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In this article, we analyse the characteristics of science-industry patents with respect to noncollaborative industry patents and industry-industry collaborative patents. This analysis covers patents filed in the years 1978-2015 (and granted up to 2020) at the European Patent Office (EPO) in four large European countries (Germany, France, Italy and the UK) and in the US. We consider three dimensions to assess the characteristics of patents: the knowledge base, the technological impact, and the economic value. Science-industry collaborative patents are averagely more sophisticated and similar or higher impact than other industry patents. However, depending on the proxy chosen, they are of similar or lower economic value compared to non-collaborative industry patents and to industry-industry collaborative patents. When we control for the experience of private companies in collaborating with academic institutions, we observe that more experienced collaborations produce slightly less sophisticated and impactful patents, but with higher economic value. We discuss different explanations of these findings.

Introduction 1

Since at the least the 1990s, an apparent paradox has marked the relationship between science and innovation: corporate investments in basic research have either stagnated or declined [START_REF] Arora | The decline of science in corporate R&D[END_REF], but the importance of science as a direct source of new products and process has not ceased to increase, witness the rise of biotechnology and information and communications technology [START_REF] Ahmadpoor | The dual frontier: Patented inventions and prior scientific advance[END_REF]. How to explain these opposite trends? The answer, or at least part of it, lies in the changing role of universities and public research organisations, which have found themselves uniquely well-positioned for producing prototypes and proofs of concepts derived directly from basic research, but with clear applications for product and process innovation [START_REF] Baba | How do collaborations with universities affect firms' innovative performance? The role of "Pasteur scientists" in the advanced materials field[END_REF]. This has allowed business companies, especially large ones, to increasingly replace or couple vertically integrated R&D strategies with openinnovation ones and collaborations with academic scientists not only for hunting for new prototypes and proofs of concepts, but also for developing them (Chesborugh, 2003;[START_REF] Arora | The decline of science in corporate R&D[END_REF]. However, concerns emerged about whether research conducted by universities can be a good substitute for research performed by larger firms [START_REF] Arora | The changing structure of American innovation: Some cautionary remarks for economic growth[END_REF], especially when coordination and transaction costs (and eventually, conflicting interests) are relevant factors.

In the literature, numerous empirical studies support the idea that the interaction with scientific institutions positively influence the innovativeness of companies [START_REF] Jaffe | Real effects of academic research[END_REF][START_REF] Mansfield | Academic research and industrial innovation: An update of empirical findings[END_REF][START_REF] Kaufmann | Science-industry interaction in the process of innovation: the importance of boundary-crossing between systems[END_REF][START_REF] George | The effects of business-university alliances on innovative output and financial performance: a study of publicly traded biotechnology companies[END_REF][START_REF] Lööf | Does knowledge diffusion between university and industry increase innovativeness?[END_REF][START_REF] Yang | Are new technology-based firms located on science parks really more innovative?: Evidence from Taiwan[END_REF][START_REF] Eom | Determinants of industry-academy linkages and, their impact on firm performance: The case of Korea as a latecomer in knowledge industrialization[END_REF]. For instance, [START_REF] Jaffe | Real effects of academic research[END_REF] proved that university research significantly influences the number of corporate patents, especially in science-based sectors. [START_REF] Mansfield | Academic research and industrial innovation: An update of empirical findings[END_REF] found that 15% of new products developed in the US would not be developed without support from academic research in the observed period from 1986 to 1994. [START_REF] Yang | Are new technology-based firms located on science parks really more innovative?: Evidence from Taiwan[END_REF] found that networking with scientific institutions make new technology-oriented companies localised in scientific parks to innovate more than companies outside the parks. 1 All our thanks to Laurent Berge, Catalina Martinez, Francesco Lissoni and Ernest Miguelez for their comments and suggestions. We also gratefully acknowledge funding from the CNRS-CSIC 2018 IRP ALLIES -Associated Laboratory on Linkages between Innovation and Environmental Sustainability https://irp-allies.com/ and from the Agence Nationale de la Recherche (ANR) (NPEIE Project, no. ANR-17-CE26-0014-01 https://npeie.org). Some results of the paper have been presented at the table ronde -« L'expérience de la recherche collaborative pour les leaders économiques de demain » during the event organized by the CNRS under the "Présidence française de l'Union Européenne (PFUE) and published in the CNRS booklet "From science to society. The value of European Collaboration".

