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Optimal unmanned aerial vehicle (UAV) placement in a 3-dimensional (3D) space to build a connection between a base station (BS) and a ground user is studied herein. A key challenge is to avoid signal propagation blockage due to obstacles. Much prior work uses probabilistic terrain models with model parameters learned from the statistics over a large area, and therefore, the optimization for a specific user in a small local area is poor. In contrast, this paper seeks the optimal UAV position over actual and fine-grained terrain, and develops efficient UAV positioning strategy adaptive to the degree of location-dependent line-of-sight (LOS) condition measured on the fly. It is proven that the globally optimal UAV position in 3D can be determined from the proposed search trajectory which has merely linear length in the diameter of the target area. Therefore, the proposed strategy can be practically implemented. Numerical experiments are performed over a real-world urban topology and demonstrate superior performance gain over existing strategies based on probabilistic models.

I. INTRODUCTION

L OW altitude small UAVs have great potential for boost- ing the performance of wireless communication networks. One trending application is to use UAVs to establish aerial relay networks [START_REF] Zeng | Wireless communications with unmanned aerial vehicles: Opportunities and challenges[END_REF]- [START_REF] Cao | Airborne communication networks: A survey[END_REF]. Compared to traditional BSs installed at fixed positions, the UAV relay system can quickly Junting Chen is with the Future Network of Intelligence Institute (FNii) and the School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China (e-mail: juntingc@cuhk.edu.cn).
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respond to occasional and temporary service requests from a specific area in the shadow of a BS's coverage. As a result, a dynamic network can be formed to geographically track time-varying service demands and quality-of-service guarantees [START_REF] Azari | Ultra reliable UAV communication using altitude and cooperation diversity[END_REF]- [START_REF] Chen | Optimal UAV relay placement for single user capacity maximization over terrain with obstacles[END_REF].

A compelling feature of a UAV relay system is the ability of establishing a better propagation environment for a ground user, e.g., by providing LOS links. This naturally leads to the problem of optimal 3D placement of UAVs. However, since there are buildings and trees that potentially block the air-to-ground signal and create propagation shadows for the ground user, it is very challenging to find the optimal UAV position, which should depend on the propagation environment. Prior work bypassed this difficulty by using a flat-terrain model or a probabilistic terrain model to arrive at simplified problem formulations [START_REF] Lyu | Placement optimization of UAV-mounted mobile base stations[END_REF]- [START_REF] Lai | On-demand density-aware UAV base station 3D placement for arbitrarily distributed users with guaranteed data rates[END_REF]. For example, [START_REF] Lyu | Placement optimization of UAV-mounted mobile base stations[END_REF]- [START_REF] Zeng | Throughput maximization for UAV-enabled mobile relaying systems[END_REF] assumed LOS conditions regardless of the UAV and user positions. In [START_REF] Hourani | Optimal LAP altitude for maximum coverage[END_REF]- [START_REF] Chen | Optimum placement of UAV as relays[END_REF], probabilistic LOS models are used, where the LOS and non-line-of-sight (NLOS) conditions are simplified into a random variable with distribution depending on the elevation angle from the user to the UAV. Since stochastic models are over-simplified, they fail to capture the actual blockage situation for a specific user. There is also a trending research direction that exploits radio maps for UAV placement to avoid the actual air-to-ground signal blockage, but existing results only optimize for the 2D case for tractable complexity, where UAVs fly at a fixed height [START_REF] Mo | Radio-map-based robust positioning optimization for UAV-enabled wireless power transfer[END_REF], [START_REF] Zhang | Radio map based 3D path planning for cellular-connected UAV[END_REF]. The work [START_REF] Dabiri | Optimal placement of UAVassisted free-space optical communication systems with DF relaying[END_REF] also considered LOS-seeking online search for UAV-aided free space optical communication, but the method is limited to 2D case.

The goal of the paper is to develop fine-grained blockageaware algorithms for the online search of the optimal UAV position in 3D. There are two main challenges: the sampling complexity for acquiring the propagation conditions and the computational complexity due to the unstructured terrain. First, if there is no radio map available, the UAV may need to spend a tremendous amount of flight time to explore every propagation opportunity in 3D. However, an exhaustive search is prohibitive due to the very limited UAV flight time. Second, even if we store the entire radio map in an offline database, the computation for the optimal UAV position is still very expensive for real time applications because the obstacles may have arbitrary shapes and so as the patterns of the radio maps.

Our approach is to exploit the hidden structure of the propagation from a direct ray-tracing mechanism: First, if the UAV-user link is in LOS, then it remains in LOS when the UAV moves closer to the user, whereas, when it is in NLOS, it remains in NLOS when the UAV moves away (see Fig. 1-(b)). Second, when the elevation angle from the user to the UAV increases, the degree of LOS obstruction tends to decrease. Existing work has leveraged the stochastic version of these features to arrive at probabilistic LOS models for UAV placement [START_REF] Hourani | Optimal LAP altitude for maximum coverage[END_REF]- [START_REF] Chen | Optimum placement of UAV as relays[END_REF]. Herein, we show that exploiting the deterministic version of these features can achieve a much higher performance gain, since the UAV has a better sense of the environment. We develop an exploration-and-exploitation search strategy with only linear search complexity. Somewhat surprisingly, it can be proven that the proposed search leads to the global optimal solution under mild conditions. This result theoretically justifies the substantial performance gain of the proposed method. Our prior work [START_REF] Chen | Efficient local map search algorithms for the placement of flying relays[END_REF] studied a similar UAV positioning problem in 2D by assuming a fixed UAV height, but such a constraint limits the potential gain of the UAV relay system. The extension to 3D requires a new design of the strategy for low complexity search.

To summarize, the contributions of this paper are:

• We develop a search strategy to find the optimal the UAV position in 3D that is aware of the fine-grained actual propagation environment for the target user. The worstcase search length is linear in the diameter of the target area. • We prove that the search algorithm finds the globally optimal UAV position over arbitrary terrain structures, providing theoretical justification for the proposed strategy. • We evaluate the proposed strategy for three UAV application examples over a real-world urban city topology, demonstrating substantial performance gain over the state-of-the-art solutions, such as the methods based on probabilistic LOS models. The rest of the paper is organized as follows. Section II presents the segmented propagation model and the problem formulation. Section III develops an angular coordinate transformation to enable an effective search on a 2D plane. The algorithm is then described in Section IV with optimality and complexity analysis. Three application examples are formulated in Section V with numerical evaluation over an actual topology in Section VI. Finally, Section VII provides the conclusions.

Notation: For functions g 1 (x), g 2 (x), . . . , g M (x) : R m → R and a function f (g 1 , g 2 , . . . , g M ) : R M → R, the form f (g 1 , g 2 , . . . , g M )(x) is a short-hand notation of the composite function f (g 1 (x), g 2 (x), . . . , g M (x)). Other key notations are summarized in Table I.

II. SYSTEM MODEL

Consider a BS located at x b ∈ R 3 and a user located at x u ∈ R 3 which is in the propagation shadow of the BS. A UAV is employed to relay the signal between the BS and the user. The user location is fixed and the UAV position x = (x 1 , x 2 , x 3 ) ∈ R 3 is to be optimized. Suppose that the altitude of the UAV is lower bounded by H min , the height of the tallest building, such that no collision will occur. In addition, assume that the BS is placed on a high enough tower, and therefore, there is always an LOS condition between the UAV and the BS. However, the UAV-user link likely gets obstructed as shown in Fig. 1-(a).

A. Channel and Environment Models

Since the UAV position will be optimized in a relatively large timescale, we focus on the adaptation to the large-scale channel characteristics. The BS-UAV channel in decibel is modeled as [g b (x)] dB = b 0a 0 log 10 d b (x) as LOS is always assumed for the BS-UAV link, where d b (x)

x -x b 2 is the UAV-BS distance.

