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Multi-dimensional maximal coherent subsets
made easy: illustration on an estimation problem

Loïc Adam and Sébastien Destercke

Abstract Fusing uncertain pieces of information to obtain a synthetic estimation
when those are inconsistent is a difficult task. A particularly appealing solution to
solve such conflict or inconsistency is to look at maximal coherent subsets of sources
(MCS), and to concentrate on those. Yet, enumeratingMCS is a difficult combinatorial
task in general, making the use of MCS limited in practice. In this paper, we are
interested in the case where the pieces of information are multi-dimensional sets or
polytopes. While the problem remains difficult for general polytopes, we show that it
can be solved more efficiently for hyperrectangles. We then illustrate how such an
approach could be used to estimate linear models in the presence of outliers or in the
presence of misspecified model.

1 Introduction

This paper deals with the problem of fusing multiple pieces of information (Dubois
et al. (2016)). In this problem, handling conflict between contradicting sources of
information is one of the most difficult tasks. This is often a mandatory task, including
in situations where we want a synthetic estimation from all the sources. Moreover,
analyzing the reasons of the contradiction and trying to explain its appearance can be
of equal importance, as it can give important insights about the situation.

Dubois et al. (1999) reviewed different methods for aggregating conflict, some
requiring additional data like the reliability of the different sources. Yet, having
additional data is sometimes difficult or even impossible. A quite appealing way for
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dealing with contradiction, requiring no additional information, is based on maximal
coherent subsets (MCS), which are groups of consistent sources that are as big as
possible. MCS have been used in the past both in logic (Manor and Rescher (1970))
and in numerical settings (Destercke et al. (2008)). Here, we illustrate their application
to estimation problems.

Detecting and enumerating MCS are NP-hard problems, with intervals being a
well-known exception (Dubois et al. (2000)). In this paper, we show that we can
extend this exception to hyperrectangles, which can in turn be used as approximations
of polytopes.

In Section 2 we further introducemaximal coherent subset and explain the difficulty
of enumerating them. We then show in Section 3 that it is easy to list the MCSs of
a set of axis-aligned hyperrectangles. Lastly, Section 4 illustrates our approach on
linear regression problems.

2 Maximal Coherent Subsets

As mentioned previously, maximal coherent subsets are in theory a nice solution
to manage conflict between information sources. Moreover, they can be used with
different structures of information, like polytopes. However, we will show that listing
the different MCSs is usually a difficult combinatorial problem.

General definition: Let us suppose we have a set S = {S1, ..., SN } of sources of
information providing a subset Si ⊆ X of some space X of information, for which
intersection ∩ is well-defined. A maximal coherent subset c ⊆ {1, . . . , N} is a list
of source indices such that ∩i∈cSi , ∅, and for any j < c, ∩i∈cSi ∩ Sj = ∅, i.e., the
subset c of sources is consistent and is maximal with this property.

Example 1 Let us suppose we have a set of sources S = {S1, ..., S4} as shown on
Fig. 1. As we can see, {1, 2} is a coherent subset, but not a maximal coherent subset,
as it is possible to add S3 and have a non-empty intersection. {1, 2, 3} is a maximal
coherent subset, as S4 is contradicting S3 (empty intersection).

0 1

S4 S3

S2

S1

Fig. 1 Visualization of not fully consistent sources Si ∈ [0, ..., 1].

MCSs of polytopes: When considering sources of information in the d-
dimensional Euclidean space Rd, polytopes are a quite versatile tool to model
set-valued information. Such shapes can either be defined through their vertices or
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extreme points (V-representation) or through a system of linear constraints defining
intersections of half-planes (H-representation).

While finding whether two polytopes given by their V-representation intersect
is a NP-hard problem (Tiwary (2008)), the same problem can be solved easily in
H-representation through linear programming. Switching between representations is
a NP-complete problem 1, with some efficient algorithms for specific H-polytopes
(Khachiyan et al. (2009)).

Finding a single MCS in H-representation is thus easy: we add polytopes one by
one, and we have a MCS when it is not possible to add another polytope without
having an empty intersection. Checking if a set is a MCS is also easy: we check
that the intersection of the corresponding H-polytopes is not empty and maximal.
However, listing all the MCSs of a set of polytopes P = {P1, ..., PN } requires in
the worst case to consider all the subsets of P, thus at most 2N sets for which we
need to check if the intersection is not empty. When the number of polytopes is
important, it becomes impossible to list all the MCSs. In Section 3, we propose an
efficient algorithm to list all the MCSs through an approximation of the polytopes
with minimum bounding axis-aligned hyperrectangles.

3 Enumerating the MCSs of axis-aligned hyperrectangles

Enumerating all the MCS of a set of polytopes is a difficult problem in the general
case. However, polynomial algorithms (Dubois et al. (2000)) exist in the case of
intervals. We will show in this section that such results can also be used in the case
where we consider a set H of axis-aligned hyperrectangles, in order to efficiently
determine the set of MCS CH .

