy-to-use design tools. Even though it will impact the performance of a software application, it is
not part of the software approximation group because its implementation has no direct connection
with software development;
Using Inexact/Faulty Hardware: Inexact and faulty hardware can be used at the architecture level
to provide an approximation. The literature presents a multitude of approximate adders proposals.
One approach is to remove the carry chain from the circuit to reduce delay and energy consumption.
This can be done by altering the subadders of a standard adder cell of n bits [30]. In [31], the authors
presented an approximate 2× 2 multiplier design that gives correct outputs for 15 of the 16 possible
input combinations and uses half of the area of a standard non-approximate multiplier.

As we can see, approximation techniques can be implemented not only in all the computation
stacks but also in many abstraction levels. The functional approximation is an example of a technique
that can be applied at the software and architectural computation stacks, and implemented via software
code modification, programmable hardware, and even on a circuit level. Loop-perforation can also be
achieved via code modification for embedded software and programmable hardware (using high-level
synthesis, HLS), or directly with HDL project modifications. The way the approximation techniques
are technologically implemented also has a considerable impact on their performance. Approximate
computing at the software level is less presented in the literature than it is at the hardware level. This is
probably due to the origins of approximation being on energy consumption reduction and neural
network applications.

Developing alternate approximate versions of an algorithm is a very time-consuming and
intellectually demanding work. To deal with this issue, some works propose frameworks that identify
approximable portions of code. At [32], the authors present a framework to discover what are
the data that can be approximated without significantly interfering with the output of the system.
They do so by injecting faults in the variables and analyzing how they affect the quality of the output.
Another method is to identify parts of application code that can be executed on approximated hardware,
saving resources and energy [33]. The type of approximation to be applied to the approximable parts of
the application would depend on the application in question and project requirements. Although those
frameworks are presented as general-use, the question remains if they really can be applied to every
type of algorithm. As they base their methodology on simulation, it is hard to believe that they are
able to cover every possible kind of fault that can affect every system.

Given the plethora of approximation methods and systems that make use of them, the literature
also presents an extensive list of error metrics definitions. Metrics can be applied on an application
level (e.g., the output image is analyzed) or the system level (e.g., intermediate values are analyzed).
Details about each metric can be found in [34]. Some examples of how precision loss is measured on
approximate systems are:
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• Application-Level:

– Pixel Difference: Consists of a full comparison of two images pixel-by-pixel, where every
pixel is represented by a value. Normally used to compare gray-scale images, where the
pixel value defines the grey intensity (the higher value being complete darkness);

– Peak signal-to-noise ratio (PSNR): Is calculated using the mean square error (MSE) between
the two images (the original and the approximate one), and indicates the ratio of the
maximum pixel intensity to the distortion. It is calculated by the formula PSNR =

10log10(MAX2/MSE), where MAX stands for the maximum value of a pixel in the images;
– Ranking Accuracy: When approximate computing is applied to ranking algorithms, such as

the ones used by search engines, it can generate different results depending on the ranking
definitions and the algorithms used. A research result from Bing and Google search engines,
for example, will likely be different. The accuracy is defined based on pre-established
parameters.

• System-Level:

– Hamming Distance: When comparing data bit-wise, the hamming distance consists of the
number of positions where the bit values are different between binary strings;

– Error Probability: Consists of the error rate of all the possible outputs, comparing the result
of an approximate function and its non-approximate counterpart. This metric gives the
probability for an approximation to present an error but does not evaluate the criticality or
impact of that error;

– Relative Difference: Presents the error in relation to the standard non-approximate output.
This metric is capable of evaluating the criticality of an error.

The presented quality evaluation metrics are not mutually exclusive. One application might use
several different parameters to evaluate its quality loss. Both PSNR and pixel difference are used as
image quality metrics, for example.

