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Abstract—We consider in this paper the use of a penalty
based on the theory of optimal transport (OT) in order to
regularize inverse problems in imaging. The proposed approach is
formulated in a variational setting and aims at promoting images
whose patch distribution is close either to the one learned by a
generative model, or to available uncorrupted reference patches.
With the aid of numerical illustrations, we argue in favor of
adopting an asymmetric form of unbalanced OT. We then provide
details concerning the computation and the differentiation of
the proposed penalty. Finally, we detail the application of our
approach to a particular super-resolution setting.

I. INTRODUCTION

Restoration problems are still today an important research
topic in image processing and cover a wide range of appli-
cations. They correspond to the estimation of a target image
x⋆ from an observation y degraded by a non-invertible or ill-
conditioned linear operator A and an additive noise. These
problems have traditionally been addressed in a variational
framework where an estimate of x⋆ is obtained by minimizing
a cost function composed of a penalty, favoring structural
properties (e.g. sparsity or patch redundancy), and a data
fidelity term.

Significant advances in deep learning have given rise to
approaches where image restoration is addressed as a discrim-
inative learning problem, i.e., where the mapping from y to x⋆

is learned end-to-end [1], [2]. The empirical performance of
these methods is good, but their lack of interpretability, as well
as the need to re-train the network as soon as the degradation
model changes, represent important limitations. It is also worth
noting that recent works [3] have highlighted the instability of
this type of approaches, especially when the forward operator
A is not used explicitly by the neural network.

Recently, variational approaches that use a deep neural
network to define the regularizer [4]–[7] have emerged, thus
decoupling the learning phase from the degradation model.
The regularizer can be defined explicitly or implicitly, the
latter corresponding to the family of so-called plug-and-play
methods [8].

When reference images or patches are available, recent
works [9], [10] have proposed to use the Wasserstein distance
between the empirical distribution of the features of the
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reference and those of the sought image as a regularizer.
The authors of [9] used one-dimensional features in order
to leverage the corresponding closed-form solution of OT,
while OT in the patch-space is considered in [10]. The idea
of using the Wasserstein distance in order to statistically
constrain the features of the solution was originally proposed
for texture synthesis in [11]–[14]. For the particular super-
resolution problem with the presence of a reference image, that
is, an image whose patch distribution is similar to that of the
sought image, the aforementioned work [10] produces state-
of-the-art results, improving upon variational methods that use
learned deep regularizers.

The approach we adopt in this article lies in the frame-
work of variational methods that use a generative model or
uncorrupted reference examples to define the regularization
term. In order to guarantee the independence of the proposed
approach with respect to (wrt) the dimension of the images, the
modeling is done at the patch scale. The objective is to design
a penalty that favors images whose patches are consistent with
a learned generative model or with a set of non-corrupted
patches available at the time of the restoration.

To do so, we propose to take advantage of recent advances
in numerical OT [15]–[18] and propose a penalty based on
the cost of an OT between the empirical patch distribution
of the restored image and that of a generative model or
a reference image available at the time of restoration. It
consists in finding the optimal match between the two patch
distributions by minimizing the cost of transporting the mass
of each patch from one distribution to the other, given a chosen
cost c. Thus, unlike classical regularization approaches, our
formulation explicitly controls the deviation from the prior
statistical model.

With the help of numerical illustrations, we show the neces-
sity to adopt a non-symmetric form of imbalance, subsequently
called semi-unbalanced OT. We give details to calculate
and differentiate this formulation. Finally, we show how the
increased robustness gained with our formulation translates
into improved performance for the super-resolution problem
considered in [10].

II. A PENALTY BASED ON SEMI-UNBALANCED OPTIMAL
TRANSPORT

In this section we adopt the notations and definitions of [16],
[17]. For N ∈ N, let JNK = {1, . . . , N}. We consider discrete



probability measures with support in Rn. Let α =
∑N

i=1 aiδxi

and β =
∑M

j=1 bjδyj denote two such measures, with xi, yj ∈
Rn. Let a = (ai)i∈JNK ∈ ΣN and b = (bj)j∈JMK ∈ ΣM

denote the associated probability vectors, Σp denoting the
probability simplex in Rp. Subsequently, the distributions
α and β will respectively correspond the discrete uniform
distribution of patches extracted from the sought image and
from the reference image (or the generative model). The
product measure of α and β will be denoted α⊗β. We consider
the matrix C ∈ RN×M such that ci,j = c(xi, yj) = ∥xi−yj∥22.
For any matrix π ∈ RN×M let π1 = π1M and π2 = πT 1N .
Let ιE be the function which is 0 on E and +∞ on Ec, and
let ιv = ι{v} if the set contains only one element.