However, when it comes to estimate the precise role of science-industry collaborations (as a form of interaction), results are less clear. On the one hand, some empirical works point toward a positive effect of science-industry collaborations on the innovativeness of companies. For example, [START_REF] Belderbos | Heterogeneity in R&D cooperation strategies[END_REF] have proven that formal collaboration with universities and research institutes improves technological capabilities of R&D activities within companies, as well as their efficiency. On the other hand, other scholars identified a negative or non-significant impact of science-industry research collaborations, especially if compared to other sources of funding and collaborations. For example, using Italian manufacturing companies' data, [START_REF] Medda | Assessing the returns to collaborative research: Firm-level evidence from Italy[END_REF] have shown that research collaborations between firms and universities are not associated to a productivity gain (measured as total factor productivity growth), contrary to collaborations involving only firms. A similar result is found by [START_REF] Jaklič | Relevance of innovation cooperation for firms' innovation activity: The case of Slovenia[END_REF] who, by relying on a sample of Slovenian companies participating in the Community Innovation Surveys from 1996 to 2008, found no effect of collaboration with academic institutes on innovation. Finally, these results were confirmed more recently by Raguž and Mehičić (2017) on a study on Croatian firms.

The different conclusions researchers have reached call for further analysis of the phenomenon. To this purpose, in this article, we focus on science-industry patent collaborations. Despite patent data have some important limitations, 2 they allow to directly assess the value of research collaborations -by relying on observably patent characteristics -, rather than to estimate it only indirectly by relying on innovation and performance indicators at firm level. The purpose is to assess the quality, measured in terms of knowledge base, impact and economic value, of science-industry collaborative patents by comparing them to both non-collaborative industry patents and industryindustry collaborative patents. Moreover, we focus on the role of firms know-how in 2 Patent data have limitations for two reasons. First, patents are not the main channel of science-industry knowledge transfer [START_REF] Agrawal | Putting patents in context: Exploring knowledge transfer from MIT[END_REF][START_REF] Goddard | How do public laboratories collaborate with industry? New survey evidence from France[END_REF]. For example, by using two different surveys in Austria -one among university departments and one among firms - [START_REF] Schartinger | Interactive relations between universities and firms: empirical evidence for Austria[END_REF] find that the most frequent and beneficial knowledge transfers occur through the mobility of human capital, for example via the co-supervision of PhDs. Similarly, by exploiting a database that lists more than 1,000 firms having collaborated with the University Louis Pasteur (ULP) between 1990 and 2002, [START_REF] Levy | An analysis of science-industry collaborative patterns in a large European University[END_REF] find that about 18% of ULP's private partners have signed one or several European contract with the university, while only 8% of ULP's private partners are involved in patenting activity (as co-applicants). Second, the propensity to patent varies across industry [START_REF] Orsenigo | Comparative study of the use of patents in different industries[END_REF], especially when it comes to collaborations: for example, [START_REF] Arundel | Proximity and the use of public science by innovative European firms[END_REF] show that low tech firms rely more on codified sources (such as publications and patents) and research contracts, whereas high tech firms tend to favour channels allowing the transfer of tacit knowledge whereas.

collaborating with universities and public research centres to investigate the role of experience in collaborating with universities with respect to the quality of the collaboration output.

Our results indicate that when technological quality of the underlying invention is considered, science-industry collaborative patents are of higher quality than noncollaborative industry patents and industry-industry collaborative patents. They appear to be more original, more novel, more general and more cited than non-collaborative industry patents. By contrast, when the economic value of the patent is considered, science-industry collaborative patents are of lower value or not significantly different from non-collaborative industry patents. However, our results point out an important role played by the experience in collaborating. In particular, we find that higher level of experience in collaborating with academic institutions are associated to lower technological quality and higher economic value compared to collaborations between academic institutions and companies at the first collaborating experience. In a sense, it is as if experience in collaboration makes the research produced by universities more similar (and substitute) to industrial research.

Our findings provide several contributions to the literature on science-industry collaborations, by unveiling how they may result into innovations characterised by many knowledge spillovers (in line with findings by [START_REF] Petruzzelli | University-Industry collaborations and international knowledge spillovers: a joint-patent investigation[END_REF] but that, however, cannot necessarily substitute research performed by larger firms.

The remainder of the paper is organised as follows. In the next section, we briefly review the background literature on how patent data has been utilised to study economic impact and value of inventive activity. Section 3 presents the data and method. Section 4 reports the main econometric results and finally, Section 5 concludes and describes the main limitations of the paper and the potential directions for future research.