On the other hand, the UAV-user link can be modeled as

[g u (x)] dB = b 1 -a 1 log 10 d u (x) + ξ 1 , b 2 -a 2 log 10 d u (x) + ξ 2 , LOS NLOS (1) 
where d u (x)

x -x u 2 is the UAV-user distance, a k and b k are the path loss parameters, and ξ k are random variables to capture the shadowing. Conventionally, LOS is defined as the scenario where the direct propagation path is not obstructed; otherwise, the link is in NLOS.

In a more general setting, the system may have the ability to identify multiple degrees of LOS obstruction. We extend the classical channel model (1) to the K-segment case. Define D k as the set of UAV locations in which the direct path of the UAV-user link experiences degree-(k -1) of LOS obstruction as shown in Fig. 1. As a result, UAV-user channel in a large timescale can be written as

[g u (x)] dB = K k=1 (b k -a k log 10 d u (x) + ξ k )I{x ∈ D k } (2)
where I{A} is an indicator function taking value 1 if condition A is satisfied, and 0 otherwise. Intuitively, the more propagation regions D k to identify, the smaller the variance of ξ k , which captures the residual shadowing due to reflection and diffraction. Such an observation was experimentally validated in [START_REF] Feng | Path loss models for air-to-ground radio channels in urban environments[END_REF] and [START_REF] Herring | Pathloss characteristics of urban wireless channels[END_REF].

In addition, we impose two regularization conditions to shape D k as shown in Fig. 1-(b): A1) Increasing the altitude of the UAV will lower the degree of LOS obstruction, and A2) The feasible UAV positions that are in line with a given user position are in the same propagation region. An illustrative example is given in Fig. 1-(b), where, for a user at x u , all UAV positions on the dashed ray belong to obstructed line-of-sight (OLOS). On the other hand, if the UAV increases its altitude from the dashed line, it may enter LOS. Note that any channel measurement data can be fit to model [START_REF] Mozaffari | Unmanned aerial vehicle with underlaid device-to-device communications: Performance and tradeoffs[END_REF] with conditions II-A and II-A imposed.

We do not make any assumption on the statistics of ξ k in (2), but we assume that the propagation condition I{x ∈ D k } can be perfectly determined along the search path x(t) of the UAV. In practice, hypothesis testing or other statistical learning methods can be applied to determine I{x ∈ D k } from the measurement data [START_REF] Chen | Efficient local map search algorithms for the placement of flying relays[END_REF], [START_REF] Chen | Learning radio maps for UAVaided wireless networks: A segmented regression approach[END_REF], [START_REF] Chen | Efficient algorithms for air-to-ground channel reconstruction in UAV-aided communications[END_REF].

B. Problem Formulation

We explain our general formulation from an example, where a UAV serves as a relay that employs a decode-and-forward strategy to connect the BS with the user. One may wish to maximize the end-to-end capacity1 

-f (x) min log 2 (1 + κ b E g b (x) ), log 2 (1 +κ u E g u (x) ) (3) 
where the expectation is taken over the randomness of the residual shadowing ξ k , and hence, E{g b (x)} and E{g b (x)} give the average signal-to-noise ratio (SNR). The first term in (3) captures the approximate spectrum efficiency of the UAV-BS link and the second term captures that of the UAV-user link, in which, the parameters κ u and κ b characterize the SNR back off due to the discrete transmission power control, the discrete choice of modulation schemes, coding loss, small-scale fading and shadowing statistics, etc. In (3), the cost only depends on the distance d b (x) or d u (x) and the LOS condition I{x ∈ D k }. As a result, (3) can be equivalently written as a decomposable form

f (x) = K k=1 f k (d u (x), d b (x))I{x ∈ D k },
where the sub-function f k corresponds to the objective f (x) in (3) evaluated under the condition that the UAV locates in the kth propagation region

D k , i.e., I{x ∈ D k } = 1.
It is important to note that in (3), the objective f (x) is discontinuous in x due to the indicator function in (2), whereas, the sub-functions f k 's are continuous in x. Similar to the above example, many UAV positioning problems can be formulated into the following general form:

P : minimize x∈R 3 K k=1 f k (d u , d b )(x)I{x ∈ D k } subject to H min ≤ x 3 ≤ H max (4) 
where f k (z, y)(x) is a short-hand notation for f k (z(x), y(x)), which is the specific cost if the link is in the kth propagation condition. The constant H min is assumed to be larger than the height of the tallest building. Finally, it is natural to assume that the cost sub-functions f k satisfy the following two mild conditions:

A3) The cost f k for each propagation segment k is nondecreasing with the distances d u and d b , respectively, A4) The cost in a less obstructed region is smaller than the one in a more obstructed region:

f k (d u , d b )(x) ≤ f k+1 (d u , d b )(x) (5) 
for k = 1, 2, . . . , K -1.

It can be easily verified that the example formulation (3) satisfies these two conditions. 

III. DESIGN OF THE ALGORITHM

In this section, we first show that, to find the optimal position in 3D, it suffices to search on a 2D horizontal plane x 3 = H s under an arbitrary altitude H s , H min ≤ H s ≤ H max . The intuition is that, if the UAV position x is known to belong to D 2 , then all the positions along the dashed line are in D 2 (see Fig. 1-(b)), and hence, the UAV need not explore the entire dashed line.

To exploit such a property, this section first develops an angular coordinate system (l, ρ, θ), and then, shows how to transform the 3D cost functions f k (x) into 2D proxy segment cost functions F k (ρ, θ) by first optimizing over l. Finally, based on F k (ρ, θ), a low complexity search strategy is developed to find the optimal position in 3D.

A. Angular Coordinate System

Recall that x, x u , and x b represent the UAV position, the user position and the BS position, respectively, in 3D. As shown in Fig. 2, Let (x s , H s ) be the point where the line segment joining x and x u intersects with the search plane x 3 = H s , i.e., xs ∈ R 2 is a point on the x 3 = H s plane such that the three points x, x u , and (x s , H s ) are collinear. In addition, denote (x, H s ), (x u , H s ), and (x b , H s ) as the points where x, x u , and x b are projected on the search plane x 3 = H s , respectively. Denote l

x -x u 2 , ρ xsxu 2 , and θ as the angle from vector xbxu to vector xsxu . One can verify that the UAV position x = (x 1 , x 2 , x 3 ) can be uniquely represented by the angular coordinates (l, ρ, θ).

Using the geometric relation, the transformation from (x 1 , x 2 , x 3 ) to (l, ρ, θ) is:

l(x) = x -x u 2 (6) ρ(x) = H s x 3 x -xu 2 (7) θ(x) = sign(z 2 u 1 -z 1 u 2 ) • arccos z T u/ z (8) 
where z = (z 1 , z 2 ) x-xu , u = (u 1 , u 2 ) (x b -xu )/ xbxu is the reference direction pointing from xu to xb , and sign(x) = 1 if x > 0, and sign(x) = -1, otherwise.

In turn, the transformation from the angular coordinates (l, ρ, θ) to the Cartesian coordinates x = (x 1 , x 2 , x 3 ) can be computed as

x(l, ρ, θ) = l (x s (ρ, θ), H s ) -x u (x s (ρ, θ), H s ) -x u (9)
where xs (ρ, θ) = xu + ρM(θ)u, and

M(θ) = cos θ -sin θ sin θ cos θ is a rotation matrix.

B. The Proxy Cost Function on the 2D Search Plane

Given the propagation condition observed at the search position (x s (ρ, θ), H s ), the cost at every l can be mathematically computed, since they are under the same propagation condition according to property II-A as illustrated in Fig. 1-(b).

In the following, we define the proxy segment cost F k (ρ, θ) on the 2D search plane by first transforming f k (x) to fk (l, ρ, θ) using the coordinate transform and then minimizing fk (l, ρ, θ) over l.