Definition 1 (Optimal transport): The OT between two
discrete probability measures α and β is defined by

OT(α, β) = min
π∈RN×M

+

⟨C, π⟩+ ια(π1) + ιβ(π2). (1)

Finding π in (1) is a constrained linear programming prob-
lem. The authors of [16], [17] proposed to make the problem
strictly convex by regularizing it by the KL divergence as in
Definition 2.

Definition 2 (Regularized optimal transport [16], [17]): Let
ε > 0 be fixed. The regularized OT between two discrete
probability measures α and β is defined by

OTε(α, β) = min
π∈RN×M

+

⟨C, π⟩+ εKL(π|α⊗ β)

+ ια(π1) + ιβ(π2),
(2)

where KL(α|β) =
〈
a, log

(a
b

)〉
is the Kullback-Leibler

divergence.
Problem (2) is associated with a dual concave maximization

problem that can be solved by a block coordinate ascent,
leading to an algorithm equivalent to that of Sinkhorn in
logarithmic variables [16], [17, Prop. 4.4]. The gradients of
OTε(α, β) wrt a, b, (xi)i∈JNK and (yj)j∈JMK can be obtained
by the envelop theorem [19, p. 124].

As explained in [16], the entropy-regularized balanced OT is
biased. Rigollet and Weed [20] show that the OTε-projection
of an empirical measure on a class of measures satisfying a
so-called closure under dominance hypothesis, corresponds to
a maximum likelihood estimator in a Gaussian deconvolution
model whose standard deviation is precisely ε. Nevertheless,
for small values of ε, OTε allows to compare distributions and
is computable and differentiable with the Sinkhorn algorithm.
These arguments make it a good candidate to define a penalty
in variational image restoration methods.

Let us consider the case where we have a generative model
of patches, represented by a probability measure β. This model
can either be learned upstream on a set of non-degraded
patches [21], or simply correspond to the empirical measure
of a set of reference patches, similar to those we wish to
restore. A variational approach for recovering x⋆ from y can
be formulated as the following problem:

min
x

λ

2
∥Ax− y∥2 + Eβ̃M∼β [OTε(αx, β̃M )], (3)

where αx = 1
N

∑N
n=1 δPix is the empirical distribution of

the patches (Pix)i∈JNK extracted from x, β̃M is the empirical
distribution associated with a random sample of M patches
according to β, and λ, ε > 0.

Let us illustrate the solution of this problem with a denoising
example, i.e., with A the identity operator, on an isotropic
100 × 100 Gaussian texture [22], the patches of which are
distributed according to some Gaussian distribution N1. To
account for the possible mismatch between the generative
model β and the patch distribution of the clean image, we
choose β as the mixture density 0.8N1 + 0.2N2, with N2 a
Gaussian distribution that generates patches with a horizontal
edge. Problem (3) is minimized by stochastic gradient descent
in which a sample β̃M from β of size M = 24000 is drawn at
each iteration. We obtain the result labeled as OTε in Figure 1.
We notice the creation of artifacts due to outlier patches
coming from N2, caused by the strong constraint ιβ̃M

(π2). In
order to deal with this issue, we introduce a semi-unbalanced
formulation for OT which is less sensitive to outliers present
in the model distribution β.

Definition 3 (Regularized semi-unbalanced OT): Let ε > 0
and ρ > 0 be fixed. We define the regularized semi-unbalanced
OT between the measures α and β by

OTε,ρ(α, β) = min
π∈RN×M

+

⟨C, π⟩+ εKL(π|α⊗ β)

+ ια(π1) + ρKL(π2|β).
(4)

This new transport is inspired by the unbalanced version of
Chizat et al. [23] and Séjourné et al. [18], denoted OTε,ρ,ρ

in the sequel, where the two constraints ια(π1) and ιβ(π2)
are respectively replaced by ρKL(π1|α) and ρKL(π2|β).
Note that both OTε,ρ and OTε,ρ,ρ converge to the balanced
regularized transport OTε as ρ → ∞.

In Figure 1 we compare the denoising results obtained
when replacing OTε by OTε,ρ,ρ, resp. OTε,ρ, in Problem (3).
While, as expected, the relaxation KL(π2|β̃M ) of ιβ̃M

(π2)
leads to decrease the sensitivity of the result wrt the out-
lier patches sampled from N2, the relaxation KL(π1|αx) of
ιαx

(π1) produces an image where some areas are not restored.
In comparison, outlier patches do not affect our proposed
semi-unbalanced OT result and the denoising is spatially
homogeneous, resulting in the best PSNR. To summarize, the
semi-unbalanced formulation of OT proposed in (4) is a robust
version of OTε, which allows the data distribution to only
match a part of the reference distribution, the proportion of
matching data being tuned by ρ. It is particularly appropriate
for image restoration with reference distribution, since, in this
setting, the proportion of patches in the reference and in the
ground-truth are expected to differ.