Knowledge base, impact and economic value of patented inventions

Innovation can be defined as "a cumulative process, whereby each innovation builds on the body of knowledge that preceded it, and forms in turn a foundation for subsequent advances" (Trajtenberg et al., 1997, p. 20). Patent data provides a rich source of information that makes it possible to investigate a variety of features referred to inventions. In this work we question the characteristics of science-industry collaborations according to three dimensions: the knowledge base, the impact and the economic value. These three features will be proxied by different indicators widely diffused in the literature on patent data. Patents have been widely adopted to study the inventive process and the characteristics of new technologies.

Studying the knowledge components or knowledge base of an invention means to investigate the recombination processes that made the invention came into existence [START_REF] Weitzman | Recombinant growth[END_REF][START_REF] Fleming | Recombinant uncertainty in technological search[END_REF]. Knowledge components can be recombined in different ways, depending on the type of landscape in which the search and combination processes take place [START_REF] Fleming | Technology as a complex adaptive system: evidence from patent data[END_REF]. For instance, according to [START_REF] Fleming | Recombinant uncertainty in technological search[END_REF] and [START_REF] Fleming | Recombinant uncertainty in technological search[END_REF]Sorenson (2001, 2004), combining similar components through a local search process tend to lead with higher probability to a successful output of the combination effort, however most often producing small improvements with respect to the state of the art. Conversely, moving in a distant search process and combining dispersed and distant knowledge bits have less probability of a successful output, but high probability of leading to a breakthrough invention.

Studying the knowledge base of an invention means therefore to investigate its ex-ante characteristics, or the backword processes that lead to the inventive output. A variety of indicators have been proposed in the literature, some of which applied in the context of science-based inventions. The seminal work by [START_REF] Trajtenberg | University versus corporate patents: A window on the basicness of invention[END_REF] stresses the role of the 'importance' of the inventions, and introduce the indicator of originality to measure it. Originality captures the degree of dispersion, across different technological fields, of the knowledge sources on which the invention builds. That is, a higher variety of technological classes belonging to the patents cited in the focal patent indicate the focal invention is of higher complexity [START_REF] Barbieri | Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?[END_REF]. Most of the studies applying this indicator to university patents find that these are averagely more original than industry patents, indicating that public patented research results tend to source knowledge from a higher number of different domains [START_REF] Thursby | US faculty patenting: Inside and outside the university[END_REF].

Such findings mirror the consideration that public research tend to be more basic, general and abstract in nature [START_REF] Arora | The changing technology of technological change: general and abstract knowledge and the division of innovative labour[END_REF][START_REF] Trajtenberg | University versus corporate patents: A window on the basicness of invention[END_REF].

In line with these considerations, [START_REF] Fleming | Recombinant uncertainty in technological search[END_REF] argues that combining more diverse and dispersed knowledge components means to undertake more uncertain research and development projects. Greater uncertainty lead to lower chances of obtaining a successful output, however a higher probability of generating breakthrough inventions. [START_REF] Fleming | Science as a map in technological search[END_REF] argue that more uncertain research project have more chances to end successfully when they benefit from scientific method and knowledge, indicating that scientific research is more prone to generate novel or radical inventions compared to industry research [START_REF] Thursby | US faculty patenting: Inside and outside the university[END_REF][START_REF] Rizzo | The division of labour between academia and industry for the generation of radical inventions[END_REF].

Studying the impact means to investigate the ex-post technological influence of inventive activity, that is its role for the development of follow-on innovations.

Investigating the impact of a technology consists in looking at the technological opportunities that an invention is able to spur [START_REF] Schoenmakers | The technological origins of radical inventions[END_REF].

Indeed the impact of an invention is measured in terms of its diffusion as prior art in subsequent inventions and by looking at the variety of sectoral applications in which it is exploited (e.g. [START_REF] Barbieri | Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?[END_REF].

