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Emmylou HAFFNER  
 

Chapitre IX 

Définir l’intégrale : une nécessité, des 
élaborations 

(postprint) 

 

Dans son Habilitation, titrée « Über die Darstellbarkeit einer Funktion durch eine 
trigonometrische Reihe » [Sur la possibilité de représenter une fonction par une série 
trigonométrique]1, soutenue en 1854 mais publiée de manière posthume en 1867, Bernhard 
Riemann (1826-1866), donne la définition de ce nous appelons aujourd’hui l’intégrale de 
Riemann. Ce texte est ouvert par 14 pages d’analyse historique des précédentes recherches sur 
la représentabilité des fonctions en série trigonométrique et les travaux de Leonhard Euler 
(1707-1783), Jean-Baptiste le Rond d’Alembert (1717-1783), Jean-Baptiste-Joseph Fourier 
(1768-1830) et Johann Peter Gustav Lejeune-Dirichlet (1805-1859), qui ont depuis largement 
guidé la narration de cette partie de l’histoire des mathématiques. Cette analyse remarquable 
inclut une réflexion fine sur les changements connus par les concepts en jeu, notamment dans 
les travaux de Dirichlet, ainsi que sur les liens entre représentabilité et intégrabilité des 
fonctions2. Cela témoigne de la volonté de Riemann de placer son travail dans une tradition bien 
établie, tout en en montrant clairement les limites et comment il peut les dépasser. Le travail 
de Riemann repose sur une réflexion sur la possibilité d’améliorer et d’étendre les travaux de 
ces auteurs, en particulier pour rendre les critères de représentabilité en série trigonométrique 
plus précis et en délimiter clairement les contours. 

Dans ce chapitre, nous nous contenterons de considérer les questions liées à l’intégrabilité 
des fonctions3. Soulignons que la partie du texte de Riemann effectivement dédiée à 
l’intégrabilité et à la définition de ce que nous appelons aujourd’hui l’intégrale de Riemann est, 
en fait, assez courte, le cœur de son Habilitation étant (comme son nom l’indique) la 
représentation des fonctions en séries trigonométriques. Avant de présenter le travail de 
Riemann nous passerons par trois grandes étapes : en 1822, les travaux de Fourier sur la 
représentabilité des fonctions en séries trigonométriques (qui seront ensuite nommées séries 
de Fourier) qui mettent en avant l’importance de l’intégrabilité des fonctions ; en 1823, la 
définition de l’intégrale définie proposée par Augustin-Louis Cauchy (1789-1857) dans son 
Résumé des leçons données à l’École Royale polytechnique sur le calcul infinitésimal ; en 1829 et 

                                                   
1 Lors de la soutenance de l’Habilitation, les candidats présentaient un mémoire, l’Habilitationschrift, et prononçaient 
un cours, l’Habilitationsvortrag. Nous parlons ici de l’Habilitationschrift de Riemann. Son Habilitationsvortrag est le 
célèbre « Sur les hypothèses qui servent de base à la géométrie ». 
2 On parle de représentabilité d’une fonction pour la possibilité de l’écrire comme somme d’une série (par exemple, 
entière ou de Fourier) et d’intégrabilité lorsque l’on cherche à savoir si la fonction possède une intégrale définie et 
finie. 
3 Sur la question des séries de Fourier, on pourra consulter les chapitres 2 et 5 de Bottazzini Umberto, The higher 
calculus. A history of real and complex analysis from Euler to Weierstrass. New York : Springer, 1986 ; les chapitres 2, 
14 et 15 de [15]. Nous ne considérerons que la définition de l’intégrale de Riemann et renvoyons respectivement aux 
chapitres 6 et 15 de ces deux ouvrages.  
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1837, les travaux de Dirichlet sur la représentabilité des fonctions en séries trigonométriques, 
et ce qu’il en ressort des questions liées à l’intégrabilité des fonctions. 

Le cheminement historique que nous retraçons ici, vers l’intégrale de Riemann et au-delà, 
omet une partie importante de l’histoire de l’analyse qui a toutefois joué un rôle crucial dans le 
développement des théories de l’intégration : la résolution des équations différentielles. À 
défaut de pouvoir donner ici à ce sujet la place qu’il mérite, nous renvoyons la lectrice à [18] 
pour un tableau synthétique, et à [16] pour un panorama plus exhaustif. 

LES SÉRIES TRIGONOMÉTRIQUES DE FOURIER 

La réflexion de Riemann sur les conditions d’intégrabilité des fonctions à variable réelle naît 
de ses recherches sur la représentabilité en série trigonométrique – un thème central pour les 
développements de l’analyse aux XIXe et XXe siècles. Riemann commence son Habilitation en 
rappelant que ce sont des recherches sur les vibrations des cordes qui ont amené Daniel 
Bernoulli (1700-1782), Euler et d’Alembert à considérer le développement de fonctions 
analytiques en séries trigonométriques. Il s’agissait alors de résoudre l’équation différentielle  

𝜕"𝑦
𝜕𝑡"

= 𝛼"
𝜕"𝑦
𝜕𝑥"

. 

Les travaux de Fourier marquent ensuite une étape décisive des recherches sur la 
représentation de fonctions arbitraires en série trigonométrique. En 1822, dans sa Théorie 
analytique de la chaleur, Fourier s’intéresse à la distribution de la chaleur dans un solide. Cela 
l’amène à résoudre des équations aux dérivées partielles, notamment certaines dont on peut 
montrer que les solutions sont de la forme 𝑣(𝑥, 𝑦) = 𝑓(𝑥)𝑔(𝑦) avec 𝑓(𝑥) = cos(𝑚𝑥), 𝑔(𝑦) =
𝑒456. Fourier en vient à affirmer que toute fonction « dont la valeur est représentée, dans un 
intervalle déterminé, depuis 𝑥 = 0 jusqu’à 𝑥 = 𝑋 par l’ordonnée d’une ligne courbe tracée 
arbitrairement » [4, p. 231-232] peut être écrite comme série de fonctions trigonométriques, 
c’est-à-dire sous la forme4 

𝑓(𝑥) =
1
2
𝑎< +> (𝑎? cos 𝑛𝜋𝑥 + 𝑏?sin𝑛𝜋𝑥)

E

?FG
 

avec  

𝑎? = H 𝑓(𝑥) cos 𝑛𝜋𝑥 𝑑𝑥
G

4G
	; 	𝑏? = H 𝑓(𝑥) sin 𝑛𝜋𝑥 𝑑𝑥.

G

4G
 

Fourier, ayant besoin d’un concept de fonction suffisamment général pour s’appliquer sans 
restriction à la situation physique qu’il étudie, définit la notion de la manière suivante : 

En général, la fonction 𝑓(𝑥) représente une suite de valeurs, ou ordonnées, dont chacune 
est arbitraire. L’abscisse 𝑥 pouvant recevoir une infinité de valeurs, il y a un pareil nombre 
d’ordonnées 𝑓(𝑥). Toutes ont des valeurs numériques actuelles, ou positives, ou 
négatives, ou nulles. On ne suppose point que ces ordonnées soient assujetties à une loi 
commune ; elles se succèdent d’une manière quelconque, et chacune d’elles est donnée 
comme le serait une seule quantité. [Ibid., p. 500] 

                                                   
4 Nous utilisons ici une notation moderne pour la série de Fourier. Dans le texte original, on trouve souvent les séries 
notées par exemple 𝑎 + 𝑏 cos𝑥 + 𝑐 cos2𝑥 +⋯	, mais la notation ∑	est aussi ponctuellement utilisée. 



Les fonctions de Fourier sont données graphiquement et arbitrairement. S’il a été après 
Fourier largement accepté que les fonctions arbitraires pouvaient s’écrire sous forme de série 
trigonométrique,  la preuve que la série de Fourier d’une fonction donnée converge 
effectivement vers la valeur de ladite fonction n’a été donnée que plus tard. Cauchy en propose 
une preuve en 18265 jugée incomplète et corrigée par Dirichlet en 1829 [6]. 

L’étude d’une fonction périodique par les séries de Fourier comprend deux volets : une étape 
pour déterminer ce que l’on appelle aujourd’hui ses coefficients de Fourier, et une étape pour 
déterminer si la série de Fourier ainsi formée converge bien vers la fonction en question. On voit 
bien, donc, que l’intégrabilité des fonctions considérées est essentielle pour le calcul des 
coefficients. Comme l’écrit l’historien Jesper Lützen [17 p. 170], après les travaux des Bernoulli, 
la définition la plus largement adoptée pour l’intégration était celle du procédé inverse de la 
différentiation – c’est-à-dire, la recherche de primitive – et « Fourier a été le premier à changer 
cela ». En effet, Fourier s’était rendu compte que le calcul des coefficients de Fourier pour des 
fonctions arbitraires (c’est-à-dire sans expression analytique) demandait d’aller au-delà du 
calcul différentiel (qui nécessitait une expression analytique) et a concentré son attention sur 
l’intégrale définie ∫ 𝑓(𝑥)𝑑𝑥P

Q  – c’est lui qui propose d’indiquer les limites de l’intégration en haut 
et en bas du signe d’intégrale – en insistant sur le fait qu’il s’agit de l’aire entre la courbe et l’axe.  