First, using the coordinate transformation ( 6)-( 8), problem P can be equivalently written in the form of (l, ρ, θ) as

P : minimize ρ≥0,θ∈(-π,π), l∈L(ρ) K k=1 fk (l, ρ, θ)I{x(l, ρ, θ) ∈ D k } where fk (l, ρ, θ) f k (d u , d b )(x(l, ρ, θ))
and

L(ρ) = l : H min H s ρ 2 + H 2 s ≤ l ≤ H max H s ρ 2 + H 2 s . ( 10 
)
Second, observed that problem P can be decomposed into an inner problem minimize

l∈L(ρ) K k=1 fk (l, ρ, θ)I{x(l, ρ, θ) ∈ D k } (11)
which minimizes over l and an outer problem which minimizes over ρ and θ. Given (ρ, θ), the inner problem can be further written into K subproblems each minimizing fk (l, ρ, θ) over l. Let

l * k (ρ, θ) arg min l∈L(ρ) fk (l, ρ, θ) (12) 
be the solution to the kth inner subproblem of P . In the example shown in Fig. 1-(b), l * k (ρ, θ) corresponds to the local optimal position along the black dashed line, with (ρ, θ) being the coordinate obtained from ( 7)-( 8) for a given x.

The cost evaluated at local optimal point (l * k (ρ, θ), ρ, θ) for the kth propagation condition is then defined as the proxy segment cost F k (ρ, θ) as follows.

Definition 1 (Proxy Segment Cost): The proxy cost for the kth segment is defined as

F k (ρ, θ) fk (l * k (ρ, θ), ρ, θ). ( 13 
)
In addition, the proxy cost F (ρ, θ) on the 2D search plane is defined as follows.

Definition 2 (Proxy Cost): The proxy cost at the search coordinate (ρ, θ) on the search plane is defined as

F (ρ, θ) K k=1 F k (ρ, θ)I{(ρ, θ) ∈ P k } ( 14 
)
where P k (ρ, θ) : x(l * (ρ, θ), ρ, θ) ∈ D k is the kth propagation segment expressed in the angular coordinate system.

The following establishes the connection between the proxy segment cost F k (ρ, θ) and the segment cost F (ρ, θ).

Proposition 1: Given (ρ, θ) to examine the propagation condition at an arbitrary position l ∈ L(ρ).

If x(l, ρ, θ) ∈ D k for some k, then, F (ρ, θ) = F k (ρ, θ).
Proof: Define l * (ρ, θ) as the solution to the inner subproblem [START_REF] Lyu | Placement optimization of UAV-mounted mobile base stations[END_REF] of P . Property II-A and our construction of the angular coordinate system imply that, given a fixed search coordinate (ρ, θ), all possible UAV positions x(l, ρ, θ) belongs to the same propagation condition x(l, ρ, θ) ∈ D k for some k. This property justifies that l

* (ρ, θ) = l * k(ρ, θ). As a result, I{(ρ, θ) ∈ P k} = I{x(l * , ρ, θ) ∈ D k} = I{x(l * k , ρ, θ) ∈ D k}, and hence, F (ρ, θ) = F k(ρ, θ).
Following the above property, problem P can be further transformed into a 2D search problem

P : minimize ρ≥0,-π≤θ≤π F (ρ, θ)
which drives the following algorithm design.

C. Algorithm Design

The main idea of the search strategy is described as follows with full technical details given in Algorithm 1.

1) K = 2 Case: In the two segment case, the algorithm performs in two phases. In phase 0, the UAV starts from the BS location xb and moves towards the user at xu on the search plane x 3 = H s , until it detects the LOS and NLOS boundary. The search then enters to phase 1.

In phase 1, the UAV moves according to the two possible conditions it detects. If it is in the LOS segment, it moves away from the user by increasing ρ until the new position does not decrease the proxy segment cost F 1 (ρ, θ) any more or until the UAV enters in NLOS. If it is in the NLOS segment, it moves along the contour specified by F 1 (ρ, θ) = constant. The search continues until the stopping criterion is met, i.e., either ρ ≥ Hs Hmin cos θ xbxu 2 or ∂F k (ρ, θ)/∂ρ ≥ 0, or until the UAV enters in the LOS as illustrated in Fig. 3. The stopping criteria will be explained in Section IV.

2) K > 2 Case: For the multiple propagation segment case, the algorithm has K phases. In the kth phase, the segment k j=1 D i (or k j=1 P i in the polar domain) is treated as a virtual LOS segment, and the rest is treated as a virtual NLOS segment. The UAV follows the search strategy specified in phase 1 of the K = 2 case until the stopping criterion is met. It will be shown in Section IV-C that when the whole algorithm terminates, the globally optimal UAV position must have been visited by the trajectory that the UAV has visited.

Algorithm 1 Search Strategy for the Optimal UAV Position Choose a step size δ > 0. The search is carried out on a 2D search plane x 3 = H s using the coordinates (ρ, θ) defined in ( 6)- [START_REF] Zeng | Energy-efficient UAV communication with trajectory optimization[END_REF].

1) Search along θ = 0: Find the critical points ρ 0 k , k = 1, 2, . . . , K, defined as the solution to

minimize ρ≥0, (ρ,0)∈ Ë k j=1 Pj F k (ρ, 0) (15) 
Initialize F min = F 1 (ρ 0 1 , 0), (ρ, θ) = (ρ 0 1 , 0), and k = 1. 2) Search on the right branch: Set (ρ, θ) ← (ρ 0 k , δ/ρ 0 k ). 3) Proceed according to the following two statuses a) Virtual LOS:

If (ρ, θ) ∈ k j=1 P j , update accord- ing to ρ ← ρ + δ. ( 16 
) If F k (ρ, θ) < F min , then update the record F min ← F k (ρ, θ) and (ρ, θ) ← (ρ, θ). b) Virtual NLOS: If (ρ, θ) ∈ K j=k+1 P j , update according to ρ ← ρ + γ, θ ← θ + γ - ∂F k ∂θ -1 ∂F k ∂ρ ( 17 
)
where γ > 0 is chosen such that the UAV position change satisfy the step size Δx s 2 = δ. Repeat this step until either (i) ρ ≥ Hs Hmin L cos θ or (ii)

∂F k (ρ, θ)/∂ρ ≥ 0, where L xb -xu 2 . 4) Search on the left branch: Set (ρ, θ) ← (ρ 0 k , -δ/ρ 0 k ). Repeat from Step 3). 5) Let k ← k + 1. Repeat from Step 2) until k > K -1. 6) If F K (ρ 0 K , 0) < F min , then F min ← F K (ρ 0 K , 0) and (ρ, θ) ← (ρ 0 K , 0)
. The optimal position is given by x(l * (ρ, θ), ρ, θ) from (9).

D. Detecting Propagation Segment

Algorithm 1 requires detection on the propagation segment x ∈ D k along the search trajectory x. In practice, the detection can be realized using a maximum likelihood estimation method. For the kth propagation segment, let h k (u) be the probability density function of the random variable ξ k in the model [START_REF] Mozaffari | Unmanned aerial vehicle with underlaid device-to-device communications: Performance and tradeoffs[END_REF]. Then, given the channel gain measurement y in decibel at UAV location x, one can pick propagation segment k that maximizes the likelihood function

k = argmax k=1,2,...,K h k (y -b k + a k log 10 d u (x)).
In particular, if ξ k is further modeled as a Gaussian random variable with variance σ 2 k , then, the detection rule can be further derived as

k = argmin k=1,2,...,K 1 σ k |y -b k + a k log 10 d u (x)| .
The above detection method implicitly assumes the knowledge of propagation parameters a k , b k , and σ k , which can be obtained either from a separate training phase or from Step 1 in Algorithm 1. In the latter case, the UAV first searches on the BS-user axis to collect channel measurements, and then performs parameter estimation for a k , b k , and σ k [START_REF] Chen | Learning radio maps for UAVaided wireless networks: A segmented regression approach[END_REF], [START_REF] Chen | Data clustering using matrix factorization techniques for wireless propagation map reconstruction[END_REF].