Surely the most diffused indicator to measure the impact of an invention is forward citations [START_REF] Hall | Innovation and diffusion of clean/green technology: Can patent commons help[END_REF]Sorenson and Felming, 2004;[START_REF] Bacchiocchi | Knowledge diffusion from university and public research. A comparison between US, Japan and Europe using patent citations[END_REF][START_REF] Dechezleprêtre | Knowledge spillovers from clean and dirty technologies[END_REF][START_REF] Dahlin | When is an invention really radical? Defining and measuring technological radicalness[END_REF][START_REF] Schoenmakers | The technological origins of radical inventions[END_REF][START_REF] Abrams | Patent value and citations: Creative destruction or strategic disruption?[END_REF], widely adopted also to compare university and industry patents [START_REF] Henderson | Universities as a source of commercial technology: a detailed analysis of university patenting, 1965-1988[END_REF][START_REF] Sampat | Changes in university patent quality after the Bayh-Dole act: a re-examination[END_REF][START_REF] Thursby | US faculty patenting: Inside and outside the university[END_REF][START_REF] Sterzi | Patent quality and ownership: An analysis of UK faculty patenting[END_REF][START_REF] Sterzi | Patent management by universities: evidence from Italian academic inventions[END_REF]. The extant literature finds different results about which patents receive more citations: some works, especially based on the US, find universities receive higher number of forward citations compared to industry patents (e.g. [START_REF] Trajtenberg | University versus corporate patents: A window on the basicness of invention[END_REF][START_REF] Sampat | Changes in university patent quality after the Bayh-Dole act: a re-examination[END_REF]; other works find no difference (e.g. [START_REF] Sapsalis | Academic versus industry patenting: An in-depth analysis of what determines patent value[END_REF][START_REF] Thursby | US faculty patenting: Inside and outside the university[END_REF]. Another widely adopted indicator of technological impact is the generality index [START_REF] Hall | Uncovering GPTs with patent data[END_REF][START_REF] Barbieri | Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?[END_REF], introduced by [START_REF] Trajtenberg | University versus corporate patents: A window on the basicness of invention[END_REF], which consists in the forward counterpart of originality. It is often adopted to measure the general purposeness of a technology [START_REF] Bresnahan | General Purpose Technologies: 'Engines of Growth[END_REF][START_REF] Hall | Uncovering GPTs with patent data[END_REF]. The generality index measures how distributed across different technological fields are the forward citations of an invention. Most studies applying this indicator to compare university and industry patents tend to recognise a premium for the former [START_REF] Trajtenberg | University versus corporate patents: A window on the basicness of invention[END_REF][START_REF] Henderson | Universities as a source of commercial technology: a detailed analysis of university patenting, 1965-1988[END_REF], again because of the basic, general and abstract nature of public research activities compared to industrial ones.

Finally, the economic value of an invention concerns those aspects unrelated directly to the characteristics of the invention, but that are expression of the quality with respect to the economic feasibility and success of the invention. As Kline and Rosenberg (1986, p. 278) put it: "it is a serious mistake […] to equate economically important innovations with that subset associated with sophisticated technologies" and "technical success is only a necessary and not sufficient condition in establishing economic usefulness".

The economic value reflects the ability of the patent holder to exploit commercially the invention protected by the patent. More valuable patents tend to be renewed more often and to be extended in a higher number of countries [START_REF] Lanjouw | How to count patents and value intellectual property: The uses of patent renewal and application data[END_REF].

Specifically, to the extent that maintaining the patent protection over time is costly, one can assume that any valuable patent pays at least for its own renewal and that the more valuable patents will be renewed for a longer time, conditional on technologyspecific differences in knowledge obsolescence [START_REF] Lanjouw | How to count patents and value intellectual property: The uses of patent renewal and application data[END_REF]. In turn, the number of renewals has been adopted as an indicator of patent economic value [START_REF] Higham | Patent quality: towards a systematic framework for analysis and measurement[END_REF]. Similarly, extending the patent towards more countries, i.e. extending the patent family, is associated with higher costs for the applicant, such as patent office fees, patent attorneys bills and translation costs (Martinez, 2011), and making family size a widely used indicator of the invention economic value (Haroff et al., 2003). These indicators have also been applied to the context of university patents [START_REF] Sterzi | Patent management by universities: evidence from Italian academic inventions[END_REF][START_REF] Cerulli | Do company-owned academic patents influence firm performance? Evidence from the Italian industry[END_REF].

In this work we rely on these indicators to study the three dimensions of knowledge base, impact and value in order to investigate the output of science-industry collaborations and to understand in what terms this output is different from noncollaborative inventions, from industry-industry collaborations, and also from noncollaborative science inventions. The same dimensions will be also put in relation to the experience of firms in collaborating with industry.

Empirical part

Data and key figures

In the analysis we rely on patent datasets provided by the OECD (February 2022 version): the HAN Database, the REGPAT Database and the OECD Patent quality database. Further we rely also on PATSTAT (2021 autumn edition) in order to retrieve the DOCDB patent family identifier and to avoid counting more than once those patent applications belonging to the same patent family. Then, in order to associate our patent-application variables to the patent family we follow the same procedure as in, for example, [START_REF] Verhoeven | Measuring technological novelty with patent-based indicators[END_REF] and [START_REF] Barbieri | Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?[END_REF]: we select the highest value within each family.

