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ABSTRACT

We consider in this paper the use of a penalty based on the
theory of optimal transport (OT) in order to regularize inverse
problems in imaging. The proposed approach is formulated
in a variational setting and aims at promoting images whose
patch distribution is close either to the one learned by a gen-
erative model, or to available uncorrupted reference patches.
With the aid of numerical illustrations, we argue in favor of
adopting an asymmetric form of unbalanced OT. We then pro-
vide details concerning the computation and the differentia-
tion of the proposed penalty. Finally, we detail the application
of our approach to a particular super-resolution setting.

1. INTRODUCTION

Restoration problems are still today an important research
topic in image processing and cover a wide range of appli-
cations. They correspond to the estimation of a target image
u from an observation y degraded by a non-invertible or ill-
conditioned linear operator A and an additive noise. These
problems have traditionally been addressed in a variational
framework where an estimate of u is obtained by minimiz-
ing a cost function composed of a penalty, favoring structural
properties (e.g. sparsity or patch redundancy), and a data fi-
delity term.

Significant advances in deep learning have given rise to
approaches where restoration is addressed as a discrimina-
tive learning problem, i.e., where the mapping from y to u
is learned end-to-end [1, 2]. The empirical performance of
these methods is good, but their lack of interpretability, as
well as the need to re-train the network as soon as the degra-
dation model changes, represent important limitations. It is
also worth noting that recent works [3] have highlighted the
instability of this type of approaches, especially when the for-
ward operator A is not used explicitly by the neural network.

Recently, variational approaches that use a deep neural
network to define the regularizer [4, 5, 6, 7] have emerged,
thus decoupling the learning phase from the degradation
model. The regularizer can be defined explicitly or implicitly,
the latter corresponding to the family of so-called plug and

play methods [8].
When reference images or patches are available, recent

works [9, 10] have proposed to use the Wasserstein distance
between the empirical distribution of the features of the ref-
erence and those of the sought image as a regularizer. The
authors of [9] used one-dimensional features in order to lever-
age the corresponding closed-form solution of OT, while OT
in the patch-space is considered in [10]. The idea of us-
ing the Wasserstein distance in order to statistically constrain
the features of the solution has also been adopted for tex-
ture synthesis in [11, 12, 13, 14]. For the particular super-
resolution problem with the presence of a reference image,
that is an image whose patch distribution is similar to that
of the sought image, the aforementioned work [10] produces
state-of-the-art results, improving upon variational methods
that use learned deep regularizers.

1.1. Our Approach

The approach we adopt in this article lies in the framework
of variational methods that use a generative model or uncor-
rupted reference examples to define the regularization term.
In order to guarantee the independence of the proposed ap-
proach with respect to (wrt) the dimension of the images, the
modeling is done at the patch scale. The objective is to de-
sign a penalty that favors images whose patches are consis-
tent with a learned generative model or with a set of non-
corrupted patches available at the time of the restoration. To
do so, we propose to take advantage of recent advances in
numerical OT [15, 16, 17, 18] and propose a penalty based
on the cost of an OT between the empirical patch distribution
of the restored image and that of a generative model avail-
able at the time of restoration. With the help of numerical
illustrations, we show the necessity to adopt a non-symmetric
form of imbalance, subsequently called semi-unbalanced OT.
We give details to calculate and differentiate this formulation.
Finally, we show how the increased robustness gained with
our formulation translates into improved performance for the
super-resolution problem considered in [10].



2. A PENALTY BASED ON UNBALANCED
OPTIMAL TRANSPORT

In this section we adopt the notations and definitions of [16,
17]. For N ∈ N, let JNK = {1, . . . , N}. We consider
discrete probability measures with support in Rn. Let α =∑N

i=1 aiδxi and β =
∑M

j=1 bjδyj
denote two such measures,

with xi, yj ∈ Rn. Let a = (ai)i∈JNK ∈ ΣN and b =
(bj)j∈JMK ∈ ΣM denote the associated probability vectors,
Σp being the probability simplex in Rp. The product measure
of α and β will be denoted α ⊗ β. We consider the matrix
C ∈ RN×M such that ci,j = c(xi, yj) = ∥xi − yj∥22. For
any matrix π ∈ RN×M let π1 = π1M and π2 = πT 1N . Let
ιE be the function which is 0 on E and +∞ on Ec, and let
ιv = ι{v} if the set contains only one element.