Lorsqu’en 1823 Cauchy définit l’intégrale définie, il reprend l’approche de Fourier, mais en 
mettant de côté la définition en termes d’aire pour en proposer une plus précise, qui lui permet 
aussi de prouver que l’intégrale existe effectivement pour une fonction continue par morceaux. 

LES INTÉGRALES DÉFINIE ET INDÉFINIE DE CAUCHY 

Cauchy est souvent présenté comme l’un des fondateurs du mouvement dit de 
« rigorisation » de l’analyse mathématique au XIXe siècle. Cette rigorisation de l’analyse consiste 
essentiellement en une réorganisation de ses fondements. Celle-ci n’est pas tant guidée par des 
considérations philosophiques que, d’une part, par des questions interrogeant les outils 
analytiques – comme les séries de Fourier qui invitent à remettre en question les conceptions 
établies de fonction, d’intégrale, de convergence, mais également les équations différentielles, 
les fonctions elliptiques… – et, d’autre part, par des considérations pédagogiques. Cauchy, en 
particulier, dans la préface de son Cours d’Analyse de 1821, indique avoir « pour la plus grande 
utilité des élèves » fait le choix de donner aux méthodes « toute la rigueur qu’on exige en 
géométrie » [1, p. ij]6.  

Au XIXe siècle, et notamment par les travaux de Cauchy, s’opèrent des changements 
importants en analyse. D’une part, la pratique de l’analyse change plus généralement d’une 
pratique de résolution des problèmes à la mise en place d’une théorie, c’est-à-dire un ensemble 
de résultats, propositions, théorèmes déduits de définitions (vues comme) rigoureuses. Le XVIIIe 
siècle avait produit beaucoup de résultats en analyse (calcul infinitésimal, intégral, 
développement en séries, etc.) mais ces résultats étaient organisés dans un ordre que les 
mathématiciens du XIXe siècle commencent à considérer comme insatisfaisant, en particulier à 
cause du manque d’une présentation systématique structurée en définitions-théorèmes. Un 

                                                   
5 Cauchy, Augustin-Louis, « Mémoire sur les développements des fonctions en séries périodiques », Mémoires de 
l’Académie Royale des Sciences 6, p. 603-612, 1827. 
6 Sur les travaux de Cauchy plus généralement, on pourra se référer à Belhoste, Bruno, Cauchy, 1789–1857 : un 
mathématicien légitimiste au XIXe siècle, Paris : Belin, 1985. 
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nouveau standard de rigueur largement soutenu par une réorganisation du corps des savoirs se 
met progressivement en place avec les travaux de Cauchy. Celui-ci a une compréhension aigüe 
et précise du sens des résultats et des techniques développées par ses prédécesseurs, et il 
restructure l’ensemble des connaissances en identifiant les propriétés à utiliser comme 
définition de manière à justifier lesdites techniques et résultats. Soulignons qu’il n’est pas 
question ici de la rigueur dite weierstrassienne utilisant les	𝜀, 𝛿, etc., pour définir les notions de 
l’analyse – travaux d’ailleurs postérieurs à Cauchy – mais d’un changement dans la structuration 
même de la théorie. D’autre part, il y avait eu, avec les travaux d’Euler, un mouvement de 
transition entre l’analyse comme outil pour l’étude des courbes, vers l’analyse comme une 
théorie des fonctions. Avec Cauchy, l’analyse devient une discipline autonome. 

En 1823, en préface de ses Leçons sur le calcul infinitésimal, il précise, dans une critique à 
peine voilée de ses prédécesseurs :  

Mon but principal a été de concilier la rigueur, dont je m’étais fait une loi dans mon Cours 
d’analyse avec la simplicité qui résulte de la considération directe des quantités infiniment 
petites. Pour cette raison, j’ai cru devoir rejeter les développemens des fonctions en séries 
infinies, toutes les fois que les séries obtenues ne sont pas convergentes et je me suis vu 
forcé de renvoyer au calcul intégral la formule de Taylor, cette formule ne pouvant plus 
être admise comme générale qu’autant que la série qu’elle renferme se trouve réduite à 
un nombre fini de termes et complétée par une intégrale définie. Je n’ignore pas que 
l’illustre auteur de la Mécanique analytique [Lagrange] a pris la formule dont il s’agit pour 
base de sa théorie des fonctions dérivées [chap. VII], mais, malgré tout le respect que 
commande une si grande autorité la plupart des géomètres s’accordent maintenant à 
reconnaître l’incertitude des résultats auxquels on peut être conduit par l’emploi de séries 
[…]. Au reste, ceux qui liront mon ouvrage, se convaincront, je l’espère, que les principes 
du calcul différentiel, et ses applications les plus importantes, peuvent être facilement 
exposés, sans l’intervention des séries. [2, Avertissement]  

Dans la critique de l’approche lagrangienne se trouve le cœur du refus de Cauchy de recourir à 
l’algèbre et à sa supposée « généralité » [1, p. ij] pour fonder l’analyse. La « généralité de 
l’algèbre » est celle du travail avec des quantités indéterminées, fournissant des résultats 
toujours valides lorsqu’appliqués à des valeurs « déterminées » comme les nombres. Mais une 
telle « généralité » va, pour Cauchy, à l’encontre de la rigueur, qui demande d’ancrer les 
définitions dans une réalité numérique, ce qu’il propose de faire en mettant en place un nouvel 
édifice fondé sur les notions de limite7 et de continuité, et sur l’arithmétique des inégalités8. 

Pour le sujet qui nous intéresse, soulignons que Cauchy est le premier à fonder le calcul 
intégral sur des bases purement analytiques, se détachant (aussi) de l’interprétation 
géométrique. De plus, Cauchy fait un pas important pour combler une lacune supplémentaire, 
celle d’une approche unifiée pour calculer les intégrales. Il propose pour la première fois une 
technique uniforme pour calculer l’aire sous la courbe 𝑦 = 𝑓(𝑥) (avec 𝑓 continue), en prouvant 
le lien avec les primitives de 𝑓. Il est également le premier à proposer une preuve du « théorème 
fondamental du calcul intégral », c’est-à-dire du lien entre intégration et dérivation.  

                                                   
7 À ce sujet, voyez le chapitre XI. 
8 Voyez Chorlay, Renaud, « Questions of generality as probes into nineteenth-century mathematical analysis », The 
Oxford Handbook of Generality in Mathematics and the Sciences, Chemla K., Chorlay R., Rabouin D. (éds.), Oxford : 
OUP, p. 385-410, 2016. 



La définition de l’intégrale de Cauchy repose sur la notion de fonction telle qu’il l’avait définie 
dans son Cours d’Analyse de 1821 : 

Lorsque des quantités variables sont tellement liées entre elles que la valeur de l’une 
d’elles étant donnée, on puisse en conclure les valeurs de toutes les autres, on conçoit 
d’ordinaire ces diverses quantités exprimées au moyen de l’une d’entre elles, qui prend 
alors le nom de variable indépendante et les autres quantités exprimées au moyen de la 
variable indépendante sont ce qu’on appelle des fonctions de cette variable. [Ibid., p. 20] 

Cauchy travaille, pour la définition de l’intégrale définie, avec des fonctions continues par 
morceaux9. 