We denote by IdHi
∈ R the projection of Hi onto the dth dimension of the space

RD . We have an important equivalence between the intersection of hyperrectangles
and the intersection of their projections:

Proposition 1 Given a setH = {H1, ...,HN } of axis-aligned hyperrectangles in the
space RD , and their projections IdHi

∈ R onto the different dimensions d ∈ {1, ...,D},
we have: ⋂

Hi ∈H

Hi , ∅ ⇐⇒
⋂
H

IdHi
, ∅ ∀d ∈ {1, ...,D}. (1)

Proof To see the equivalence, it is sufficient to observe that×D
d=1∩

N
i=1IdHi

=
⋂

Hi ∈H
Hi .

This means in particular that any point x ∈ RD such that its projection xd ∈ ∩N
i=1IdHi

for all d ∈ {1, . . . ,D} will also be in
⋂

Hi ∈H
Hi . Note that this is only true for

axis-aligned hyperrectangles. �

The following corollary, which is merely the negation of Proposition 1, will be useful
in further demonstrations.

1 Otherwise the two problems would have the same complexity.
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Corollary 1 ⋂
H

Hi = ∅ ⇐⇒ ∃d ∈ {1, ...,D} s.t.
⋂
H

IdHi
= ∅. (2)

In the next proof, we show that the MCS of axis-aligned hyperrectangles can be
found exactly by combining the MCS of their projections, which we recall can be
found in polynomial time.

Proposition 2 Given a setH = {H1, ...,HN } of axis-aligned hyperrectangles in the
space RD , its set of MCSs CH and the sets of MCSs Cd on their projection on the
d-dimension, we have:

CH =
{
∩Dd=1cd | cd ∈ Cd ∀d ∈ {1, ...,D},∩Dd=1cd , ∅

}
. (3)

Proof We proceed by showing a double inclusion for a given MCS ch ∈ CH :

• Let us first show that there exists ci ∈
{
∩D
d=1cd | cd ∈ Cd

}
s.t. ch ⊆ ci ,i.e. ci is an

outer approximation of ch . Because ∩i∈ch Hi , ∅ (it being a MCS), Proposition 1
tells us that for any dimension d, ∩i∈ch IdHi

, ∅, meaning that there will be a MCS
cd ∈ Cd such that ch ⊆ cd. Since this is true for all d ∈ {1, . . . ,D}, this means
that ch ⊆ ∩Dd=1cd for some collection of cd , showing the inclusion.

• To show the other inclusion, we consider a set cd, d ∈ {1, . . . ,D} of MCSs on
dimension d which outer-approximate ch ⊆ cd, that we know exists from the
first part of the proof. We will then demonstrate that j < ch implies j < ∩D

d=1cd,
therefore ∩D

d=1cd ⊆ ch. To see this, simply consider the set of hyperrectangles
Hk, k ∈ ch ∪ { j}, then by Corollary 1, there will be a dimension d such that
∩k∈ch∪{ j } I

d
Hk
= ∅, yet ∩k∈ch IdHk

, ∅ (ch being a MCS). This shows that j < ch
implies j < ∩D

d=1cd .

Proposition 2 provides us with an easy approach to get MCS: we start by projecting
the hyperrectangles onto the different dimensions, in order to obtain intervals. Then
we enumerate the MCS on each dimension, which is polynomial. Lastly we determine
CH as the set of common sources among all the enumerations, i.e., the conjunctive
combination (i.e., intersection) of the different sources such that for each element ch
of CH . By Proposition 2 and Equation (3), this gives us exactly the set of MCS.

4 Illustration on linear estimation

In this section, we illustrate our method on small imprecise linear regression problems
with only two dimensions. Note that the purpose of this section is purely illustrative,
so as to show the potential usefulness of our result when performing estimation from
a logical, set-theoretic standpoint.

Given a data set {yi, xi}Ni=1 with a single input and a single output, a linear model
assumes that the relationship between the response variable yi and the input variable
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xi is linear:
yi = β0 + β1xi (4)

Usually, the yi are considered to be observed with a (normal) noise ε , and a statistical
regression is performed. In our case, we will adopt a more logical, version space
point of view (Mitchell (1982)): we assume that data is set-valued, and will consider
the linear models consistent with it.

4.1 Estimating possible linear models with MCS and rectangles

In our setting, we assume that we observe imprecise data points Ri = ([yi, yi], [xi, xi]).
Given the Cartesian equation of a line L = {(x, y) | ax + by = c} and two imprecise
points Ri and Rj , finding all the lines that intersect both rectangles is formalized as:

Li j =
{
(a, b) |(L ∩ Ri , ∅) ∧ (L ∩ Rj , ∅)

}
(5)

n points can be intersected by a single line if and only if all the corresponding Li j

(
(n
2
)
) in total) have a non-empty intersection, i.e., their indices belong to a single

coherent subset. It is maximal if no other points can be intersected by the same
line. Listing all the MCSs is hard, as mentioned in Subsection 2, but our results tell
us that if we approximate the different Li j with minimum bounding axis-aligned
rectangles, minimal outer approximations of the Li j with axis-aligned rectangles,
then enumerating their MCSs is easily done as shown in Section 3.

