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Abstract

Conformal prediction is a theoretically grounded
framework for constructing predictive intervals.
We study conformal prediction with missing val-
ues in the covariates — a setting that brings new
challenges to uncertainty quantification. We first
show that the marginal coverage guarantee of con-
formal prediction holds on imputed data for any
missingness distribution and almost all imputation
functions. However, we emphasize that the av-
erage coverage varies depending on the pattern
of missing values: conformal methods tend to
construct prediction intervals that under-cover the
response conditionally to some missing patterns.
This motivates our novel generalized conformal-
ized quantile regression framework, missing data
augmentation, which yields prediction intervals
that are valid conditionally to the patterns of miss-
ing values, despite their exponential number. We
then show that a universally consistent quantile
regression algorithm trained on the imputed data
is Bayes optimal for the pinball risk, thus achiev-
ing valid coverage conditionally to any given data
point. Moreover, we examine the case of a lin-
ear model, which demonstrates the importance of
our proposal in overcoming the heteroskedasticity
induced by missing values. Using synthetic and
data from critical care, we corroborate our theory
and report improved performance of our methods.

1 Introduction

By leveraging increasingly large data sets, statistical algo-
rithms and machine learning methods can be used to support
high-stakes decision-making problems such as autonomous
driving, medical or civic applications, and more. To ensure
the safe deployment of predictive models it is crucial to
quantify the uncertainty of the resulting predictions, commu-
nicating the limits of predictive performance. Uncertainty
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quantification attracts a lot of attention in recent years, par-
ticularly methods that are based on Conformal Prediction
(CP) (Vovk et al., 2005; Papadopoulos et al., 2002; Lei et al.,
2018). CP provides controlled predictive regions for any
underlying predictive algorithm (e.g., neural networks and
random forests), in finite samples with no assumption on
the data distribution except for the exchangeability of the
train and test data. More precisely, for a miscoverage rate
a € [0, 1], CP outputs a marginally valid prediction interval
éa for the test response Y given its corresponding covariates
X, that is:

P(Y € Ca(X)) > 1 —a (1)

Split CP (Papadopoulos et al., 2002; Lei et al., 2018) ach-
ieves Eq. (1) by keeping a hold-out set, the calibration set,
used to evaluate the performance of a fixed predictive model.

At the same time, as the volume of data increases, the volume
of missing values also increases. There is a vast literature on
this topic (Little, 2019; Josse and Reiter, 2018), and a recent
survey even identified more than 150 different implementa-
tions (Mayer et al., 2019). Missing values create additional
challenges to the task of supervised learning, as traditional
machine learning algorithms can not handle incomplete data
(Josse et al., 2019; Le Morvan et al., 2020b,a, 2021; Ayme
et al., 2022; Van Ness et al., 2022). One of the most popular
strategies to deal with missing values suggests imputing the
missing entries with plausible values to get completed data,
on which any analysis can be performed. The drawback of
this “impute-then-predict” approach is that single imputa-
tion can distort the joint and marginal distribution of the
data. Yet, Josse et al. (2019); Le Morvan et al. (2020b, 2021)
showed that such impute-then-predict strategies are Bayes
consistent, under the assumption that a universally consis-
tent learner is applied on an imputed data set. However,
this line of work focuses on point prediction with missing
values that aim to predict the most likely outcome. In con-
trast, our goal is quantifying predictive uncertainty, which
was not explored with missing values although its enormous
importance.



Contributions.

We study CP with missing covariates. Specifically, we study
downstream quantile regression (QR) based CP, like CQR
(Romano et al., 2019), on impute-then-predict strategies.
Still, the proposed approaches also encapsulate other regres-
sion basemodels, and even classification.

After setting background in Section 2, our first contribution
is showing that CP on impute-then-predict is marginally
valid regardless of the model, missingness distribution, and
imputation function (Section 3).

Then, we focus on the specificity of uncertainty quantifi-
cation with missing values. In Section 4, we describe how
different masks (i.e. the set of observed features) introduce
additional heteroskedasticity: the uncertainty on the output
strongly depends on the set of predictive features observed.
We therefore focus on achieving valid coverage condition-
ally on the mask, coined MCV — Mask-Conditional-Validity.
MCV is desirable in practice, as occurrence of missing val-
ues are linked to important attributes (see Section 5).

Traditional approaches such as QR and CQR fail to achieve
MCYV because they do not account for this core connection
between missing values and uncertainty. This is illustrated
on synthetic data in Figure 1. In Figure la, a toy example
with only 3 features, thus 2 _-1=7 possible masks, shows
how the coverage of QR and CQR varies depending on the
mask. Both methods dramatically undercover when the most
important variable (X52) is missing, and the loss of coverage
worsens when additional features are missing. In particular,
for each method, one mask (X7 and X5 missing, highlighted
in red) leads to the lowest mask coverage. Achieving MCV
corresponds to a lowest mask coverage greater than 1 —«. In
Figure 1b, the dimension is 10: instead of the 2'°—1 = 1023
different masks, we only report the lowest mask coverage
for increasing sample sizes. It highlights that QR (green x)

QR (no guarantee) CQR (marginal validity)
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(a) Coverage of the predictive intervals depending on which features
are missing, among the 3 features. Evaluation over 200 runs.

and CQR ( ) do not meet the lowest mask coverage
target of 90%, even for large sample sizes.

This motivates our second contribution: we show in Sec-
tion 5 how to form prediction intervals that are MCV. This
is highly challenging since there are exponentially many
possible patterns to consider. Therefore, the naive solution
to perform a calibration for each mask would fail as in fi-
nite samples, we often observe test samples with a mask
that have low (or even null) frequency of appearance in the
calibration set. To tackle this issue, we suggest two con-
formal methods that share the same core idea of missing
data augmentation (MDA): the calibration data is artificially
masked to match the mask of the point we consider at test
time. The first method, CP-MDA with exact masking, relies
on building an ideal calibration set for which the data points
have the exact same mask as of the test point. We show its
MCYV under exchangeability and Missing Completely At
Random assumptions. Our second method, CP-MDA with
nested masking, does not require such an ideal calibration
set. Instead, we artificially construct a calibration set in
which the data points have at least the same mask as the test
point, i.e., this artificial masking results in calibration points
having possibly more missing values than the test point. We
show the latter method also achieves the desired coverage
conditional on the mask, but at the cost of an additional as-
sumption for validity: stochastic domination of the quantiles.
Figure 1 illustrates those findings: both methods are MCV,
as their lowest mask coverage is above 1 — a.

Our third contribution further supports our design choice to
use QR. We show that QR on impute-then-predict strategy is
Bayes-consistent — it can achieve the strongest form of cov-
erage conditional on the observed test features (Section 6).

Lastly, we support our proposal using both (semi)-synthetic
experiments and real medical data (Section 7). The code to
reproduce our experiments is available on GitHub.
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(b) Lowest mask coverage as a function of the training size. Results
evaluated over 100 repetitions, and the (tiny) error bars correspond
to standard errors.

Figure 1: Methods are Quantile Regression (QR), Conformalized Quantile Regression (CQR), and two novel procedures
CP-MDA-Exact and CP-MDA-Nested, on top of CQR. Settings are given in Section 7, in a nutshell: data follows a Gaussian
linear model where missing values are independent of everything else and of proportion 20%; the dimension of the problem is

3 in Figure la while in 1b it is 10.


 https://github.com/mzaffran/ConformalPredictionMissingValues

2 Background

Background on missing values. Consider a data set
with n exchangeable realizations of the random variable
(X, M,Y) € R¢x{0, 1} xR: {(X®), M) y®))L"
where X represents the features, M the missing pattern, or
mask, and ¥ an outcome to predict. For j € [1,d], M; =0
when X is observed and M; = 1 when X is missing, i.e.
NA (Not Available). We note M = {0, 1}¢ the set of masks.
For a pattern m € M, Xgpg(,) is the random vector of
observed components, and X s(p,) is the random vector of
unobserved ones. For example, if we observe (NA, 6, 2) then

= (1,0,0) and Xqps(m) = (6, 2) Our goal is to predict a

new outcome Y ("+1) given x and M (1),

bs(M(”*l))

Assumption A1 (exchangeability). The random variables
n+1

(X®, M*), Y(’“))k:l are exchangeable.