We detail below how a dual formulation allows us to
compute the functional OTε,ρ(α, β) and its gradient [16], [18],
a key practical point to solve (3) numerically.



original noisy input patch samples OTε OTε,ρ,ρ OTε,ρ
PSNR=24.46 PSNR=23.99 PSNR=25.39

Fig. 1. Denoising of a 100×100 Gaussian texture with an imperfect patch model. From left to right: original image, noisy input, samples from the corrupted
generative model, restoration by OTε, OTε,ρ,ρ and OTε,ρ (λ = 0.0192, ε = 2×10−4, ρ = 0.1, patch size = 8, stride = 2). The generative model simulates
patches suitable for image restoration in 80% of cases, and patches with an horizontal edge unsuitable for restoration in 20% of the cases.

Proposition 1 (Dual formulation): For ε > 0 fixed,

OTε,ρ(α, β) = max
(f,g)∈RN×RM

⟨a, f⟩ − ⟨b,Φ∗(−g)⟩

− ε

〈
a⊗ b, exp

(
f ⊕ g − C

ε

)
− 1

〉 (5)

with Φ∗(q) = ρ(exp( qρ )− 1), applied to each component.
Problem (5) is a concave maximization problem which can

be solved by alternate maximization wrt f and g, as specified
by the following theorem.

Theorem 1 (Sinkhorn’s algorithm [18]): Starting from any
f0 ∈ RN , the following algorithm converges to a solution of
Problem (5):

gt+1
j = − ε

1+ ε
ρ
log

(∑N
i=1 ai exp

(
ft
i−ci,j

ε

))
, j ∈ JMK,

f t+1
i = −ε log

(∑M
j=1 bj exp

(
gt+1
j −ci,j

ε

))
, i ∈ JNK.

This sequence of vectors (f t, gt) satisfies

F (f t, gt) = ⟨a, f t⟩ − ⟨b,Φ∗(−gt)⟩ (6)

where F (f, g) is the function to maximise in Problem (5).
Alternatively, the solution vectors f and g can be computed

by iterating a symmetric fixed-point method [19]: starting
from any (f̃0, g̃0) ∈ RN × RM , the following algorithm also
converges to a solution of (5):

g̃t+1
j = 1

2

(
g̃tj − ε

1+ ε
ρ
log

(∑N
i=1 ai exp

(
f̃t
i−ci,j

ε

)))
,

f̃ t+1
i = 1

2

(
f̃ t
i − ε log

(∑M
j=1 bj exp

(
g̃t
j−ci,j

ε

)))
,

with (i, j) ∈ JNK × JMK.
In our experiments, we use the latter symmetric scheme

with an additional last non-symmetric iteration in order to
guarantee Eq. (6) and (7) below. We use the initializations
(̃f0, g0) = (0N ,0M ) and a scaling of the regularisation ε as
in [19, p.120].

In order to use gradient-based optimization, one should be
able to differentiate OTε,ρ(α, β) wrt the (discrete) support of
α, that is, wrt the coordinates xi. This is possible by assuming
that the convergence of Sinkhorn’s algorithm is reached [16]:
if (f⋆, g⋆) is a solution of Problem (5), then

∂xi
OTε,ρ

(∑N
i=1 aiδxi

, β
)
= ai∇φ(xi) (7)

TABLE I
AVERAGE PSNR AND LPIPS OBTAINED ON TWO DATASETS OF 18 IMAGE

PAIRS FROM THE MVTEC IMAGE DATABASE [24], [25]. REFERENCE
IMAGES FROM THE FIRST DATASET ARE DEFECT FREE WHILE THOSE IN

THE SECOND DATASET CONTAIN DEFECTS LIKE IN FIGURE 2. FROM TOP
TO BOTTOM: RESTORATION BY WPP [10],OTε , OTε,ρ .

Defect-free With defects

PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

WPP [10] 30.08 0.095 30.13 0.099
OTε 30.12 0.086 29.38 0.113
OTε,ρ (Ours) 30.54 0.091 30.93 0.092

where φ : Rn → R has the expression

φ(x) = −ε log
(∑M

j=1 bj exp
(

g⋆
j−c(x,yj)

ε

))
. (8)