Pour bien comprendre la définition de l’intégrale donnée par Cauchy, il faut d’abord 
considérer la définition des « sommes de Cauchy », que nous reproduisons entièrement : 

Supposons que la fonction 𝑦	 = 	𝑓(𝑥), étant continue par rapport à la variable x entre deux 
limites finies 𝑥	 = 	 𝑥< et 𝑥	 = 	𝑋, on désigne par 𝑥G, 𝑥", … , 𝑥?4G de nouvelles valeurs de 𝑥 
interposées entre ces limites, et qui aillent toujours en croissant ou en décroissant depuis 
la première limite jusqu’à la seconde. On pourra se servir de ces valeurs pour diviser la 
différence 𝑋	–	𝑥< en éléments 

(1)	𝑥G −	𝑥<, 𝑥" −	𝑥G, 𝑥W −	𝑥", … , 𝑋 −	𝑥?4G, 

qui seront tous de même signe. Cela posé, concevons que l’on multiplie chaque élément 
par la valeur de	𝑓(𝑥) correspondante à l’origine de ce même élément, savoir l’élément 
𝑥G −	𝑥< par 𝑓(	𝑥<), l’élément 𝑥" −	𝑥G par 𝑓(	𝑥G), …, enfin l’élément 𝑋 −	𝑥?4G, par 
𝑓(𝑥?4G); et soit 

(2)	𝑆 = (𝑥G − 𝑥<)𝑓(	𝑥<) + (𝑥" − 𝑥G)𝑓(	𝑥G) +⋯+ (𝑋 − 𝑥?4G)𝑓(𝑥?4G) 

la somme des produits ainsi obtenus. [2, p. 122] 

On reconnaît dans (1) une subdivision de l’intervalle d’intégration. Ce que l’on appelle « somme 
de Cauchy » est (2).  

Cauchy montre ensuite que les sommes de Cauchy d’une fonction continue convergent (dans 
les nombres réels) vers un nombre réel. Autrement dit, lorsque les diamètres des intervalles des 
sommes de Cauchy tendent vers 0, la somme converge vers un nombre réel. Ce nombre est 
appelé l’intégrale définie : 

Donc, lorsque les éléments de la différence 𝑋 − 𝑥< deviennent infiniment petits, le mode 
de division n’a plus sur la valeur de 𝑆 qu’une influence insensible ; et, si l’on fait décroître 
indéfiniment les valeurs numériques de ces éléments, en augmentant leur nombre, la 
valeur de 𝑆 finira par être sensiblement constante ou, en d’autres termes, elle finira par 
atteindre une certaine limite qui dépendra uniquement de la forme de la fonction 𝑓(𝑥) et 
des valeurs extrêmes 𝑥<, 𝑋 attribuées à la variable 𝑥. Cette limite est ce qu’on appelle une 
intégrale définie. [Ibid., p. 125] 

Cauchy adopte la notation introduite par Fourier pour l’intégrale définie de 𝑓(𝑥)	entre 𝑥< et 𝑋 :  

                                                   
9 Rappelons que Cauchy a défini la continuité dans le Cours d’Analyse en 1821. 
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H 𝑓(𝑥)𝑑𝑥.
Y

Z[
 

L’idée de base derrière la définition des « sommes de Cauchy » était déjà présente chez un 
certain nombre de ses prédécesseurs. Euler utilise une telle méthode dans ses Institutiones 
Calculi Integralis (1768) pour calculer des approximations d’intégrales10, approche que l’on 
retrouve chez Lacroix, Legendre, et Poisson11. Toutefois, comme le souligne Lützen, le 
traitement que propose Cauchy va bien au-delà d’une procédure d’approximation numérique, 
puisque cette technique devient dans son travail une véritable définition. 

Dans la leçon suivante, Cauchy donne des formules pour déterminer des valeurs exactes ou 
approchées de certaines intégrales définies, et calcule un certain nombre d’exemples. C’est dans 
la Leçon 23, après avoir prouvé certaines propriétés algébriques fondamentales, comme la 
relation de Chasles, que Cauchy clarifie l’interprétation géométrique de l’intégrale : 

Concevons à présent que, la limite 𝑋 étant supérieure à 𝑥<, et la fonction 𝑓(𝑥) étant 
positive depuis 𝑥 = 𝑥< jusqu’à 𝑥 = 𝑋, 𝑥, 𝑦, désignent des coordonnées rectangulaires, et 
𝐴 la surface comprise d’une part entre l’axe des 𝑥 et la courbe 𝑦 = 𝑓(𝑥), d’autre part entre 
les ordonnées	𝑓(𝑥<), 𝑓(𝑋). [Op. cit, p. 136-137] 

Le calcul de l’aire se fait alors par un argument géométrique dans lequel nous reconnaissons la 
version intégrale du théorème des accroissements finis, ce qui permet à Cauchy de montrer 
que 𝐴 = ∫ 𝑓(𝑥)𝑑𝑥Y

Z[
,	liant ainsi le calcul de l’aire sous la courbe à la définition de l’intégrale 

définie. 

La dernière étape de définition de l’intégrale définie est celle de la généralisation de 
l’intégrale définie aux intégrales à bornes infinies et aux « intégrales définies singulières » 
(Leçons 24 et 25), c’est-à-dire les intégrales impropres et continues par morceaux. Cauchy 
présente le problème de la manière suivante : 

Dans les leçons précédentes, nous avons démontré plusieurs propriétés remarquables de 
l’intégrale définie 

(1)	H 𝑓(𝑥)𝑑𝑥
Y

Z[
 

mais en supposant : 1. que les limites 𝑥<, 𝑋 étaient des quantités finies, 2. que la fonction 
𝑓(𝑥) demeurait finie et continue entre ces mêmes limites. […] Lorsque les valeurs extrêmes 
𝑥<, 𝑋 deviennent infinies, ou lorsque la fonction 𝑓(𝑥) ne reste pas finie et continue depuis 
𝑥	 = 𝑥< jusqu’à 𝑥	 = 	𝑋, on ne peut plus affirmer que [la somme de Cauchy] ait une limite 
fixe, et par suite on ne voit plus quel sens on doit attacher à la notation (1) qui servait à 
représenter généralement la limite de [la somme de Cauchy]. [Ibid., p. 140-141] 

                                                   
10 C’est également l’approche qu’il utilise pour l’intégration des équations différentielles 𝑑𝑦 = 𝑓(𝑥)𝑑𝑥 et 𝑑𝑦 =
𝑓(𝑥)𝑑𝑥, et qui fonde ce que l’on appelle aujourd’hui la méthode d’Euler. 
11 À ce sujet, voyez Grabiner, Judith V., The origins of Cauchy's rigorous calculus, Newburyport : MIT Press, 1981 ; et 
Mawhin, Jean, « Présences des sommes de Riemann dans l’évolution du calcul intégral » Cahiers du séminaire 
d’histoire des mathématiques, p. 117-147, 1983. 



Cauchy considère donc ici des fonctions continues par morceaux qui deviennent infinies en un 
ou plusieurs points de l’intervalle d’intégration. Cauchy propose « d’étendre par analogie » ce 
qu’on appelle aujourd’hui la relation de Chasles et le passage à la limite 

	H 𝑓(𝑥)𝑑𝑥
]

^[
= lim	H 𝑓(𝑥)𝑑𝑥

a

a[
 

où 𝜉<	tend vers 𝑥< et et 𝜉 vers 𝑋. Si la fonction 𝑓 est continue sur	[𝑥<, 𝑋]	sauf en un point 𝑥 = 𝑎, 
Cauchy propose de considérer les deux intégrales : 

H 𝑓(𝑥)𝑑𝑥
Q4e

^[
	et	H 𝑓(𝑥)𝑑𝑥

]

Qhe
 

et leur somme : 

H 𝑓(𝑥)𝑑𝑥
Q4e

Z[
+ H 𝑓(𝑥)𝑑𝑥

Y

Qhe
 

alors la limite de la somme est la somme des limites, qui peut être trouvée en utilisant la 
propriété ci-dessus. Si cette limite existe (quand 𝜀 tend vers 0), alors l’intégrale existe et est finie. 
Elle est appelée « intégrale définie singulière ». Cauchy généralise cette méthode à un nombre 
fini quelconque de telles discontinuités.  

Enfin, pour effectivement obtenir une définition uniforme de l’intégrale, il faut définir les 
intégrales indéfinies. C’est le sujet de la Leçon 26, dans laquelle Cauchy prouve que pour une 
fonction ℱ(𝑥) définie par : 

ℱ(𝑥) = H 𝑓(𝑥)𝑑𝑥
Z

^[
 

alors 

ℱj(𝑥) = 𝑓(𝑥). 

Autrement dit, l’intégrale indéfinie ∫ 𝑓(𝑥)𝑑𝑥 est la solution de l’équation différentielle 𝑑𝑦 =
𝑓(𝑥)𝑑𝑥. Cauchy établit ainsi le théorème fondamental du calcul différentiel et relie, dans le 
même geste, son nouveau concept d’intégrale à l’ancien. 

Terminons en mentionnant la possibilité, mise en avant par Lützen [17, p. 171], d’un lien 
entre nouvelle définition de l’intégrale proposée par Cauchy et certains de ses travaux 
précédents. D’une part, Cauchy avait, quelques années auparavant, montré que la valeur de 
l’intégrale définie et celle de la différence entre les valeurs d’une primitive aux extrémités de 
l’intervalle d’intégration ne coïncidaient pas toujours avec la définition précédente12. D’autre 
part, ses travaux (et ceux de Poisson) en analyse complexe l’avaient mené à prouver que les 
intégrales complexes peuvent dépendre des chemins d’intégration. Il est donc possible qu’ait 
ainsi pu émerger pour Cauchy l’idée que la définition de l’intégrale ne peut pas reposer de 
manière rigoureuse sur la primitive.  