Determining the minimum axis-aligned bounding rectangle Hi j = [ai, ai]×[bi, bi]
of Li j , i.e., the minimal volume that is fully enclosing Li j , is equivalent to finding the
minimum and maximum values of the parameters a and b. It can be done quite easily,
as maximizing (respectively minimizing) a is equivalent to minimizing (respectively
maximizing) b.

4.2 Application

We first start with the case where the model is indeed linear, but where one data point
is an outlier (box 2), as pictured on Fig. 2. As we can see, the statistical regression
model, due to the outlier, does not capture the true model. In contrast, Fig. 3 shows
the 5 different MCS (and their intersection) obtained using axis-aligned rectangle
approximations. We can see that the biggest MCS is c3, and it includes the true
parameters, while the other MCSs are smaller and point out possible model outliers
(i.e., observation 2 is in all the remaining MCSs, but not in the biggest one). Note
that such an approach is quite different from standard imprecise regressions, that still
uses least-square inspired approaches (Ferraro et al. (2010)).
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Fig. 2 Example of an imprecise linear regression problem. The dotted line corresponds to the linear
regression including the outlier. The continuous line corresponds to the ground truth.
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Fig. 3 Approximation with rectangles of the different Li j from the example shown on Fig. 2

The second illustration considers the case where the observations are not faulty
(the model goes through all observations), but where the model assumption is wrong,
as we have a piecewise linear regression as shown on Fig. 4, but not a linear one.
We have two partitions over x: [0, 0.5] and [0.5, 1]. The two ground truths are very
different, and a single statistical linear regression (in dotted blue) over the whole
domain of x fits poorly to the data.

Fig. 5 shows what happens when we consider a MCS approach in this case. Instead
of having one large MCS and quite smaller ones, we have now two quite large MCSs
c1 and c2, along with other isolated ones. Those two distinct MCSs indicates that the
error is likely in the model, that may only be locally valid. It also shows that it is not
clear whether observation 3 belongs to one line or the other, being in both MCS. This
ambiguity also cause c1 to not include the true parameter (a∗2, b

∗
2).
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Fig. 4 Example of an imprecise piecewise linear regression problem. The dotted line corresponds
to the full linear regression. The continuous lines correspond to the piecewise ground truths.
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Fig. 5 Approximation with rectangles of the different Li j from the example shown on Fig. 4

5 Conclusion

MCS is a theoretically very interesting notion for handling conflicting observations
or pieces of information, but hard to enumerate in practice. We showed that such
an enumeration was easier with hyperrectangles, as we can use known polynomial
algorithms on their interval-valued projection to perform it. We illustrated their
possible use on estimation problems, showing that their different behaviors could
provide useful information (erroneous observations vs erroneous models).

In the future, we plan to perform some comparisons of such estimation approaches
with Bayesian approaches in case of model misspecification, similarly to previous
works intending to solve inverse problems (Shinde et al. (2021)). Another case where
our results may be useful is in the repair of inconsistent preference information (Adam
and Destercke (2021)).



8 Loïc Adam and Sébastien Destercke

Acknowledgements

This work was done within the PreServe Project, funded by grant ANR-18-CE23-0008
of the national research agency (ANR).

References

Adam L, Destercke S (2021) Possibilistic preference elicitation by minimax regret.
In: Uncertainty in Artificial Intelligence, PMLR, pp 718–727

Destercke S, Dubois D, Chojnacki E (2008) Possibilistic information fusion using
maximal coherent subsets. IEEE Transactions on Fuzzy Systems 17(1):79–92

Dubois D, Prade H, Yager R (1999) Merging fuzzy information. In: Fuzzy sets in
approximate reasoning and information systems, Springer, pp 335–401

Dubois D, Fargier H, Prade H (2000) Multiple-sources informations fusion-a pratical
inconsistency-tolerant approach. In: 8th International Conference on Information
Processing and Management of Uncertainty in Knowledge-based Systems (IPMU
2000), Consejo Superior de Investigaciones Científicas

Dubois D, Liu W, Ma J, Prade H (2016) The basic principles of uncertain information
fusion. an organised review of merging rules in different representation frameworks.
Information Fusion 32:12–39

Ferraro MB, Coppi R, Rodríguez GG, Colubi A (2010) A linear regression model for
imprecise response. International Journal of Approximate Reasoning 51(7):759–
770

Khachiyan L, Boros E, Borys K, Gurvich V, Elbassioni K (2009) Generating all
vertices of a polyhedron is hard. In: Twentieth Anniversary Volume:, Springer, pp
1–17

Manor R, Rescher N (1970) On inference from inconsistent premises. Theory and
Decision 1:179–219

Mitchell TM (1982) Generalization as search. Artificial intelligence 18(2):203–226
Shinde K, Feissel P, Destercke S (2021) Dealing with inconsistent measurements
in inverse problems: set-based approach. International Journal for Uncertainty
Quantification 11(3)

Tiwary HR (2008) On the hardness of computing intersection, union and minkowski
sum of polytopes. Discrete & Computational Geometry 40(3):469–479