III. SUPER-RESOLUTION WITH A REFERENCE IMAGE

In [10], super-resolution with a reference image is described
as the restoration of an image x⋆ given its low resolution
(LR) version yLR and a reference image xref , the patch
distribution of which is assumed to be similar to the one of
the ground-truth x⋆. This setting is relevant when working on
specific classes of images, e.g. textures or material images. The
forward model yLR = SHx⋆+η, where H is a convolution op-
erator, S a dowsampling operator, and η an additive Gaussian
noise, is assumed to be known. The authors of [10] estimate
the ground truth HR image x⋆ by solving the minimization
problem

min
x

λ

2
∥SHx− yLR∥2 + 1

2

L∑
ℓ=0

OT0(αxℓ , βxref
ℓ), (9)

where OT0 refers to non-regularized OT, αxℓ =
1
Nℓ

∑Nℓ

i=1 δPixℓ and βxref
ℓ = 1

Mℓ

∑Mℓ

j=1 δPjxℓ
ref

are respectively
the empirical distributions associated with the patches of
xℓ = Aℓx and xℓ

ref = Aℓxref , A being a convolution with
a 4 × 4 Gaussian blur kernel with a standard deviation of 1
followed by a ×2 downsampling. Thus, the regularization term
in Problem (9), coined Wasserstein Patch Prior (WPP) [10],
favors images x whose patch distributions at different scales
ℓ = 0, . . . , L are close to those of the reference image xref .
We chose L = 1.



LR input Reference HR input Original HR WPP [10] OTε (Ours) OTε,ρ

PSNR=26.57 LPIPS=0.089 PSNR=26.59 LPIPS=0.097 PSNR=26.93 LPIPS=0.107

PSNR=25.49 LPIPS=0.122 PSNR=24.97 LPIPS=0.175 PSNR=26.78 LPIPS=0.097

PSNR=30.49 LPIPS=0.108 PSNR=30.44 LPIPS=0.098 PSNR=30.86 LPIPS=0.098

PSNR=29.54 LPIPS=0.138 PSNR=27.87 LPIPS=0.237 PSNR=30.35 LPIPS=0.116

PSNR=35.73 LPIPS=0.171 PSNR=35.46 LPIPS=0.121 PSNR=36.72 LPIPS=0.138

PSNR=34.68 LPIPS=0.195 PSNR=26.49 LPIPS=0.199 PSNR=36.13 LPIPS=0.115

Fig. 2. Application to super-resolution with a reference image. From left to right: LR input, reference HR input, original HR image, restoration
by WPP [10], OTε and OTε,ρ.

In practice, to compensate for the differences between αx

and βxref
, the authors of [10] propose to apply the regular-

ization term of Problem (9) to a padded version Px of x,
while the fidelity term is applied directly to x. This enables
to alleviate the rigidity of OT by allowing outlier patches of

xref to be aggregated into the artificial bounds of Px.
We propose to solve the same problem by replacing

OT0(Px) by OTε,ρ(x), that is, we apply our robust semi-
unbalanced formulation of OT directly to x, instead of artifi-
cially padding x and then using balanced OT. We numerically



solve our minimization problem by gradient descent with the
Adam optimizer [26] with lr = 0.01.

We consider for our experiments images from the MVTec
image database [24], [25] tranformed to grayscale and resized
to 256×256 size. This is a dataset that includes a training set of
defect-free images and a test set of images with different types
of defects. We selected 18 HR images from the MVTec image
database. Following Hertrich et al. [10], for each HR image,
we simulated its corresponding LR version by convolving it
with a 16 × 16 Gaussian kernel with a standard deviation of
2, then we applied a subsampling ×4 and added a Gaussian
noise η ∼ N (0, 0.012). For each of the LR images, we
chose two reference HR images: one with defects and one
without. We created two datasets, the first contains 18 pairs
of LR images and reference images without defects, while the
reference images in the second dataset all have some defects.
We restored each of the LR images in both datasets using their
associated reference images with ε = 4 × 10−4, λ = 0.006,
ρ = 0.01, patch size = 6. All patches are extracted from the
image to be restored and 10000 patches are randomly drawn
from the reference image. We calculated 6 pixels away from
the edges the average PSNR and the average LPIPS [27] per
dataset and grouped them in Table I. We show in Figure 2
some of the results from Table I. For each image in Figure
2, the first (resp. second) row restores the LR image with a
reference HR image without defects (resp. with defects). The
results in Figure 2 and Table I confirm that the increased
robustness obtained by replacing OT0(Px) with OTε,ρ(x)
leads to better PSNR and LPIPS scores, especially when the
reference image is not ideally close to the original image.

IV. CONCLUSION

We have presented a new methodological framework for
image restoration, based on an asymmetrically unbalanced
notion of OT. Through two sets of experiments, we have
shown that semi-unbalanced regularized transport is a robust
alternative to the usual balanced and unbalanced formulations
for patch-based image restoration. While we have evaluated
our method on a variational SR problem with a reference
image, future work will focus on other image restoration
problems that can take advantage of our semi-unbalanced OT
penalty.
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