Definition 1 (Regularized optimal transport [16, 17]). Let
ε > 0 be fixed. The regularized OT between two discrete
probability measures α and β is defined by

OTε(α, β) = min
π∈RN×M

+

⟨C, π⟩+ εKL(π|α⊗ β)

+ ια(π1) + ιβ(π2),
(1)

where KL(α|β) =
〈
a, log(

a

b
)
〉

is the Kullback-Leibler di-
vergence.

Problem (1) is associated with a dual concave maximiza-
tion problem that can be solved by a block coordinate ascent,
leading to an algorithm equivalent to that of Sinkhorn in log-
arithmic variables [17, Prop. 4.4], [16]. The gradients of
OTε(α, β) wrt a, b, (xi)i∈JNK and (yj)j∈JMK can be obtained
by implicit differentiation [19, p. 124].

As explained in [16], the entropy-regularized balanced OT
is biased. Rigollet et al. [20] show that the OTε-projection of
an empirical measure on a class of measures satisfying a so-
called closure under dominance hypothesis, corresponds to a
maximum likelihood estimator in a Gaussian deconvolution
model whose standard deviation is precisely ε. Nevertheless,
for small values of ε, OTε allows to compare distributions
and is computable and differentiable with the Sinkhorn algo-
rithm. These arguments make it a good candidate to define a
penalty in variational image restoration methods.

Let us consider the case where we have a generative
model of patches, represented by a probability measure β.
This model can either be learned upstream on a set of non-
degraded patches, or simply correspond to the empirical
measure of a set of reference patches, similar to those we
wish to restore. A variational approach for recovering u from
y can be formulated as the following problem:

min
x

λ

2
∥Ax− y∥2 + Eβ̃M∼β [OTε(αx, β̃M )], (2)

where αx = 1
N

∑N
n=1 δPix is the empirical distribution of

the patches (Pix)i∈JNK extracted from x, β̃M is the empirical

distribution associated with a random sample of M patches
according to β, and λ, ε > 0.

Let us illustrate the solution of this problem with a de-
noising example, i.e., with A = I, on an isotropic Gaussian
texture [21], the patches of which are distributed according
to some Gaussian distribution N1. To account for the possi-
ble mismatch between the generative model β and the patch
distribution of the clean image, we choose β as the mixture
density 0.8N1 + 0.2N2, with N2 a Gaussian distribution that
generates patches with a horizontal edge. Problem (2) is min-
imized by stochastic gradient descent in which a sample β̃M

from β of size M = 24000 is drawn at each iteration. We
obtain the result labeled as OTε in Figure 1. We notice the
creation of artifacts due to outlier patches coming from N2,
caused by the strong constraint ιβ̃M

(π2). In order to deal
with this issue, we introduce a semi-unbalanced formulation
for OT that is targeted towards applications in inverse image
problems. The aim here is to decrease the sensitivity of the
OT cost to outliers present in the model distribution β.

Definition 2 (Regularized semi-unbalanced OT). Let ε > 0
and ρ > 0 be fixed. We define the regularized semi-
unbalanced OT between the measures α and β by

OTε,ρ(α, β) = min
π∈RN×M

+

⟨C, π⟩+ εKL(π, α⊗ β)

+ ια(π1) + ρKL(π2, β).
(3)

This new transport is inspired by the unbalanced ver-
sion of Séjourné et al. [18], denoted OTε,ρ,ρ in the sequel,
where the two constraints ια(π1) and ιβ(π2) are respectively
replaced by ρKL(π1, α) and ρKL(π2, β). Note that both
OTε,ρ and OTε,ρ,ρ tend to the balanced regularized transport
OTε as ρ → ∞.