Approximation in Practice

Approximation might be unavoidable for some applications. On others, it might present good
opportunities to lower hardware costs and improve performance and reliability. The usage of
approximation is primarily motivated by three factors:

• Unavoidable Approximation: Some problems can only be computationally solved by
approximate algorithms. Floating-point operations, for instance, have frequent rounding of
values, making it inherently approximate. Numerical algorithms are also often of approximate
nature: The calculation of an integral, for example, is not natural for a computer, and consists
of an iterative calculation of a finite sum of terms (and not an infinite one, as the mathematical
theory defines it). A practical industrial example is the sensors systems of an airplane, that
always provide the pilot with an approximation of environmental values. Numerical algorithms
are also by themselves approximations and are often used to calculate areas or trajectories of
projectiles by military systems. On many computations, rounding happens very frequently (e.g.,
the rounding of a number when using trigonometrical functions, or writing data in either single-
our double-precision floating-point variable types);

• Quality Configuration: Even some parts of safety-critical systems are not critical themselves
and do not call for accuracy, as exemplified above with image processing systems. Indeed,
many applications do not need great accuracy. Apart from that fact, those that need a certain
accuracy or output quality often have a margin of acceptance. Indeed, the approximation can be
configured to provide different levels of accuracy, thus also provoking various levels of impact on
the system. The loop-perforation method, for instance, can be configured to provide approximation
up to the optimum point that correlates the loop-size, the accuracy of the result, and the execution
time. Similarly, data precision reduction can be easily configured as a means to impact the accuracy
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of the data on different levels. In that case, it would only be a matter of how many bits the binary
representation of the variable would lose. A designer could find the best approximation possible,
given his accuracy, energy consumption, and hardware usage requirements;

• Error Resiliency: As will be further discussed in this survey, the error resiliency that is inherent to
approximate computing is also an important source of motivation to use this computing paradigm.

When implementing approximate computing algorithms on safety-critical systems, one shall keep
in mind that criticality is not necessarily related to the system as a whole. A safety-critical system might
consist of many parts, and some of them are possibly not critical. Such is the case of an airplane. It is
easy to see an airplane as a safety-critical system. However, many parts of that system are not critical,
in the sense that a failure affecting those parts would not be catastrophic. A commercial airplane
transporting passengers would have, for instance, multimedia and in-flight entertainment systems.
Even though a transatlantic travel without those systems would be very dull, a failure affecting the
entertainment system of a commercial plane would not put in risk the lives of the passengers. However,
approximate computing requires attention to their applicability. Some approximation methods can
lower the quality of service at an unacceptable rate. While safety-critical systems can make use of
approximation to improve their performance, energy consumption, and even reliability, the sometimes
unpredictable behavior of approximate computing algorithms can be dangerous.

Figures 2 and 3 present examples of outputs from hardware implementations of a Sobel filter.
The Sobel filter takes as input an image and finds its borders. The output is a grayscale image,
with pixels ranging from the value 0 to 255 (being 0 black and 255 white). Sobel filter is often used in
autonomous system (i.e., drone) to pre-process frames coming from sensor camera to extract features
for real-time collision avoidance algorithms. Figure 2 presents an implementation that approximates
one of the operations using data precision reduction (each approximation contains one less bit than
the previous) and function approximation (the operations had to be re-designed to deal with the new
data sizes, so we can consider them approximations as well). Figure 3 presents an approximation
using loop-perforation. All the approximation examples shown in Figure 3 skip iterations on half of
the input image pixels (it can be noticed by the vertical rows that correspond to skipped iterations).
The difference among them, is the solution used to fill the missing pixels (i.e., skipped iterations) that
is white, black, and gray (i.e., 0, 255, or 127).

It is evident from the example above how approximation, and its intensity, affects the quality of the
image output. Figure 2 shows that the output from the first approximation (that reduces the data-size
in one bit) is the same as the original one. The second approximation (reducing the data-size of two
bits) is already enough to provoke a considerable quality loss. The third approximation provides an
image output that is barely recognizable as somewhat related to the original one. The loop-perforation
example of Figure 3 shows that this type of approximation implies on different approaches for the
output. Naturally, the part of the image that is not processed (because of the loop-perforation) needs
to be filled somehow. The example provides three simple solutions for that problem (filling missing
pixels with white, gray, or black). It could, however, be solved in much more elegant manners.

One option would be to calculate the value of the pixel Pi as
Pi−1 + Pi+1

2
(i.e., the mid-value between

the previous and the next pixel value). One could also use AI methods to predict possible values to fill
the image voids.

