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Emmylou HAFFNER

Chapitre Ix

Définir I'intégrale : une nécessité, des
élaborations

(postprint)

Dans son Habilitation, titrée « Uber die Darstellbarkeit einer Funktion durch eine
trigonometrische Reihe » [Sur la possibilité de représenter une fonction par une série
trigonométrique]’, soutenue en 1854 mais publiée de maniére posthume en 1867, Bernhard
Riemann (1826-1866), donne la définition de ce nous appelons aujourd’hui I'intégrale de
Riemann. Ce texte est ouvert par 14 pages d’analyse historique des précédentes recherches sur
la représentabilité des fonctions en série trigonométrique et les travaux de Leonhard Euler
(1707-1783), Jean-Baptiste le Rond d’Alembert (1717-1783), Jean-Baptiste-Joseph Fourier
(1768-1830) et Johann Peter Gustav Lejeune-Dirichlet (1805-1859), qui ont depuis largement
guidé la narration de cette partie de I'histoire des mathématiques. Cette analyse remarquable
inclut une réflexion fine sur les changements connus par les concepts en jeu, notamment dans
les travaux de Dirichlet, ainsi que sur les liens entre représentabilité et intégrabilité des
fonctions?. Cela témoigne de la volonté de Riemann de placer son travail dans une tradition bien
établie, tout en en montrant clairement les limites et comment il peut les dépasser. Le travail
de Riemann repose sur une réflexion sur la possibilité d’améliorer et d’étendre les travaux de
ces auteurs, en particulier pour rendre les criteres de représentabilité en série trigonométrique
plus précis et en délimiter clairement les contours.

Dans ce chapitre, nous nous contenterons de considérer les questions liées a I'intégrabilité
des fonctions®. Soulighons que la partie du texte de Riemann effectivement dédiée a
I'intégrabilité et a la définition de ce que nous appelons aujourd’hui I'intégrale de Riemann est,
en fait, assez courte, le coeur de son Habilitation étant (comme son nom l'indique) la
représentation des fonctions en séries trigonométriques. Avant de présenter le travail de
Riemann nous passerons par trois grandes étapes : en 1822, les travaux de Fourier sur la
représentabilité des fonctions en séries trigonométriques (qui seront ensuite nommeées séries
de Fourier) qui mettent en avant I'importance de l'intégrabilité des fonctions; en 1823, la
définition de l'intégrale définie proposée par Augustin-Louis Cauchy (1789-1857) dans son
Résumé des lecons données a I’Ecole Royale polytechnique sur le calcul infinitésimal ; en 1829 et

1 Lors de la soutenance de I'Habilitation, les candidats présentaient un mémoire, I'Habilitationschrift, et pronongaient
un cours, I’Habilitationsvortrag. Nous parlons ici de I'Habilitationschrift de Riemann. Son Habilitationsvortrag est le
célébre « Sur les hypotheses qui servent de base a la géométrie ».

2 0On parle de représentabilité d’une fonction pour la possibilité de I'écrire comme somme d’une série (par exemple,
entiere ou de Fourier) et d’intégrabilité lorsque I’on cherche a savoir si la fonction posséde une intégrale définie et
finie.

3 Sur la question des séries de Fourier, on pourra consulter les chapitres 2 et 5 de Bottazzini Umberto, The higher
calculus. A history of real and complex analysis from Euler to Weierstrass. New York : Springer, 1986 ; les chapitres 2,
14 et 15 de [15]. Nous ne considérerons que la définition de I'intégrale de Riemann et renvoyons respectivement aux
chapitres 6 et 15 de ces deux ouvrages.



1837, les travaux de Dirichlet sur la représentabilité des fonctions en séries trigonométriques,
et ce qu’il en ressort des questions liées a I'intégrabilité des fonctions.

Le cheminement historique que nous retragons ici, vers I'intégrale de Riemann et au-del3,
omet une partie importante de I’histoire de I'analyse qui a toutefois joué un réle crucial dans le
développement des théories de I'intégration : la résolution des équations différentielles. A
défaut de pouvoir donner ici a ce sujet la place qu’il mérite, nous renvoyons la lectrice a [18]
pour un tableau synthétique, et a [16] pour un panorama plus exhaustif.

LES SERIES TRIGONOMETRIQUES DE FOURIER

La réflexion de Riemann sur les conditions d’intégrabilité des fonctions a variable réelle nait
de ses recherches sur la représentabilité en série trigonométrique — un théme central pour les
développements de I'analyse aux Xix® et xx¢ siécles. Riemann commence son Habilitation en
rappelant que ce sont des recherches sur les vibrations des cordes qui ont amené Daniel
Bernoulli (1700-1782), Euler et d’Alembert a considérer le développement de fonctions
analytiques en séries trigonométriques. |l s’agissait alors de résoudre I’équation différentielle
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Les travaux de Fourier marquent ensuite une étape décisive des recherches sur la
représentation de fonctions arbitraires en série trigonométrique. En 1822, dans sa Théorie
analytique de la chaleur, Fourier s’intéresse a la distribution de la chaleur dans un solide. Cela
I'améne a résoudre des équations aux dérivées partielles, notamment certaines dont on peut
montrer que les solutions sont de la forme v(x,y) = f(x)g(y) avec f(x) = cos(imx), g(y) =
e~™Y, Fourier en vient a affirmer que toute fonction « dont la valeur est représentée, dans un
intervalle déterminé, depuis x = 0 jusqu’a x = X par I'ordonnée d’une ligne courbe tracée
arbitrairement » [4, p. 231-232] peut étre écrite comme série de fonctions trigonométriques,
c’est-a-dire sous la forme*

1 [ee]
fx) = 4o + 2 (a, cos nmx + b,sinnmx)
n=1

avec

1 1
a, = J f(x) cosnmx dx ; b, = J f (x) sinnmx dx.
-1 -1

Fourier, ayant besoin d’un concept de fonction suffisamment général pour s’appliquer sans
restriction a la situation physique qu’il étudie, définit la notion de la maniére suivante :

En général, la fonction f (x) représente une suite de valeurs, ou ordonnées, dont chacune
est arbitraire. L’abscisse x pouvant recevoir une infinité de valeurs, il y a un pareil nombre
d’ordonnées f(x). Toutes ont des valeurs numériques actuelles, ou positives, ou
négatives, ou nulles. On ne suppose point que ces ordonnées soient assujetties a une loi
commune ; elles se succédent d’une maniére quelconque, et chacune d’elles est donnée
comme le serait une seule quantité. [Ibid., p. 500]

4 Nous utilisons ici une notation moderne pour la série de Fourier. Dans le texte original, on trouve souvent les séries
notées par exemple a + b cos x + ¢ cos 2x + -+, mais la notation ), est aussi ponctuellement utilisée.



Les fonctions de Fourier sont données graphiquement et arbitrairement. S'il a été apres
Fourier largement accepté que les fonctions arbitraires pouvaient s’écrire sous forme de série
trigonométrique, la preuve que la série de Fourier d’une fonction donnée converge
effectivement vers la valeur de ladite fonction n’a été donnée que plus tard. Cauchy en propose
une preuve en 1826° jugée incompléte et corrigée par Dirichlet en 1829 [6].