                                                   
12 Cauchy, Augustin-Louis, « Mémoire sur la théorie des intégrales définies » lu à l'Institut le 22 août 1814, Mémoire 
présentés à l’Académie Royale des Sciences par divers savans 2, p. 601-799, 1827. 
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FONCTION ET INTÉGRABILITÉ DANS LES TRAVAUX SUR LES SÉRIES TRIGONOMÉTRIQUES DE 

DIRICHLET  

Dans « Sur la convergence des séries trigonométriques qui servent à représenter une 
fonction arbitraire » (1829) et sa révision allemande de 1837 « Über die Darstellung ganz 
willkürlicher Functionen durch Sinus- und Cosinusreihen » [Sur la représentation des fonctions 
arbitraires en séries trigonométriques], Dirichlet poursuit les travaux de Fourier et Cauchy sur la 
représentation de fonctions arbitraires en séries trigonométriques, en approfondissant le 
concept de fonction. Dirichlet considère en effet une fonction « entièrement arbitraire » pour 
laquelle n’est donnée aucune représentation explicite : aucune formule, aucune « règle de 
formation » par des opérations arithmétiques. Il suit ainsi la voie de Fourier, qui avait « ouvert 
une nouvelle carrière aux applications de l’analyse, en y introduisant la manière d’exprimer les 
fonctions arbitraires dont il est question » [6, p. 117]. Rappelons de plus que Dirichlet est un 
acteur important du renouveau de la rigueur en analyse au XIXe siècle. Un aspect central de cette 
attention accrue aux questions de rigueur des définitions et raisonnements en analyse est 
l’insistance sur la nécessité d’identifier les propriétés nécessaires et suffisantes des objets sur et 
avec lesquels on travaille. C’est dans cette optique que se place la notion de fonction proposée 
par Dirichlet13 : 

Nous désignons par 𝑎 et 𝑏 deux constantes et par 𝑥 une quantité variable qui prendra 
graduellement toutes les valeurs entre 𝑎	et 𝑏. Maintenant à tout 𝑥 correspond un seul 𝑦 
fini, de telle sorte que quand 𝑥 parcourt continument l’intervalle entre 𝑎 et 𝑏, 𝑦	 =
	𝑓(𝑥)	change également graduellement. Alors 𝑦 est appelé une fonction continue de 𝑥 sur 
cet intervalle. Il n’est pas nécessaire que	𝑦	soit, dans cet intervalle, dépendant de 𝑥 toujours 
avec la même loi, donc on n’a pas besoin de penser une dépendance s’exprimant par des 
opérations mathématiques. Représentée géométriquement, c’est-à-dire avec 𝑥 et 𝑦 comme 
abscisses et ordonnées, une fonction continue apparaît comme une courbe continue, dont 
chaque abscisse comprise entre 𝑎 et 𝑏 correspond à un seul point. Cette définition ne 
prescrit pas une loi commune pour les différentes parties de la courbe ; on peut penser 
qu’elle est composée des morceaux les plus divers ou qu’elle est dessinée entièrement sans 
loi. Il s’ensuit qu’une telle fonction pour un intervalle ne doit être considérée comme définie 
que si elle est donnée graphiquement pour tout l’intervalle ou est sujette à des lois 
mathématiques qui s’appliquent aux parties individuelles de l’intervalle. Tant que l’on a 
déterminé une fonction seulement pour une partie de l’intervalle, la manière dont elle est 
prolongée sur le reste de l’intervalle est complètement laissée arbitraire. [7, p. 135-136, je 
traduis] 

Mentionnons, qu’il ne s’agit que d’une manière parmi d’autres de concevoir une rigorisation 
de l’analyse. Certains acteurs importants de ce mouvement se positionnent contre le niveau de 
généralité adopté par Dirichlet (et, plus tard, par Riemann). Karl Weierstrass (1815-1897), en 
particulier, est dit avoir affirmé qu’une telle manière de concevoir la fonction était 

                                                   
13 Sur les changements du concept de fonction dans ce contexte, voyez Lützen, Jesper, « Between rigor and 
applications: Developments in the concept of function in mathematical analysis », The Cambridge History of Science: 
The modern physical and mathematical sciences. Nye, M. J. (éd.). Cambridge : CUP, p. 468-487, 2003. 



« complètement intenable et infécond. Il est en effet impossible d’en déduire des propriétés 
générales des fonctions »14.  

À la suite de la notion de fonction, Dirichlet considère la définition de l’intégrale ∫ 𝑓(𝑥)𝑑𝑥P
Q , 

en l’introduisant comme l’aire sous la courbe entre 𝑎 et 𝑏. Il rappelle ensuite la définition de ce 
que nous avons appelé ci-dessus la somme de Cauchy – toujours avec des sous-intervalles de 
taille égale [op. cit., p. 136], et donne la condition pour considérer l’intégrale comme sa limite 
(sans citer Cauchy). Il rappelle diverses propriétés algébriques de l’intégrale. 

Dans son premier article sur les séries trigonométriques, Dirichlet était arrivé à la condition 
suivante pour l’intégrabilité des fonctions : 

II est nécessaire qu’alors la fonction 𝜑(𝑥) [une fonction de 𝑥, ayant une valeur finie et 
déterminée pour chaque valeur de 𝑥 entre −𝜋 et 𝜋]15, soit telle que, si l’on désigne par a 
et b deux quantités quelconques comprises entre −𝜋 et 𝜋, on puisse toujours placer entre 
𝑎 et 𝑏 d’autres quantités 𝑟 et 𝑠 assez rapprochées pour que la fonction reste continue dans 
l’intervalle de 𝑟 à 𝑠. On sentira facilement la nécessité de cette restriction en considérant 
que les différents termes de la série sont des intégrales définies et en remontant à la notion 
fondamentale des intégrales. On verra alors que l’intégrale d’une fonction ne signifie 
quelque chose qu’autant que la fonction satisfait à la condition précédemment énoncée. 
[6, p. 131-132] 

Autrement dit, en termes modernes, Dirichlet affirme qu’une fonction est intégrable si, et 
seulement si, l’ensemble de ses discontinuités est assez rare – formellement, s’il est nulle part 
dense. Dirichlet donne alors l’exemple bien connu de fonction non intégrable (pour lui, et qui le 
sera aussi pour Riemann) : 

φ(𝑥) = o 𝑐	pour	𝑥 ∈ ℚ	𝑑	pour	𝑥	 ∉ ℚ 

où 𝑐 et 𝑑 sont des constantes distinctes. Il conclut par les affirmations suivantes : 

La fonction ainsi définie a des valeurs finies et déterminées pour toute valeur de 𝑥, et 
cependant on ne saurait la substituer dans la série, attendu que les différentes intégrales 
qui entrent dans cette série, perdraient toute signification dans ce cas. La restriction que 
je viens de préciser, et celle de ne pas devenir infinie, sont les seules auxquelles la fonction 
𝜑(𝑥) soit sujette et tous les cas qu’elles n’excluent pas peuvent être ramenés à ceux que 
nous avons considérés dans ce qui précède. Mais la chose, pour être faite avec toute la 
clarté qu'on peut désirer, exige quelques détails liés aux principes fondamentaux de 
l'analyse infinitésimale et qui seront exposés dans une autre note16. [Ibid., p. 132] 

Ces dernières lignes de l’article de Dirichlet sont à l’origine de deux courants de recherche 
importants dans l’analyse du XIXe siècle : d’une part, la construction de fonctions dites 

                                                   
14 Ce sont des propos tenus lors d’un cours d’introduction à la théorie des fonctions analytiques de 1878, rédigé par 
A Hurwitz. Voyez Dugac, Pierre, « Éléments d'analyse de Karl Weierstrass », Archive for History of Exact Sciences 10, 
p. 41-176, 1973.  
15 C’est la fonction que Dirichlet se propose de développer en série trigonométrique. 
16 Dirichlet n’a jamais publié ce résultat, et Paul du Bois-Reymond l’a plus tard réfuté en donnant un exemple de 
fonction continue dont la série de Fourier diverge en 0. Voyez du Bois-Reymond, Paul, « Untersuchungen über die 
Convergenz und Divergenz der Fourierschen Darstellungsformeln », Abhandlungen der Mathematisch-Physicalischen 
Classe der K. Bayerische Akademie der Wissenschaften, 13, p. 1-103, 1876. 
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pathologiques17 ; d’autre part l’étude des critères d’intégrabilité et de la possibilité de les définir 
de manière moins restreinte – Dirichlet conjecturant qu’il est possible d’affaiblir les conditions 
de continuité faites dans sa propre preuve pour généraliser son résultat. La question de 
l’intégrabilité retient toutefois peu l’attention jusqu’à l’Habilitation de Riemann, dans laquelle il 
identifie des conditions de continuité moins strictes pour l’intégrabilité.  