In Figure 1 we compare the denoising results obtained
when replacing OTε by OTε,ρ,ρ and OTε,ρ in Problem (2).
While, as expected, the relaxation KL(β̃M , π2) of ιβ̃M

(π2)
leads to decrease the sensitivity of the result wrt the out-
lier patches sampled from N2, the relaxation KL(αx, π1) of
ιαx

(π1) produces an image where some areas have not been
restored. In comparison, outlier patches do not affect our
proposed semi-unbalanced OT result and the denoising is
spatially homogeneous, resulting in the best PSNR. To sum-
marize, the semi-unbalanced formulation of OT proposed in
Equation (3) is a robust version of OT and is appropriate for
applications in inverse imaging problems.

We detail below how a dual formulation allows us to com-
pute the functional OTε,ρ(α, β) and its gradient [16, 18], a
key practical point for variational image restoration.

Proposition 1 (Dual formulation). For ε > 0 fixed,

OTε,ρ(α, β) = max
(f,g)∈RN×RM

⟨a, f⟩ − ⟨b,Φ∗(−g)⟩

− ε

〈
a⊗ b, exp

(
f ⊕ g − C

ε

)
− 1

〉 (4)



original noisy input patch samples OTε OTε,ρ,ρ OTε,ρ

Fig. 1. Denoising of a 100×100 Gaussian texture with an imperfect patch model. From left to right: original image, noisy input, samples from
the corrupted generative model, restoration by OTε, OTε,ρ,ρ and, OTε,ρ (λ = 0.0192, ε = 10−4, ρ = 0.1, patch size = 8). The generative
model simulates patches suitable for image restoration in 80% of cases, and patches with an horizontal edge unsuitable for restoration in 20%
of the cases. While the optimal balanced OT creates aberrant patches in the restored image and the unbalanced OT does not restore the entire
image, the semi-unbalanced OT eliminates the artifacts and restores the entire image. The PSNRs are respectively 24.46, 23.99 and 25.39.

with Φ∗(q) = ρ(exp( qρ )− 1), applied to each component.

Problem (4) is a concave maximization problem which
can be solved by alternate maximization wrt f and g, as spec-
ified by the following theorem.

Theorem 1 (Sinkhorn’s algorithm [18]). Starting from any
f0 ∈ RN , the following algorithm converges to a solution of
Problem (4):

gt+1
j = − ε

1+ ε
ρ
log

(∑N
i=1 ai exp

(
ft
i−ci,j

ε

))
, j ∈ JMK,

f t+1
i = −ε log

(∑M
j=1 bj exp

(
gt+1
j −ci,j

ε

))
, i ∈ JNK.

Alternatively, the solution vectors f and g can be computed
by iterating a symmetric fixed-point method [19]: Starting
from any (f0, g0) ∈ RN × RM , the following algorithm also
converges to a solution of (4):

gt+1
j = 1

2

(
gtj − ε

1+ ε
ρ
log

(∑N
i=1 ai exp

(
ft
i−ci,j

ε

)))
,

f t+1
i = 1

2

(
f t
i − ε log

(∑M
j=1 bj exp

(
gt
j−ci,j

ε

)))
,

with (i, j) ∈ JNK × JMK.

The latter symmetric iterations, with initialization f0 = 0N

and g0 = 0M , are the ones we use in all our numerical exper-
iments.

Proposition 2. Let F (f, g) be the function to be maximized
in Problem (4). The sequence of vectors (f t, gt) defined by
the Sinkhorn algorithm satisfies:

F (f t, gt) = ⟨a, f t⟩ − ⟨b,Φ∗(−gt)⟩. (5)

In order to use gradient-based optimization, one should be
able to differentiate OTε,ρ(α, β) wrt the (discrete) support of
α, that is, wrt the coordinates xi. This is possible by assuming
that the convergence of Sinkhorn’s algorithm is reached [16]:
if (f⋆, g⋆) is a solution of Problem (4), then

∂xi
OTε

(∑N
i=1 aiδxi

, β
)
= ai∇φ(xi) (6)

where φ : Rn → R has the expression

φ(x) = −ε log
(∑M

j=1 bj exp
(

g⋆
j−c(x,yj)

ε

))
. (7)

3. SUPER-RESOLUTION WITH A REFERENCE
IMAGE

Super-resolution with a reference image is a particular prob-
lem of image restoration. The authors of [10] describe it as
the restoration of an image x given its low resolution (LR)
version yLR and a reference image x̃, the patch distribution of
which is assumed to be similar to the one of the ground-truth
x. This setting is relevant when working on specific classes of
images, e.g. textures or material images. The forward model
yLR = SHx + η, where H is a convolution operator, S a
subsampling operator, and η an additive Gaussian noise, is
assumed to be known.