L’étude d’une fonction périodique par les séries de Fourier comprend deux volets : une étape
pour déterminer ce que I'on appelle aujourd’hui ses coefficients de Fourier, et une étape pour
déterminer sila série de Fourier ainsi formée converge bien vers la fonction en question. On voit
bien, donc, que l'intégrabilité des fonctions considérées est essentielle pour le calcul des
coefficients. Comme I’écrit I’historien Jesper Liitzen [17 p. 170], apres les travaux des Bernoulli,
la définition la plus largement adoptée pour 'intégration était celle du procédé inverse de la
différentiation — c’est-a-dire, la recherche de primitive — et « Fourier a été le premier a changer
cela ». En effet, Fourier s’était rendu compte que le calcul des coefficients de Fourier pour des
fonctions arbitraires (c’est-a-dire sans expression analytique) demandait d’aller au-dela du
calcul différentiel (qui nécessitait une expression analytique) et a concentré son attention sur

.. e (D , L re1s . reas .
I'intégrale définie fa f(x)dx—c’estlui qui propose d’indiquer les limites de I'intégration en haut
et en bas du signe d’intégrale —en insistant sur le fait qu’il s’agit de I’aire entre la courbe et I’axe.

Lorsqu’en 1823 Cauchy définit I'intégrale définie, il reprend I’approche de Fourier, mais en
mettant de coté la définition en termes d’aire pour en proposer une plus précise, qui lui permet
aussi de prouver que I'intégrale existe effectivement pour une fonction continue par morceaux.

LES INTEGRALES DEFINIE ET INDEFINIE DE CAUCHY

Cauchy est souvent présenté comme |'un des fondateurs du mouvement dit de
« rigorisation » de I'analyse mathématique au Xix¢ siecle. Cette rigorisation de I’analyse consiste
essentiellement en une réorganisation de ses fondements. Celle-ci n’est pas tant guidée par des
considérations philosophiques que, d’une part, par des questions interrogeant les outils
analytiques — comme les séries de Fourier qui invitent a remettre en question les conceptions
établies de fonction, d’intégrale, de convergence, mais également les équations différentielles,
les fonctions elliptiques... — et, d’autre part, par des considérations pédagogiques. Cauchy, en
particulier, dans la préface de son Cours d’Analyse de 1821, indique avoir « pour la plus grande
utilité des éleves » fait le choix de donner aux méthodes « toute la rigueur qu’on exige en
géométrie » [1, p. ij]°.

Au Xxix® siécle, et notamment par les travaux de Cauchy, s’operent des changements
importants en analyse. D’'une part, la pratique de I'analyse change plus généralement d’une
pratique de résolution des problémes a la mise en place d’une théorie, c’est-a-dire un ensemble
de résultats, propositions, théoremes déduits de définitions (vues comme) rigoureuses. Le xvil®
siecle avait produit beaucoup de résultats en analyse (calcul infinitésimal, intégral,
développement en séries, etc.) mais ces résultats étaient organisés dans un ordre que les
mathématiciens du Xix® siecle commencent a considérer comme insatisfaisant, en particulier a
cause du manque d’une présentation systématique structurée en définitions-théoremes. Un

5 Cauchy, Augustin-Louis, « Mémoire sur les développements des fonctions en séries périodiques », Mémoires de
I’Académie Royale des Sciences 6, p. 603-612, 1827.

6 Sur les travaux de Cauchy plus généralement, on pourra se référer a Belhoste, Bruno, Cauchy, 1789-1857 : un
mathématicien légitimiste au xixe siecle, Paris : Belin, 1985.



nouveau standard de rigueur largement soutenu par une réorganisation du corps des savoirs se
met progressivement en place avec les travaux de Cauchy. Celui-ci a une compréhension aiglie
et précise du sens des résultats et des techniques développées par ses prédécesseurs, et il
restructure I'’ensemble des connaissances en identifiant les propriétés a utiliser comme
définition de maniére a justifier lesdites techniques et résultats. Soulignons qu’il n’est pas
guestion ici de la rigueur dite weierstrassienne utilisant les &, §, etc., pour définir les notions de
I’analyse — travaux d’ailleurs postérieurs a Cauchy — mais d’un changement dans la structuration
méme de la théorie. D’autre part, il y avait eu, avec les travaux d’Euler, un mouvement de
transition entre I’'analyse comme outil pour I’étude des courbes, vers I'analyse comme une

théorie des fonctions. Avec Cauchy, I'analyse devient une discipline autonome.

En 1823, en préface de ses Legons sur le calcul infinitésimal, il précise, dans une critique a
peine voilée de ses prédécesseurs :

Mon but principal a été de concilier la rigueur, dont je m’étais fait une loi dans mon Cours
d’analyse avec la simplicité qui résulte de la considération directe des quantités infiniment
petites. Pour cette raison, j'ai cru devoir rejeter les développemens des fonctions en séries
infinies, toutes les fois que les séries obtenues ne sont pas convergentes et je me suis vu
forcé de renvoyer au calcul intégral la formule de Taylor, cette formule ne pouvant plus
étre admise comme générale qu’autant que la série qu’elle renferme se trouve réduite a
un nombre fini de termes et complétée par une intégrale définie. Je n’ignore pas que
l'illustre auteur de la Mécanique analytique [Lagrange] a pris la formule dont il s’agit pour
base de sa théorie des fonctions dérivées [chap. vil], mais, malgré tout le respect que
commande une si grande autorité la plupart des géometres s’accordent maintenant a
reconnaitre I’incertitude des résultats auxquels on peut étre conduit par I'emploi de séries
[...]. Au reste, ceux qui liront mon ouvrage, se convaincront, je I’'espére, que les principes
du calcul différentiel, et ses applications les plus importantes, peuvent étre facilement
exposés, sans l'intervention des séries. [2, Avertissement]

Dans la critique de I'approche lagrangienne se trouve le coeur du refus de Cauchy de recourir a
I'algébre et a sa supposée « généralité » [1, p.ij] pour fonder I'analyse. La « généralité de
I'algébre » est celle du travail avec des quantités indéterminées, fournissant des résultats
toujours valides lorsqu’appliqués a des valeurs « déterminées » comme les nombres. Mais une
telle « généralité » va, pour Cauchy, a I'encontre de la rigueur, qui demande d’ancrer les
définitions dans une réalité numérique, ce qu’il propose de faire en mettant en place un nouvel
édifice fondé sur les notions de limite’ et de continuité, et sur I’arithmétique des inégalités®.

Pour le sujet qui nous intéresse, soulignons que Cauchy est le premier a fonder le calcul
intégral sur des bases purement analytiques, se détachant (aussi) de linterprétation
géométrique. De plus, Cauchy fait un pas important pour combler une lacune supplémentaire,
celle d’une approche unifiée pour calculer les intégrales. |l propose pour la premiere fois une
technique uniforme pour calculer I'aire sous la courbe y = f(x) (avec f continue), en prouvant
le lien avec les primitives de f. Il est également le premier a proposer une preuve du « théoréme
fondamental du calcul intégral », c’est-a-dire du lien entre intégration et dérivation.

7 A ce sujet, voyez le chapitre x.

8 Voyez Chorlay, Renaud, « Questions of generality as probes into nineteenth-century mathematical analysis », The
Oxford Handbook of Generality in Mathematics and the Sciences, Chemla K., Chorlay R., Rabouin D. (éds.), Oxford :
OUP, p. 385-410, 2016.



La définition de I'intégrale de Cauchy repose sur la notion de fonction telle qu’il I'avait définie
dans son Cours d’Analyse de 1821 :

Lorsque des quantités variables sont tellement liées entre elles que la valeur de I'une
d’elles étant donnée, on puisse en conclure les valeurs de toutes les autres, on concoit
d’ordinaire ces diverses quantités exprimées au moyen de I’'une d’entre elles, qui prend
alors le nom de variable indépendante et les autres quantités exprimées au moyen de la
variable indépendante sont ce qu’on appelle des fonctions de cette variable. [Ibid., p. 20]

Cauchy travaille, pour la définition de l'intégrale définie, avec des fonctions continues par
morceaux’.