IV. COMPLEXITY AND OPTIMALITY ANALYSIS

In this section, we focus on the algorithm analysis for two types of cost functions f k (x, y):

Type I. For every x, y > 0, f k (x, y) > 0,

∂f k (x,y) ∂x , ∂f k (x,y) ∂y > 0, ∂ 2 f k (x,y) ∂x∂y = 0, and 
∂ 2 f k (x, y) ∂x 2 - 1 x ∂f k (x, y) ∂x ≥ 0 (18) ∂ 2 f k (x, y) ∂y 2 - 1 y ∂f k (x, y) ∂y ≥ 0. ( 19 
)
Type II. There exist continuous, positive, and strictly increasing functions f

(1) k (x) and f (2) k (y) for x, y > 0, such that f k (x, y) = max{f (1) k (x), f (2) k (y)}. ( 20 
)
Note that convexity is not required, and recall that, in our formulation P, the arguments x and y in f k (x, y) correspond to the distances d u (x) and d b (x), respectively. These two types of cost functions have a vast of applications as will be seen in Section V. Examples of Type I functions include the outage probability as a function of path loss with respect to (w.r.t.) the distances in a relay channel [START_REF] Nabar | Fading relay channels: Performance limits and space-time signal design[END_REF], [START_REF] Laneman | Cooperative diversity in wireless networks: Efficient protocols and outage behavior[END_REF]. Examples of Type II functions are the end-to-end ergodic capacity (with a negative sign) of a relay channel [START_REF] Laneman | Cooperative diversity in wireless networks: Efficient protocols and outage behavior[END_REF], [START_REF] Wang | Highperformance cooperative demodulation with decode-and-forward relays[END_REF].

A. Unique Local Minimizer in the Proxy

Segment Cost F k (ρ, θ)
It can be found that F k (ρ, θ) has a unique local minimizer ρ * k (θ) for each θ, justifying the stopping criterion (ii) in Algorithm 1.

First, it can be shown that fk (l, ρ, θ) is quasiconvex and

l * k (ρ, θ) is a unique local minimizer. Recall that a quasiconvex function f (x) is a function of which the sub-level set C α = {x : f (x) ≤ α} is convex. Moreover, a function f (x) is strictly quasiconvex if f (λx 1 + (1 -λ)x 2 ) < max{f (x 1 ), f(x 2 )
} for any 0 < λ < 1 and x 1 = x 2 . Thus, the following result can be established. Proof: (Sketch) One can show that the iteration in Step 3 never decreases ρ and θ. On the other hand, the search region is bounded due to Proposition 4. Therefore, the search length is only linear in the scale of the target area. The detail calculation is similar to the case studied in [9, Theorem 2].

The sampling complexity is thus upper bounded by (2.4K -1.4) Hs Hmin L/δ, with δ being the step size in Algorithm 1. As a comparison, a naive exhaustive search may require O(L 3 /δ) search complexity.

2) Quasilinear Computational Complexity: The computational complexity of the proposed algorithm is dominated by the number of evaluations of the proxy segment cost function F k (ρ, θ), which involves log 2 ρΔH Hs evaluations of the original cost function f as previously discussed following Proposition 2. In particular, computing the search direction in [START_REF] Al-Hourani | Modeling air-toground path loss for low altitude platforms in urban environments[END_REF] involves four evaluations of F k using the differential formula in [START_REF] Al-Hourani | Modeling air-toground path loss for low altitude platforms in urban environments[END_REF]. Then, it can be shown that the complexity is upper bounded by (10.6K -9.6)(log 2 L -log 2 H s ) L δ , which is roughly O(KL log L/δ) in term of the number of evaluations of F k . Again, a naive exhaustive algorithm may require O(L 3 /δ) complexity.

C. Global Optimality

Somewhat surprisingly, we can show that, although the search has a linear length, the algorithm can find the globally optimal position in 3D with an arbitrary number of propagation segments.

An intuitive explanation on the global optimality is as follows. First, as a result of the specialized angular coordinate system (l, ρ, θ) developed in Section III-A, the optimal solution l * (ρ, θ) given (ρ, θ) can be analytically computed without navigating the UAV to physically search along l. Thus, the 3D spatial search problem degenerates to a 2D one. Second, under some mild conditions on the original cost functions f k (x, y) in (4), the proxy cost functions F k (ρ, θ) in ( 13) has some nice properties, such as the uniqueness of the local minimizer ρ * k (θ) for each θ, that can be exploited by Algorithm 1. Studying these key features, global optimality in 3D can be established as follows.

Consider a continuous-time algorithm trajectory x(t), which is obtained from Algorithm 1 using infinitesimal step size δ = κdt at each infinitesimal time slot dt. Correspondingly, the time series of the minimum cost F min (t) and (ρ(t), θ(t)) defined in Algorithm 1 are continuous-time processes.

Theorem 2 (Global Optimality): For Type I and Type II cost functions, the process (ρ(t), θ(t)) from Algorithm 1 converges to the globally optimal solution (ρ * , θ * ) to problem P in finite time t = T < ∞. In addition, the corresponding x(l * (ρ * , θ * ), ρ * , θ * ) obtained from [START_REF] Chen | Efficient local map search algorithms for the placement of flying relays[END_REF] is the globally optimal solution to problem P.

Proof: (Sketch) One can easily establish the following property for given any θ = 0.

min ρ≥0 F k (ρ, θ ) ≤ min j≥k min ρ≥0,θθ >0 |θ |≤|θ|≤π/2 F j (ρ, θ). ( 21 
)
To see this, we note that F k (ρ, θ) = fk (l * (ρ, θ), ρ, θ) from Definition 1 and fk (l, ρ, θ ) < fk (l, ρ, θ) for any ρ ≥ 0 and l ∈ L(ρ), because the UAV-BS distance d b increases when increasing |θ| (see Equation ( 25)), but the UAV-user distance d u = l remains unchanged.

As Algorithm 1 is identical to [9, Algorithnm 1], which was developed on the 2D case, except for the construction of F k (ρ, θ). We also note from [START_REF] Alzenad | 3-D placement of an unmanned aerial vehicle base station for maximum coverage of users with different QoS requirements[END_REF] and Propositions 3 and 4 that, the proxy segment cost functions F k (ρ, θ) have the same properties as those discussed in [9, Theorem 1]. Therefore, Algorithm 1 finds the globally optimal solution to P . Due to the equivalence from the angular transformation, the global optimality of the 3D problem P is thus confirmed. One can follow [9, Appendices C, D] for the details of the proof.

V. APPLICATIONS

In this section, we list three example formulations for P. The objective functions of the first two examples respectively match with the Type I and Type II conditions in Section IV-A. The objective of the third example does not match with either of the conditions. We will numerically evaluate the performance of these applications in an actual urban city topology in Section VI.

A. Minimize the Outage Probability

Consider the deployment of a relay network to lower the link outage probability under a certain end-to-end target data rate. The UAV relay operates in an amplify-and-forward (AF) mode, where it simply redirects the signal from the BS to the user by amplifying the signal. Specifically, denote the received signal at the UAV relay as y r = P b g r,b a r,b s + n r , where P b is the transmit power at the BS, g r,b is the large scale fading including the path loss and shadowing of the BS-UAV link, a r,b is a random variable to model the small scale fading, and s, n r ∼ CN (0, 1) models the transmit signal and receive noise, respectively.

Under the AF mode, the relay signal is given by s r = y r / P b g r,b |a r,b | 2 + 1 where the denominator is a scaling factor to normalize the transmission power at the UAV. The receive signal at the user is thus given by y u = P r g u,r a u,r s r + n u , where P r is the transmit power at the UAV, g u,r and a u,r are the large scale fading variable and small scale fading variable of the UAV-user link, respectively. Finally, n u ∼ CN (0, 1) is the receive noise. We assume that |a r,b | 2 and |a u,r | 2 follow exponential distribution with parameter λ = 1, a common assumption of Rayleigh fading channels.