The analysis focuses on patents applied in the years 1978-2015 (and granted up to 2020) at the European Patent Office (EPO) by industrial firms or public research institutes located in the four largest European countries (Germany, France, Italy and the UK) and in the US. A collaborative patent is defined as a patent with more than one applicant. The applicant is the entity that has the property right to the patent and is responsible (or co-responsible) for the research underlying the patent (or at least its financing). In this analysis, science-industry collaborations are thus defined as collaborative patents involving both firms and academic institutions (universities, public research centres and hospitals). Similarly, industry-industry collaborations are those patents applied by two (or more) different business entities. The type of applicant is retrieved from the EEE-PPAT dataset provided by KU-Leuven. 3 We identify 1,011,147 patent families, of which 917,585 (90.75%) are applied by one firm only ("non-collaborative patents") 4 , 8,211 (0.8%) are co-applied by firms and universities or public research centres ("collaborative: science-industry") and 39,900 (3.95%) are co-applied by two or more firms ("collaborative: industry-industry"). 5 The remaining 45,451 patents (4.5%) are owned by research institutions only ("Science only"). 3 We excluded all patents whose applicants are only individuals or unknown. 4 Some of these patents may however derive from collaborations between university and firm: this happens whenever a university professor transfers the invention autonomously to the private sector or in case of consultancy activities [START_REF] Carayol | The transfer and value of academic inventions when the TTO is one option[END_REF]. 5 Industry-industry collaborative patents may include both joint ventures and collaborations involving subsidiaries belonging to the same group. Three important facts emerge. First, the weight of science-industry collaborative patents as percentage of industry patents has increased over the last 40 years, starting from around 0.1-0.2% in the early Eighties, growing to 0.6% in early Nineties and reaching 1.5% in 2020 (Figure 1). 6 Meanwhile, the share of industry-industry collaborations is more or less stable, slightly decreasing from the Nineties, but yet twice as science-industry collaborations. This indicates that while collaborations among firms are a rather old phenomenon, collaboration between firms and universities is much newer. Second, the largest shares of collaborative patents are in science-based technological fields: in particular, Biotechnology, Analysis of biological materials, Micro-structural and Nano-technology, and Pharmaceuticals are those with the largest share of industry-science collaborative patents, where about 3%-5% of industry patents derive from science-industry collaborations (Figure 2). Third, the share of science-industry collaborative patents varies significantly across the countries considered in the analysis, with France showing the largest share (2%) (Figure 3). The result for France can be in part explained by a relatively large share of French patents owned by universities and public research centers [START_REF] Martinez | University patenting and the quest for technology transfer policy models in Europe[END_REF]. 6 This can be explained both by the increasing propensity of universities and companies to collaborate and by the greater incentive of universities to maintain the intellectual property resulting from the collaborations with the private sector (Martinez and Sterzi, 2020). 

Characterising science-industry collaborations

In order to assess the knowledge base, impact and economic value of science-industry collaborative patents, we estimate the following baseline specification:

𝑞 𝛽 𝛽 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦 𝛽 𝑠𝑐𝑖𝑒𝑛𝑐𝑒 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦 𝛽 𝑠𝑐𝑖𝑒𝑛𝑐𝑒 𝑜𝑛𝑙𝑦 𝛽 𝑋 𝐵 𝐵 𝐵 𝐵 𝜀 (1)
where 𝑞 is the standardized (z-score) patent family indicators by filing year and technological field (35-macro classes). As delineated in Section 2, we identify two indicators to measure the knowledge base of inventions: originality and novelty in recombination; two indicators to capture impact: 7-year forward citations and generality; and two indicators proxying for the economic value: family size and renewal. 7 Variables "Industry-Industry", "Science-Industry" and "science only" are dummy variables indicating respectively if the industry patent is co-applied by two or more firms, by (at least) one firm and (at least) one academic institution, or only by one or more academic institutions. The omitted category is the situation in which the patent has been applied for by only one firm ("Non-collaborative patent"). Parameters 𝛽 and 𝛽 identify the premium value associated with the two types of collaborations with respect non-collaborative industry patents, while 𝛽 identifies the premium associated to science only patents. Furthermore, we also include a set of patent family level control variables (𝑋): the number of backward citations and the number of IPCs.

Finally, with some abuse of notation for simplicity, 𝐵 denotes a set of 35 technological classes fixed effects, 𝐵 a set of filing year fixed effects, 𝐵 a set of grant year fixed effect, 𝐵 a set of country fixed effects. Table 1 report descriptive statistics for the variables used in the analysis.