Pour bien comprendre la définition de l'intégrale donnée par Cauchy, il faut d’abord
considérer la définition des « sommes de Cauchy », que nous reproduisons entierement :

Supposons que la fonctiony = f(x), étant continue par rapport a la variable x entre deux
limites finies x = xy, et x = X, on désigne par x1, X5, ..., X,_1 de nouvelles valeurs de x
interposées entre ces limites, et qui aillent toujours en croissant ou en décroissant depuis
la premiére limite jusqu’a la seconde. On pourra se servir de ces valeurs pour diviser la
différence X — x, en éléments

(1) x; — x0,%3 — X1,X3 — X3, 00, X — Xpp_q,

qui seront tous de méme signe. Cela posé, concevons que I'on multiplie chaque élément
par la valeur de f(x) correspondante a I'origine de ce méme élément, savoir I'élément
X1 — Xxgo par f(xg), I'élément x, — xq par f(xq), ..., enfin I'élément X — x,_4, par
f(xn_1), et soit

(2) § = (%1 —x0)f (x0) + (x2 = x)f (x1) + -+ (X — xp_1)f (xn-1)
la somme des produits ainsi obtenus. [2, p. 122]

On reconnait dans (1) une subdivision de I'intervalle d’intégration. Ce que I'on appelle « somme
de Cauchy » est (2).

Cauchy montre ensuite que les sommes de Cauchy d’une fonction continue convergent (dans
les nombres réels) vers un nombre réel. Autrement dit, lorsque les diamétres des intervalles des
sommes de Cauchy tendent vers 0, la somme converge vers un nombre réel. Ce nombre est
appelé l'intégrale définie :

Donc, lorsque les éléments de la différence X — x, deviennent infiniment petits, le mode
de division n’a plus sur la valeur de S qu’une influence insensible ; et, si I’on fait décroitre
indéfiniment les valeurs numériques de ces éléments, en augmentant leur nombre, la
valeur de S finira par étre sensiblement constante ou, en d’autres termes, elle finira par
atteindre une certaine limite qui dépendra uniquement de la forme de la fonction f (x) et
des valeurs extrémes x,, X attribuées a la variable x. Cette limite est ce qu’on appelle une
intégrale définie. [Ibid., p. 125]

Cauchy adopte la notation introduite par Fourier pour I'intégrale définie de f(x) entre xy et X :

9 Rappelons que Cauchy a défini la continuité dans le Cours d’Analyse en 1821.



X
J f(x)dx.

Xo

L'idée de base derriere la définition des « sommes de Cauchy » était déja présente chez un
certain nombre de ses prédécesseurs. Euler utilise une telle méthode dans ses Institutiones
Calculi Integralis (1768) pour calculer des approximations d’intégrales'®, approche que I'on
retrouve chez Lacroix, Legendre, et Poisson''. Toutefois, comme le souligne Liitzen, le
traitement que propose Cauchy va bien au-dela d’une procédure d’approximation numérique,
puisque cette technique devient dans son travail une véritable définition.

Dans la lecon suivante, Cauchy donne des formules pour déterminer des valeurs exactes ou
approchées de certaines intégrales définies, et calcule un certain nombre d’exemples. C'est dans
la Lecon 23, aprés avoir prouvé certaines propriétés algébriques fondamentales, comme la
relation de Chasles, que Cauchy clarifie I'interprétation géométrique de l'intégrale :

Concevons a présent que, la limite X étant supérieure a x,, et la fonction f(x) étant
positive depuis x = xq jusqu’a x = X, x,y, désignent des coordonnées rectangulaires, et
A la surface comprise d’une part entre I'axe des x et la courbe y = f(x), d’autre part entre
les ordonnées f(xy), f (X). [Op. cit, p. 136-137]

Le calcul de I'aire se fait alors par un argument géométrique dans lequel nous reconnaissons la
version intégrale du théoréme des accroissements finis, ce qui permet a Cauchy de montrer

X . . ’s N Lfr e I
que A = fx f(x)dx, liant ainsi le calcul de I'aire sous la courbe a la définition de I'intégrale
0
définie.

La derniere étape de définition de I'intégrale définie est celle de la généralisation de
I'intégrale définie aux intégrales a bornes infinies et aux « intégrales définies singuliéres »
(Lecons 24 et 25), c’est-a-dire les intégrales impropres et continues par morceaux. Cauchy
présente le probleme de la maniére suivante :

Dans les lecons précédentes, nous avons démontré plusieurs propriétés remarquables de
I'intégrale définie

X
€ j F()dx

Xo

mais en supposant : 1. que les limites x,, X étaient des quantités finies, 2. que la fonction
f (x) demeurait finie et continue entre ces mémes limites. [...] Lorsque les valeurs extrémes
Xo, X deviennent infinies, ou lorsque la fonction f (x) ne reste pas finie et continue depuis
X = Xxgjusqu’a x = X, on ne peut plus affirmer que [la somme de Cauchy] ait une limite
fixe, et par suite on ne voit plus quel sens on doit attacher a la notation (1) qui servait a
représenter généralement la limite de [la somme de Cauchy]. [Ibid., p. 140-141]

10 C’est également I'approche qu’il utilise pour I'intégration des équations différentielles dy = f(x)dx et dy =
f(x)dx, et quifonde ce que I'on appelle aujourd’hui la méthode d’Euler.

11 A ce sujet, voyez Grabiner, Judith V., The origins of Cauchy's rigorous calculus, Newburyport : MIT Press, 1981 ; et
Mawhin, Jean, « Présences des sommes de Riemann dans I'évolution du calcul intégral » Cahiers du séminaire
d’histoire des mathématiques, p. 117-147, 1983.



Cauchy considére donc ici des fonctions continues par morceaux qui deviennent infinies en un
ou plusieurs points de I'intervalle d’intégration. Cauchy propose « d’étendre par analogie » ce
gu’on appelle aujourd’hui la relation de Chasles et le passage a la limite

X €
J f)dx =1lim | f(x)dx
X0 €0
ou &, tend vers x; et et & vers X. Si la fonction f est continue sur [xy, X] sauf en un point x = a,
Cauchy propose de considérer les deux intégrales :

La_gf(x)dx et JX f)dx

a+e

et leur somme :

a—¢& X

J fx)dx + J f(x)dx
Xo a+e

alors la limite de la somme est la somme des limites, qui peut étre trouvée en utilisant la

propriété ci-dessus. Si cette limite existe (quand & tend vers 0), alors I'intégrale existe et est finie.

Elle est appelée « intégrale définie singuliere ». Cauchy généralise cette méthode a un nombre

fini quelconque de telles discontinuités.

Enfin, pour effectivement obtenir une définition uniforme de I'intégrale, il faut définir les
intégrales indéfinies. C’'est le sujet de la Lecon 26, dans laquelle Cauchy prouve que pour une
fonction F(x) définie par:

X

F(x) =J fo)dx

X0

alors

F'(x) = f0.

Autrement dit, I'intégrale indéfinie [ f(x)dx est la solution de I’équation différentielle dy =
f(x)dx. Cauchy établit ainsi le théoréme fondamental du calcul différentiel et relie, dans le
méme geste, son nouveau concept d’intégrale a I’ancien.