LA RÉPONSE DE RIEMANN À LA QUESTION DE L’INTÉGRABILITÉ  

Riemann a sans doute été l’un des mathématiciens les plus influents de la seconde moitié du 
XIXe siècle. Élève de Carl Friedrich Gauss (1777-1855) à Göttingen et de Dirichlet à Berlin puis à 
Göttingen, il a introduit en analyse, géométrie différentielle, physique mathématique et théorie 
des nombres, des concepts et méthodes qui ont profondément marqué les mathématiques. 
L’intégrale de Riemann, que nous allons présenter ici, n’est certes pas la contribution la plus 
saisissante de Riemann à l’analyse. Bien que les travaux d’Henri Lebesgue (1875-1941) en aient 
montré (et dépassé) les limites, elle est encore utilisée dans les contextes appropriés et est au 
cœur de l’enseignement du calcul intégral de premier cycle universitaire. L’intégrale de Riemann 
est introduite dans sa thèse d’Habilitation sur la représentabilité des fonctions en séries 
trigonométriques, soutenue en 1854 sous la direction de Gauss, mais publiée seulement en 
1867. Soulignons que la question de l’intégrabilité  n’est qu’une partie relativement minime 
(seulement 6 pages sur 45) du travail de Riemann, posant des considérations préliminaires à la 
question centrale qu’est la représentation en séries trigonométriques. 

LA NOTION DE FONCTION  

C’est dans sa thèse de doctorat sur les fondements de la théorie des fonctionscomplexes 
« Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen 
Grösse » [Principes fondamentaux pour une théorie générale des fonctions d’une grandeur 
variable complexe], soutenue en 1851, que Riemann évoque le concept de fonction, en 
reprenant (presque mot pour mot) la notion très générale de fonction que l’on trouve chez 
Dirichlet : 

Si l’on désigne par 𝑧 une grandeur variable qui peut prendre successivement toutes les 
valeurs réelles possibles, alors, lorsqu’à chacune de ses valeurs correspond une valeur 
unique de la grandeur indéterminée 𝑤, l’on dit que 𝑤 est une fonction de 𝑧, et, tandis que 
𝑧 parcourt d’une manière continue toutes les valeurs comprises entre deux valeurs fixes, 
lorsque 𝑤 varie également d’une manière continue, l’on dit que cette fonction w est 
continue dans cet intervalle. Cette définition ne stipule aucune loi entre les valeurs isolées 
de la fonction, c’est évident, car lorsqu’il a été disposé de cette fonction pour un intervalle 
déterminé, le mode de son prolongement en dehors de cet intervalle reste tout à fait 
arbitraire. [8, p. 1-2] 

Pour les fonctions à variables réelles, Riemann souligne immédiatement la possibilité de 
travailler avec des fonctions arbitraires par la possibilité d’en trouver une expression analytique : 

                                                   
17 Par exemple, celle donnée ici par Dirichlet (continue en aucun point), ou le « monstre » de Weierstrass qui est 
continue mais n’est différentiable en aucun point. Voyez Volkert, Klaus, « Le mathématique et le pathologique », 
Philosophia Scientiæ 12(2), p. 65-74, 2008. 



[D]es recherches modernes ont fait voir qu’il existe des expressions analytiques par 
lesquelles toute fonction continue peut être représentée dans un intervalle donné. Il est 
donc indifférent de définir la dépendance de la grandeur 𝑤 de la grandeur 𝑧 comme 
donnée arbitrairement ou bien comme reposant sur des opérations de calcul déterminées. 
Les deux définitions sont équivalentes par suite des théorèmes auxquels nous venons de 
faire allusion. [Ibid., p. 2] 

Pour les fonctions à variables complexes, Riemann propose « sans en démontrer la légitimité 
générale et suffisante pour la définition d'une dépendance exprimable par les opérations du 
calcul » [ibid.], la définition suivante : 

Une grandeur variable complexe 𝑤 est dite une fonction d'une autre grandeur variable 
complexe 𝑧 lorsqu'elle varie avec elle de telle sorte que la valeur de la dérivée xy

xz
 est 

indépendante de la valeur de la différentielle 𝑑𝑧. [Ibid., p. 3] 

Il est donc important pour Riemann de distinguer entre « expression » et « fonction » pour bien 
considérer des fonctions arbitraires (en particulier, qui ne sont pas données par une expression 
analytique), afin d’assurer la généralité du concept. Cette volonté fait partie de ce qui est 
souvent appelé « l’approche conceptuelle » de Riemann poursuivant les efforts de Dirichlet pour 
fonder les recherches sur des concepts plus abstraits, plus généraux, et contourner le recours 
au calcul. 

Dans l’Habilitation de Riemann, et notamment dans sa nouvelle définition de l’intégrale, on 
retrouve une volonté similaire de généralité. Bien entendu, les fonctions considérées ne sont 
pas données par des expressions analytiques – mais c’était déjà le cas chez Fourier et Cauchy. 
Plus crucialement, l’approche de Riemann est explicitement motivée par un désir de généralité 
des définitions fondamentales : donner une définition qui soit valide et puisse s’appliquer à tous 
les cas possibles sans exception. L’approche de Cauchy permet d’obtenir facilement 
l’intégrabilité des fonctions continues par morceaux, ce sur quoi se base Dirichlet en 1829. L’idée 
sous-jacente était que cela suffisait pour décrire « tous les cas de la nature » [9, p. 237]. Riemann 
partage cette idée mais considère qu’il est tout de même important de considérer les fonctions 
qui ne vérifient pas le critère donné par Dirichlet. Il donne deux raisons : 

En premier lieu, comme Dirichlet lui-même le remarque à la fin de son Mémoire, cet objet 
est intimement lié avec les principes du Calcul infinitésimal, et peut servir à porter dans 
ces principes une plus grande clarté et une plus grande précision. Sous ce rapport, l’étude 
de cette question offre un intérêt immédiat. Mais, en second lieu, l’application des séries 
de Fourier n’est pas restreinte aux seules recherches physiques ; on l’emploie aussi 
maintenant avec succès dans une branche des Mathématiques pures, la Théorie des 
nombres, et ici ce sont précisément les fonctions dont Dirichlet n’a pas étudié la 
représentation en série trigonométrique qui semblent être les plus importantes. [Ibid., p. 
238] 

LA DÉFINITION DE L’INTÉGRALE DE RIEMANN 

La première étape du travail de Riemann sur les séries de Fourier est de considérer les 
conditions d’intégrabilité des fonctions. Il se penche sur « l’incertitude qui règne encore sur 
quelques points fondamentaux de la théorie des intégrales définies », en étudie la définition et 
en questionne la généralité. Pour cela, Riemann commence par reprendre la définition de la 
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somme de Cauchy et la modifie en ce que nous appelons aujourd’hui « somme de Riemann ». 
En considérant « une série de valeurs » 𝑥G …𝑥?4G entre 𝑎 et 𝑏, en notant 𝛿{ les sous-intervalles 
de tailles variables 𝑥{hG − 𝑥{ (avec 𝑥< = 𝑎 et 𝑥? = 𝑏), et 𝜀{  des nombres positifs plus petits que 
1, la somme de Riemann est 

𝑆 = 𝛿G𝑓(𝑎 + 𝜀G𝛿G) + 𝛿"𝑓(𝑥G + 𝜀"𝛿G) + ⋯+ 𝛿?𝑓(𝑥?4G + 𝜀?𝛿?). 