The relay channel capacity is given by

C AF = 1 2 log 2 (1 + q(P b g r,b |a r,b | 2 , P r g u,r |a u,r | 2 ))
, where q(x, y) xy((x + y + 1) and the constant 1 2 is to capture the fact that the signal requires two time slots to reach the user [START_REF] Nabar | Fading relay channels: Performance limits and space-time signal design[END_REF], [START_REF] Laneman | Cooperative diversity in wireless networks: Efficient protocols and outage behavior[END_REF]. The outage probability w.r.t. a target data rate R can be shown to be 

P{C AF < R} ≈ ( 1 Pbgr,b + 1 Prgu,r )(2 2R -1)
f k (d u , d b ) = 1 P b β 0 d -α0 b + 1 P r β k d -α k u , k = 1, 2, . . . , K (22) 
where β k is approximately 10 b k /10 and α k = a k /10 for a k , b k given in [START_REF] Mozaffari | Unmanned aerial vehicle with underlaid device-to-device communications: Performance and tradeoffs[END_REF]. One can verify that the objective function f k satisfies the Type I condition. Hence, from Theorem 2, Algorithm 1 will find the globally optimal UAV position in 3D space.

B. Maximize the Capacity

Consider a decode-and-forward (DF) relay system where the UAV servers as a relay. The relay channel capacity of such a DF system can be shown to be [START_REF] Wang | Highperformance cooperative demodulation with decode-and-forward relays[END_REF]. In an actual system, the averaged achievable data rate will depend on the average SNR P b g r,b and P r g u,r through a number of factors such as channel fading, channel coding schemes, modulation schemes, and rate adaptation strategy. As discussed in [START_REF] Mogensen | LTE capacity compared to the Shannon bound[END_REF], this process can be abstracted using a discount factor κ, 0 < κ < 1, resulting in a simplified, but widely-used model for the effective SNR. Then, the relay capacity is given by

C DF = 1 2 min{log 2 (1 + P b g r,b |a r,b | 2 ), log 2 (1 + P r g u,r |a u,r | 2 )} [32],
C DF = 1 2 min{log 2 (1 + κP b g r,b
), log 2 (1 + κP r g u,r ), r max }. Based on the analysis in [START_REF] Mogensen | LTE capacity compared to the Shannon bound[END_REF], a typical choice of κ is κ = 0.5.

To maximize the relay channel capacity, one populates problem P by choosing

f k (d u , d b ) = 1 2 min{log 2 (1 + κP b β 0 d -α0 b ), log 2 (1 + κP r β k d -α k u ), r max } (23)
for k = 1, 2, . . . , K, with β k = 10 b k /10 and α k = a k /10 according to (2). One can verify that the objective function f k satisfies the Type II condition. Hence, from Theorem 2, Algorithm 1 will find the globally optimal UAV position in 3D space.

Note that our formulation [START_REF] Mo | Radio-map-based robust positioning optimization for UAV-enabled wireless power transfer[END_REF] ignores the residual shadowing ξ k in (2), and hence, the optimal solution to P only results in a sub-optimal solution in practice. Nevertheless, the numerical study in Section VI-E shows that, compared to the baseline, the performance obtained from optimizing [START_REF] Mo | Radio-map-based robust positioning optimization for UAV-enabled wireless power transfer[END_REF] is already quite close to a genie-aided one that takes into account the residual shadowing ξ k and requires exhaustive search in 3D.

C. Energy Minimization for Data Collection

Suppose that the UAV needs to navigate to a remote location and deliver B message bits to a user using a DF relay strategy. We assume that the UAB-BS link is strong enough, and hence, the end-to-end capacity is given by the capacity of the UAV-user link r u (d u ) = 1 2 min{log 2 (1 + κP r g u,r (d)), r max }. To further simplify the problem, we assume that the UAV only transmits when it reaches the desired position. 2 A related problem with similar arguments was also studied in [START_REF] Zeng | Energy-efficient UAV communication with trajectory optimization[END_REF] under a more complex multi-hop scenario, but we want to keep the example simple here for clarity. The required transmission time is t tx = B/(W r u (d)), where W is the bandwidth.

Denote P cruise , P hover , and P circuit , as the UAV cruise power, the UAV hover power, and the circuit power for data processing, respectively. Note that, in reality, the power consumption may depend on various factors such as the UAV speed. If we focus on the operation under a constant UAV speed, then the cruise power P cruise is roughly constant. Thus, the power consumed at the navigation phase is P cruise d/v and the energy consumed at the transmission phase is (P hover + P circuit + P r )B/(W r u (d)), where d is the distance from the initial UAV position and v is the speed. 3 Therefore, the total energy consumed to deliver the total B bits is given by

E = P cruise d v + (Phover+Pcircuit+Pr)B

W ru(d)

.

To optimize for the large-scale propagation characteristics and LOS conditions, the target UAV position that minimizes the total energy consumption E can be found by solving problem P, where the objective function can be chosen as, for k = 1, 2, . . . , K,

f k (d u , d)=P cruise d v + (P hover + P circuit +P r )B 1 2 W • min{log 2 (1 + κP r β k d -α k u
), r max } .

One can verify that f k is increasing in both d u and d, respectively. However, f k does not satisfy either Type I or Type II conditions. Therefore, the global optimality of Algorithm 1 for such an energy minimization problem is still unclear. However, as will be observed from the numerical experiments in Section VI-F, the performance between Algorithm 1 and that of an exhaustive search is nearly indistinguishable.

VI. NUMERICAL RESULTS

A. Propagation Environment Modeling

We study the city environment using the geographical data captured in central Washington DC, USA in 2013. 4 Fig. 4 shows the orthoimagery of an 800 m × 800 m area of interest and the corresponding elevation map. In this area, the maximum building height is 45 meters. Building areas are designated by black polygons, whereas, the colored pixels outside the building areas represent the urban vegetation. The BS antenna is placed at 45 meter height. For each experiment below, we evaluate uniformly random user locations in the non-building area. The minimum UAV height is set to 45 meters to avoid collision with any building while maintaining LOS condition with the BS; the maximum height is 120 meters to obey the US regulation.

We employ a ray-tracing method to identify three propagation conditions: LOS, if there is no building or vegetation blocking the direct ray from the transmitter to the receiver, OLOS, if there is only vegetation blockage of the direct ray, and NLOS, if there is a building that blocks the direct ray. Corresponding path loss models and shadowing parameters σ SF are used as specified in Table II. The residual shadowing is modeled as N (0, σ 2 SF ).

B. Air Interface

We evaluate two air interfaces. One transmits at 2.5 GHz with propagation parameters taken from the 3GPP Urban Micro (UMi) model in [START_REF]Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Further Advancements for E-UTRA Physical Layer Aspects[END_REF]. The other transmits at 28 GHz with parameters taken from the experiment results reported in [START_REF] Akdeniz | Millimeter wave channel modeling and cellular capacity evaluation[END_REF]. Since both the standard cellular model [START_REF]Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Further Advancements for E-UTRA Physical Layer Aspects[END_REF] and the experiment in [START_REF] Akdeniz | Millimeter wave channel modeling and cellular capacity evaluation[END_REF] consider only two propagation scenarios, LOS and NLOS, we simulate the parameter for the OLOS condition by adding 10 dB (3GPP case), or 20 dB (mmW case), vegetation penetration loss from the LOS models in [START_REF]Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Further Advancements for E-UTRA Physical Layer Aspects[END_REF] and [START_REF] Akdeniz | Millimeter wave channel modeling and cellular capacity evaluation[END_REF], respectively.

For millimeter wave (mmW) links, we assume halfwavelength 4 × 4 uniform planar arrays at the BS transmitter, UAV transceiver, and the user receiver. The beamforming is computed using channel statistics. Experimental results in [START_REF] Akdeniz | Millimeter wave channel modeling and cellular capacity evaluation[END_REF] showed that a 9-12 dB gain under long-term beamforming can usually be achieved at the user side. Therefore, we assume a 20 dB beamforming gain combined from both the transmitter and receiver. The key parameters are summarized in Table II. 

C. Baseline Schemes and Observations

We evaluate the UAV placement method in Algorithm 1 with step size δ = 3 meters; we compare performance with the following four baseline schemes:

• Direct BS-user link: The scheme transmits at the direct BS-user link, without the help of the UAV relay. In the urban topology depicted in Fig. 4, we numerically found that there are only 3.3% users in LOS condition to the BS and less than 20% users in OLOS condition. The LOS ratio at the 89 degree elevation angle corresponds to the fact that roughly 20% of the street is covered by vegetation as shown in Fig. 4.