Terminons en mentionnant la possibilité, mise en avant par Litzen [17, p. 171], d’un lien
entre nouvelle définition de l'intégrale proposée par Cauchy et certains de ses travaux
précédents. D’une part, Cauchy avait, quelques années auparavant, montré que la valeur de
I'intégrale définie et celle de la différence entre les valeurs d’une primitive aux extrémités de
I'intervalle d’intégration ne coincidaient pas toujours avec la définition précédente!?. D’autre
part, ses travaux (et ceux de Poisson) en analyse complexe I'avaient mené a prouver que les
intégrales complexes peuvent dépendre des chemins d’intégration. 1l est donc possible qu’ait
ainsi pu émerger pour Cauchy I'idée que la définition de I'intégrale ne peut pas reposer de
maniére rigoureuse sur la primitive.

12 Cauchy, Augustin-Louis, « Mémoire sur la théorie des intégrales définies » lu a I'Institut le 22 ao(t 1814, Mémoire
présentés a I’Académie Royale des Sciences par divers savans 2, p. 601-799, 1827.



FONCTION ET INTEGRABILITE DANS LES TRAVAUX SUR LES SERIES TRIGONOMETRIQUES DE
DIRICHLET

Dans « Sur la convergence des séries trigonométriques qui servent a représenter une
fonction arbitraire » (1829) et sa révision allemande de 1837 « Uber die Darstellung ganz
willktirlicher Functionen durch Sinus- und Cosinusreihen » [Sur la représentation des fonctions
arbitraires en séries trigonométriques], Dirichlet poursuit les travaux de Fourier et Cauchy sur la
représentation de fonctions arbitraires en séries trigonométriques, en approfondissant le
concept de fonction. Dirichlet considere en effet une fonction « entierement arbitraire » pour
laguelle n'est donnée aucune représentation explicite : aucune formule, aucune « régle de
formation » par des opérations arithmétiques. Il suit ainsi la voie de Fourier, qui avait « ouvert
une nouvelle carriere aux applications de I'analyse, en y introduisant la maniére d’exprimer les
fonctions arbitraires dont il est question » [6, p. 117]. Rappelons de plus que Dirichlet est un
acteur important du renouveau de la rigueur en analyse au Xix¢ siécle. Un aspect central de cette
attention accrue aux questions de rigueur des définitions et raisonnements en analyse est
I'insistance sur la nécessité d’identifier les propriétés nécessaires et suffisantes des objets sur et
avec lesquels on travaille. C’'est dans cette optique que se place la notion de fonction proposée
par Dirichlet®?:

Nous désignons par a et b deux constantes et par x une quantité variable qui prendra
graduellement toutes les valeurs entre a et b. Maintenant a tout x correspond un seul y
fini, de telle sorte que quand x parcourt continument l'intervalle entre a et b, y =
f(x) change également graduellement. Alors y est appelé une fonction continue de x sur
cetintervalle. Il n’est pas nécessaire que y soit, dans cet intervalle, dépendant de x toujours
avec la méme loi, donc on n’a pas besoin de penser une dépendance s’exprimant par des
opérations mathématiques. Représentée géométriquement, c’est-a-dire avec x et y comme
abscisses et ordonnées, une fonction continue apparait comme une courbe continue, dont
chaque abscisse comprise entre a et b correspond a un seul point. Cette définition ne
prescrit pas une loi commune pour les différentes parties de la courbe ; on peut penser
qu’elle est composée des morceaux les plus divers ou qu’elle est dessinée entierement sans
loi. Il s’ensuit qu’une telle fonction pour un intervalle ne doit étre considérée comme définie
que si elle est donnée graphiquement pour tout l'intervalle ou est sujette a des lois
mathématiques qui s’appliquent aux parties individuelles de l'intervalle. Tant que I'on a
déterminé une fonction seulement pour une partie de I'intervalle, la maniére dont elle est
prolongée sur le reste de l'intervalle est complétement laissée arbitraire. [7, p. 135-136, je
traduis]

Mentionnons, qu’il ne s’agit que d’'une maniére parmi d’autres de concevoir une rigorisation
de I'analyse. Certains acteurs importants de ce mouvement se positionnent contre le niveau de
généralité adopté par Dirichlet (et, plus tard, par Riemann). Karl Weierstrass (1815-1897), en
particulier, est dit avoir affirmé qu’une telle maniere de concevoir la fonction était

13 Sur les changements du concept de fonction dans ce contexte, voyez Litzen, Jesper, « Between rigor and
applications: Developments in the concept of function in mathematical analysis », The Cambridge History of Science:
The modern physical and mathematical sciences. Nye, M. J. (éd.). Cambridge : CUP, p. 468-487, 2003.



« complétement intenable et infécond. Il est en effet impossible d’en déduire des propriétés
générales des fonctions »*4.

A la suite de la notion de fonction, Dirichlet considére la définition de I'intégrale f;f(x)dx,
en l'introduisant comme I'aire sous la courbe entre a et b. Il rappelle ensuite la définition de ce
gue nous avons appelé ci-dessus la somme de Cauchy — toujours avec des sous-intervalles de
taille égale [op. cit., p. 136], et donne la condition pour considérer I'intégrale comme sa limite
(sans citer Cauchy). Il rappelle diverses propriétés algébriques de I'intégrale.

Dans son premier article sur les séries trigonométriques, Dirichlet était arrivé a la condition
suivante pour I'intégrabilité des fonctions :

Il est nécessaire qu’alors la fonction @ (x) [une fonction de x, ayant une valeur finie et
déterminée pour chaque valeur de x entre —m et ]*, soit telle que, si I'on désigne par a
et b deux quantités quelconques comprises entre — et 1, on puisse toujours placer entre
a et b d’autres quantités r et s assez rapprochées pour que la fonction reste continue dans
I'intervalle de r a s. On sentira facilement la nécessité de cette restriction en considérant
que les différents termes de la série sont des intégrales définies et en remontant a la notion
fondamentale des intégrales. On verra alors que I'intégrale d’une fonction ne signifie
quelque chose qu’autant que la fonction satisfait a la condition précédemment énoncée.
[6, p. 131-132]

Autrement dit, en termes modernes, Dirichlet affirme qu’une fonction est intégrable si, et
seulement si, I'ensemble de ses discontinuités est assez rare — formellement, s’il est nulle part
dense. Dirichlet donne alors I’exemple bien connu de fonction non intégrable (pour lui, et qui le
sera aussi pour Riemann) :

_(cpourx €Q
(p(x)_{dpourx ¢Q

ol c et d sont des constantes distinctes. Il conclut par les affirmations suivantes :

La fonction ainsi définie a des valeurs finies et déterminées pour toute valeur de x, et
cependant on ne saurait la substituer dans la série, attendu que les différentes intégrales
qui entrent dans cette série, perdraient toute signification dans ce cas. La restriction que
je viens de préciser, et celle de ne pas devenir infinie, sont les seules auxquelles la fonction
¢ (x) soit sujette et tous les cas qu’elles n’excluent pas peuvent étre ramenés a ceux que
nous avons considérés dans ce qui précéde. Mais la chose, pour étre faite avec toute la
clarté qu'on peut désirer, exige quelques détails lies aux principes fondamentaux de
I'analyse infinitésimale et qui seront exposés dans une autre note'®. [Ibid., p. 132]

Ces derniéres lignes de I'article de Dirichlet sont a I'origine de deux courants de recherche
importants dans I’analyse du Xix® siecle: d’'une part, la construction de fonctions dites

14 Ce sont des propos tenus lors d’un cours d’introduction a la théorie des fonctions analytiques de 1878, rédigé par
A Hurwitz. Voyez Dugac, Pierre, « Eléments d'analyse de Karl Weierstrass », Archive for History of Exact Sciences 10,
p. 41-176, 1973.