Alors : 

Si [la somme de Riemann] a la propriété, de quelque manière que les 𝛿 et les 𝜀 puissent 
être choisis, de s’approcher indéfiniment d’une limite fixe 𝐴, quand les 𝛿 tendent tous vers 
zéro, cette limite s’appelle la valeur de l’intégrale définie  

H 𝑓(𝑥)𝑑𝑥.
P

Q
 

[Ibid., p. 240] 

Cette définition ne s’éloigne donc pas beaucoup de celle de Cauchy. Riemann reprend 
ensuite la définition de l’intégrale définie singulière que nous avons présentée ci-dessus, mais 
exclut le reste du travail de Cauchy sur les intégrales définies singulières : 

D’autres extensions, dues à Cauchy, de la définition de l’intégrale définie dans le cas où 
cette définition ne découle pas des notions fondamentales qui précèdent, peuvent être 
commodes pour certaines classes de recherches, mais elles ne sont pas généralement 
admises, et l’arbitraire qui préside aux définitions de Cauchy suffirait seul à les empêcher 
d’être universellement acceptées. [Ibid, p. 240-241] 

Ce qui intéresse alors Riemann, c’est de comprendre « l’étendue et la limite de la définition 
précédente » : 

Posons-nous cette question : dans quels cas une fonction est-elle susceptible d’intégration 
? dans quels cas ne l’est-elle pas ? [Ibid., p. 241] 

Riemann étudie alors les « plus grandes oscillations » de la fonction dans chaque sous-intervalle 
entre 𝑎 et 𝑏, qu’il note 𝐷{  : 

Alors la somme 𝛿G𝐷G + 𝛿"𝐷" + ⋯+ 𝛿?𝐷?	doit devenir infiniment petite avec les quantités 
𝛿. Supposons que la plus grande valeur que cette somme puisse prendre, quand tous les 𝛿 
sont plus petits que 𝑑, soit 𝛥; 𝛥 sera alors une fonction de 𝑑, diminuant et devenant 
infiniment petite avec 𝑑. Maintenant, si la somme totale des intervalles pour lesquels les 
oscillations sont plus grandes qu'une quantité 𝑛 est 𝑠, la contribution de ces intervalles à 
la somme 

𝛿G𝐷G + 𝛿"𝐷" + ⋯+ 𝛿?𝐷? 

sera évidemment égale ou supérieure à 𝜎𝑠. On aura donc 

𝜎𝑠 ≤ 𝛿G𝐷G + 𝛿"𝐷" + ⋯+ 𝛿?𝐷? ≤ 𝛥	𝑎𝑣𝑒𝑐	𝑠 ≤
𝛥
𝜎
	 

[Ibid.] 



où �
�
	peut être rendu infiniment petit. Cela permet alors d’énoncer la condition d’intégrabilité 

suivante :  

Pour que la somme 𝑆 converge, quand tous les 𝛿 deviennent infiniment petits, il faut non 
seulement que la fonction demeure finie, mais encore que la somme totale des intervalles 
pour lesquels les oscillations sont plus grandes que 𝜎, quel que soit 𝜎, puisse être rendue 
infiniment petite par un choix convenable de 𝑑. [Ibid., p. 241-242] 

Et sa réciproque : 

Si la fonction 𝑓(𝑥) est toujours finie, et si, par le décroissement indéfini de toutes les 
quantités 𝛿, la grandeur totale	𝑠 des intervalles dans lesquels les oscillations de la fonction 
sont plus grandes qu’une quantité donnée 𝜎 peut toujours être rendue infiniment petite, 
la somme 𝑆 converge quand tous les 𝛿 tendent vers zéro. [Ibid., p. 242] 

Une interprétation moderne et intuitivement facile à saisir de ce qu’écrit Riemann, ici, est que 
chaque partition de l’intervalle d’intégration permet d’approximer la fonction par une fonction 
en escalier. Alors, si les écarts entre les différentes fonctions en escalier restent raisonnables 
lorsque les sous-intervalles tendent vers 0, la fonction est intégrable selon Riemann. Autrement 
dit, la fonction doit être bornée sur l’intervalle d’intégration [𝑎, 𝑏] et intégrable sur tout sous-
intervalle de [𝑎, 𝑏]. Soulignons que la définition de Riemann ne fait aucune référence à la 
continuité des fonctions. 

Pour les « intégrales définies singulières », Riemann doit « étendre » sa définition et traiter 
ces intégrales séparément18 :  

Si l’on étend […] la notion d’intégrale aux cas où la fonction devient infinie, pour que 
l’intégration soit possible, il faudra encore que la seconde des conditions trouvées ci-
dessus soit satisfaite ; mais à la place de la première, à savoir que la fonction demeure 
toujours finie, il faudra faire intervenir la suivante : que la fonction ne devienne infinie que 
lorsque son argument s’approche de certaines valeurs particulières, et que l’on obtienne 
une valeur limite parfaitement déterminée quand les limites des intégrations s’approchent 
indéfiniment de ces valeurs pour lesquelles la fonction devient infinie. [Ibid., p. 242-243] 

Il propose ensuite d’appliquer sa définition aux fonctions ayant un nombre infini de 
discontinuités. Pour cela, il n’a pas non plus besoin de la continuité par morceaux et considère 
des fonctions bornées pouvant avoir des discontinuités dans tout intervalle arbitrairement petit. 
Pour mieux comprendre cette idée, Riemann propose de considérer l’exemple suivant. 
Considérons tout d’abord la fonction qui à 𝑥 associe « l’excès de x sur le nombre entier le plus 
voisin ou zéro si 𝑥 est à égale distance des deux nombres entiers les plus voisins. ». Riemann la 
note (𝑥) mais pour des raisons de lisibilité, nous allons la noter 𝑒(𝑥). Elle est définie par  

𝑒(𝑥) = �
	𝑥 −𝑚, si	𝑥 ≠

𝑛
2
	avec	|𝑥 −𝑚| <

1
2

0, si	𝑥 =
𝑛
2

 

où 𝑚 est un entier et 𝑛	est un entier impair. Riemann définit ensuite la fonction : 

                                                   
18 Ce n’est pas le cas avec l’intégrale de Lebesgue, que nous évoquerons brièvement à la fin de ce chapitre. 
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𝑓(𝑥) = >
𝑒(𝑛𝑥)
𝑛"

.
E

?FG

 

Cette fonction est discontinue en tout point 𝑥 = �
"?

 avec 𝑝 et	𝑛 premiers entre eux. En effet, la 

série est convergente pour tout 𝑥, et aux points 𝑥 = 5
"?
	sa limite à droite est : 

𝑓(𝑥) −
1
2𝑛"

>
1

(2𝑖 + 1)"	
{

= 𝑓(𝑥) −
𝜋"

16𝑛"
 

et celle à gauche est : 

𝑓(𝑥) +
1
2𝑛"

>
1

(2𝑖 + 1)"	
{

= 𝑓(𝑥) +
𝜋"

16𝑛"
. 

Il y a donc un nombre infini de discontinuités (en fait, les points de discontinuité forment un 
ensemble dense) et pourtant, cette fonction est intégrable, comme l’explique Riemann : 

Cette fonction est donc discontinue pour toute valeur rationnelle de x qui, réduite à sa plus 
simple expression, a un dénominateur pair ; elle est donc discontinue un nombre infini de 
fois dans un intervalle, si petit qu’il soit, mais de telle manière que le nombre des variations 
brusques qui sont supérieures à une grandeur donnée est toujours fini. Elle est pourtant 
susceptible d’intégration. [Op. cit., p. 244] 

Pourquoi cette fonction est-elle intégrable ? Parce que, d’une part, on peut toujours trouver 
une limite pour tout 𝑥, et d’autre part, « le nombre des variations brusques qui sont plus grandes 
qu’une quantité donnée 𝜎 est toujours fini » [ibid.]. Il est donc possible d’appliquer la définition 
donnée par Riemann, car on peut trouver un 𝑑 tel que la grandeur totale des intervalles dans 
lesquels se situent ces oscillations soit infiniment petite. Ainsi, nous dit Riemann : 

Il importe de remarquer que les fonctions qui n’ont pas un nombre infini de maxima et de 
minima (auxquelles d’ailleurs n’appartient pas la fonction que l’on vient de considérer) 
possèdent toujours ces deux propriétés là où elles ne deviennent pas infinies, et, par suite, 
qu’elles sont susceptibles d’une intégration. [Ibid., p. 244] 

Puisque Cauchy ne considérait que les fonctions continues par morceaux, et que la définition 
de Riemann se débarrasse de cette restriction, il y a plus de fonctions intégrables au sens de 
Riemann qu’au sens de Cauchy – les fonctions Cauchy-intégrables sont même strictement 
comprises dans les fonctions Riemann-intégrables. Cependant, il peut être difficile, au premier 
abord, de comprendre quelles fonctions sont intégrables au sens de Riemann. Mentionnons 
seulement que toutes les fonctions réglées, c’est-à-dire les fonctions qui sont limite uniforme 
de fonctions en escalier, sont intégrables au sens de Riemann, mais ce ne sont pas les seules. 