Following Rubin (1976), we consider three well-known
missingness mechanisms.

Definition 2.1 (Missing Completely At Random (MCAR)).
Foranym € M, P (M =m|X) =P (M = m).

Definition 2.2 (Missing At Random (MAR)). For any m €
M, P(M=m|X)=P (M = m|X0bS(m)).

Definition 2.3 (Missing Non At Random (MNAR)). If the
missing data is not MAR, it is MNAR. Thus, its probability
distribution depends on X, including the missing values.

Impute-then-predict. As most predictive algorithms
can not directly handle missing values, we impute the
incomplete data using an imputation function ® which maps
observed values to themselves and missing values to a func-
tion of the observed values. With notations from Le Morvan
et al. (2021) we note ¢™ : RloPs(m)l _ RImis(m)] the
imputation function which takes as input observed values
and outputs imputed values, i.e. plausible values, given
amask m € M. Then, the imputation function ¢ belongs to
Fli={®:R'x M - R:Vj € [1,d],

®; (X, M) = X;1p,—0 + ¢}
Additionally, .7-"01o is the restriction of F! to C* functions
which include deterministic imputation, such as mean
imputation or imputation by regression. The imputed data
set is formed by the realizations of the n random variables
(®(X,M),M,Y). In practice, ® is obtained as the result
of an algorithm 7 trained on { (X(k), M(k)) }Z;l
Assumption A2 (Symmetrical imputation). The imputation

function ® is the output of an algorithm Z treating its input

data points symmetrically: Z((X(@®) pgle®nyntth @

Z((X® MENIEY) conditionally on (X®), MK+l
and for any permutation o on [1,n + 1].

Assumption A2 is very mild and satisfied by all existing
imputation methods for exchangeable data. In particular,
it is valid for iterative regression imputation which allows
out-of-sample imputation.

(Xobs(rr)) Lagy=1} -

Background on (split) conformal prediction. Split, or
inductive, CP (SCP) (Papadopoulos et al., 2002; Lei et al.,
2018) builds predictive regions by first splitting the n points
of the training set into two disjoint sets Tr, Cal C [1,n],
to create a proper training set, Tr, and a calibration set,
Cal. On the proper training set, a model f (chosen by the
user) is fitted, and then used to predict on the calibration
set. Conformity scores Scqa = {(s(X*) Y(k)))kECal} are
computed to assess how well the fitted model f predicts
the response values of the calibration points. For exam-
ple, Conformalized Quantile Regression (CQR, Romano
et al., 2019) fits two quantile regressions Giow and Gupp, ON
the proper training set. The conformity scores are defined
by s(z,y) = max(giow(2) — Y, ¥ — Gupp(2)). Finally, a cor-
rected (1 — @)-th quantile of these scores Q1_a(Scal) is
computed (called correction term) to define the predictive re-

gion: Ca() = {y such that s(y, f(2)) < Q1_a(Sca)}.
An illustration of CQR is provided in Appendix B.

This procedure satisfies Eq. (1) for any f , any (finite) sample
size n, as long as the data points are exchangeable.” More-
over, if the scores are almost surely distinct, the coverage
holds almost exactly: P(Y € Ca (X)<l—a+ #c -

For more details on SCP, we refer to Angelopoulos and
Bates (2023); Vovk et al. (2005), as well as to Manokhin
(2022).

3 Warm-up: marginal coverage with NAs

A first idea to get valid predictive intervals C,, (X, M) inthe
presence of missing values M is to apply CP in combination
with impute-then-predict, which we refer to as impute-then-
predict+conformalization. More details on this approach are
given in Appendix C.1 for both classification and regression
tasks, although our main focus is regression. It turns out that
such a simple approach is marginally (exactly) valid.

Definition 3.1 (Marginal validity). A method outputting
intervals C,, is marginally valid if the following lower bound
is satisfied, and exactly valid if the following upper bound is
also satisfied:

l-a < P (y(n+1) el (X(7L+1)’M(n+1)))
validity

< l—a+ —0.

exact validity #Cal + 1

Indeed, symmetric imputation preserves exchangeability.

Lemma 3.2 (Imputation preserves exchangeability). Let Al
hold. Then, for any missing mechanism, for any imputation
function ® satisfying A2, the zmputed random variables

((I> (X(k),M(k)) M®) Y(k)) , are exchangeable.

Note that if we replace Al by an i.i.d. assumption, the

'The correction & — @& is needed because of the inflation of
quantiles in finite sample (see Lemma 2 in Romano et al. (2019)
or Section 2 in Lei et al. (2018)).

2Only the calibration and test data points need to be exchangeable.



imputed data set is only exchangeable but not i.i.d. with-
out further assumptions on Z. Indeed, even simple mean
imputation breaks independence.

Proposition 3.3 ((Exact) validity of impute-then-pre-
dict+conformalization). If Al and A2 are satisfied, impute-
then-predict+conformalization is marginally valid. If more-
over the scores are almost surely distinct, it is exactly valid.

This is an important first positive result (proved in Ap-
pendix C.2) showing that CP applied on an imputed data
set has the same validity properties as on complete data,
regardless of the missing value mechanism (MCAR, MAR
or MNAR) and of the symmetric imputation scheme. Note
that similar propositions could be derived for full CP (Vovk
et al., 2005) and Jackknife+ (Barber et al., 2021b).

Proposition 3.3 complements the work by Yang (2015), that
also guarantees marginal coverage for full CP, with the
striking difference of having a complete training data.

4 Challenge: NAs induce heteroskedasticity

To better understand the interplay between missing values
and conditional coverage with respect to the mask, we con-
sider an illustrative example of a Gaussian linear model.

Model 4.1 (Gaussian linear model). The data is generated
according to a linear model and the covariates are Gaussian
conditionally to the pattern:

e Y =8TX +¢,e~N(0,0%) L (X,M),3cR%
* forallm € M, there exist u"* and " such that X |(M =
m) ~ N (u™,xm).

In particular, Model 4.1 is verified when X is Gaussian and
the missing data is MCAR. Model 4.1 is more general: it
even includes MNAR examples (Ayme et al., 2022).

Proposition 4.2 (Oracle intervals). The oracle predictive
interval is defined as the smallest valid interval knowing
KXobsvy and M. Under Model 4.1, its length only depends
on the mask. For any m € M this oracle length is:

* N(0,1 m
L:(m) = 2q17(% ) \/ﬁfgis(m)Zmis|obs/3mis<m> +02. ()

and Y™

mis|obs

See Appendix D for the definition of ugis‘obs
and the quantiles of Y [(Xobs(m), M = m).

Eq. (2) stresses that even when the noise of the genera-
tive model is homoskedastic, missing values induce het-
eroskedasticity. Indeed, the covariance of the conditional
distribution of Y[(Xps(m), M = m) depends on m. Fur-
thermore, the uncertainty increases when missing values
are associated with larger regression coefficients (i.e. the
most predictive variables): if Bpis(m) is large, then L7, (m)
is also large, as Zgis‘obs is positive. In the extreme case
where all the variables are missing, i.e. m = (1,---,1),

* N (0,1 ™ _
£5(m) = 201"y /BETET + 02 = q)_y —qY. Onthe

contrary, if m = (0,---,0) (that is all X; are observed),

Bmis(m) is empty and ‘CZ (m) = 2qf[_(%’1)0-6 = qi_% - q% .
We illustrate this induced heteroskedasticity and the impact
of the predictive power in Figure la, and in Appendix D
along with a discussion emphasizing that even with the
Bayes predictor for the conditional mean, mean-based CP

does not yield intervals that are MCV.

The above analysis motivates the following two design
choices we make in this work. First, we advocate work-
ing with QR models rather than classic regression ones, as
the former can handle heteroskedastic data. Second, we
recommend providing the mask information to the model
in addition to the input covariates, as the mask may further
encourage the model to construct an interval with a length
adaptive to the given mask. Therefore, we focus on CQR
(Romano et al., 2019)3, an adaptive version of SCP, and con-
catenate the mask to the features. However, the predictive
intervals of this procedure may not necessarily provide valid
coverage conditionally on the masks, especially in finite
samples as shown in Figure 1b ( ). This is be-
cause the quality of the prediction at some (X, M) depends
strongly on M, as there is an exponential number of patterns
(2%) for a finite training size, whereas the correction term is
calculated independently of the masks.