15 C’est la fonction que Dirichlet se propose de développer en série trigonométrique.

16 Dirichlet n’a jamais publié ce résultat, et Paul du Bois-Reymond I'a plus tard réfuté en donnant un exemple de
fonction continue dont la série de Fourier diverge en 0. Voyez du Bois-Reymond, Paul, « Untersuchungen Uber die
Convergenz und Divergenz der Fourierschen Darstellungsformeln », Abhandlungen der Mathematisch-Physicalischen
Classe der K. Bayerische Akademie der Wissenschaften, 13, p. 1-103, 1876.



pathologiques!’ ; d’autre part I'étude des critéres d’intégrabilité et de la possibilité de les définir
de maniére moins restreinte — Dirichlet conjecturant qu’il est possible d’affaiblir les conditions
de continuité faites dans sa propre preuve pour généraliser son résultat. La question de
I'intégrabilité retient toutefois peu I'attention jusqu’a I’Habilitation de Riemann, dans laquelle il
identifie des conditions de continuité moins strictes pour I'intégrabilité.

LA REPONSE DE RIEMANN A LA QUESTION DE L’ INTEGRABILITE

Riemann a sans doute été I'un des mathématiciens les plus influents de la seconde moitié du
XIx® siecle. Eléve de Carl Friedrich Gauss (1777-1855) a Gottingen et de Dirichlet a Berlin puis a
Gottingen, il a introduit en analyse, géométrie différentielle, physique mathématique et théorie
des nombres, des concepts et méthodes qui ont profondément marqué les mathématiques.
L'intégrale de Riemann, que nous allons présenter ici, n’est certes pas la contribution la plus
saisissante de Riemann a I’analyse. Bien que les travaux d’Henri Lebesgue (1875-1941) en aient
montré (et dépassé) les limites, elle est encore utilisée dans les contextes appropriés et est au
cceur de I'enseignement du calcul intégral de premier cycle universitaire. L'intégrale de Riemann
est introduite dans sa thése d’Habilitation sur la représentabilité des fonctions en séries
trigonométriques, soutenue en 1854 sous la direction de Gauss, mais publiée seulement en
1867. Soulignons que la question de l'intégrabilité n’est qu’une partie relativement minime
(seulement 6 pages sur 45) du travail de Riemann, posant des considérations préliminaires a la
guestion centrale qu’est la représentation en séries trigonométriques.

LA NOTION DE FONCTION

C’est dans sa these de doctorat sur les fondements de la théorie des fonctionscomplexes
« Grundlagen fiir eine allgemeine Theorie der Functionen einer verdnderlichen complexen
Grésse » [Principes fondamentaux pour une théorie générale des fonctions d’une grandeur
variable complexe], soutenue en 1851, que Riemann évoque le concept de fonction, en
reprenant (presque mot pour mot) la notion trés générale de fonction que I'on trouve chez
Dirichlet :

Si I'on désigne par z une grandeur variable qui peut prendre successivement toutes les
valeurs réelles possibles, alors, lorsqu’a chacune de ses valeurs correspond une valeur
unique de la grandeur indéterminée w, I’on dit que w est une fonction de z, et, tandis que
z parcourt d’une maniére continue toutes les valeurs comprises entre deux valeurs fixes,
lorsque w varie également d’une maniére continue, I'on dit que cette fonction w est
continue dans cet intervalle. Cette définition ne stipule aucune loi entre les valeurs isolées
de la fonction, c’est évident, car lorsqu’il a été disposé de cette fonction pour un intervalle
déterminé, le mode de son prolongement en dehors de cet intervalle reste tout a fait
arbitraire. [8, p. 1-2]

Pour les fonctions a variables réelles, Riemann souligne immédiatement la possibilité de
travailler avec des fonctions arbitraires par la possibilité d’en trouver une expression analytique :

17 Par exemple, celle donnée ici par Dirichlet (continue en aucun point), ou le « monstre » de Weierstrass qui est
continue mais n’est différentiable en aucun point. Voyez Volkert, Klaus, « Le mathématique et le pathologique »,
Philosophia Scientiae 12(2), p. 65-74, 2008.
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[D]es recherches modernes ont fait voir qu’il existe des expressions analytiques par
lesquelles toute fonction continue peut étre représentée dans un intervalle donné. Il est
donc indifférent de définir la dépendance de la grandeur w de la grandeur z comme
donnée arbitrairement ou bien comme reposant sur des opérations de calcul déterminées.
Les deux définitions sont équivalentes par suite des théoremes auxquels nous venons de
faire allusion. [Ibid., p. 2]

Pour les fonctions a variables complexes, Riemann propose « sans en démontrer la légitimité
générale et suffisante pour la définition d'une dépendance exprimable par les opérations du
calcul » [ibid.], la définition suivante :

Une grandeur variable complexe w est dite une fonction d'une autre grandeur variable
complexe z lorsqu'elle varie avec elle de telle sorte que la valeur de la dérivée Z—‘: est
indépendante de la valeur de la différentielle dz. [Ibid., p. 3]

Il est donc important pour Riemann de distinguer entre « expression » et « fonction » pour bien
considérer des fonctions arbitraires (en particulier, qui ne sont pas données par une expression
analytique), afin d’assurer la généralité du concept. Cette volonté fait partie de ce qui est
souvent appelé « I'approche conceptuelle » de Riemann poursuivant les efforts de Dirichlet pour
fonder les recherches sur des concepts plus abstraits, plus généraux, et contourner le recours
au calcul.

Dans I'Habilitation de Riemann, et notamment dans sa nouvelle définition de I'intégrale, on
retrouve une volonté similaire de généralité. Bien entendu, les fonctions considérées ne sont
pas données par des expressions analytiques — mais c’était déja le cas chez Fourier et Cauchy.
Plus crucialement, I'approche de Riemann est explicitement motivée par un désir de généralité
des définitions fondamentales : donner une définition qui soit valide et puisse s’appliquer a tous
les cas possibles sans exception. L'approche de Cauchy permet d’obtenir facilement
I'intégrabilité des fonctions continues par morceaux, ce sur quoi se base Dirichlet en 1829. L’idée
sous-jacente était que cela suffisait pour décrire « tous les cas de la nature » [9, p. 237]. Riemann
partage cette idée mais considére qu’il est tout de méme important de considérer les fonctions
qui ne vérifient pas le critere donné par Dirichlet. Il donne deux raisons :

En premier lieu, comme Dirichlet lui-méme le remarque a la fin de son Mémoire, cet objet
est intimement lié avec les principes du Calcul infinitésimal, et peut servir a porter dans
ces principes une plus grande clarté et une plus grande précision. Sous ce rapport, I’étude
de cette question offre un intérét immédiat. Mais, en second lieu, I'application des séries
de Fourier n’est pas restreinte aux seules recherches physiques ; on I'emploie aussi
maintenant avec succés dans une branche des Mathématiques pures, la Théorie des
nombres, et ici ce sont précisément les fonctions dont Dirichlet n‘a pas étudié la
représentation en série trigpnométrique qui semblent étre les plus importantes. [Ibid., p.
238]

LA DEFINITION DE L'INTEGRALE DE RIEMANN

La premiére étape du travail de Riemann sur les séries de Fourier est de considérer les
conditions d’intégrabilité des fonctions. Il se penche sur « I'incertitude qui régne encore sur
guelques points fondamentaux de la théorie des intégrales définies », en étudie la définition et
en questionne la généralité. Pour cela, Riemann commence par reprendre la définition de la



somme de Cauchy et la modifie en ce que nous appelons aujourd’hui « somme de Riemann ».
En considérant « une série de valeurs » x5 ... X,,_1 entre a et b, en notant §; les sous-intervalles
de tailles variables x; 1 — x; (avec xq = a et x;,, = b), et €; des nombres positifs plus petits que
1, la somme de Riemann est

S = 61f(a + 5161) + 52f(x1 + 5261) + -+ 6nf(xn_1 + 81161’7.)