Approximate computing algorithms usage on safety-critical systems are also motivated by their
error-resilience. The following sections will present this behavior and how it applied to fault tolerance.
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Figure 2. Sobel filter implementation with reduced data size and precision in hardware-
implemented operators.
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Figure 3. Sobel filter implementation with loop-perforation approximation.
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3. Approximation and Fault Tolerance

On safety-critical systems, the definition of error is related to the occurrence of a fault, and not to an
expected quality deviation caused by the algorithm itself. In this scope, the approximation can be used
in two manners. First, it can be used to improve the application execution time, energy consumption,
and even reliability. Secondly, approximate computing can also be used to reduce the costs of fault
tolerance techniques. The impact of using approximation on those two levels, however, is different.
As already discussed, the approximation of the application directly impacts its accuracy, and therefore
reliability. Approximating fault tolerance techniques may, however, be developed in such a way to
avoid affecting the accuracy of the application, or affecting it only up to the acceptable level that is
defined by its quality (or accuracy) requirements.

Approximation itself implies the idea of inherent error tolerance. On approximate systems,
a specified error tolerance has to be considered, but that is not the same error definition used when
discussing faults and their effects and safety-critical systems. Approximation errors are caused
by the system itself and manifested as quality or accuracy degradation. Also, when dealing with
approximation, the decision of whether an error caused a failure or not is a matter of definition related
to what would be considered a “correct” application output, which is often hard to be defined. Take,
for instance, the example of image outputs: The correctness of the output is tied to an image quality
definition, which is different from one human being to another because of biological reasons.

The accuracy relaxation inherent to approximate systems can be used in favor of fault tolerance
on safety-critical systems. A system that accepts some accuracy degradation can ignore errors in
memory that have a low impact on the data value. Also, the reduction of the complexity, achieved by
approximation, can help to reduce the system’s susceptibility to faults (e.g., by reducing the critical area
of a hardware circuit). Another example of applications that can accept some quality degradation is
real-time systems. Those systems have very strict deadlines, requiring strong performance, and dealing
with data freshness. Data freshness is the concept that data has an expiration time, being refreshed
from time to time and only valid in a given time window (e.g., data coming from a radar system is,
from time to time, refreshed and overwritten with new values). In those cases, an error correction
procedure is often not necessary, and errors are tolerable when paying the cost for better performance.
The error criticality in approximate systems is not related only to the system itself but also the position
of a fault (data precision) and the time of the fault.

Redundancy methods such as duplication with comparison (DWC), which duplicates the
application and implements a checker to compare any discrepancy between the data generated by the
two independent executions, are employed in a multitude of systems, both to provide error detection
and masking. DWC is capable of finding errors, but not masking them. A third execution would be
needed to mask the error, making a vote for the correct data possible, thus the implementation of triple
modular redundancy (TMR). DWC techniques have an overhead of two times the execution time of the
original software application for pure redundancy and three times when applying re-execution for error
masking. The TMR has, at least, an overhead of three times the execution time of a software application.

When applying a TMR method to approximate algorithms, there is no need to have three tasks
with high accuracy. As only one of the outputs will be taken as the final “correct” one, the others can
have a lower accuracy (e.g., fewer iterations in the case of loop-perforation approximation). Tasks with
lower accuracy and execution time cause lower overhead.

Approximate TMR (ATMR) is based on implementing each redundancy task with a different
architecture or algorithm [35]. When applied to hardware projects, ATMR has been presented as a way
to achieve fault coverage almost as good as traditional TMR but avoiding the huge area overhead that
it costs [36]. Designers might accept a lower fault coverage if the area overhead of the project is to drop
significantly. Also, a smaller hardware area implies higher fault tolerance due to the reduction of the
critical area. Therefore ATMR might be, in some cases, not only less costly but also more reliable than
traditional TMR. In traditional TMR, at least two redundancies need to have the same correct value at
a given time so that the correct output can be voted.
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Figure 4 presents an example of the ATMR method. In the figure, R1’ and R2’ are redundant tasks
of R0 with fewer iterations, while R1 and R2 are hard copies of R0. Please note that the considered
TMR exploits timing redundancy. The redundant tasks (R1, R2, R1’, and R2’) are executed serially after
R0. The three results are then compared and voted by the checker. The overhead of a TMR consists of
the extra execution time it costs. On the other hand, the overhead of the checker (represented at the
figure by the CKR box) is constant. However, reducing the execution time of the tasks, the overhead of
the TMR can be lowered. As R1’ and R2’ execute faster than R1 and R2, the ATMR presents a speedup
in relation to the TMR.