5 Achieving mask-conditional-validity
(MCYV)

We now aim at achieving mask-conditional-validity (MCV)
defined as follows using an ordering on the masks.

Definition 5.1 (Included masks). Let (112,7m) € M2, 1 C
m if for any j € [1,d] such that m; = 1 thenh; = 1, i.e.
m includes at least the same missing values than mn.

Definition 5.2 (MCV). A method is MCV if for any m € M
the followinglower bound is satisfied, and exactly MCV if
for any m € M the followingupper bound is also satisfied:

l-a<P (Y<”+1> eC, (X<”+1>,m) |M<"+1>1: m)

< l—a+ o o—m
exactly valid #Cal™ + 1

where Cal™ = {k € Cal such that m®) < m}.

On the relevance of MCV. In a medical application con-
text, it is very common to have missing data completely at
random (MCAR) when a measurement device fails or the
medical team forgot to fill out some forms. As a general rule,
from an equity standpoint, a patient whose data is missing
should not be penalized (because of “bad luck’) by being
assigned a prediction interval that is less likely to include
the true response than if the data were complete.

Furthermore, the mask can also be linked to an external
unobserved feature corresponding to a meaningful category.

3Note that our proposed framework is not based on CQR, this is
only one instance of it.



Consider the problem of predicting a disease among a popu-
lation. Aggregating data from multiple hospitals with differ-
ent practices and measurement devices can imply different
features are observed for each patient. This can be viewed
as a MCAR setting when identically distributed patients*
are assigned an hospital at random. Patterns are then linked
to the cities, that themselves are related to socio-economical
data.

Overall, the missing patterns form meaningful categories
and ensuring MCYV yields more equitable treatment. There-
fore, a method achieving marginal coverage by systemati-
cally failing on a given pattern, even in a MCAR setting, is
not suitable. Finally, in non-MCAR cases, the pattern may
be exactly related to critical discriminating features.

5.1 Missing Data Augmentation (MDA)

To obtain a MCV procedure, we suggest

according to the , while
the training step is unchanged. More precisely, the mask of
the test point is applied to the calibration set, as illustrated
in Figure 2. The rationale is to mimic the missing pattern
of the test point by artificially augmenting the calibration
set with that mask. It ensures that the correction term
is computed using data with (at least) the same missing
values as the test point. We refer to this strategy as CP with
Missing Data Augmentation (CP-MDA), and derive two
versions of it. Algorithms 1 and 2 are written using CQR
as the base conformal procedure, but they work with any
conformal method as we describe in Appendix E.1.

CP-MDA with exact masking:

7 | -1 1
72| 4 2
3 1 7
7))
sy
Initial calibration set 7@ 0 1
z®|-1 10/ 6|1 CP-MDA with nested masking:
:1:(2) 4 212 temporary test points
(1) | -1 1 3 1
2@ 5|11 “’
%(2) | 4 2 3 1
2@ o 1 v and
@15 3
@10 1 E 1

Figure 2: CP-MDA illustration.
according to one . For CP-MDA-Nested, the
are also applied
temporarily to the test point.

4say, for example young children whose input/output distribution
is not dependent on the neighborhood.

Algorithm 1 CP-MDA-Exact (with CQR)

Input: Imputation algorithm Z, quantile regression al-
gorithm OR, significance level «, training set
{(w(k),m(’“)7y(k))}zzl, test point ( )

Output: Prediction interval C,, (:v(‘es‘), m(“"s‘))

1: Randomly split {1,...,n} into 2 disjoint sets Tr & Cal
2: Fit the imputation function:
() I ({(z®,m®) k € Tr})
3: Impute the training set: Yk € Tr, x](n}zl)) = oz, m*))
4: Fit QR:
is ()« OR ({ (2.4 ke T} a/2)

Gi-2(-) < QR ({(mi(lﬁ;7y(k)) k€ Tr} ,1— a/2)

5: Calt*) = {k € Cal such that m®) C m=V}

6: for k € Cal(®™V do

7. mk) = //Additional masking

8: end for

9: for k € Cal(® do

10:  Impute the calibration set: z*) = &(z*), m(*)

imp
1 Sets® = max(qs (zim) — y™,y®) — G2 (a()))
12: end for
13: Set S = {5k € CalltsV}
14: Compute Q1-a (S), the 1 — &-th empirical quantile of
S,with1 —a:= (1 — ) (14 1/4#S)
15: Set aa( ) = [g% o ®(xle) mlest)) —

Qu-a () d1-g 0 B0, m) + Q14 (5)]

Algorithm 1 — CP-MDA-Exact. CP-MDA with exact mask-
ing consists of keeping the artificially

(1. 7) that have exactly the same missing pattern as
the (1. 5). Then Algorithm 1 performs as impute-
then-predict+conformalization: impute the calibration set
(1. 10), predict on it and get the calibration scores (1. 11),
compute their quantile to obtain the correction term (1. 14),
and finally impute and predict the test point with the fixed
fitted model by adding and subtracting the correction term
(1. 15) to the initial conditional quantile estimates. Note that
Algorithm 1 is described for one test point for simplicity but
extends easily to many test points. The computations are
then shared: the training part (1. 1-4) is common to any test
point and the correction term (1. 5-14) can be reused for any
new test point with the same mask.

In high dimensions, many calibration points may be dis-
carded when applying CP-MDA-Exact since it is likely that
their missing patterns would not be included in the one of the
test point.” This limitation brings us to the second algorithm
we propose, CP-MDA-Nested.

5Yet, these discarded points could be used for training but this
comes at the cost of fitting a different model for each pattern; such
a path is reasonable if the data is scarce.



Algorithm 2 CP-MDA-Nested (with CQR)

Input: Same as Algorithm 1
Qutput: Same as Algorithm 1
1: Compute lines 1 to 4 of Algorithm 1

for £ € Cal do Additional nested masking
m*) = max( ,m)

end for

for k € Cal do
Impute the calibration set: x](r:l)) = (2, mk))
Set s = max(g (ef) — 4™ y® —di-g (i)
Set zg) =daod (;7:“6“). ﬁlw) — 5k

Set Z%Ii)g — (jl—% ) ('T(test)T ffﬂ]\f)) + S(k)

. end for

. Set Z% = {Z

_ = = = e
2N 7229 0 3 20k W
Q Q w»n
s g @
-
T T o
g £
-
@ O yp
@)@)H
TR
~ vl

SRS

INI) .
N
T
wlR
S—

—_
W

. Set O, ( ) = [Qa (Z%) ;@1—& (Zl—%)]

Algorithm 2 — CP-MDA-Nested. CP-MDA with nested
masking avoids the removal of calibration points whose
masks are not included in that of the test point. Instead, we

the to the ,
and so (1. 3). Next, we impute
the (1. 6) before computing their

scores s(F) (1. 7). Then, for each calibration point, the fitted
quantile regressors are used to predict on the test point with
a temporary mask, which matches the mask of the given
augmented calibration point. These predictions are corrected
with the score of the calibration point (1. 8-9) and stored in
two bags Z< for the lower interval boundary, and Z;_ g
for the upper interval boundary (1. 11-12). The prediction
is finally obtained by taking the @ quantiles of the bags Z
(1. 13-15).

The rationale for predicting on temporary test points with
the mask of a given augmented calibration point is that
we want to treat the test and calibration points in the same
way.® We should note that this method may tend to achieve
conservative coverage, since the augmented calibration set
may have masks that overly include the missing pattern of
the test point, i.e., the augmented points may have more
missing values than the test point.

5.2 Theoretical guarantees in finite sample

Let us consider the following assumptions.
Assumption A3 (Y is not explained by M). (Y 1L M)|X.