Alors :

Si [la somme de Riemann] a la propriété, de quelque maniére que les § et les € puissent
étre choisis, de s’approcher indéfiniment d’une limite fixe A, quand les 6 tendent tous vers
zéro, cette limite s’appelle la valeur de I'intégrale définie

be(x)dx.

[Ibid., p. 240]

Cette définition ne s’éloigne donc pas beaucoup de celle de Cauchy. Riemann reprend
ensuite la définition de I'intégrale définie singuliére que nous avons présentée ci-dessus, mais
exclut le reste du travail de Cauchy sur les intégrales définies singuliéres :

D’autres extensions, dues a Cauchy, de la définition de I'intégrale définie dans le cas ol
cette définition ne découle pas des notions fondamentales qui précédent, peuvent étre
commodes pour certaines classes de recherches, mais elles ne sont pas généralement
admises, et I'arbitraire qui préside aux définitions de Cauchy suffirait seul a les empécher
d’étre universellement acceptées. [Ibid, p. 240-241]

Ce qui intéresse alors Riemann, c’est de comprendre « I’étendue et la limite de la définition
précédente » :

Posons-nous cette question : dans quels cas une fonction est-elle susceptible d’intégration
? dans quels cas ne I’est-elle pas ? [Ibid., p. 241]

Riemann étudie alors les « plus grandes oscillations » de la fonction dans chaque sous-intervalle
entrea et b, qu’il note D; :

Alorslasomme §{D; + 6,D, + -+ + 6, D,, doit devenir infiniment petite avec les quantités
6. Supposons que la plus grande valeur que cette somme puisse prendre, quand tous les §
sont plus petits que d, soit A; A sera alors une fonction de d, diminuant et devenant
infiniment petite avec d. Maintenant, si la somme totale des intervalles pour lesquels les
oscillations sont plus grandes qu'une quantité n est s, la contribution de ces intervalles a
la somme

61D1 + 62D2 + A + 6nDn

sera évidemment égale ou supérieure a os. On aura donc
A
0s < 6:D; +8,D, + -+ 68,D, < Aavecs < —
o

[/bid.]
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ou ~ peut étre rendu infiniment petit. Cela permet alors d’énoncer la condition d’intégrabilité

suivante :

Pour que la somme S converge, quand tous les § deviennent infiniment petits, il faut non
seulement que la fonction demeure finie, mais encore que la somme totale des intervalles
pour lesquels les oscillations sont plus grandes que o, quel que soit o, puisse étre rendue
infiniment petite par un choix convenable de d. [Ibid., p. 241-242]

Et sa réciproque :

Si la fonction f(x) est toujours finie, et si, par le décroissement indéfini de toutes les
quantités 8, la grandeur totale s des intervalles dans lesquels les oscillations de la fonction
sont plus grandes qu’une quantité donnée o peut toujours étre rendue infiniment petite,
la somme S converge quand tous les § tendent vers zéro. [Ibid., p. 242]

Une interprétation moderne et intuitivement facile a saisir de ce qu’écrit Riemann, ici, est que
chaque partition de l'intervalle d’intégration permet d’approximer la fonction par une fonction
en escalier. Alors, si les écarts entre les différentes fonctions en escalier restent raisonnables
lorsque les sous-intervalles tendent vers 0, la fonction est intégrable selon Riemann. Autrement
dit, la fonction doit étre bornée sur I'intervalle d’intégration [a, b] et intégrable sur tout sous-
intervalle de [a, b]. Soulignons que la définition de Riemann ne fait aucune référence a la
continuité des fonctions.

Pour les « intégrales définies singulieres », Riemann doit « étendre » sa définition et traiter
ces intégrales séparément?® :

Si I'on étend [...] la notion d’intégrale aux cas ol la fonction devient infinie, pour que
Iintégration soit possible, il faudra encore que la seconde des conditions trouvées ci-
dessus soit satisfaite ; mais a la place de la premiere, a savoir que la fonction demeure
toujours finie, il faudra faire intervenir la suivante : que la fonction ne devienne infinie que
lorsque son argument s’approche de certaines valeurs particuliéres, et que I'on obtienne
une valeur limite parfaitement déterminée quand les limites des intégrations s’approchent
indéfiniment de ces valeurs pour lesquelles la fonction devient infinie. [Ibid., p. 242-243]

Il propose ensuite d’appliquer sa définition aux fonctions ayant un nombre infini de
discontinuités. Pour cela, il n’a pas non plus besoin de la continuité par morceaux et considere
des fonctions bornées pouvant avoir des discontinuités dans tout intervalle arbitrairement petit.
Pour mieux comprendre cette idée, Riemann propose de considérer I'exemple suivant.
Considérons tout d’abord la fonction qui a x associe « I’exces de x sur le nombre entier le plus
voisin ou zéro si x est a égale distance des deux nombres entiers les plus voisins. ». Riemann la
note (x) mais pour des raisons de lisibilité, nous allons la noter e(x). Elle est définie par

. n 1

X —m, 51x¢§avec|x—m|<§
e(x) = .
0, six ==
2

ol m est un entier et n est un entier impair. Riemann définit ensuite la fonction :

18 Ce n’est pas le cas avec l'intégrale de Lebesgue, que nous évoquerons brievement a la fin de ce chapitre.
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an
série est convergente pour tout x, et aux points x = 7n 5@ limite a droite est :

Cette fonction est discontinue en tout point x = — avec p et n premiers entre eux. En effet, la

2
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f@ —ﬁZm = ) - T

et celle a gauche est :
2

1 1 T
f(x)+ﬁzlm:f(36)+@

Il y a donc un nombre infini de discontinuités (en fait, les points de discontinuité forment un
ensemble dense) et pourtant, cette fonction est intégrable, comme I'explique Riemann :

Cette fonction est donc discontinue pour toute valeur rationnelle de x qui, réduite a sa plus
simple expression, a un dénominateur pair ; elle est donc discontinue un nombre infini de
fois dans un intervalle, si petit qu’il soit, mais de telle maniére que le nombre des variations
brusques qui sont supérieures a une grandeur donnée est toujours fini. Elle est pourtant
susceptible d’intégration. [Op. cit., p. 244]

Pourquoi cette fonction est-elle intégrable ? Parce que, d'une part, on peut toujours trouver
une limite pour tout x, et d’autre part, « le nombre des variations brusques qui sont plus grandes
gu’une quantité donnée o est toujours fini » [ibid.]. Il est donc possible d’appliquer la définition
donnée par Riemann, car on peut trouver un d tel que la grandeur totale des intervalles dans
lesquels se situent ces oscillations soit infiniment petite. Ainsi, nous dit Riemann :

Il importe de remarquer que les fonctions qui n’ont pas un nombre infini de maxima et de
minima (auxquelles d’ailleurs n’appartient pas la fonction que I'on vient de considérer)
possédent toujours ces deux propriétés la o elles ne deviennent pas infinies, et, par suite,
qu’elles sont susceptibles d’une intégration. [Ibid., p. 244]

Puisque Cauchy ne considérait que les fonctions continues par morceaux, et que la définition
de Riemann se débarrasse de cette restriction, il y a plus de fonctions intégrables au sens de
Riemann qu’au sens de Cauchy — les fonctions Cauchy-intégrables sont méme strictement
comprises dans les fonctions Riemann-intégrables. Cependant, il peut étre difficile, au premier
abord, de comprendre quelles fonctions sont intégrables au sens de Riemann. Mentionnons
seulement que toutes les fonctions réglées, c’est-a-dire les fonctions qui sont limite uniforme
de fonctions en escalier, sont intégrables au sens de Riemann, mais ce ne sont pas les seules.