7 All indicators but novelty in recombination are derived from the OECD patent quality dataset [START_REF] Squicciarini | Measuring patent quality: Indicators of technological and economic value[END_REF]; novelty in recombination is a dummy variable taking the value of 1 if the patent is novel and 0 otherwise and is constructed as in [START_REF] Verhoeven | Measuring technological novelty with patent-based indicators[END_REF]. Differently from the other indicators, novelty in recombination has not been standardized by filing year and technological fields. Table 2 shows the regression results based on OLS estimation. Science-industry collaborative patents display 0.09 standard deviations greater in terms of originality, and have 0.8% higher probability of being novel, than non-collaborative industry patents. In terms of knowledge base, science-industry patents reveal to emerge as the outcome of more complex and radical recombinant inventive process compared to non-collaborative patents. Moreover, as it can be seen from the T-test across groups presented in Table 2, science-industry collaborative are also more original and more novel than industry-industry patents, while they are more original but less novel than science-only patents. Overall the collaboration between academic institutions and industry lead to the generation of the most original inventions, and of inventions with a high degree of novelty, second only to pure scientific inventions. The contribution of collaborating with universities in terms of knowledge base is therefore, for collaborating firm, tangible in terms of complexity and novelty of the inventive output.

For what concern the impact of inventions (columns 3 and 4 of Table 2), our results

show that science-industry patents receive 0.04 standard deviations more citations and are 0.14 standard deviations more general than non-collaborative industry patents.

Science-industry collaborative inventions receive a number of forward citations as high as the one of industry-industry collaborations. Conversely they outperform significantly industry-industry patents in terms of generality, scoring a level for this indicator as high as "Science-only" patents. Again the role of university knowledge is visible and mostly related to the basicness of research, that make these patents to diffuse across a wide range of different sector (higher degree of generality). In terms of diffusion towards following technological developments, the contribution is again visible but align the performance of these patents to the other collaborative patents (industry-industry).

Finally, in terms of economic value, science-industry collaborations reveal to be as valuable as or less valuable than non-collaborative industry patents. Specifically, the coefficient of science-industry patents when the dependent variable is renewals is nonsignificant, while it is negative (0.05 standard deviations lower than non-collaborative industry patents) when put in relation to family size. From the t-test shown in Table 2 we can note that science-industry patents are not statistically different from industryindustry patents in terms of renewals, while the latter display higher family-size compared to the former. Conversely both indicators score higher coefficients compared to science-only patents.

In summary, our findings indicate that while the output of science-industry collaborations lead to the generation of highly complex and novel inventions that are also able to produce important impact on subsequent inventive activities, the economic value remains rather low. 

Experience in science-industry collaborations

One possible explanation of the fact that science-industry patent collaborations are not of a particularly high economic value is that firms may lack of routines and experiences in collaborating with academic institutions (Petruzelli, 2011). In fact, in order to be (2)

where our main parameters of interest are 𝛽 and 𝛽 that identify the premium value associated with the science-industry collaborations with respect non-collaborative industry patent respectively when firms collaborate with academic institutions for the first time ever or, on the contrary, when firms have already collaborated with academic institutions in the past; 𝛽 identifies the premium value associated with the industryindustry collaborations with respect to non-collaborative industry patents, while 𝛽 the premium associated to the scientific patent with respect to non-collaborative industrial patents.

OLS estimated parameters are shown in Table 3. The economic value of scienceindustry collaborations when it measured by renewals (column 5) tends to remain stable, independently from the experience of the firm in collaborating with academic institutions. Conversely, moving from the first to further experience, the value of science-industry collaborations measured throughout the indicator of family size tend to increase (column 6). Indeed, while first experience science-industry patents have lower family size than non-collaborative industry patents, further collaborations lead to patents with the same level of family size of non-collaborative industry patents.

Overall it is plausible to conclude that science-industry collaborations tend to show higher economic value when the firm has already matured some experience in collaborating with an academic institution.

Looking at the indicator of the knowledge base, our results point out that scienceindustry collaborations at the first experience are more original than science-industry collaborations that involve firms having already maturated some experience in collaborating with academic institutions in the past (column 1). A similar result is also obtained when looking at the novelty in recombination indicator (column 2), although the difference is less significant.

For what concern the impact, science-industry collaborations appear also to be more general when they involve firms at the first experience in science-industry collaborations with respect to firms having already maturated some experience in the past (column 4). However, science-industry collaborations that derive from experienced firms display a higher level of generality with respect both industryindustry collaborations and non-collaborative industry patents. By contrast, experience in science-industry collaboration does not appear playing a significant role when the impact is proxied by the number of 7-year forward citations (column 3):

forward citations of science-industry collaborations are higher than non-collaborative patents, however there is no difference in coefficient between science-industry collaborations, independently of the experience of the firm, and industry-industry collaborations. 

