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Semi-unbalanced regularized optimal transport for image restoration

We consider in this paper the use of a penalty based on the theory of optimal transport (OT) in order to regularize inverse problems in imaging. The proposed approach is formulated in a variational setting and aims at promoting images whose patch distribution is close either to the one learned by a generative model, or to available uncorrupted reference patches. With the aid of numerical illustrations, we argue in favor of adopting an asymmetric form of unbalanced OT. We then provide details concerning the computation and the differentiation of the proposed penalty. Finally, we detail the application of our approach to a particular super-resolution setting.

I. INTRODUCTION

Restoration problems are still today an important research topic in image processing and cover a wide range of applications. They correspond to the estimation of a target image x ⋆ from an observation y degraded by a non-invertible or illconditioned linear operator A and an additive noise. These problems have traditionally been addressed in a variational framework where an estimate of x ⋆ is obtained by minimizing a cost function composed of a penalty, favoring structural properties (e.g. sparsity or patch redundancy), and a data fidelity term.

Significant advances in deep learning have given rise to approaches where image restoration is addressed as a discriminative learning problem, i.e., where the mapping from y to x ⋆ is learned end-to-end [START_REF] Lucas | Using deep neural networks for inverse problems in imaging: beyond analytical methods[END_REF], [START_REF] Monga | Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing[END_REF]. The empirical performance of these methods is good, but their lack of interpretability, as well as the need to re-train the network as soon as the degradation model changes, represent important limitations. It is also worth noting that recent works [START_REF] Gottschling | The troublesome kernel: why deep learning for inverse problems is typically unstable[END_REF] have highlighted the instability of this type of approaches, especially when the forward operator A is not used explicitly by the neural network.

Recently, variational approaches that use a deep neural network to define the regularizer [START_REF] Bora | Compressed sensing using generative models[END_REF]- [START_REF] Prost | Learning local regularization for variational image restoration[END_REF] have emerged, thus decoupling the learning phase from the degradation model. The regularizer can be defined explicitly or implicitly, the latter corresponding to the family of so-called plug-and-play methods [START_REF] Venkatakrishnan | Plug-and-play priors for model based reconstruction[END_REF].

When reference images or patches are available, recent works [START_REF] Gheche | Texture reconstruction guided by a high-resolution patch[END_REF], [START_REF] Hertrich | Wasserstein patch prior for image superresolution[END_REF] have proposed to use the Wasserstein distance between the empirical distribution of the features of the reference and those of the sought image as a regularizer. The authors of [START_REF] Gheche | Texture reconstruction guided by a high-resolution patch[END_REF] used one-dimensional features in order to leverage the corresponding closed-form solution of OT, while OT in the patch-space is considered in [START_REF] Hertrich | Wasserstein patch prior for image superresolution[END_REF]. The idea of using the Wasserstein distance in order to statistically constrain the features of the solution was originally proposed for texture synthesis in [START_REF] Tartavel | Wasserstein loss for image synthesis and restoration[END_REF]- [START_REF] Houdard | A generative model for texture synthesis based on optimal transport between feature distributions[END_REF]. For the particular superresolution problem with the presence of a reference image, that is, an image whose patch distribution is similar to that of the sought image, the aforementioned work [START_REF] Hertrich | Wasserstein patch prior for image superresolution[END_REF] produces stateof-the-art results, improving upon variational methods that use learned deep regularizers.

The approach we adopt in this article lies in the framework of variational methods that use a generative model or uncorrupted reference examples to define the regularization term. In order to guarantee the independence of the proposed approach with respect to (wrt) the dimension of the images, the modeling is done at the patch scale. The objective is to design a penalty that favors images whose patches are consistent with a learned generative model or with a set of non-corrupted patches available at the time of the restoration.

To do so, we propose to take advantage of recent advances in numerical OT [START_REF] Charlier | Kernel operations on the GPU, with autodiff, without memory overflows[END_REF]- [START_REF] Séjourné | Sinkhorn divergences for unbalanced optimal transport[END_REF] and propose a penalty based on the cost of an OT between the empirical patch distribution of the restored image and that of a generative model or a reference image available at the time of restoration. It consists in finding the optimal match between the two patch distributions by minimizing the cost of transporting the mass of each patch from one distribution to the other, given a chosen cost c. Thus, unlike classical regularization approaches, our formulation explicitly controls the deviation from the prior statistical model. With the help of numerical illustrations, we show the necessity to adopt a non-symmetric form of imbalance, subsequently called semi-unbalanced OT. We give details to calculate and differentiate this formulation. Finally, we show how the increased robustness gained with our formulation translates into improved performance for the super-resolution problem considered in [START_REF] Hertrich | Wasserstein patch prior for image superresolution[END_REF].