R0

t3

TMR CKR

Time

R1 R2

R0

t1 t4

CKR'R1' R2'

t2 t5 t6

Approximate 
TMR

Overhead 1

Overhead 2

t7

Figure 4. Example of the Approximate TMR (ATMR) [35].

The approximate checker (CKR’) plays a critical role in the ATMR method. In a traditional TMR,
the checker would make a bit-wise comparison between the three outputs, changing every bit that is
different from the other two to the same value. However, with approximate computing, the checker
needs to be more complex. The value of the three outputs may be different even in the absence of
errors, because of the varying accuracy of each ATMR task. To deal with this issue, the ATMR checker
has to be programmed in a way to deal with those differences, considering a threshold of acceptable
difference between the ATMR output value and the expected golden value. This acceptance threshold
might be different for each application or system and impacts the ATMR error masking performance.

4. Approximate Computing Applied to Safety-Critical Systems: A Case Study

Given all the characteristics of approximate computing, it may not be applicable to every system.
Some approximate computing methods, such as task skipping and loop-perforation, can present
a non-deterministic result accuracy and execution time, depending on their skipping and execution
stop conditions, and their stimuli. For example, applying loop-perforation to reduce the number of
iterations of the execution of a Newton–Raphson algorithm can improve its execution time at the cost
of final result accuracy. The Newton–Raphson algorithm finds the roots of a function calculating the
intersection of the tangent line of the function in an initial guess point x0 with the x-axis. It is calculated
iteratively, as stated in Equation (1) until it reaches a sufficient accuracy (i.e., the difference between xn

and xn+1 is minimal):

xn+1 = xn −
f (xn)

f ′(xn)
. (1)

Newton–Raphson belongs to the successive approximation algorithms class [37]. Among them,
physical problems are often described by Partial Differential Equations (PDEs). Since analytic solutions
cannot be obtained in general, numerical algorithms are used to find solutions by means of a software
implementing (among the others) successive approximation algorithms. Successive approximation
algorithms consist mainly of numerical calculations. Those are intended for when an exact solution is
not computationally achievable. Some of the most significant mathematical problems (e.g., derivatives
and integrals calculations) base their only solutions on successive approximations. Those solutions are of
great importance for a significant number of applications and among them, the safety-critical ones [37].
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However, depending on the stop condition of the algorithm, the number of iterations is uncertain,
which violates the rules of hard real-time systems (on which the execution times of processing
tasks need to be well known). This specific example of the Newton–Raphson algorithm, however,
demonstrates how an approximation can be adapted to follow the requirements of a certain project.

At first glance, one might say that this algorithm is not convenient for hard real-time systems,
given that different functions, with different inputs and different initial points of execution x0 will
take different execution times to finish. This, however, can be avoided with a simple adaptation of
the program code to limit the number of loop execution to N maximum iterations, given that N shall
be defined concerning the maximum execution time defined by the system specification dedicated
to the task execution. This modification could, however, impact the quality of the algorithm output
in an uncertain way. By limiting the maximum number of iterations of a successive approximation
numerical algorithm such as the Newton–Raphson method, there is little to no guarantee that the final
computation output would be acceptable inside a given quality metric or even represent any result
approximation is lost. This leads to another important limitation of approximate computing and its
applicability to safety-critical environments: The level of approximation and its domain. An aggressive
approximation can prevent the algorithm from terminating with an acceptable output.