L’approche de Riemann sur les intégrales est fortement influencée par le but de son travail. 
En effet, comme l’explique l’historien Jeremy Gray [15 p. 157-158], Riemann cherchait à trouver 
des fonctions ayant toujours une valeur moyenne sur leur intervalle de définition tout en 
oscillant fortement, voire en étant discontinues. Ainsi, son intégrale peut être vue comme le 
calcul d’une moyenne mobile (par le théorème des valeurs intermédiaires). Une fonction peut 
donc être intégrable tout en n’étant pas définie en certains points et même en ayant 
« beaucoup » de points de discontinuités et d’oscillations – c’est le cas de l’exemple ci-dessus.  



RÉCEPTION ET GÉNÉRALISATION DE L’INTÉGRALE DE RIEMANN 

Esquissons les grandes lignes de la réception des travaux de Riemann sur l’intégrale de 
fonctions à variables réelles19. L’intégrale de Riemann est restée la définition de référence pour 
le calcul intégral jusqu’aux travaux de Lebesgue, après avoir été affinée par Gaston Darboux 
(1842-1917).  

On l’a vu, la question des fondements de l’analyse est importante pour comprendre les 
changements dans la définition de la notion d’intégrale. Cette question a été abordée 
différemment selon les pays. En Allemagne, la question de ce que l’on appelle aujourd’hui 
« l’arithmétisation de l’analyse » est importante et bien connue, traitée par aussi bien par 
Weierstrass à Berlin que par Richard Dedekind (1831-1916) à Braunschweig et Georg Cantor 
(1845-1918) à Halle.  

En Italie, Ulisse Dini (1845-1918) publie en 1877 Fondamenti per la teoria delle funzioni di 
variabili reali [Fondements pour la théorie des fonctions de variables réelles] dans lequel il 
considère les questions liées à la continuité des fonctions, les fonctions dérivables et intégrables, 
la définition de l’intégrale définie de Riemann et Darboux (que nous abordons ci-dessous) – un 
ouvrage unique à l’époque. Giuseppe Peano (1858-1932) continue dans cette direction avec 
Calcolo Differenziale e Principii di Calcolo Integrale [Calcul différentiel et principes du calcul 
intégral] (1884) et les Lezioni di Analisi Infinitesimale [Leçons d’analyse infinitésimale] (1893).  

En France, la réception de ces questions est difficile, voire inexistante, à l’exception de 
Darboux jusqu’à la fin des années 1880. En 1875, dans le « Mémoire sur les fonctions 
discontinues » publié dans les Annales de l’École Normale Supérieure, Darboux introduit 
notamment la notion que nous appelons « somme de Darboux », qui permet d’affiner la 
définition de l’intégrale de Riemann. La démarche de Darboux est explicitement une démarche 
de rigorisation : 

Dans le travail qu'on va lire, je reprends, en donnant tous les développements nécessaires, 
la définition de l'intégrale définie d'après Riemann, et je montre comment cette définition 
doit conduire à une infinité de fonctions continues n'ayant pas de dérivée. […] Au risque 
d'être trop long, j'ai tenu avant tout, sans y réussir peut-être, à être rigoureux. Bien des 
points, qu'on regarderait à bon droit comme évidents ou que l'on accorderait dans les 
applications de la science aux fonctions usuelles, doivent être soumis à une critique 
rigoureuse dans l'exposé des propositions relatives aux fonctions les plus générales. Par 
exemple, on verra qu’il existe des fonctions continues qui ne sont ni croissantes ni 
décroissantes dans aucun intervalle, qu'il y a des fonctions discontinues qui ne peuvent 
varier d'une valeur à une autre sans passer par toutes les valeurs intermédiaires. On 
conçoit qu’en présence de propositions aussi singulières on éprouve le besoin d'apporter 
la plus grande rigueur dans les déductions et de n'admettre que les propositions les mieux 
démontrées. [3, p. 57-59] 

Voici une version un peu modernisée de la définition de Darboux : pour une fonction réelle 
bornée 𝑓, dans un intervalle [𝑎, 𝑏], on considère une subdivision 𝑠 = (𝑥<, … , 𝑥?) et on pose : 

                                                   
19 Pour des détails sur les développements de la théorie de l’intégration et de la mesure entre Riemann et Lebesgue, 
nous renvoyons à Hochkirchen Thomas, « Theory of Measure and Integration from Riemann to Lebesgue », A History 
of Analysis. Jahnke, H. N. (éd.). Providence/London : AMS/LMS, p. 261-290, 2003 ; ainsi qu’à [17]. 



16 
 

𝑚{ = inf
Z∈[Z���,Z�]

𝑓(𝑥)	et	𝑀{ = sup
Z∈[Z���,Z�]

𝑓(𝑥)	 

𝑑(𝑓, 𝑠) => 𝑚{(𝑥{ − 𝑥{4G)
?

{FG
	et	𝐷(𝑓, 𝑠) => 𝑀{(𝑥{ − 𝑥{4G)

?

{FG
 

alors si sup
�
𝑑(𝑓, 𝑠) = inf

�
𝐷(𝑓, 𝑠) (ce que l’on appelle respectivement somme inférieure et 

supérieure de Darboux), la fonction 𝑓 est intégrable (au sens de Riemann) et : 

∫ 𝑓(𝑥)𝑑𝑥 =P
Q sup

�
𝑑(𝑓, 𝑠) = inf

�
𝐷(𝑓, 𝑠). 

C’est cette définition que l’on utilise le plus souvent aujourd’hui dans les cours universitaires 
sous le nom d’intégrale de Riemann. Pourtant, ce travail de Darboux a d’abord été accueilli 
froidement par la communauté mathématique française20. Plus généralement, la réception des 
travaux sur les fondements de l’analyse est lente en France. L’historienne Hélène Gispert le 
montre bien dans [14], notamment par la comparaison entre les différentes éditions du Cours 
d’Analyse de l’École polytechnique de Camille Jordan (1838-1922)21. Dans la parution de 1882, 
Jordan n’inclut aucun des travaux sur les fondements de l’analyse – qu’il connaît pourtant au 
moins en partie, notamment la définition de l’intégrale de Riemann. De ce point de vue, il suit 
les pratiques des autres mathématiciens français. Dans le tome de 1887, il « corrige » certains 
de ces choix en ajoutant une Note titrée « Sur quelques points de la théorie des fonctions », 
dans laquelle il reprend notamment la définition des fonctions intégrables et de l’intégrale de 
Riemann, en mentionnant que cela permet d’étendre la notion d’intégrale définie au-delà des 
fonctions continues. Enfin, l’édition de 1893 est totalement remaniée, et prenant en compte de 
nombreux travaux sur les fondements de l’analyse, y compris en théorie des ensembles. Jordan 
y donne une définition de la notion de fonction intégrable utilisant les sommes de Darboux. 
Cette édition marque un tournant dans l’histoire des fondements de l’analyse en France. 

Terminons en évoquant (trop brièvement) l’intégrale introduite par Lebesgue qui généralise 
l’intégrale de Riemann et est définie dans les Leçons sur l’intégration et la recherche des 
fonctions primitives de 1904. Lebesgue situe explicitement sa démarche dans une volonté de 
pouvoir traiter plus de fonctions que ce que permet l’intégrale de Riemann :  

On peut se demander, il est vrai, s’il y a quelque intérêt à s’occuper de telles complications 
et s’il ne vaut pas mieux se borner à l’étude des fonctions qui ne nécessitent que des 
définitions simples. Cela n’a guère que des avantages quand il s’agit d’un Cours 
élémentaire ; mais, comme on le verra dans ces Leçons, si l’on voulait toujours se limiter à 
la considération de ces bonnes fonctions, il faudrait renoncer à résoudre bien des 
problèmes à énoncés simples posés depuis longtemps. C’est pour la résolution de ces 
problèmes, et non par amour des complications, que j’ai introduit dans ce Livre une 
définition de l’intégrale plus générale que celle de Riemann et comprenant celle-ci comme 
cas particulier. [5, p. ix-x] 

Du point de vue de son auteur, l’intégrale de Lebesgue est « plus simple » car elle « met en 
évidence les propriétés les plus importantes de l’intégrale, tandis que la définition de Riemann 
ne met en évidence qu’un procédé de calcul » [ibid., p. x]. 

                                                   
20 Sur les difficultés rencontrées par Darboux pour communiquer avec les mathématiciens français sur ces questions, 
nous renvoyons à également à [14]. 
21 Sur l’enseignement de l’analyse en France, voyez le chapitre XI. 



L’un des intérêts centraux de Lebesgue se trouve dans le théorème fondamental du calcul 
intégral. Rappelons informellement les deux formulations de ce théorème : 

- Si 𝐹 est une primitive de 𝑓, alors 𝐹j = 𝑓. 
- Toute primitive de 𝑓	est de la forme ∫ 𝑓ZQ + 𝐶. 