II. A PENALTY BASED ON SEMI-UNBALANCED OPTIMAL TRANSPORT

In this section we adopt the notations and definitions of [START_REF] Feydy | Interpolating between optimal transport and MMD using Sinkhorn divergences[END_REF], [START_REF] Peyré | Computational optimal transport: With applications to data science[END_REF]. For N ∈ N, let N = {1, . . . , N }. We consider discrete probability measures with support in R n . Let α = N i=1 a i δ xi and β = M j=1 b j δ yj denote two such measures, with x i , y j ∈ R n . Let a = (a i ) i∈ N ∈ Σ N and b = (b j ) j∈ M ∈ Σ M denote the associated probability vectors, Σ p denoting the probability simplex in R p . Subsequently, the distributions α and β will respectively correspond the discrete uniform distribution of patches extracted from the sought image and from the reference image (or the generative model). The product measure of α and β will be denoted α⊗β. We consider the matrix

C ∈ R N ×M such that c i,j = c(x i , y j ) = ∥x i -y j ∥ 2 2 . For any matrix π ∈ R N ×M let π 1 = π1 M and π 2 = π T 1 N .
Let ι E be the function which is 0 on E and +∞ on E c , and let ι v = ι {v} if the set contains only one element.

Definition 1 (Optimal transport): The OT between two discrete probability measures α and β is defined by

OT(α, β) = min π∈R N ×M + ⟨C, π⟩ + ι α (π 1 ) + ι β (π 2 ). (1) 
Finding π in ( 1) is a constrained linear programming problem. The authors of [START_REF] Feydy | Interpolating between optimal transport and MMD using Sinkhorn divergences[END_REF], [START_REF] Peyré | Computational optimal transport: With applications to data science[END_REF] proposed to make the problem strictly convex by regularizing it by the KL divergence as in Definition 2.

Definition 2 (Regularized optimal transport [START_REF] Feydy | Interpolating between optimal transport and MMD using Sinkhorn divergences[END_REF], [START_REF] Peyré | Computational optimal transport: With applications to data science[END_REF]): Let ε > 0 be fixed. The regularized OT between two discrete probability measures α and β is defined by

OT ε (α, β) = min π∈R N ×M + ⟨C, π⟩ + ε KL(π|α ⊗ β) + ι α (π 1 ) + ι β (π 2 ), (2) 
where

KL(α|β) = a, log a b is the Kullback-Leibler divergence.
Problem ( 2) is associated with a dual concave maximization problem that can be solved by a block coordinate ascent, leading to an algorithm equivalent to that of Sinkhorn in logarithmic variables [START_REF] Feydy | Interpolating between optimal transport and MMD using Sinkhorn divergences[END_REF], [START_REF] Peyré | Computational optimal transport: With applications to data science[END_REF]Prop. 4.4]. The gradients of OT ε (α, β) wrt a, b, (x i ) i∈ N and (y j ) j∈ M can be obtained by the envelop theorem [19, p. 124].

As explained in [START_REF] Feydy | Interpolating between optimal transport and MMD using Sinkhorn divergences[END_REF], the entropy-regularized balanced OT is biased. Rigollet and Weed [START_REF] Rigollet | Entropic optimal transport is maximumlikelihood deconvolution[END_REF] show that the OT ε -projection of an empirical measure on a class of measures satisfying a so-called closure under dominance hypothesis, corresponds to a maximum likelihood estimator in a Gaussian deconvolution model whose standard deviation is precisely ε. Nevertheless, for small values of ε, OT ε allows to compare distributions and is computable and differentiable with the Sinkhorn algorithm. These arguments make it a good candidate to define a penalty in variational image restoration methods.