The authors of [10] estimate the ground truth HR image x
by solving the minimization problem

min
x

λ

2
∥SHx− yLR∥2 +

L∑
ℓ=0

OT0(αxℓ , βx̃ℓ), (8)

where OT0 refers to non-regularized OT, αxℓ = 1
N

∑N
i=1 δPixℓ

and βx̃ℓ = 1
M

∑M
j=1 δPj x̃ℓ are respectively the empirical dis-

tributions associated with the patches of xℓ = Aℓx and
x̃ℓ = Aℓx̃, A being a ×2 downsampling operator. Thus, the
regularization term in Problem (8) favors images x whose
patch distributions at different scales ℓ = 0, . . . , L are close
to those of the reference image x̃. It is chosen L = 1.

In practice, to compensate for the differences between αx

and βx̃, the authors of [10] propose to apply the regularization
term of Problem (8) to a padded version Px of x, while the
fidelity term is applied directly to x. This enables to allevi-
ate the rigidity of OT by allowing outlier patches of x̃ to be
aggregated into the artificial bounds of Px.

We propose to solve the same problem by replacing
OT0(Px) by OTε,ρ(x), that is, we apply our robust semi-
unbalanced formulation of OT directly to x, instead of arti-
ficially padding x and then using balanced OT. We numer-
ically solve our minimization problem by gradient descent
with the Adam optimizer [22]. Results reported in Figure 2
confirm that the increased robustness obtained when replac-



LR input Reference HR input Original HR OTε OTε,ρ [10]

PSNR=26.04, LPIPS=0.111 PSNR=26.32, LPIPS=0.108 PSNR=27.14, LPIPS=0.129

PSNR=19.59, LPIPS=0.247 PSNR=20.57, LPIPS=0.206 PSNR=20.53, LPIPS=0.238

PSNR=21.91, LPIPS=0.096 PSNR=22.69, LPIPS=0.087 PSNR=23.21, LPIPS=0.145

PSNR=23.69, LPIPS=0.221 PSNR=31.11, LPIPS=0.097 PSNR=29.52, LPIPS=0.1837

Fig. 2. Application to super-resolution with a reference image. From left to right: LR input (convolution with a 16×16 Gaussian blur kernel
with standard deviation 2 and stride 4), reference HR input, original HR image, restoration by OTε, OTε,ρ and [10]. Results obtained with
ε = 4× 10−4, λ = 0.033, ρ = 0.8, patch size = 6 for the first row and with ε = 4× 10−4, λ = 0.006, ρ = 0.01, patch size = 6 for rows 2,
3, 4. The downsampling operator A is a convolution with a 4 × 4 Gaussian blur kernel with standard deviation 1 and stride 2. With OTε,ρ,
we gain in PSNR, LPIPS and visually on OTε and [10]. For the last three 256 × 256 images, the restoration time is 110s for our method
against 140s for theirs. For the first 600× 600 image, our restoration time passes to 30 minutes against 7 minutes for [10]. PSNRs and LPIPS
are calculated 6 pixels away from the edges.

ing OT0(Px) by OTε,ρ(x) yields improved LPIPS1 [23]
and competitive PSNR scores, especially when the reference
image is not ideally close to the original image.

4. CONCLUSION

We have presented a new methodological framework for im-
age restoration, based on an asymmetrically unbalanced no-
tion of OT. Through two experiments, we have shown that

1https://github.com/richzhang/
PerceptualSimilarity, version 0.1.4

semi-unbalanced regularized transport is a robust alternative
to the usual balanced and unbalanced formulations for patch-
based image restoration. This work opens the door to several
perspectives such as its extension to a semi-discrete setting,
allowing to incorporate deep generative models into image
restoration problems.
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