Assumption A4 (Stochastic domination of the quantiles).
Let (1, m) € M?2. If 1 C 1 then for any § € [0,0.5]:

®This motivation is similar to the one of Jackknife+ (Barber et al.,
2021b) and out-of-bags methods (Gupta et al., 2022).

Y |(Xobs(rn) , M=11) Y'[(Xops(m) s M=)

1-5/2 < d_5)2 ’
Y [(Xops (v M =110) Y |[(Xobs(rm) , M =11)
* 452 2 ds)s .

A4 grasps the underlying intuition that the conditional dis-
tribution of Y'|(X,bs(m), M = m) tends to have larger de-
viations when the number of observed variables is smaller,
in concordance with the intuition that observing predictive
variables reduce the conditional randomness of Y| X ps.

The following theorems (proved in Appendix E) state the
finite sample guarantees of CP-MDA.

Theorem 5.3 (MCV of CP-MDA). Assume the missing
mechanism is MCAR, and Al to A3. Then:

1. CP-MDA-Exactis MCV;

2. if the scores are almost surely distinct, CP-MDA-Exact
is exactly MCV;

3. if A4 also holds, CP-MDA-Nested is MCV, up to a techni-
cal minor modification of the output.

The challenge in proving MCV of CP-MDA-Nested is that
the augmented calibration and test points are not exchange-
able conditional on the mask and thus may result in under-
coverage. However, by imposing A4 we prove that this
violation of exchangeability still leads to MCV (and often
conservative MCV) (see Lemma E.3). We conjecture that
CP-MDA-Nested attains MCV (without any modification),
as also supported by experiments. However, we could not
prove it without making an independence assumption which
we prefer to avoid as exchangeability is key to imputation
methods. Instead, we prove in Tkleorem E.4 the MCV of
any variant outputting [Q&(Zg}); Ql_&(Zfi% )] for Zg‘ the
subset of Zg composed with points using mask n at 1. 6-9.

Theorem 5.4 (Marginal validity of CP-MDA). Under then
same assumptions as Theorem 5.3 (i) CP-MDA-Exact is
marginally valid; (ii) if A4 also holds, CP-MDA-Nested is
marginally valid (with the same caveats as in Theorem 5.3).

6 Towards asymptotic individualized
coverage

Achieving validity conditionally on the mask is an impor-
tant step towards conditional coverage: in practice one
aims at the strongest coverage conditional on both X and
M. Lei and Wasserman (2014); Vovk (2012); Barber et al.
(2021a) studied a related question (without considering
missing patterns) and concluded that it is impossible to
achieve informative intervals satisfying conditional cover-
age, P(Y € Cy(2)|X =2) > 1 — aforany x € X in the
distribution-free and finite samples setting. Still, we can ana-
lyze the asymptotic regime, similarly to Theorem 1 of Sesia
and Candes (2020), which proves the asymptotic conditional
validity of CQR (without the presence of missing values)
under consistency assumptions on the underlying quantile
regressor. Here, by contrast, we study the asymptotic condi-
tional validity of the impute-then-predict+conformalization



procedure, by analyzing the consistency of impute-then-
regress in Quantile Regression (QR). That is, we aim at
showing that we satisfy the required assumption of consis-
tency to invoke Theorem 1 of Sesia and Candes (2020). The
proofs of this section are given in Appendix F.

To analyze the consistency of impute-then-predict proce-
dures for QR, we extend the work of Le Morvan et al. (2021)
on mean regression. QR with missing values, for a quantile
level 3, aims at solving
i =Kl (Y, f(X,M 3

iR () = Bl (V. (X M), G)
with £g the pinball loss ¢5(y,9) = pg(y — §) and
pa() = BlulLguso) + (1 — Alull oy

An associated £z-Bayes predictor minimizes Eq. (3). Its risk
is called the £g-Bayes risk, noted R;ﬁ. Impute-then-predict
procedure in QR aims at solving

g:r}vli_I:RRfﬁﬁb(g) = EVB (Y,goq)(X, M))]a 4
for ® any imputation. Let 9}67(} € argmin, Ris.a(9)-
The following proposition states that R, o (gZ‘B7 o) =R 5
and the consistency of a universal learner.

Proposition 6.1 (/g-consistency of an universal learner).
Let 3 € [0,1]. If X admits a density on R?, then, for almost
all imputation function ® € FL, (i) 922,@ o ® is {3-Bayes-
optimal (ii) any universally consistent algorithm for QR
trained on the data imputed by ® is {g-Bayes-consistent
(i.e., asymptotically in the training set size).

Note that this QR case does not require
E [€|XObS(M),M] = 0, contrary to the quadratic
loss case (Le Morvan et al., 2021).

We conclude our asymptotic analysis of conditional coverage
with Corollary 6.2.

Corollary 6.2. For any missing mechanism, for almost all
imputation function ® € FL, U EY | (X s (ay, M) IS CONLINU-
ous, a universally consistent quantile regressor trained on
the imputed data set yields asymptotic conditional coverage.

In words, the intervals obtained by taking Bayes predictors
of levels «/2 and 1 — /2 are exactly valid conditionally
to both the mask M and the observed variables X pg(ni)s if
Fy|(x.y. (9> M) is continuous. Importantly, while this result
is asymptotic, it holds for any missing mechanism and it
considers individualized conditional coverage.

7 Empirical study

Setup. In all experiments, the data are imputed using it-
erative regression (iterative ridge implemented in
Scikit-learn, Pedregosa et al. (2011)).” We compare the per-
formance of our CQR-MDA-Exact and CQR-MDA-Nested

"Theoretical results hold for any symmetric imputation. In practice,
constant, mean and MICE imputations gave similar results.

(that is CP-MDA based on CQR) to CQR as well as to a
vanilla QR (without any calibration). The predictive models
are fitted on the imputed data concatenated with the mask.
Without concatenating the mask to the features, the mask-
conditional coverage of QR is worsened, as demonstrated
in Section 4. The prediction algorithm is a Neural Network
(NN), fitted to minimize the pinball loss (Sesia and Romano,
2021, see Appendix G.1 for details). For the vanilla QR, we
use both the training and calibration sets for training.

Synthetic and semi-synthetic experiments. We designed
the training and calibration data to have 20% of MCAR
values. To evaluate the test marginal coverage P(Y €
CA'Q(X ,M)), missing values are introduced in the test set
according to the same distribution as on the training and
calibration sets. Then, to compute an estimator of P(Y €
Co(X, m)|M = m) for each m € M, we fix to a constant
the number of observations per pattern, to ensure that the
variability in coverage is not impacted by P (M = m). All
experiments are repeated 100 times with different splits.

7.1 Synthetic experiments: Gaussian linear data

Data generation. The data is generated with d = 10 accord-
ing to Model 4.1, with X ~ N (11,%), u = (1,---,1)7 and
Y=, )T, 1) + (1 — )14, » = 0.8, Gaus-
sian noise ¢ ~ N(0, 1) and the following regression coef-
ficients 8 = (1,2,-1,3,-0.5,—1,0.3,1.7,0.4, —0.3) 78,
Here, the oracle intervals are known (Proposition 4.2).

Lowest and highest mask coverage, and associated
length. Figures 1b and 8 (Appendix G.2) and Figure 9
(Appendix G.2) show the lowest and highest mask coverage
and their associated length as a function of the training set
size. The calibration size is fixed to 1000 and the test set
contains 2000 points with the mask leading to the lowest
coverage (here it corresponds to cases where only X} is ob-
served) and 2000 points with the mask leading to the highest
coverage (here it corresponds to all the variables observed).
These figures highlight that:

* CQR and QR conditional coverage improve when the
training size increases (Corollary 6.2);

¢ Both versions of CQR-MDA are MCV (Theorem 5.3);

* CQR-MDA-Exact is exactly MCV as highest and lowest
mask coverage are exactly 90% (Theorem 5.3);

* CQR-MDA-Exact’s lengths converge to the oracle ones
with increasing training size, showing it is not conserva-
tive, while CQR-MDA-Nested is overly conservative.