Let us consider the case where we have a generative model of patches, represented by a probability measure β. This model can either be learned upstream on a set of non-degraded patches [START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF], or simply correspond to the empirical measure of a set of reference patches, similar to those we wish to restore. A variational approach for recovering x ⋆ from y can be formulated as the following problem:

min x λ 2 ∥Ax -y∥ 2 + E βM ∼β [OT ε (α x , βM )], (3) 
where

α x = 1 N N n=1
δ Pix is the empirical distribution of the patches (P i x) i∈ N extracted from x, βM is the empirical distribution associated with a random sample of M patches according to β, and λ, ε > 0.

Let us illustrate the solution of this problem with a denoising example, i.e., with A the identity operator, on an isotropic 100 × 100 Gaussian texture [START_REF] Galerne | Random phase textures: Theory and synthesis[END_REF], the patches of which are distributed according to some Gaussian distribution N 1 . To account for the possible mismatch between the generative model β and the patch distribution of the clean image, we choose β as the mixture density 0.8 N 1 + 0.2 N 2 , with N 2 a Gaussian distribution that generates patches with a horizontal edge. Problem (3) is minimized by stochastic gradient descent in which a sample βM from β of size M = 24000 is drawn at each iteration. We obtain the result labeled as OT ε in Figure 1. We notice the creation of artifacts due to outlier patches coming from N 2 , caused by the strong constraint ι βM (π 2 ). In order to deal with this issue, we introduce a semi-unbalanced formulation for OT which is less sensitive to outliers present in the model distribution β.

Definition 3 (Regularized semi-unbalanced OT): Let ε > 0 and ρ > 0 be fixed. We define the regularized semi-unbalanced OT between the measures α and β by

OT ε,ρ (α, β) = min π∈R N ×M + ⟨C, π⟩ + εKL(π|α ⊗ β) + ι α (π 1 ) + ρKL(π 2 |β). (4) 
This new transport is inspired by the unbalanced version of Chizat et al. [START_REF] Chizat | Scaling algorithms for unbalanced optimal transport problems[END_REF] and Séjourné et al. [START_REF] Séjourné | Sinkhorn divergences for unbalanced optimal transport[END_REF], denoted OT ε,ρ,ρ in the sequel, where the two constraints ι α (π 1 ) and ι β (π 2 ) are respectively replaced by ρ KL(π 1 |α) and ρ KL(π 2 |β). Note that both OT ε,ρ and OT ε,ρ,ρ converge to the balanced regularized transport OT ε as ρ → ∞.

In Figure 1 we compare the denoising results obtained when replacing OT ε by OT ε,ρ,ρ , resp. OT ε,ρ , in Problem (3). While, as expected, the relaxation KL(π 2 | βM ) of ι βM (π 2 ) leads to decrease the sensitivity of the result wrt the outlier patches sampled from N 2 , the relaxation KL(π 1 |α x ) of ι αx (π 1 ) produces an image where some areas are not restored. In comparison, outlier patches do not affect our proposed semi-unbalanced OT result and the denoising is spatially homogeneous, resulting in the best PSNR. To summarize, the semi-unbalanced formulation of OT proposed in ( 4) is a robust version of OT ε , which allows the data distribution to only match a part of the reference distribution, the proportion of matching data being tuned by ρ. It is particularly appropriate for image restoration with reference distribution, since, in this setting, the proportion of patches in the reference and in the ground-truth are expected to differ.

We detail below how a dual formulation allows us to compute the functional OT ε,ρ (α, β) and its gradient [START_REF] Feydy | Interpolating between optimal transport and MMD using Sinkhorn divergences[END_REF], [START_REF] Séjourné | Sinkhorn divergences for unbalanced optimal transport[END_REF], a key practical point to solve (3) numerically. 

OT ε,ρ (α, β) = max (f,g)∈R N ×R M ⟨a, f ⟩ -⟨b, Φ * (-g)⟩ -ε a ⊗ b, exp f ⊕ g -C ε -1 (5) 
with Φ * (q) = ρ(exp( q ρ ) -1), applied to each component. Problem ( 5) is a concave maximization problem which can be solved by alternate maximization wrt f and g, as specified by the following theorem.