L’approche de Riemann sur les intégrales est fortement influencée par le but de son travail.
En effet, comme I'explique I'historien Jeremy Gray [15 p. 157-158], Riemann cherchait a trouver
des fonctions ayant toujours une valeur moyenne sur leur intervalle de définition tout en
oscillant fortement, voire en étant discontinues. Ainsi, son intégrale peut étre vue comme le
calcul d’'une moyenne mobile (par le théoreme des valeurs intermédiaires). Une fonction peut
donc étre intégrable tout en n’étant pas définie en certains points et méme en ayant
« beaucoup » de points de discontinuités et d’oscillations — c’est le cas de I’exemple ci-dessus.
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RECEPTION ET GENERALISATION DE L INTEGRALE DE RIEMANN

Esquissons les grandes lignes de la réception des travaux de Riemann sur l'intégrale de
fonctions a variables réelles®. L’intégrale de Riemann est restée la définition de référence pour
le calcul intégral jusqu’aux travaux de Lebesgue, apres avoir été affinée par Gaston Darboux
(1842-1917).

On I'a vu, la question des fondements de |'analyse est importante pour comprendre les
changements dans la définition de la notion d’intégrale. Cette question a été abordée
différemment selon les pays. En Allemagne, la question de ce que I’'on appelle aujourd’hui
« I'arithmétisation de I'analyse » est importante et bien connue, traitée par aussi bien par
Weierstrass a Berlin que par Richard Dedekind (1831-1916) a Braunschweig et Georg Cantor
(1845-1918) a Halle.

En Italie, Ulisse Dini (1845-1918) publie en 1877 Fondamenti per la teoria delle funzioni di
variabili reali [Fondements pour la théorie des fonctions de variables réelles] dans lequel il
consideére les questions liées a la continuité des fonctions, les fonctions dérivables et intégrables,
la définition de I'intégrale définie de Riemann et Darboux (que nous abordons ci-dessous) — un
ouvrage unique a I'époque. Giuseppe Peano (1858-1932) continue dans cette direction avec
Calcolo Differenziale e Principii di Calcolo Integrale [Calcul différentiel et principes du calcul
intégral] (1884) et les Lezioni di Analisi Infinitesimale [Lecons d’analyse infinitésimale] (1893).

En France, la réception de ces questions est difficile, voire inexistante, a I'exception de
Darboux jusqu’a la fin des années 1880. En 1875, dans le « Mémoire sur les fonctions
discontinues » publié dans les Annales de I’Ecole Normale Supérieure, Darboux introduit
notamment la notion que nous appelons « somme de Darboux », qui permet d’affiner la
définition de I'intégrale de Riemann. La démarche de Darboux est explicitement une démarche
de rigorisation :

Dans le travail qu'on va lire, je reprends, en donnant tous les développements nécessaires,
la définition de l'intégrale définie d'aprés Riemann, et je montre comment cette définition
doit conduire a une infinité de fonctions continues n'ayant pas de dérivée. [...] Au risque
d'étre trop long, j'ai tenu avant tout, sans y réussir peut-étre, a étre rigoureux. Bien des
points, qu'on regarderait a bon droit comme évidents ou que I'on accorderait dans les
applications de la science aux fonctions usuelles, doivent étre soumis a une critique
rigoureuse dans I'exposé des propositions relatives aux fonctions les plus générales. Par
exemple, on verra qu’il existe des fonctions continues qui ne sont ni croissantes ni
décroissantes dans aucun intervalle, qu'il y a des fonctions discontinues qui ne peuvent
varier d'une valeur a une autre sans passer par toutes les valeurs intermédiaires. On
congoit qu’en présence de propositions aussi singulieres on éprouve le besoin d'apporter
la plus grande rigueur dans les déductions et de n'admettre que les propositions les mieux
démontrées. [3, p. 57-59]

Voici une version un peu modernisée de la définition de Darboux : pour une fonction réelle
bornée f, dans un intervalle [a, b], on considére une subdivision s = (x, ..., X;,) et on pose :

19 Pour des détails sur les développements de la théorie de I'intégration et de la mesure entre Riemann et Lebesgue,
nous renvoyons a Hochkirchen Thomas, « Theory of Measure and Integration from Riemann to Lebesgue », A History
of Analysis. Jahnke, H. N. (éd.). Providence/London : AMS/LMS, p. 261-290, 2003 ; ainsi qu’a [17].



m; = _inf f(x)et M\;= sup f(x)
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alors si supd(f,s) =infD(f,s) (ce que I'on appelle respectivement somme inférieure et
s N

supérieure de Darboux), la fonction f est intégrable (au sens de Riemann) et :
fff(x)dx =supd(f,s) = infD(f,s).
s S

C’est cette définition que I'on utilise le plus souvent aujourd’hui dans les cours universitaires
sous le nom d’intégrale de Riemann. Pourtant, ce travail de Darboux a d’abord été accueilli
froidement par la communauté mathématique francaise?. Plus généralement, la réception des
travaux sur les fondements de I’analyse est lente en France. L’historienne Héléne Gispert le
montre bien dans [14], notamment par la comparaison entre les différentes éditions du Cours
d’Analyse de I’Ecole polytechnique de Camille Jordan (1838-1922)%'. Dans la parution de 1882,
Jordan n’inclut aucun des travaux sur les fondements de I’analyse — qu’il connait pourtant au
moins en partie, notamment la définition de I'intégrale de Riemann. De ce point de vue, il suit
les pratiques des autres mathématiciens francgais. Dans le tome de 1887, il « corrige » certains
de ces choix en ajoutant une Note titrée « Sur quelques points de la théorie des fonctions »,
dans laquelle il reprend notamment la définition des fonctions intégrables et de I'intégrale de
Riemann, en mentionnant que cela permet d’étendre la notion d’intégrale définie au-dela des
fonctions continues. Enfin, I'édition de 1893 est totalement remaniée, et prenant en compte de
nombreux travaux sur les fondements de I’analyse, y compris en théorie des ensembles. Jordan
y donne une définition de la notion de fonction intégrable utilisant les sommes de Darboux.
Cette édition marque un tournant dans I’histoire des fondements de I’analyse en France.

Terminons en évoquant (trop brievement) I'intégrale introduite par Lebesgue qui généralise
I'intégrale de Riemann et est définie dans les Lecons sur l'intégration et la recherche des
fonctions primitives de 1904. Lebesgue situe explicitement sa démarche dans une volonté de
pouvoir traiter plus de fonctions que ce que permet I'intégrale de Riemann :

On peut se demander, il est vrai, s’il y a quelque intérét a s’occuper de telles complications
et s’il ne vaut pas mieux se borner a I'étude des fonctions qui ne nécessitent que des
définitions simples. Cela n’a guére que des avantages quand il s’agit d’un Cours
élémentaire ; mais, comme on le verra dans ces Lecons, si I’'on voulait toujours se limiter a
la considération de ces bonnes fonctions, il faudrait renoncer a résoudre bien des
problémes a énoncés simples posés depuis longtemps. C’est pour la résolution de ces
problémes, et non par amour des complications, que j’ai introduit dans ce Livre une
définition de I'intégrale plus générale que celle de Riemann et comprenant celle-ci comme
cas particulier. [5, p. ix-x]

Du point de vue de son auteur, I'intégrale de Lebesgue est « plus simple » car elle « met en
évidence les propriétés les plus importantes de I'intégrale, tandis que la définition de Riemann
ne met en évidence qu’un procédé de calcul » [ibid., p. x].