Coverage and length by mask size. Figure 3 displays the
average coverage and intervals’ length as a function of the
pattern size, i.e., the performance metrics are aggregated by
the masks with the same number of missing variables; the
first violin plot of each panel corresponds to the marginal
coverage (see Appendix G.2 for QR results). Note that

8For dimension 3, in Figure 1a, the same model is used, keeping
only the 3 first features and their associated parameters.
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Figure 3: Average coverage (top) and length (bottom) as a function of the number of missing values (N2). The first violin
plot shows the marginal coverage. #Tr = 500 and #Cal = 250. The marginal test set includes 2000 observations. The
mask-conditional test set includes 100 individuals for each missing data pattern size.

only the pattern sizes are presented and not the patterns
themselves as there are 2¢ = 1024 possible masks.” For
each pattern size, 100 observations are drawn according to
the distribution of M |size(M) in the test set. The training
and calibration sizes are respectively 500 and 250 (Figure 11
contains the results for other sizes). Figure 3 shows that:

* CQR is marginally valid (Proposition 3.3);

* CQR and QR undercover with an increasing number of
missing values. This can be explained because their length
nearly does not vary with the size of the missing pattern,
despite having the mask concatenated with the features;

* Both versions of CQR-MDA are marginally valid
(Th. 5.4) and mask(-size)-conditionally-valid (Th. 5.3);

* CQR-MDA-Exact is exactly mask(-size)-conditionally-
valid (Theorem 5.3) and its length is close to the oracle
ones. It has more variability for the patterns with few
missing values as for these masks Cal®™Y is smaller.

Similar experiments with 40% of missing values are avail-
able in Appendix G.3. Briefly, it corresponds to a setting
where CP-MDA-Nested is preferable over CP-MDA-Exact
as the former outputs smaller intervals and is less variable.

7.2 Semi-synthetic experiments

We consider 6 benchmark real data sets for regression:
meps_19, meps_20, meps_21 (MEPS, 2016), bio,
bike and concrete (Dua and Graff, 2017), where we
introduce missing values in their quantitative features, each
of them having a probability 0.2 of being missing (i.e. it is a
MCAR mechanism), as in the synthetic experiments. Note
that therefore some patterns have a low (or null) frequency
of appearance in the training sets of bio and concrete.
The sample sizes for training, calibration, and testing, and
simulation details are provided in Appendix G.4, along with

Note that in practice the relationship between the coverage and
the number of missing values is not necessarily monotonic as a
mask with only one missing value can lead to more uncertainty
than a mask with many missing values, see Appendix D.

results for smaller training and calibration sets.

Figure 4 depicts the results by combining validity and effi-
ciency (length) formeps_19,bio, concrete,andbike,
where this graph follows the visualization used in Zaffran
et al. (2022). The results for meps_20 and meps_21 are
given in Appendix G.4, as they are similar to meps_19.

Each of the panels in Figure 4 summarizes the results for
one data set, with the average coverage shown in the z-
axis and the average length in the y-axis. A method is
mask-conditionally-valid if all the markers of its color are
at the right of the vertical dotted line (90%). The design
of Figure 4 requires a different interpretation than Figure 3
(or the subsequent Figure 5). For each method we report,
for the pattern having the highest (or lowest) coverage, its
length and coverage. However, as this pattern may depend
on the method, the length for the highest/lowest should not
be directly compared between methods. We observe that:

* CQR is marginally valid ( , Proposition 3.3), but

not MCV as the lowest mask coverage ( ) is far

below 90% (bio, concrete, and bike data sets);

* CQR-MDA-Exact is marginally valid (

orem 5.4). It is also exactly MCYV, as the lowest (
) and highest ( ) mask coverages are about 90%

(Theorem 5.3);

* CQR-MDA-Nested is marginally valid (

rem 5.4). It is also MCYV, as the lowest (

coverage is larger than 90% (Theorem 5.3).

, The-

, Theo-
) mask

7.3 Predicting the level of platelets for trauma patients

We study the applicability and robustness of CPMDA on
the critical care TraumaBase® data. We focus on predict-
ing the level of platelets of severely injured patients upon
arrival at the hospital. This level is directly related to the
occurrence of hemorrhagic shock and is difficult to obtain
in real-time: predicting it accurately could be crucial to an-
ticipate the need for transfusion and blood resources. In
addition, this prediction task appears to be challenging as
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Jiang et al. (2022) achieved an average relative prediction
error (|| — y||?/|ly||?) that is no lower than 0.23. This high-
lights the need for reliable uncertainty quantification.

After applying inclusion and exclusion criteria obtained by
medical doctors and following the pipeline of Sportisse et al.
(2020) described in Appendix G.5, we left with a subset of
28855 patients and 7 features. Missing values vary from 0%
to 24% by features, with a total average of 7%.

Results. The results are summarized in Figure 5, where
we use different markers to denote the different masks. To
ensure a fair comparison between the conformal methods,
we only keep the missing patterns for which there are more
than 200 individuals; this excludes 7 patterns. Finally, since
we found that the vanilla QR tends to be overly conservative,
we refer to Appendix G.5 for its results. Figure 5 shows
that all conformal approaches achieve marginal coverage
higher than the desired 90% level (diamonds ¢). Further-
more, for each mask (each set of linked markers) CQR-
MDA improves coverage compared to CQR by approaching
90%, and efficiency by reducing the average length. Notice-
ably, for the pattern corresponding to all features observed
(squares H), CQR-MDA has a coverage rate above 90%

CQR =
Ll ® CQR-MDA-Exact -
Téﬁ CQF_{-MDA—Ncstod _—
j'j 1.6 ¢ Marginal
& W& %@ \ask-type
£ 1.4 :
=
1.2

0.90 0.92 0.94
Average coverage
Figure 5: Average coverage and length on the TraumaBase®
analysis. See the caption of Figure 4 for details. Other
symbols than diamond correspond to computing the average
per mask. Each individual’s prediction is obtained by using
15390 observations for training, and 7694 for calibration.

while CQR is below the target level. Therefore, we believe
CQR-MDA should be recommended as it improves upon
the vanilla impute-then-regress+CQR approach.

8 Conclusion and perspectives

In this paper, we study the interplay between uncertainty
quantification and missing values. We show that missing
values introduce heteroskedasticity in the prediction task.
This brings challenges on how to provide uncertainty esti-
mators that are valid conditionally on the missing patterns,
which are addressed by this work. Our analysis leaves sev-
eral directions open: (1) obtaining results beyond the MCAR
assumption for CP-MDA, both theoretically and numeri-
cally, (2) extending the (numerical) analysis to non-split
approaches, (3) investigating the numerical performances of
other conditional CP approaches (such as Sesia and Candes
(2020); Izbicki et al. (2020, 2022); Lin et al. (2021)), (4)
studying the impact of the imputation on QR with finite
samples. A more detailed discussion on these directions is
provided in Appendix A.
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Appendices

The appendices are organized as follows.
Appendix A provides a more detailed discussion on open directions and perspectives.
Appendix B describes CQR, used in the paper.

Appendix C provides an explicit description of impute-then-predict+conformalization (Appendix C.1), along with its proof of
validity, that is the proofs for Section 3 (Appendix C.2).

Then, Appendix D contains the proofs for the Gaussian linear model oracle intervals presented in Section 4 (Appendix D.1),
along with the discussion on how mean-based approaches fail (Appendix D.2).

Appendix E gives the general statement of CP-MDA-Exact (Appendix E.1), and the proofs of the validity theorems for
CP-MDA-Exact (Appendix E.2), along with the theoretical study of CP-MDA-Nested (Appendix E.3).

Appendix F provides all the proofs about consistency and asymptotic conditional coverage presented in Section 6.

Finally, Appendix G contains all the details for the experimental study and additional results completing Section 7. More
precisely, Appendix G.1 gives more details about the settings. Appendix G.2 contains results on synthetic data with 20% of
MCAR missing values, while Appendix G.3 shows the results on synthetic data when the proportion of MCAR missing values
is 40%. Appendix G.4 describes the real data sets used for the semi-synthetic experiments, and presents the remaining results.
Appendix G.5 presents the real medical data set (TraumaBase®), the pipeline and settings used and the results obtained by
QR on this data set.