Theorem 1 (Sinkhorn's algorithm [START_REF] Séjourné | Sinkhorn divergences for unbalanced optimal transport[END_REF]): Starting from any f 0 ∈ R N , the following algorithm converges to a solution of Problem ( 5):

g t+1 j = -ε 1+ ε ρ log N i=1 a i exp f t i -ci,j ε , j ∈ M , f t+1 i = -ε log M j=1 b j exp g t+1 j -ci,j ε , i ∈ N .
This sequence of vectors (f t , g t ) satisfies

F (f t , g t ) = ⟨a, f t ⟩ -⟨b, Φ * (-g t )⟩ (6) 
where F (f, g) is the function to maximise in Problem [START_REF] González | Solving inverse problems by joint posterior maximization with autoencoding prior[END_REF].

Alternatively, the solution vectors f and g can be computed by iterating a symmetric fixed-point method [START_REF] Feydy | Geometric data analysis, beyond convolutions[END_REF]: starting from any ( f 0 , g0 ) ∈ R N × R M , the following algorithm also converges to a solution of (5):

gt+1 j = 1 2 gt j -ε 1+ ε ρ log N i=1 a i exp f t i -ci,j ε , f t+1 i = 1 2 f t i -ε log M j=1 b j exp gt j -ci,j ε , with (i, j) ∈ N × M .
In our experiments, we use the latter symmetric scheme with an additional last non-symmetric iteration in order to guarantee Eq. ( 6) and ( 7) below. We use the initializations (f 0 , g 0 ) = (0 N , 0 M ) and a scaling of the regularisation ε as in [19, p.120].

In order to use gradient-based optimization, one should be able to differentiate OT ε,ρ (α, β) wrt the (discrete) support of α, that is, wrt the coordinates x i . This is possible by assuming that the convergence of Sinkhorn's algorithm is reached [START_REF] Feydy | Interpolating between optimal transport and MMD using Sinkhorn divergences[END_REF]: if (f ⋆ , g ⋆ ) is a solution of Problem (5), then where φ : R n → R has the expression

∂ xi OT ε,ρ N i=1 a i δ xi , β = a i ∇φ(x i ) (7) 
φ(x) = -ε log M j=1 b j exp g ⋆ j -c(x,yj ) ε . (8) 

III. SUPER-RESOLUTION WITH A REFERENCE IMAGE

In [START_REF] Hertrich | Wasserstein patch prior for image superresolution[END_REF], super-resolution with a reference image is described as the restoration of an image x ⋆ given its low resolution (LR) version y LR and a reference image x ref , the patch distribution of which is assumed to be similar to the one of the ground-truth x ⋆ . This setting is relevant when working on specific classes of images, e.g. textures or material images. The forward model y LR = SHx ⋆ +η, where H is a convolution operator, S a dowsampling operator, and η an additive Gaussian noise, is assumed to be known. The authors of [START_REF] Hertrich | Wasserstein patch prior for image superresolution[END_REF] estimate the ground truth HR image x ⋆ by solving the minimization problem

min x λ 2 ∥SHx -y LR ∥ 2 + 1 2 L ℓ=0 OT 0 (α x ℓ , β x ref ℓ ), (9) 
where OT 0 refers to non-regularized OT,

α x ℓ = 1 N ℓ N ℓ i=1 δ Pix ℓ and β x ref ℓ = 1 M ℓ M ℓ
j=1 δ Pj x ℓ ref are respectively the empirical distributions associated with the patches of x ℓ = A ℓ x and x ℓ ref = A ℓ x ref , A being a convolution with a 4 × 4 Gaussian blur kernel with a standard deviation of 1 followed by a ×2 downsampling. Thus, the regularization term in Problem [START_REF] Gheche | Texture reconstruction guided by a high-resolution patch[END_REF], coined Wasserstein Patch Prior (WPP) [START_REF] Hertrich | Wasserstein patch prior for image superresolution[END_REF], favors images x whose patch distributions at different scales ℓ = 0, . . . , L are close to those of the reference image x ref .

We chose L = 1.

LR input

Reference HR input

Original HR WPP [START_REF] Hertrich | Wasserstein patch prior for image superresolution[END_REF] OTε (Ours) OTε,ρ In practice, to compensate for the differences between α x and β x ref , the authors of [START_REF] Hertrich | Wasserstein patch prior for image superresolution[END_REF] propose to apply the regularization term of Problem ( 9) to a padded version Px of x, while the fidelity term is applied directly to x. This enables to alleviate the rigidity of OT by allowing outlier patches of x ref to be aggregated into the artificial bounds of Px.