Or des fonctions dérivables sur [𝑎, 𝑏] dont la dérivée est bornée mais n’est pas Riemann-
intégrable avaient été découvertes. L’objectif de Lebesgue est de lever cette restriction de la 
notion d’intégrabilité pour retrouver le théorème fondamental du calcul intégral : si 𝐹 est 
dérivable sur [𝑎, 𝑏] et si sa dérivée 𝑓 est bornée sur [𝑎, 𝑏], alors, pour tout 𝑥 dans [𝑎, 𝑏], elle est 
Lebesgue-intégrable sur [𝑎, 𝑥] et : 

H 𝑓(𝑡)𝑑𝑡 = 𝐹(𝑥) − 𝐹(𝑎).
Z

Q
 

Pour définir son intégrale (dans le dernier chapitre de son ouvrage), Lebesgue choisit un point 
de vue axiomatique : 

[N]ous nous proposons d’attacher à toute fonction bornée 𝑓(𝑥), définie dans un intervalle 
fini (𝑎, 𝑏), positif, négatif ou nul, un nombre fini, ∫ 𝑓(𝑥)𝑑𝑥P

Q 	et qui satisfait aux conditions 
suivantes :  

1. Quels que soient 𝑎, 𝑏, ℎ, on a ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥 − ℎ)𝑑𝑥Ph�
Qh�

P
Q 	; 

2. Quels que soient 𝑎, 𝑏, 𝑐, on a  

H 𝑓(𝑥)𝑑𝑥 +
P

Q
H 𝑓(𝑥)𝑑𝑥 +
�

P
H 𝑓(𝑥)𝑑𝑥 = 0
Q

�
	; 

3. ∫ [𝑓(𝑥) + 𝜑(𝑥)]𝑑𝑥 =P
Q ∫ 𝑓(𝑥)𝑑𝑥 +P

Q ∫ 𝜑(𝑥)𝑑𝑥	;P
Q  

4. Si l’on a 𝑓 ≧ 0 et 𝑏 > 𝑎, on a aussi ∫ 𝑓(𝑥)𝑑𝑥 ≧ 0	;P
Q  

5. On a ∫ 1 × 𝑑𝑥 = 1	;G
<  

6. Si 𝑓?(𝑥) tend en croissant vers 𝑓(𝑥), l’intégrale de 𝑓?(𝑥)	tend vers celle de 𝑓(𝑥). [Ibid., 
p. 98-99] 

Pour comprendre intuitivement les spécificités liées au calcul de l’intégrale de Lebesgue, nous 
nous contenterons de citer ces paroles rapportées : 

Je dois payer une certaine somme, disait-il ; je fouille dans mes poches et j’en sors des pièces 
et des billets de différentes valeurs. Je les verse à mon créancier dans l’ordre où elles se 
présentent jusqu’à atteindre le total de ma dette. C’est l’intégrale de Riemann. Mais je peux 
opérer autrement. Ayant sorti tout mon argent, je réunis les billets de même valeur, les 
pièces semblables, et j’effectue le paiement en donnant ensemble les signes monétaires de 
même valeur. C’est mon intégrale. [13, p. 15] 
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Esquissons rapidement la définition de son intégrale22. Plutôt que de découper l’aire sous la 
courbe en rectangles dont la base est un sous-intervalle de l’intervalle d’intégration [𝑎, 𝑏], on 
découpe cette aire en rectangles « horizontaux » sur l’axe des 𝑦 entre les bornes inférieures et 
supérieures de 𝑓 sur [𝑎, 𝑏]. Pour une fonction 𝑓 réelle positive23, on partitionne donc l’intervalle 
entre les bornes de 𝑓 en sous-ensembles [𝑦{4G, 𝑦{] tels que, pour 𝑥	dans [𝑎, 𝑏], 𝑦{4G ≤ 𝑓(𝑥) ≤
𝑦{. On peut ainsi considérer les intervalles des valeurs correspondantes de 𝑥, que l’on note 𝐸{, 
et pour des 𝜂{  tels que 𝑦{4G ≤ 𝜂{ ≤ 𝑦{, les valeurs de 𝑓 dans les 𝐸{ sont infiniment proches de 
𝜂{. Lebesgue définit alors la somme  

>𝜂{𝑚(𝐸{)
?

{FG

 

avec 𝑚 la mesure de Lebesgue24 définie sur les intervalles réels [𝑎, 𝑏] par 𝑚([𝑎, 𝑏]) = 𝑏 − 𝑎. On 
peut montrer que cette somme a une limite déterminée. Cette limite est l’intégrale de Lebesgue, 
que l’on note 

H𝑓(𝑥)𝑚(𝑑𝑥). 

Pour calculer l’intégrale de Lebesgue d’une fonction (mesurable) réelle quelconque, on définit 
𝑓h(𝑥) = 𝑓(𝑥) si 𝑓(𝑥) ≥ 0 (et 0 sinon) et 𝑓4(𝑥) = −𝑓(𝑥) si 𝑓(𝑥) ≤ 0 (et 0 sinon), et on a : 

H𝑓(𝑥)𝑚(𝑑𝑥) =H𝑓h(𝑥)𝑚(𝑑𝑥) −H𝑓4(𝑥)𝑚(𝑑𝑥). 

Toutes les fonctions Riemann-intégrables sont Lebesgue-intégrables, mais ce ne sont pas les 
seules. En particulier, la fonction donnée par Dirichlet, qui n’est pas Riemann-intégrable, est 
Lebesgue-intégrable sur tout intervalle borné25. 

CONCLUSION 

Dans ce chapitre, nous avons souhaité mettre en lumière l’émergence de la question de 
l’intégrabilité des fonctions et les réponses apportées à cette question, avec comme horizon 
l’intégrale dite de Riemann, la plus classique des intégrales que l’on enseigne aujourd’hui en 
premier cycle universitaire.  

Trois acteurs précèdent la définition donnée par Riemann : Fourier, Cauchy et Dirichlet. C’est 
d’abord par les travaux de Fourier et en lien étroit avec un concept de fonction de plus en plus 
général et abstrait, qu’apparaît la question de l’intégrabilité. Lorsque Cauchy s’en empare, c’est 
une volonté d’insuffler une plus grande rigueur dans les fondements de l’analyse qui l’amène à 
proposer une définition uniforme du concept d’intégrale (définie et indéfinie) et prouver le 
théorème fondamental du calcul intégral. Le travail de Lejeune-Dirichlet poursuit ceux de 
Fourier et Cauchy : également intéressé par les liens entre l’intégrabilité et représentabilité des 
fonctions et par la rigorisation de l’analyse, il joue un rôle important dans l’extension du concept 

                                                   
22 Nous nous appuyons sur la présentation qu’en fait Lebesgue dans « Sur le développement de la notion d'intégrale », 
Revue de Métaphysique et de Morale 34 (2), p. 149-167, 1927. 
23 Plus précisément, une fonction mesurable positive mais cette définition nous amènerait trop loin. 
24 À nouveau, le détail de la théorie de la mesure nous amènerait trop loin. Mentionnons simplement qu’il s’agit d’une 
manière de mesurer les sous-ensembles d’un espace euclidien, qui coïncide avec la longueur dans ℝ, l’aire dans ℝ" 
et le volume dans ℝW. 
25 Sur les développements de la théorie de l’intégration, on pourra consulter Michel, Alain, Constitution de la théorie 
moderne de l'intégration, Paris : Vrin, 1992. 



de fonction et dans la réflexion sur les conditions d’intégrabilité d’une fonction arbitraire. C’est 
à ces trois acteurs que souhaite répondre Riemann, lorsqu’il interroge à son tour les liens entre 
intégrabilité et représentabilité des fonctions. Il introduit, dans son Habilitation, ce que nous 
appelons aujourd’hui l’intégrale de Riemann. Mais la définition proposée par Riemann 
rencontre rapidement des limites dépassées par les travaux des analystes français, en particulier 
Darboux et Lebesgue au début du XXe siècle.  

Nous avons donc pu voir le mouvement conceptuel qui accompagne la réflexion autour de la 
définition (rigoureuse) d’une intégrale. Il est intéressant de constater que c’est en partant de ou 
à travers l’étude d’objets difficiles et complexes, comme les séries trigonométriques, que sont 
affinées ou modifiées les définitions des objets et notions plus fondamentaux – comme la 
fonction ou l’intégrabilité. Si ce n’est pas un phénomène rare en mathématiques, cela n’en reste 
pas moins un exemple intéressant du mouvement conceptuel visant à préciser, assurer et 
parfois étendre les définitions de base de notions déjà connues.  
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