• Statistical Method: Define p k (ϕ(x)) = P{x ∈ D k ϕ}
as the conditional probability of the UAV position x belonging to the kth propagation segment given the elevation angle ϕ from the user to the UAV. The empirical distributions p k (ϕ) are obtained in an offline mode from a large amount of channel measurement data over various user and UAV positions in Fig. 4. The results are plotted in Fig. 5. Given p k (ϕ), the UAV position is obtained by solving

P stat : minimize x∈R 3 K k=1 f k (d u , d b )p k (ϕ(x))
subject to H min ≤ x 3 ≤ H max using an exhaustive search algorithm. Note that under K = 2, this method is conceptually identical to the probabilistic LOS method in the literature [START_REF] Hourani | Optimal LAP altitude for maximum coverage[END_REF], [START_REF] Mozaffari | Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage[END_REF].

• 1D Exhaustive Search: This schemes performs an exhaustive search along the BS-user axis on the x 3 = H min plane and finds the UAV position that minimizes the objective function of P. The UAV relays then relays the message to the user, while the direct BS-user link is completely ignored. • 3D Exhaustive Search: This schemes performs an exhaustive search over a 3D lattice with 3 meter spacing. The lattice that achieves the minimum cost in P is chosen as the optimal UAV position. 

D. Outage Probability Minimization and the Confirmation on the Global Optimality

Consider the outage probability minimization problem in Section V-A. The performance is evaluated using the 3GPP Urban Micro (UMi) model and the residual shadowing is ignored as discussed in Section V-A. We normalize the outage probability in [START_REF] Chen | Optimum placement of UAV as relays[END_REF] from various UAV schemes by the outage probability of the direct BS-user link for each user. Note that the ratio is equivalent to the uncoded bit error rate (BER) improvement, and the cumulative distribution functions (CDFs) of the improvement are plotted in Fig. 6. Two cases are evaluated using the default parameters in Table II except for those specified in the figure .  It is observed that the proposed scheme can substantially reduce the uncoded BER over the statistical scheme. In particular, when the UAV-to-user link is stronger, the proposed scheme can achieve much more reduction from statistical scheme. This is because the proposed scheme finds a position closer to the BS while still maintaining a good propagation condition (such as LOS) to the user. In addition, it is observed that the CDF curves of the proposed scheme coincide with those from the exhaustive search, numerically confirming that the proposed algorithm finds the globally optimal solution to P.

E. Capacity Maximization

Consider a system that operates in a hybrid transmission mode with an objective to maximize the capacity in Section V-B. Specifically, if the propagation condition is in LOS or OLOS, the mmW radio interface at 28 GHz is used for transmission; otherwise, the 3GPP radio interface at 2.5 GHz is used. The shadowing parameters are specified in Table II. The algorithm optimizes P in (4) with the cost functions specified in [START_REF] Mo | Radio-map-based robust positioning optimization for UAV-enabled wireless power transfer[END_REF].

1) Robustness Under Shadowing: Note that the formulation in [START_REF] Mo | Radio-map-based robust positioning optimization for UAV-enabled wireless power transfer[END_REF] ignores the shadowing when searching for the best UAV position, while the performance is evaluated under the presence of shadowing as specified in Table II. In other words, the globally optimal solution to P is not necessarily the position that achieves the maximum throughout under the presence of shadowing. In this experiment, we observe 17% performance degradation from exhaustive search in terms of average throughput as shown in Fig. 7.

As observed, even when the model assumptions are violated, the proposed algorithm still yields good performance. First, it is observed that the proposed scheme achieves more than 80% throughput of the 3D exhaustive scheme for all categories in Fig. 7. Note that the proposed scheme only requires a spatial search path that is linear in the diameter of the target area, but an exhaustive search would require a cubic path. By contrast, the statistical method perform substantially worse. Second, for the users in deep shadow (the 20th percentile), the proposed scheme can deliver over 2X throughput of that from the statistical method.

2) Impact on the Maximum UAV Height H max : Fig. 8 demonstrates the average throughput versus the maximum permissible UAV height H max under 23 dBm BS transmission power and various UAV transmission power. First, we find that the larger H max , the higher the average throughput. This confirms the advantage of the 3D optimization for UAV relay position. Second, it is also found that the larger the UAV power, the more gain to be achieved by increasing H max . Finally, for the statistical method baseline, it does not benefit from adjusting the UAV height, because its optimal solution is always attained at the minimum UAV height from our experiment.

3) Statistics on the Optimal UAV Position in 3D: Fig. 9 shows the histograms of the optimal UAV positions in terms of the deviation angle θ and elevation angle φ w.r.t. to the BS-user direction. It is observed that the optimal UAV positions tend to have small deviation angle and elevation angle. Such a property may provide insights in designing approximate solutions to handle the practical issue of nonisotropic antenna pattern at the BS.

4) Length of the Spatial Search Trajectory: Table III summarizes the average length the spatial search trajectory for each scheme over 10,000 user locations. Note that performance bottleneck is the physical length of the search path that UAV explores over. As observed, the path lengths of the proposed scheme under different search parameters H s (see Algorithm 1) are comparable to that of the 1D Exhaustive Search baseline, numerically confirming Theorem 1, which states that the search path has linear length in the diameter of the target area.

F. Energy Minimization

For the energy minimization problem in Section V-C, we also consider the hybrid transmission model discussed in Section VI-E. The UAV is required to deliver B = 10 Giga bits to a user which may be in deep shadow at its BS-user link.

Fig. 10 plots the distribution of the total energy consumption for different schemes. It is observed that the proposed UAV placement algorithm can reduce the total energy consumption by a half from a statistical method. Moreover, the proposed scheme significantly outperforms the 1D Exhaustive Search method. This suggests that the optimal UAV position usually not lies on the BS-user axis. Finally, the performance of the proposed scheme matches with that from the exhaustive search, which implies that the proposed Algorithm 1 still finds the globally optimal UAV position in this special example, despite violating the conditions in Theorem 2.

VII. CONCLUSION

This paper developed an efficient search algorithm to find the globally optimal UAV position for establishing the best relay link between a BS and a user. A key problem addressed here was to avoid signal blockage for the UAV-to-user link. As oppose to statistical methods, the proposed algorithm measures the LOS condition on the fly and adapts to the local propagation environment. The worst case search length was shown to be bounded by a linear function of the BS-user distance. In addition, the algorithm has been proven to find the globally optimal UAV position in 3D for several types of cost functions. The results were further confirmed by numerical experiments over a real terrain topology, where the proposed method significantly outperformed the method based on stochastic terrain models. we have

D u (l) = l 2 (24) D b (l, ρ, θ) = L 2 sin 2 θ + L cos θ - ρl ρ 2 + H 2 s 2 + lH s ρ 2 + H 2 s -H b 2 (25)
Lemma 1: Suppose that the functions D u (z) and D b (z) are strictly convex in z. Then, for Type I function f k (x, y), the composite function

f k (D 1/2 u , D 1/2 b )(z) is strictly convex in z.
Proof: From the chain rule and the fact that

d u = D 1/2 u
and that f k (x, y) is non-decreasing in x and y, we have

∂f k ∂Du = ∂f k ∂du ∂du ∂Du = ∂f k ∂du 1 2 √ Du > 0.
The second order derivative is then given by

∂ 2 f k ∂D 2 u = ∂ ∂D u ∂f k ∂d u 1 2 √ D u = ∂ 2 f k ∂d 2 u ∂d u ∂D u 1 2 √ D u + ∂f k ∂d u ∂ ∂D u 1 2 √ D u = 1 4d 2 u ∂ 2 f k ∂d 2 u - ∂f k ∂d u 1 d u ≥ 0
where the last inequality is from condition [START_REF] Hammouti | Learnas-you-fly: A distributed algorithm for joint 3D placement and user association in multi-UAVs networks[END_REF]. Similarly, we can obtain ∂f k ∂Db > 0 and 24)-( 25), we know that D u (l, ρ, θ) and D b (l) are strictly convex in l. Then, using Lemma 1, we can conclude that f k (d u , d b )(l, ρ, θ) is strictly convex in l, and hence, fk (l, ρ, θ) admits a unique local minimum at l * k (ρ, θ) over the interval L(ρ), which is convex and compact. Since it is strictly convex, fk (l, ρ, θ) is also strictly quasiconvex.