We propose to solve the same problem by replacing OT 0 (Px) by OT ε,ρ (x), that is, we apply our robust semiunbalanced formulation of OT directly to x, instead of artificially padding x and then using balanced OT. We numerically solve our minimization problem by gradient descent with the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] with lr = 0.01.

We consider for our experiments images from the MVTec image database [START_REF] Bergmann | MVTec AD -a comprehensive real-world dataset for unsupervised anomaly detection[END_REF], [START_REF] Bergmann | The MVTec anomaly detection dataset: A comprehensive real-world dataset for unsupervised anomaly detection[END_REF] tranformed to grayscale and resized to 256×256 size. This is a dataset that includes a training set of defect-free images and a test set of images with different types of defects. We selected 18 HR images from the MVTec image database. Following Hertrich et al. [START_REF] Hertrich | Wasserstein patch prior for image superresolution[END_REF], for each HR image, we simulated its corresponding LR version by convolving it with a 16 × 16 Gaussian kernel with a standard deviation of 2, then we applied a subsampling ×4 and added a Gaussian noise η ∼ N (0, 0.01 2 ). For each of the LR images, we chose two reference HR images: one with defects and one without. We created two datasets, the first contains 18 pairs of LR images and reference images without defects, while the reference images in the second dataset all have some defects. We restored each of the LR images in both datasets using their associated reference images with ε = 4 × 10 -4 , λ = 0.006, ρ = 0.01, patch size = 6. All patches are extracted from the image to be restored and 10000 patches are randomly drawn from the reference image. We calculated 6 pixels away from the edges the average PSNR and the average LPIPS [START_REF] Zhang | The unreasonable effectiveness of deep features as a perceptual metric[END_REF] per dataset and grouped them in Table I. We show in Figure 2 some of the results from Table I. For each image in Figure 2, the first (resp. second) row restores the LR image with a reference HR image without defects (resp. with defects). The results in Figure 2 and Table I confirm that the increased robustness obtained by replacing OT 0 (Px) with OT ε,ρ (x) leads to better PSNR and LPIPS scores, especially when the reference image is not ideally close to the original image.

IV. CONCLUSION

We have presented a new methodological framework for image restoration, based on an asymmetrically unbalanced notion of OT. Through two sets of experiments, we have shown that semi-unbalanced regularized transport is a robust alternative to the usual balanced and unbalanced formulations for patch-based image restoration. While we have evaluated our method on a variational SR problem with a reference image, future work will focus on other image restoration problems that can take advantage of our semi-unbalanced OT penalty.

Fig. 1 .

 1 Fig. 1. Denoising of a 100 × 100 Gaussian texture with an imperfect patch model. From left to right: original image, noisy input, samples from the corrupted generative model, restoration by OTε, OTε,ρ,ρ and OTε,ρ (λ = 0.0192, ε = 2 × 10 -4 , ρ = 0.1, patch size = 8, stride = 2). The generative model simulates patches suitable for image restoration in 80% of cases, and patches with an horizontal edge unsuitable for restoration in 20% of the cases.

Fig. 2 .

 2 Fig. 2. Application to super-resolution with a reference image. From left to right: LR input, reference HR input, original HR image, restoration by WPP [10], OTε and OTε,ρ.

TABLE I AVERAGE

 I PSNR AND LPIPS OBTAINED ON TWO DATASETS OF 18 IMAGE PAIRS FROM THE MVTEC IMAGE DATABASE [24], [25]. REFERENCE IMAGES FROM THE FIRST DATASET ARE DEFECT FREE WHILE THOSE IN THE SECOND DATASET CONTAIN DEFECTS LIKE IN FIGURE 2. FROM TOP TO BOTTOM: RESTORATION BY WPP [10], OTε, OTε,ρ.

		Defect-free	With defects
		PSNR ↑	LPIPS ↓ PSNR ↑ LPIPS ↓
	WPP [10]	30.08	0.095	30.13	0.099
	OTε	30.12	0.086	29.38	0.113
	OTε,ρ (Ours)	30.54	0.091	30.93	0.092
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