A Detailed perspective discussion

First, obtaining results beyond the MCAR assumption for CP-MDA. On the numerical side, preliminary experiments show
promising results, indicating CP-MDA’s robustness, but a detailed numerical study is needed. On the theoretical side,
understanding the limits of CP-MDA validity is of high importance. Results without assumptions on the missingness
distribution seem impossible to obtain. Even with MAR data, the task of pointwise prediction can be very challenging if the
output distribution strongly depends on the pattern (Ayme et al., 2022). As the impossibility results of conditional validity
(Lei and Wasserman, 2014; Vovk, 2012; Barber et al., 2021a), assumptions on the missing mechanism are needed.

Second, extending the (numerical) analysis to non-split approaches (e.g., based on the Jackknife) would be relevant, as it
could improve the base model and therefore how the heteroskedasticity is taken into account. Note that CP-MDA can be
written to take into account this splitting strategy, and thus our theoretical results on MCV would directly extend.

Third, investigating the numerical performances of other conditional CP approaches (such as Sesia and Candes (2020); Izbicki
et al. (2020, 2022); Lin et al. (2021)) within the MDA framework is of interest. In this paper, we analyze empirically the
instance of CP-MDA on top of CQR as it is the simplest version of QR based CP, but the theory and motivation of this work is
not specific to CQR. Exactly as CQR, none of the aforementioned methods would provide MCV if used out of the box. But if
combined with CP-MDA, then all of them will be granted MCV.

Finally, while our approach is to be agnostic to the imputation chosen (similarly to CP being agnostic to the underlying model),
an interesting research path is to study the impact of the imputation on QR with finite samples.

B Illustration and details on CQR (Romano et al., 2019) procedure

Figure 6 provides a visualization and step by step description of CQR.

C Impute-then-predict+conformalization
C.1 Description of the algorithm

Similarly, Algorithm 1 can be written to include any underlying predictive algorithm (regression or classification) and any
score function.
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Figure 6: Schematic illustration of Conformalized Quantile Regression (CQR) (Romano et al., 2019).
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Algorithm 3 SCP on impute-then-predict

Input: Imputation algorithm Z, predictive algorithm .4, conformity score function s, significance level «, training set
{(X(l) M@ y(l)) . (X(n)’M(n)7y(n))}.
Output: Prediction interval C,, (X, M).

1: Randomly split {1, ..., n} into two disjoint sets Tr and Cal.

2: Fit the imputation function P« Z({ (X(k) M®) ke Tr})

3: Impute the data set: {Xl(mg} ={®(X®, M®)

4: Fit algorithm A: §(- ({ (Xl(n]f;, y(k ) ke Tr})

5: for k € Cal do

6: Set S =5 (Y(k) g (X(k )) the conformity scores

7: end for

8: Set Scar = {S™, k € Cal}

9: Compute Q;_scr (Scal). the 1 — aSP-th empirical quantile of Scay, with 1 — o5°P := (1 — a) (1 4 1/#Cal).

10: Set Ca( , M) = {y such that s (y,§o @ (X, M)) < Ql_ascp (SCal)}~

C.2 Proof of exchangeability after imputation

In this subsection, we provide a more formal statement of Lemma 3.2 and Proposition 3.3 in respectively Lemma C.1 and
Proposition C.2. To that end, we introduce a notion of symmetrical imputation on a set T, for T C [1,n + 1].
Assumption A5 (Symmetrical imputation on a set 7). For a given set of points {X k) Ak Y(k)}keT the imputation

functlon <I> is the output of an algorithm 7 that treats the data points in 7~ symmetrically: Z({X®), M) Y)Y, ) @

T{X©@E) pe®) Yy (@(k)Y), o conditionally to { X *) M) 'y (¥)}, -+ and for any permutation ¢ on ﬂl #T].
Lemma C.1 (Imputation preserves exchangeability). Let Al hold. Then, for any missing mechanism, for any imputation
function ® satisfying AS, the imputed random variables ((I> (X(k), M(k)) M) Y(k))keT are exchangeable.

Proposition C.2 ((Exact) validity of impute-then-predict+conformalization). If Al is satisfied, then we have the following
three results.

1. Full CP: if A5 is satisfied for T = [1,n + 1] (i.e., the imputation algorithm treats all points symmetrically), then
impute-then-predict+Full CP is marginally valid. If moreover the scores are almost surely distinct, it is exactly valid.

OR

2. Jackknife+ if A5 is satisfied for T = [1,n + 1] (i.e., the imputation algorithm treats all points symmetrically), then
impute-then-predict+Jackknife+ is marginally valid (of level 1 — 2av).
OR

3. SCP with the split [1,n + 1] = Tr|J Call| Test and if A5 is satisfied for T = Cal| ] Test (i.e., the imputation treats all

points in Cal | Test symmetrically) then impute-then-predict+conformalization is marginally valid. If moreover the
scores are almost surely distinct, it is exactly valid.

Remark C.3 (Imputation choices for SCP). In the latter case, for SCP, the coverage result can be derived conditionally on
Tr, thus the coverage results holds for: (i) any deterministic imputation function (conditionally on Tr) (that is any arbitrary
function of Ir), or (ii) any stochastic imputation function treating Cal and Test symmetrically (iii) any combination of both.

Proof of Lemma C.1. ® is the output of an imputing algorithm 7 trained on {(X(k)7 MF) Y(k))keT}'

Assume (X(k), M®), Y(k)) are exchangeable (Al).

keT

Thus, if Z treats the data points in 7 symmetrically, (®(X™, M®), M®) y®)) __ are exchangeable (see proof of
Theorem 1b in (Barber et al., 2022) for example).

O

Proof of Proposition C.2. Proposition C.2 is a consequence of Lemma C.1 with different choices of T, that enable to apply
the following results:
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1. Full CP: Vovk et al. (2005), also re-stated in Barber et al. (2022)

2. Jackknife+: Barber et al. (2021b)

3. SCP: Lei et al. (2018) or Papadopoulos et al. (2002) and Angelopoulos and Bates (2023) for a generic version with any
score function (note that the coverage is proved conditionally on Tr).

O
D Gaussian linear model
D.1 Distribution of Y |(X,,s(m), M) and oracle intervals
Proposition D.1 (Distribution of Y |(X,ps(n), M) (Le Morvan et al., 2020b)). Under Model 4.1, for any m € {0, 1}:
Y| (Xosys M = m) ~ N (77, E7)
with:
l&’m = Bg;)s(m)XObS(m) + ﬂgis(m)umisbbs
:u’mis|obs = lu’mls(m) + Emis(m),obs(m) (Z(T)rll)s(m),obs(m))_l(Xobs(m) - /j’glljs(m)%
= ﬁrjgis(m)zgisbbsﬁmis(m) + 0?
m _N\m m m —1ym
mis|obs Zmis(m),mis(m) Zmlb(m),obs(m) (Eobs(m),obs(m)) Zobs(m),mis(m)'
Proposition D.2 (Oracle intervals). Under Model 4.1, for any m € {0,1}, for any § € (0,1):
Y| (Xobs(m),M=m 0
ds [(Xen ) ) - ﬁobs (m) ObS (m) + Bmls m)umls|0bs + qs oD \/ﬁmlb(m) mls|0bsBmiS(m) + Ug’
and the oracle predictive interval length is given by:
Lg ( =2q;- 2‘ Y \/ﬁmls(m mls\obsﬂmis(m) + O—g' )
Proof. Using multivariate Gaussian conditioning (Eaton, 1983), for any subset of indices L € [[1, d]:
Xi|(Xz, M) ~ N (pigy 1, 5% 1) (6)
with K = L (the complement indices) and:
-1
#%\L = u + Z%LZ%L (XL, —pgh),
-1
SR =YKk — SRS, Sk
Given that Y = 87X + ¢, withe ~ N(0,02) L (X, M), the following holds:
d d
YI(Xz, M) € (57X +&)[(X1, M) D BTX, + (= + BF Xp0)| (X2, M)
and by Equation (6), 8% X |(Xp, M) ~ (ﬂK:quLaB],l;EK‘LﬁK) and (e|(Xz,M)) ~ N(0,02), and (BE Xk L
e)|(Xg, M) . Thus:
Y|(Xp, M) ~ N(BEX L + B il 0 B ER LBx + 02).
Consequently, for any 6 € (0,1):
Y|(XL,M
%K 2 :5EXL+5KM<|L+% o 1)\/517; |L5K+a§- @)