Conclusions

In this paper we analyse whether science-industry patent collaborations are associated with a premium in quality with respect non-collaborative industry patents and industry-industry collaborative patents. Three dimensions of patent quality are considered: knowledge base, impact, and economic value.

The analysis shows that science-industry patent collaborations cover inventions that ground on more complex and novel knowledge bases, show higher impacts on on innovation, but that do not reflect in a higher economic value. Inexperience in science-industry collaborations explains only partially this last result: science-industry collaborations involving firms that have already experienced at least one collaboration with academics in the past display a slightly higher economic value with respect to non-collaborative industry patents. Conversely, the knowledge base and impact tend to reduce when firms involved in the science-industry collaborations are involved.

These findings reveal that firms that approach a collaboration with an academic institution for the first time tend to generate very valuable inventions from a technical point of view but lacking economic value. In turn, when they gain experience in collaborating with the science partner, the technicalities tend to decrease in favour of an increased economic value.

The non-correspondence between the technological impact and the economic value of science-industry collaborative patents can be explained by different hypothesis. First, patents are nowadays used for many reasons in addition to protecting an invention from imitation, especially in case of science-industry collaborations, where they may reflect the necessity to clarify the ownership of the invention and to facilitate the knowledge transfer (Helman, 2007). Accordingly, the decision to patent an invention depends often more on the university side (rather than on the company), as universities aim to obtain economic returns from public agencies that view patents as a performance indicator [START_REF] Sterzi | Patent management by universities: evidence from Italian academic inventions[END_REF]Martinez and Sterzi, 2021). Second, firms may prefer to avoid to collaborate with universities for core strategic projects, and that what they do in collaborations is more exploratory: in this case they may renew less (or extend patents in fewer countries) because these patents open new lines of research and lead to subsequent patenting but not to protection of inventions in the market.

Further research is however necessary to validate these interpretations.

In terms of policy implications, these results suggest that corporate research conducted in collaboration with academic institutions can lead to breakthrough innovation in the long term but that may be an imperfect substitute for research performed by firms in the short term, especially when coordination and transaction costs (and eventually, conflicting interests) are relevant factors. Firms should keep investing in in-house basic research rather than simply rely on knowledge acquired from outside to fuel their growth.
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 1 Figure 1. Share of collaborative industry patents by year of grant
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 2 Figure 2. Share of science-industry patents by technological fields
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 3 Figure 3. Share of science-industry patents by country

Table 1 .

 1 Descriptive statistics

	Variable	Obs	Mean	Std. Dev.	Min	Max
	Non collaborative	1,011,147	.907	.29	0	1
	Science only	1,011,147	.045	.207	0	1
	Science-industry	1,011,147	.008	.09	0	1
	Industry-industry	1,011,147	.039	.195	0	1
	Originality	993,445	.666	.241	0	.989
	Novelty in	1,011,147	.135	.341	0	1
	recombination					
	Generality	420,769	.353	.281	0	.946
	Forward citations	1,011,147	1.215	2.877	0	624
	Renewal	1,011,147	11.369	4.638	1	29
	Family size	1,011,147	6.508	4.547	1	57
	Backward citations	1,011,147	5.652	7.511	0	300
	Number IPCs	1,011,147	4.275	4.144	1	100

Table 2 .

 2 Characteristics of science-industry collaborations (OLS regression) Note. Estimated parameters 𝛽 and 𝛽 from the baseline specification (1); robust standard errors in parenthesis: Sign: ***99%, **95%, *90%. All patent indicators, except novelty, are standardized by 35-class technological fields and filing years. The omitted category consists of non-collaborative industry patents.