20 Sur les difficultés rencontrées par Darboux pour communiquer avec les mathématiciens frangais sur ces questions,
nous renvoyons a également a [14].
21 Sur I'enseignement de I'analyse en France, voyez le chapitre xi.
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L'un des intéréts centraux de Lebesgue se trouve dans le théoreme fondamental du calcul
intégral. Rappelons informellement les deux formulations de ce théoréme :

- Si F est une primitive de f, alors F' = f.

- Toute primitive de f est de la forme fa f+C.

Or des fonctions dérivables sur [a, b] dont la dérivée est bornée mais n’est pas Riemann-
intégrable avaient été découvertes. L'objectif de Lebesgue est de lever cette restriction de la
notion d’intégrabilité pour retrouver le théoreme fondamental du calcul intégral : si F est
dérivable sur [a, b] et si sa dérivée f est bornée sur [a, b], alors, pour tout x dans [a, b], elle est
Lebesgue-intégrable sur [a, x] et :

j xf(t)dt = F(x) — F(a).

Pour définir son intégrale (dans le dernier chapitre de son ouvrage), Lebesgue choisit un point
de vue axiomatique :

[N]ous nous proposons d’attacher a toute fonction bornée f (x), définie dans un intervalle
fini (a, b), positif, négatif ou nul, un nombre fini, fa f (x)dx et qui satisfait aux conditions
suivantes :

1. Quels que soient a, b, h, on a f; fx)dx = ;::f(x — h)dx ;

2. Quels que soient a, b,c, ona
b c a
J f(x)dx+J f(x)dx+J f(x)dx =0 ;
a b c

b b b

3. LIfG) +e]dx = [, f)dx + [, p(o)dx;

4. Silonaf=0eth>a, onaaussif;f(x)dx =0;
5, Onafollxdx=1;

6. Si f,(x) tend en croissant vers f (x), I'intégrale de f, (x) tend vers celle de f (x). [Ibid.,
p. 98-99]

Pour comprendre intuitivement les spécificités liées au calcul de I'intégrale de Lebesgue, nous
nous contenterons de citer ces paroles rapportées :

Je dois payer une certaine somme, disait-il ; je fouille dans mes poches et j’en sors des piéces
et des billets de différentes valeurs. Je les verse a mon créancier dans I'ordre ol elles se
présentent jusqu’a atteindre le total de ma dette. C’est I'intégrale de Riemann. Mais je peux
opérer autrement. Ayant sorti tout mon argent, je réunis les billets de méme valeur, les
piéces semblables, et j'effectue le paiement en donnant ensemble les signes monétaires de
méme valeur. C’est mon intégrale. [13, p. 15]



Esquissons rapidement la définition de son intégrale?. Plutot que de découper I'aire sous la
courbe en rectangles dont la base est un sous-intervalle de I'intervalle d’intégration [a, b], on
découpe cette aire en rectangles « horizontaux » sur I'axe des y entre les bornes inférieures et
supérieures de f sur [a, b]. Pour une fonction f réelle positive?®, on partitionne donc I'intervalle
entre les bornes de f en sous-ensembles [y;_4, ;] tels que, pour x dans [a, b], ;-1 < f(x) <
y;. On peut ainsi considérer les intervalles des valeurs correspondantes de x, que I'on note Ej,
et pour des 7; tels que y;_1 < 1n; < y;, les valeurs de f dans les E; sont infiniment proches de
7;. Lebesgue définit alors la somme

n
nim(E;)

i=1

avec m la mesure de Lebesgue* définie sur les intervalles réels [a, b] par m([a, b]) = b — a. On

peut montrer que cette somme a une limite déterminée. Cette limite est I'intégrale de Lebesgue,

qgue I'on note

J fom(dx).

Pour calculer I'intégrale de Lebesgue d’une fonction (mesurable) réelle quelconque, on définit
fr(x) =f(x)sif(x) =0 (et0sinon)et f~(x) = —f(x)sif(x) <0 (et0sinon), etona:

[ r@mi@n = [ £+ eom@n - [ f- om0

Toutes les fonctions Riemann-intégrables sont Lebesgue-intégrables, mais ce ne sont pas les
seules. En particulier, la fonction donnée par Dirichlet, qui n’est pas Riemann-intégrable, est
Lebesgue-intégrable sur tout intervalle borné®.

CONCLUSION

Dans ce chapitre, nous avons souhaité mettre en lumiére I'émergence de la question de
I'intégrabilité des fonctions et les réponses apportées a cette question, avec comme horizon
I'intégrale dite de Riemann, la plus classique des intégrales que I'on enseigne aujourd’hui en
premier cycle universitaire.

Trois acteurs précedent la définition donnée par Riemann : Fourier, Cauchy et Dirichlet. C'est
d’abord par les travaux de Fourier et en lien étroit avec un concept de fonction de plus en plus
général et abstrait, qu’apparait la question de I'intégrabilité. Lorsque Cauchy s’en empare, c’est
une volonté d’insuffler une plus grande rigueur dans les fondements de I’analyse qui I’'améne a
proposer une définition uniforme du concept d’intégrale (définie et indéfinie) et prouver le
théoréme fondamental du calcul intégral. Le travail de Lejeune-Dirichlet poursuit ceux de
Fourier et Cauchy : également intéressé par les liens entre I'intégrabilité et représentabilité des
fonctions et par la rigorisation de I’analyse, il joue un réle important dans I’extension du concept

22 Nous nous appuyons sur la présentation qu’en fait Lebesgue dans « Sur le développement de la notion d'intégrale »,
Revue de Métaphysique et de Morale 34 (2), p. 149-167, 1927.

23 Plus précisément, une fonction mesurable positive mais cette définition nous amenerait trop loin.

24 A nouveau, le détail de la théorie de la mesure nous aménerait trop loin. Mentionnons simplement qu'il s’agit d’une
maniére de mesurer les sous-ensembles d’un espace euclidien, qui coincide avec la longueur dans R, I'aire dans R?
et le volume dans R3.

25 Sur les développements de la théorie de I'intégration, on pourra consulter Michel, Alain, Constitution de la théorie
moderne de l'intégration, Paris : Vrin, 1992.
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de fonction et dans la réflexion sur les conditions d’intégrabilité d’une fonction arbitraire. C’'est
a ces trois acteurs que souhaite répondre Riemann, lorsqu’il interroge a son tour les liens entre
intégrabilité et représentabilité des fonctions. Il introduit, dans son Habilitation, ce que nous
appelons aujourd’hui l'intégrale de Riemann. Mais la définition proposée par Riemann
rencontre rapidement des limites dépassées par les travaux des analystes francais, en particulier
Darboux et Lebesgue au début du xx® siecle.

Nous avons donc pu voir le mouvement conceptuel qui accompagne la réflexion autour de la
définition (rigoureuse) d’une intégrale. Il est intéressant de constater que c’est en partant de ou
a travers I'étude d’'objets difficiles et complexes, comme les séries trigonométriques, que sont
affinées ou modifiées les définitions des objets et notions plus fondamentaux — comme la
fonction ou I'intégrabilité. Si ce n’est pas un phénoméne rare en mathématiques, cela n’en reste
pas moins un exemple intéressant du mouvement conceptuel visant a préciser, assurer et
parfois étendre les définitions de base de notions déja connues.
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