For any pattern m € {0, 1}¢, applying Equation (7) with K = mis(m) = obs(m), L = obs(m), we have, for any § € (0,1):

Y |[(Xobs(m),M=m N(0,1
qs [ Kobetm) ) 5obs(m)Xobs(m + 5mls(m),ufmls|obs + d5 )\/ﬂmls(m mls‘obsﬁmis(m) + Jga
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and:

* (0,1 N
‘Ca( ) =2x q,_ a/2) \/ﬁmls(m mls|obsﬁm1q(m) + 0

with:

m m m -1 m
Hmisjobs = HMmis(m) + Zrms(m) obs(m) (Zobs(m),obs(m)) (Xobs(m) - u’obs(m))7

m _Nxm m m —1ym
Zmis|obs - Zr‘ﬂis(m),r‘ﬂis(m) Zmls(m),obs(m) (Zobs(m),obs(m)> 2obs(m),mis(m)‘

D.2 Discussion on how mean-based approaches fail

Under Model 4.1, the Bayes predictor for a quadratic loss in presence of missing values — [E [Y | (XObS(M), M )] —is fully
characterized (Le Morvan et al., 2020b,a; Ayme et al., 2022). Figure 7 is obtained by generating the data according to
Model 4.1 with d = 3, 8 = (1,2, —1)T and 0. = 1, with multivariate Gaussian X and MCAR mechanism (X L M) (which
is a particular case of Model 4.1 with ;" = p and X" = ). The left panel represents the method Oracle mean + SCP where
SCP is applied on the regressor being the Bayes predictor for the mean with absolute residuals as the score function. The first
violin plot represents the marginal coverage whereas the other 7 represent conditional coverage with respect to the different
possible patterns: conditional on observing all the variables, on observing all the variables except X, except X5 etc (see
Section 7 for details on the simulation process).

Marginal X7 missing " X7 and X9 missing
No missing values " X missing X7 and X3 missing
" X3 missing X5 and X3 missing

—

<
=<0
=

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee i

—ap»-
<>
<>
0 >

=

A\'(‘Tklg(‘ coverage

o
=

Oracle mean + SCP Oracle mean + SCP per pattern size

Figure 7: Calibration set contains 500 points. Test size for each pattern is of 500 individuals and for marginal is of 2000. 200
repetitions allow to display violin plots, the horizontal black line representing the mean.

SCP on a (oracle) mean regressor lacks of conditional coverage with respect to the mask. Figure 7 (left) highlights that
even with the best mean regressor (the Bayes predictor) and an homoskedastic noise, usual SCP intervals:

e over-cover when there are no missing values;

* cover less for a mask rn than for a mask n when 1 C 7 (e.g. m = (1,0,0) only X, is missing, n = (1,1, 0) that is
X1 and X, are missing);

* cover less when the most informative variable (X3) is missing.

To tackle this issue, one could calibrate conditionally to the missing data patterns. This is in the same vein as calibrating
conditionally to the categories of a categorical variable or to different groups (Romano et al., 2020). This strategy is not viable
as there are 27 patterns: the number of subsets grows exponentially with the dimension, implying the creation of subsets with
too little data to perform the calibration. As an alternative, one could consider to perform calibration conditionally to the
pattern size (e.g. when d = 3, either 0 missing value, 1 or 2). This is possible as there are only d different pattern sizes.

Calibrating by pattern size does not provide validity conditionally to the missing data patterns. Figure 7 (right) shows
the coverages of Oracle mean + SCP per pattern size where SCP is applied on the Bayes predictor for the mean and the
calibration is protected by pattern size. The previous statements still hold with this strategy, even if the coverage disparities
are smaller. Therefore, it is not enough to calibrate per pattern size.
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E Finite sample algorithms
E.1 General statement of Algorithm 1

We provide in Algorithm 4 a general statement of CP-MDA-Exact handling any learning algorithm (both regression and
classification) and any score function.

Algorithm 4 CP-MDA-Exact
Input: Imputation algorithm I predictive algorithm A4, conformity score function s, paramatrized by a model g, significance
level v, training set { (X (®), p/(F) Y (%) }k , test point (X (et A7 (tesn)),

Output: Prediction interval C,, (200, mest)),
1: Randomly split {1,...,n} into two disjoint sets Tr and Cal.
2: Fit the imputation functlon () + I ({(X®,MP) ke Tr})

3: Impute the training set: {X(k)} = {® (X® MP) }keTr

P f ey

4: Fit algorithm A: §() « A ({( ﬂj;,y(’f)) ke Tr})

Calles) — {k € Cal such that M®) M(‘e“)}
for k € Cal(s) do

M®*) = MY Additional masking
end for

9: Impute the calibration set: {Xl(lﬁg} = {<I> (X(’“)7 M(k)) }
keCalles) keCal(tes)
10: for k € Cal(®V do
11:  Set S*) = 85 (Y(k), Xi(rffg) , the conformity scores
12: end for
13: Set Scal = {S(k), ke Cal(teSt)}
14: Compute Q15 (Scal), the 1 — G-th empirical quantile of Scay, with 1 — & := (1 — a) (1 + 1/#Sca1)-
15 Set Co (X0, 1700 — Ly such that s; (y, @ (X9, M) < Q1 (Scu) }-

E.2 Mask-conditional valitidy of CP-MDA-Exact

Before proving the results, we introduce a slightly stronger notion of mask-conditional-validity, when the calibration set is
itself of random cardinality.
Definition E.1 (Mask-conditional-validity-random-calibration-size). A method is mask-conditionally-valid with a random

calibration size #Cal if for any m € M, the lower bound is satisfied, and exactly mask-conditionally-valid if for any m € M,
1 < ¢ < n, the upper bound is also satisfied:

l—a<P (Y(n+1) e (X(n+1)7m) |M™FD = . #Cal = C) < l—a+ .
valid exactly valid c+1

We start by proving Theorem E.2 that implies the result on CP-MDA-Exact in Theorem 5.3.

Theorem E.2. [Conditional validity of CP-MDA-Exact with calibration of random cardinality ] Assume the missing mechanism
is MCAR, and that Assumptions Al to A3 hold. Then:

* CP-MDA-Exact is valid with a random calibration size #Cal conditionally to the missing patterns;

o if the scores S\¥) are almost surely distinct, CP-MDA-Exact is exactly mask-conditionally-valid with a random calibration
size #Cal.

Proof of Theorem E.2. Let Tr and Cal be two disjoint sets on [1,n]. Let § be some model. Given Al,
the sequence {(X(k)7 M®) Y(’“))kecal (X (test) py(test) Y(tcs'“))} is exchangeable.  Therefore, the sequence

{ (X(k), Y(’“))keca11 , (X(teSt)7 Y(te“)) } is also exchangeable.

Let m in M. We define Cal™ = {k € Cal such that M®) ¢ m}.
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Let ¢ € [1, #Cal].

As the M 1 X (missingness is MCAR) and (M L Y)|X (Assumption A3), then M L (X,Y), and #Cal™ 1L
(X0, y ) , (X(test) "y (test)) Tt follows that the sequence { (x®), Y(k))ke , (X (test) y(test) } is exchangeable

keCal
conditionally to #Cal™ = c.
Similarly, M (test) o (X0 y (k) e Cal (X (test) [y (test)), Thus the sequence

{(X ™), plest) y (R)) , (X (test) py(test) Ty (test))} s exchangeable conditionally to #Cal™ = c and M) = m,

Therefore, we can now invoke Proposition 3.3 in combination with Lemma 1 of Romano et al. (2020) to conclude the proof.
But we can state a more rigorous version here, since in fact Cal™ is a random variable (as discussed in Definition E.1).