Let us analyze how a successive approximation algorithm such as Newton–Raphson would
behave a real case scenario, such as executing inside a safety-critical system, subject to faults caused
by external sources. Figure 5 presents the evolution of the Newton–Raphson output concerning the
iteration number when affected by faults. The y-axis of the graphs represents the distance between the
current computed value and the final best achievable result for the algorithm (i.e., the absolute
difference between the two), and the x-axis presents the current number of iterations executed.
The algorithm should finish after 14 iterations if no faults were injected. The “No Faults” curve
shows the evolution of an execution with no external faults injected. Faults are injected in the memory
word that holds the latest computed value (i.e., the output from the last executed iteration), and all
faults are injected precisely at the end of the 5th iteration of the algorithm. Each curve presents the
progression of the algorithm result with one fault injected in a different bit of the word, as the legend
shows. The curves show the apparent tendency for the algorithm to correct itself and end up finding
a good result even under external fault injections. In all the cases the algorithm deviated from the
expected result evolution curve and took more iterations to finish, but was capable of finding it with
no failures.
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Figure 5. Evolution of the output from Newton–Raphson algorithm with faults injected in various bit
positions at the 5th iteration.

The inherent fault tolerance of the Newton–Raphson algorithm is also expressed in Figure 6.
The data presented in this figure is from the same fault injections presented in Figure 5. The difference
is that it now shows the impact of injecting faults on various bit positions of the memory word
containing the resultant data, at three points of execution (i.e., iterations, N at the legend). In this
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figure the x-axis presents the position of the injected fault, and the y-axis bars show the number of
iterations the algorithm took to finish. While Figure 5 shows the progression of the computation,
Figure 6 presents the cost of achieving a correct output value when the algorithm is subject to faults.
It is clear that some bit positions are more critical than others.

To better analyze the results, we have first to specify that variables used by Newton–Raphson
software implementation are 32 bit floating point variables (C float variables). This means that the bit
31st is the sign, bits from 30 downto 23 are used for the exponent and the remaining ones, from 22
downto 0 represent the mantissa. The graph of Figure 6 depicts the criticality of each bits. The results
tell us that faults affecting the mantissa bits (from 22 downto 0) have mainly the same impact in terms
of deviation. More interesting is the case of the exponent. For this case, most significant bits 26, 27,
and 28 presents higher criticality w.r.t to the previous since a fault affecting those bits significantly
lead to higher execution time because Newton–Raphson requires more iterations to converge, but it
still be able to converge. Faults affecting bit 29th simply led to a never-ending execution: The
Newton–Raphson cannot converge in the allowed maximum number of iterations. This is the most
critical bit. Faults affecting bit 30th and 31st are less critical since they impact the bias and the sign
respectively. These results shown that the designer would have a considerable approximation space,
i.e., the opportunity to reduce the number of bits used for data representation without impacting the
reliability of the system.
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Figure 6. Number of iterations to finish a Newton–Raphson algorithm with faults injected on the
N-th iteration.

5. Conclusions and Perspectives

This survey presented the approximate computing from a different point of view. Instead of
using it for achieving better performing computation, we applied it for implementing low-cost but still
efficient fault detection mechanisms. We showed that approximate computing can be thus used for
improving the overall reliability of systems to be used in safety-critical applications.

One of the problems of approximate computing is that it is often not easy to implement. Finding the
best approximation method for a given algorithm is very consuming work. A future work will be the
development of a framework that can help software engineers to approximate their codes with minimal
efforts. The data precision reduction approximation is an example of a method that can be almost
universally used for function approximation. It is evident by the results presented that combining two
or more approximation methods imply a multitude of different effects on system reliability. A designer
might then ask himself, which is the optimal configuration between all possible approximation strategies
that would achieve the best relation between cost and performance. In future works, evolutionary
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algorithms could be used to test possible combinations of approximation configurations to find this
optimal point between cost, performance, and reliability.
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The following abbreviations are used in this manuscript:

ATMR Approximate Triple Modular Redundancy
CKR Checker
DRAM Dynamic Random Access Memory
DVFS Dynamic Voltage and Frequency Scaling
DWC Duplication with Comparison
eDRAM Embedded Dynamic Random Access Memory
FPGA Field Programmable Gate Array
GPU Graphics Processing Unit
HDL Hardware Description Language
HLS High-Level Syntesis
MBU Multiple Bit Upset
MDPI Multidisciplinary Digital Publishing Institute
MSE Mean Squared Error
PDE Partial Differential Equations
PSNR Peak Signal-to-Noise Ratio
SEU Single-Event Upset
SRAM Static Random-Access Memory
STT-RAM Spin-Transfer Torque Magnetic Random-Access Memory
TMR Triple Modular Redundancy
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuits
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