			Knowledge base	Impact	Economic value
			(1)	(2)	(3)	(4)	(5)	(6)
			Originality	Novelty in recombination	Forward citations	Generality Renewal	Family size
	Industry-industry (𝛽 )	0.0396***	-0.00986***	0.0524***	0.0166**	-0.0113**	0.0603***
			(0.00485)	(0.00159)	(0.00532)	(0.00768)	(0.00495)	(0.00505)
	Science-industry (𝜷 𝟐 )	0.0888***	0.00775**	0.0443***	0.138***	0.00567	-0.0530***
			(0.0107)	(0.00329)	(0.0127)	(0.0165)	(0.0105)	(0.0106)
	Science only (𝛽 )	0.0538***	0.0163***	-0.0283***	0.134***	-0.114***	-0.254***
			(0.00511)	(0.00153)	(0.00484)	(0.00777)	(0.00495)	(0.00448)
	Backward citations	0.216***	0.00182***	0.106***	0.0228***	0.0265***	0.0485***
			(0.00155)	(0.000342)	(0.00245)	(0.00138)	(0.000922) (0.00119)
	Number IPCs	0.183***	0.121***	0.119***	0.158***	0.0283***	0.146***
			(0.000944)	(0.000426)	(0.00156)	(0.00143)	(0.000932) (0.00118)
	Constant		-0.00980***	0.134***	-0.00115	-0.0294*** 0.00551*** 0.00946***
			(0.00101)	(0.000318)	(0.00102)	(0.00161)	(0.00101)	(0.00102)
	T-test: 𝛽	𝛽	17.8***	23.8***	0.35	45.9***	2.16	95.4***
	T-test: 𝛽	𝛽	9.0***	5.8**	29.4***	0.06	110***	323***
	Filing year FE	Yes	Yes	Yes	Yes	Yes	Yes
	Grant year FE	Yes	Yes	Yes	Yes	Yes	Yes
	Technology FE	Yes	Yes	Yes	Yes	Yes	Yes
	Country FE		Yes	Yes	Yes	Yes	Yes	Yes
	Observations	993,445	1,011,147	1,011,142	420,767	1,011,147	1,011,145
	R-squared		0.096	0.207	0.037	0.038	0.062	0.066
	F		12635***	16427***	1729***	2705***	504.3***	4222***

Table 3 .

 3 Characteristics of science-industry collaborations (OLS regression) All patent indicators, except novelty, are standardized by 35-class technological fields and filing years. The omitted category consists of non-collaborative industry patents.

			Knowledge base	Impact	Economic value
			(1)	(2)	(3)	(4)	(5)	(6)
			Originality	Novelty in recombination	Forward citations	Generality Renewal	Family size
	Industry-industry (𝛽 )	0.0395***	-0.00986***	0.0523***	0.0164**	-0.0114**	0.0603***
			(0.00485)	(0.00159)	(0.00532)	(0.00768)	(0.00495)	(0.00505)
	Science-industry						
	first collab (𝜷 𝟐 )	0.103***	0.00988**	0.0313**	0.161***	0.00922	-0.101***
			(0.0133)	(0.00416)	(0.0152)	(0.0201)	(0.0127)	(0.0124)
	Science-industry						
	further collab (𝜷 𝟑 )	0.0618***	0.00441	0.0378*	0.0777***	-0.0186	0.0227
			(0.0184)	(0.00531)	(0.0195)	(0.0291)	(0.0187)	(0.0191)
	Science only (𝛽 )	0.0538***	0.0163***	-0.0286***	0.134***	-0.114***	-0.254***
			(0.00511)	(0.00153)	(0.00484)	(0.00777)	(0.00495)	(0.00448)
	Backward citations	0.216***	0.00182***	0.106***	0.0228***	0.0265***	0.0485***
			(0.00155)	(0.000342)	(0.00245)	(0.00138)	(0.000922) (0.00119)
	Number IPCs	0.183***	0.121***	0.119***	0.158***	0.0283***	0.146***
			(0.000944)	(0.000426)	(0.00156)	(0.00143)	(0.000932) (0.00118)
	Constant		-0.00979***	0.134***	-0.00105	-0.0294*** 0.00557*** 0.00950***
			(0.00100)	(0.000318)	(0.00102)	(0.00161)	(0.00101)	(0.00102)
	T-test: 𝛽	𝛽	20.3***	19.9***	1.71	45.7***	2.31	146***
	T-test: 𝛽	𝛽	1.38	6.69***	0.52	4.19**	0.14	3.66*
	T-test: 𝛽	𝛽	3.30*	0.66	0.07	5.64**	1.52	29.9***
	Filing year FE	Yes	Yes	Yes	Yes	Yes	Yes
	Grant year FE	Yes	Yes	Yes	Yes	Yes	Yes
	Technology FE	Yes	Yes	Yes	Yes	Yes	Yes
	Country FE		Yes	Yes	Yes	Yes	Yes	Yes
	Observations	993,445	1,011,147	1,011,142	420,767	1,011,147	1,011,145
	R-squared		0.096	0.207	0.037	0.038	0.062	0.067
	F		10529***	13689***	1441***	2254***	420.5***	3524***
	Note. Estimated parameters 𝛽 , 𝛽 , 𝛽 and 𝛽 from specification (2); robust standard errors in parenthesis: Sign: ***99%,
	**95%, *90%.