∂ 2 f k ∂D 2 b ≥ 0. Define an operator ∇ as ∇ [ ∂ ∂z1 ∂ ∂z2 . . ∂ ∂zM ] T , where z m is the mth entry of z. We have ∇f k = ∂f k ∂Du ∇D u + ∂f k ∂Db ∇D b . In addition, noticing that ∂ 2 f k ∂du∂db = 0, we arrive at ∇ 2 f k = ∂ 2 f k ∂D 2 u ∇D u ∇D T u + ∂f ∂D u ∇ 2 D u + ∂ 2 f ∂D 2 b ∇D b ∇D T b + ∂f ∂D b ∇ 2 D b 0 which shows that f k (D 1/2 u , D 1/2 b )(z) is convex in z. In addi- tion, since D u (z) and D b (z) are strictly convex in z, we then conclude that f k (D 1/2 u , D 1/2 b )(z) is strictly convex in z. From (

B. Proof for Type II Functions

Exploiting the increasing functions f (1) (x) and f (2) (y), we define

f (1) k (l) f (1) k (D 1/2 u )(l) and f (2) k (l, ρ, θ) f (2) k (D 1/2 b )(l, ρ, θ). Condition (20) implies that fk (l, ρ, θ) = max{ f (1) k (l), f (2) k (l, ρ, θ)}. ( 26 
)
Lemma 2: Let f 1 (x) and f 2 (x) be positive and strictly increasing functions. In addition, let g 1 (y) and g 2 (y) be strictly convex functions. Then, the composite function f (y) = max{f 1 (g 1 )(y), f 2 (g 2 )(y)} is strictly quasiconvex in y.

Proof: Suppose that y 1 ,

y 2 ∈ C α = {y : f (y) ≤ α}. Let max{f (y 1 ), f(y 2 )} = α 1 ≤ α. Then, g i (y j ) ≤ f -1 i (α 1
) for both i, j ∈ {1, 2}, by the strictly increasing property of f i , where x = f -1 i (y) denotes the inverse function of y = f i (x). From the strict convexity of g i , we have

g i (λy 1 + (1 -λ)y 2 ) < λg i (y 1 ) + (1 -λ)g i (y 2 ) ≤ λf -1 i (α 1 ) + (1 -λ)f -1 i (α 1 ) = f -1
i (α 1 ) for both i ∈ {1, 2} and λ ∈ (0, 1). Therefore, f i (g i )(λy 1 + (1λ)y 2 ) < α 1 , and hence f (λy 1 + (1λ)y 2 ) < α 1 = max{f (y 1 ), f(y 2 )}. This concludes that f (y) is strictly quasiconvex.

Using Lemma 2, fk (l, ρ, θ) in ( 26) is strictly quasiconvex in l. We then have the following result on the optimality.

Lemma 3 (Optimality From Quasiconvexity): If f (x) is strictly quasiconvex in a convex and closed interval I ∈ R, then f (x) admits a unique local minimum in I.

Proof: We develop the proof from contradiction. Suppose that x 0 ∈ I is a global minimizer of f (x), and x 1 is a local minimizer, where x 1 = x 0 . As a result, f (x 0 ) < f(x 1 ). without loss of generality (w.l.o.g.), assume that x 0 < x 1 . Choose an arbitrarily small > 0, such that x 2 = x 1is sufficiently close to the local minimizer x 1 and f (x 2 ) > f(x 1 ). As a consequence, there exists a 0 < λ < 1, such that x 2 = λx 0 + (1λ)x 1 . However, according to the quasiconvexity of f (x), it holds that f (x 2 ) ≤ max{f (x 0 ), f(x 1 )} = f (x 1 ), which violates the fact that x 1 is a local minimum. By contradiction, the local minimum is unique.

Using Lemma 3, one can conclude that fk (l, ρ, θ) admits a unique local minimum l * k (ρ, θ) over L(ρ).

APPENDIX B PROOF OF PROPOSITION 3

We exploit a third coordinate system to develop the results. Consider a θ-plane, defined as the 2D plane that is perpendicular to the ground and passing through both the user position x u and the UAV position x(l, ρ, θ) as illustrated in Fig. 11. Each point x(l, ρ, θ) on the θ-plane can be represented by coordinates (y, z) as follows

y z = G θ (l, ρ) = ⎡ ⎢ ⎢ ⎣ l ρ ρ 2 + H 2 s l H s ρ 2 + H 2 s ⎤ ⎥ ⎥ ⎦ (27) 
where the mapping G θ is invertible and the reverse transformed is denoted as (l, ρ) = G -1 θ (y, z). On the θ-plane, the squared distances can derived as

D θ b (y, z) = L 2 sin 2 θ + (L cos θ -y) 2 + (z -H b ) 2 and D θ u (y, z) = y 2 +z 2
, which are strictly convex in (y, z). Define the transformed cost function (on the θ-plane) as

f θ k (y, z) f k ((D θ u ) 1/2 , (D θ b ) 1/2 )(y, z). ( 28 
)
It turns out that f θ k is strictly quasiconvex in (y, z) for both Type I and Type II functions. To see this for Type I functions, applying Lemma 1, f θ k (y, z) is shown to be strictly convex in (y, z). Hence, f θ k (y, z) is also strictly quasiconvex in (y, z). For Type II cost functions, we have

f θ k (y, z) = max{f (1) 
k ((D θ u ) 1/2 )(y, z), f In addition, for some 0 < t < 1, let y 2 = ty * + (1t)y 1 and z 2 = tz * + (1t)z 1 . In particular, we choose an arbitrary ρ 2 satisfying ρ 1 < ρ 2 < ρ * , and we choose the parameter t = ρ2z1-Hsy1 ρ2(z1-z * )+Hs(y * -y1) , so that G -1 θ (y 2 , z 2 ) = (l 2 , ρ 2 ) for some l 2 . Note that l 2 ∈ L(ρ 2 ), because the constraint H min ≤ x 3 ≤ H max in P is equivalent to H min ≤ ≤ H max in the θ-plane, and ρ ≥ 0 is equivalent to y ≥ 0, which imply that the feasible domain is convex on the θ-plane.

Using these notations, we have

f θ k (y 2 , z 2 ) = f θ k (ty * + (1 -t)y 1 , tz * + (1 -t)z 1 ) < max{f θ k (y * , z * ), f θ k (y 1 , z 1 )} = f θ k (y 1 , z 1 )
where the inequality comes from the strict quasiconvex of f θ k . As a result, we have

F k (ρ 2 , θ) = f k (d u , d b )(x(l * k (ρ 2 , θ), ρ 2 , θ)) ≤ f θ k (y 2 , z 2 ) < f θ k (y 1 , z 1 )
where the right hand side satisfies The constraint in P suggests that H min ≤ l sin ϕ ≤ H max . There are two cases for the optimal solution l * (ρ, θ) discussed as follows. 

where μ = L cos θ/H min . Knowing that ρ ≥ 0, we can solve [START_REF] Chen | Efficient algorithms for air-to-ground channel reconstruction in UAV-aided communications[END_REF] 

Note that to fix the variable l(ρ, θ) as a pre-determined function of ρ and θ according to the relation l sin ϕ = H min , minimizing F k (ρ, θ) over ρ ≥ 0 is an unconstrained problem. This is because ρ ≥ 0 will be automatically satisfied as a result of ( 30)- [START_REF] Nabar | Fading relay channels: Performance limits and space-time signal design[END_REF]. As a result, the optimality condition ∂ρ < 0, which leads to ρ < Hs Hmin L cos θ. To conclude from the above two cases, the solution that minimizes F k (ρ, θ) must satisfy ρ * (θ) ≤ Hs Hmin L cos θ.

∂F k ∂ρ = ∂f k

Fig. 1 .

 1 Fig. 1. (a) The UAV may adjust its position in 3D to avoid signal blockage (grey area) from the user. (b) Multi-segment propagation model: (1) When the UAV moves upwards, it will experience a smaller degree of obstruction; (2) When the UAV moves along the black dashed line, it travels along the same propagation segment (i.e., same degree of obstruction).

Fig. 2 .

 2 Fig. 2. Geometric interpretation of the angular transformation. The coordinate (xs, Hs) on the search plane x 3 = Hs is transformed to (ρ, θ).

Fig. 3 .

 3 Fig. 3. (a) The running best objective value (projected to the search plane) discovered along the search path, the black curve. (b) The corresponding search path on the search plane.

Proposition 2 (

 2 Unique Partial Minimizer I): For Type I and Type II cost functions, fk (l, ρ, θ) is strictly quasiconvex in l and admits a unique local minimizer l * k (ρ, θ) in L(ρ), i.e., ∂ fk /∂l < 0 for l < l * k (ρ, θ) and ∂ f/∂l > 0 for l > l * k (ρ, θ). Proof: See Appendix A. Proposition 2 implies that l * (ρ, θ) can be found efficiently using algorithms such as bisection search. The solution can be obtained in log 2 ρΔH Hs steps, where > 0 is the error tolerance and ΔH = H max -H min . Proposition 3 (Unique Partial Minimizer II): For Type I and Type II cost functions, the proxy cost function F k (ρ, θ) is strictly quasiconvex in ρ, and there is a unique local minimizer ρ* k (θ) of F k (ρ, θ), i.e., F k (ρ 1 , θ) > F k (ρ 2 , θ) for ρ 1 < ρ 2 < ρ * k (θ), and F k (ρ 3 , θ) < F k (ρ 4 , θ) for ρ * k (θ) < ρ 3 < ρ 4 . Proof: See Appendix B.As F k (ρ, θ) has a unique local minimum ρ * k (θ) for each θ, there is no need to search in ρ ≥ ρ * k (θ), corresponding to the region satisfying ∂F k (ρ, θ)/∂ρ ≥ 0, which is the stopping criterion (ii) in Algorithm 1.B. Linear Search Complexity and Quasilinear Computational Complexity 1) Linear Search Complexity:The search complexity is defined as the length of the UAV search path. We first show the following result for the stopping criterion (i) in Algorithm 1.Proposition 4 (Search Region): The solution ρ * k (θ) that minimizes F k (ρ, θ) satisfies ρ * k (θ) ≤ Hs Hmin L cos θ. Proof: Please refer to Appendix C. Then, as a result of Proposition 4, it can be shown that the worst-case search length of Algorithm 1 is a linear function of the radius of the target area. Theorem 1 (Maximum Trajectory Length): The length of the search trajectory from Algorithm 1 is upper bounded by (2.4K -1.4) Hs Hmin L.

Fig. 4 .

 4 Fig. 4. (Left) An orthoimagery of an 800 [m] × 800 [m] area in Washington DC, USA. (Right) The corresponding elevation map of buildings and vegetation. The BS is placed at the red triangle with 45 meter height.

Fig. 5 .

 5 Fig. 5. Statistics of propagation conditions.
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 6 Fig. 6. Outage probability.
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 7 Fig. 7. Throughput evaluation over 10,000 user positions under the presence of shadowing.
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 8 Fig. 8.Average throughput under various maximum permissible UAV height Hmax.

Fig. 9 .

 9 Fig. 9. Histograms of the optimal UAV positions in deviation angle and elevation angle w.r.t. the BS-user direction.
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 10 Fig. 10. Distribution of the energy consumption.

  APPENDIX A PROOF OF PROPOSITION 2 A. Proof for Type I Functions Define the squared distances as D b = d 2 b and D u = d 2 u for simple notation. From the geometric relations between the three positions x, x b , and x u , and recall that L xuxb 2 ,

( 2 )

 2 k ((D θ b ) 1/2 )(y, z)}. Using Lemma 2, f θ k (y, z) is strictly quasiconvex in (y, z).

Fig. 11 .

 11 Fig. 11. Geometric interpretation of the θ-plane.

f θ k (y 1

 1 , z 1 ) = f k (d u , d b )(x(l * k (ρ 1 , θ), ρ 1 , θ)) = F k (ρ 1 , θ)which concludes the monotonicity of F k (ρ, θ) over (0, ρ * ) as ρ 1 and ρ 2 have been chosen arbitrarily.Similarly, we can show that F k (ρ 4 , θ) > F k (ρ 3 , θ) > F k (ρ * , θ) for any Hs Hmin L cos θ > ρ 4 > ρ 3 > ρ * . Therefore, we can conclude that F k (ρ, θ) is strictly quasiconvex in ρ for both Type I and Type II functions. In addition, from Proposition 4 proven in Appendix C, the optimal solution ρ * is bounded in 0 ≤ ρ ≤ Hs Hmin L cos θ. As a result, using Lemma 3, F k (ρ, θ) admits a unique local minimizer ρ * (θ) for each θ. APPENDIX C PROOF OF PROPOSITION 4 Denote the elevation angle as ϕ. Then, from geometric relation as illustrated in Fig. 11, we have cos ϕ = ρ √ ρ 2 +H 2 s and sin ϕ = Hs √ ρ 2 +H 2 s . As a result, (25) can be written as D b (l, ρ, θ) = L 2 sin 2 θ + (L cos θl cos ϕ) 2 +(l sin ϕ -H b ) 2 .

2 s ρ 2 + H 2 s leading to inequality ρ 2 -

 2222 (i) l * sin ϕ > H min : in this case, the following condition holds ∂D b ∂l l * (ρ,θ) = 2(l -L cos θ cos ϕ -H b sin ϕ) l * (ρ,θ) < 0 because otherwise, the gradient in P k becomes positive as ∂ f ∂l l * (ρ,θ) l * (ρ,θ) ×I{x(l, ρ, θ) ∈ D k } > 0 which means that l * (ρ, θ) will not be the optimal solution. (Recall that f k are increasing in the distances d b = D D u (l) = l 2 ). As a result, we have H min sin ϕ ≤ l * < L cos θ cos ϕ -H b sin ϕ which arrives at H min < L cos θ cos ϕ sin ϕ + H b sin 2 ϕ = L cos θ ρH s + H b H μH s ρ + H 2 s (1 -μH b ) < 0

TABLE I KEY NOTATIONS

 INOTATIONS 

TABLE III AVERAGE

 III LENGTH OF THE SPATIAL SEARCH TRAJECTORY

  sin ϕ = H min : in this caseD * b (ρ, θ) D b (l * (ρ, θ), ρ, θ) = L 2 sin 2 θ + (L cos θρ H min H s ) 2 +(H min -H b ) 2

			(30)
	D * u (ρ, θ) D u (l * (ρ, θ)) =	H 2 min s H 2	(ρ 2 + H 2 s ).

to obtain ρ < H s 2 μ + μ 2 -4(1 -μH b ) < H s μ = H s H min L cos θ.

(ii) l *

The negative sign is because we want to unify our formulation as minimizing a "cost" function.

We also observe from numerical experiments that the UAV is mostly in deep shadowing during its course to the target position. In this case, the transmission during the UAV navigation phase is negligible.

We assume that the UAV consumes the same power P cruise regardless of its direction of mobility. Such an approximation is motivated from the experiment results in[START_REF] Liu | A power consumption model for multi-rotor small unmanned aircraft systems[END_REF], where there is only 10% power difference between the UAV ascending and UAV hovering.

The original data was obtained from the USGS database: http://ngmdb.usgs.gov. The processed dataset is available at IEEE DataPort with DOI: 10.21227/y6gg-j788.