Since the algorithm Z treats the calibration and test data points symmetrically (AS with T =
CallJTest), A5 also holds for any 7T’ C T. Therefore, by Lemma C.1 the sequence

{(@(X(k), M test)) g (test) 'y (k) (@ (X (test) pyest)y pyp(test) Y(“’St))} is exchangeable conditionally to
#Cal™ = ¢ and M(tes) = iy,

keCal™

The conclusion follows from usual arguments (Papadopoulos et al., 2002; Lei et al., 2018; Angelopoulos and Bates, 2023).

Precisely, {(Sq (Y(k), <I>(X(’“), M(test))))
#Cal™ = c and M ") = m,_ Therefore,

kecalm,SQ(Y(teSt),CIJ(X(teSt),M(tESt)))} is exchangeable conditionally to

P (SQ(Y(test)’ (I)(X(test)7 M(test))) < 6’2\17&((8‘@0/(107 q)(X(k), M(teSt))))kECalm)

MWt — py 4Cal™ = c) >1—aq,

and if the ((59(1’(’“), O(XF) M) s 85 (VS (X (hest) M(teSt)))> are  almost  surely
distinct  (i.e. have a continuous distribution) then (Lei et al, 2018; Romano et al, 2019):
P (SQ(Y(tESt), (I)()((test)7 M(test))) < @1—&((5Q(Y(k)7 @(X(k)7]Vj(teSt))))kECal"‘)‘M(teSt) =m, #Calm _ C) < 1—a+ CJlr1~

This proves the first two points (with respect to Definition E.1) of Theorem 5.3, by observing that
{Y(test) c OQ(X(test)7M(test))} _ {Sg(y(test)’(I)(X(test)’M(test))) < Ql—d ((Sg(y(k), q)(X(k)?M(tESt))))kecalm) }

O

Then, the proof of Theorem 5.4 (marginal validity of the CP-MDA-Exact) is direct by marginalizing the result of Theorem 5.3.
O

E.3 Validities of CP-MDA -Nested.

Next, we give more details on the results on CP-MDA-Nested.

E.3.1 MASK-CONDITIONAL-VALIDITY OF CP-MDA-NESTED.
Let m € M.

We start by describing the links between CP-MDA-Nested and CP-MDA-Exact. CP-MDA-Exact can be re-written in the
same way as CP-MDA-Nested, but keeping the subselection step of 1. 5.

Indeed, first mention that the output of Algorithm 1 can be written in the following ways:

. Aa( ) _ {q% o CI)(X(tESt), m(test)) o Q\lfd (S) ;(jlf% ° CI)(X(tESt), m(test)) 4 @17& (S)]

o Oy ) = {@& (G2 0 (XD meD) — S o)) :Q1_a (G1-g o (X (test) pltest)) 4 SCal(teSt)):|
] -~ ,m(test) . ~ m(test)

* Caf )= {Qa (Z% ) ;Q1-a (Zl_% )]

With Z% = {z(@f%k € Caland M® = m}, and similarly for the upper bag. Recall that we have: z(gk) = §a o
2 2 2 2
P (:1'0“‘), ﬁl,(]“)) — sk,

On the other hand, the output predictive interval of Algorithm 2 is then written as:
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« Co ( ) =1Qa (Z2);Q1-a (Z1-9)].
With these notations, Z o can be partitioned as
m m k)
25:23U< U 27 ) (8)
m k) Dm
With
Zg = {2k € Cal}
thz%n@(xmmjﬁm)isw
The result of Algorithm 1 implies that for any mask m € M, we have :
P (Y(tcst) c a(x ( ) ‘M(tcst) — m) Z 1— a,
ie.
P (Y0 ¢ [gg 0 ®(XE, m) — Qroa (5™)d1-g 0 DX, m) + Qu (5™)] IMO=) =m) <o ©)
Where: Q1_5 (S) is the (1 — a)(1 + 1/#S)-quantile of S and 5™ = {s*) for k € Cal and M = m}. Equivalently:
P (Y“est) e [@& (ZT) 01 a (Z;ﬂ_%)} | M (test) — m) >1—a. (10)

In the following Lemma, we show that for 7m O m the result extends under Assumption A4.

Lemma E.3. Assume Assumption A4. For any m € M, forany m D m
e[ € [0 () B (5 ) ) e ] 21

This inequality shows the conservativeness of the quantiles of the bags resulting from larger missing patterns m than m when
the construction of the output of Algorithm 2.

While inequality Equation (10) is “tight” in the sense that the probability is almost exactly 1 — « (item 2 of Theo-
rem 5.3), the proof hereafter shows that Equation (11) can be pessimistic in terms of actual coverage, as one may have
P[(Y =2 [Qa(Z8); Qu-a(Z7 o )M ) = m] < a.

More precisely, we have the following inequality:

B[ (Y0 13 0 00X, — Q1 (57) 5615 0 (X0, ) + Qu (57)

M (test) — m, X(Sti?ﬁ)) ‘]w(test) _ m:| <a.
(12)

The interpretation of that Lemma is that the intervals resulting from the prediction on x*®**, 77 (more data hidden) and

corrected with the residuals of the calibration points (X*, M*¥ = mm, Y*) have a larger probability of containing Y **st,
conditionally to X ps(m) than the interval built using prediction on 2%t 1 (more data available) and corrected with the
residuals of the calibration points (X*, M* = m, Y'*) (more data available)

Proof of Lemma E.3. We start by invoking Equation (9) for m:
P (YD ¢ [g2 0 (X0 1) — Qu s (™) 1415 0 BXESD, i) + @y s (57)] MUV =) <. (13)
Consequently, by the tower property of conditional expectations:
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E |:IP <Y(test) ¢ [(i% o @(X(teSt),TrL) Q- (Sm) (jl—% o @(X(teSt),Th) + Ql—& (Sﬁz,)] ‘]M(test) =m, S(m) X(i)cs?) ) ‘A{(test) = T?L:| <a.

(14
Observe that Ga o ®(X (%) 1) — Q1-5 (57 is {Mtest) = g, S0P étbih(;)} measurable.
Moreover, by Assumption A4, we have that for any ¢ € [0, 0.5]:
Y[(Xobs(m),M=m Y [(Xops(m), M=m
1|(5/2b< ) )<q |(/2b< ) ) (15)
Y[ (Xobs(m),M=m Y |(Xobs(m),M=m
5/‘2( bs (m) )Zq(;/‘g( bs () ). (16)

In other words the conditional distribution of Y given X pm) and M = m “stochastically dominates™ the conditional
distribution of Y given Xp,q(m) and M = m.

We thus have, with Fz denoting the cumulative distribution function of Z: Fy(x
function of Y'|(Xops(m), M = m):

,,M=m) the cumulative distribution

obs(m)»

obs(m)

P (Y(tcst) ¢ [(f% o (I)(X(tcst)’m) . @1—& ( ‘) d _g o @(X(tcst) ) +Q1 s ( )] ptest) — = S(m)  (best) )

=1- [Fy‘(xobs(ﬁ;)yhf:ﬁl) (fflf% © ‘I’(X(teSt)am) + @1—&(Sm)) FYI(Xoqu) M=m) ( $° ‘I)(X(te“)ym) - @1—&(Sm))]

® _ ~ _
2 1= [Ptttz (@15 0 XD, 17) + Q1-a(5™)) = Fr (X gy =y (83 02X, 17) = Qua(5™) )]

Q

Q

~

=P (Y“e“) ¢ [ag 0 @(X ) = Qia (57) si-g 0 (X i) + Qioa (57)] 'M““” m, 5 Xiiiii;)
a7

At (i) we use (16) Fy|(x,,. =) (dg © ®(X Y 100) — Qua(S™)) < Fy|(x oy v (g © X 0) — Q1oa(S™)),
and (15): Fy|(x oy M=m) (15 © (XS 00) + Q1oa(S™)) > Fy (X ypumy M= (@15 © B(X Y i) + Qu_a(S™)) by
A4. Remark that here we assume that (ql,g o d(X(test) i) + Qlfa(Sm)) > med1an(Y(tebt)|(X(teS(t) )»M = 1) and

2
(q% 0 (Xt i) — Q1 _a(S )) < median(Y*et (X510 M = ).
We obtain Equation (12) in Lemma E.3 by plugging (17) in (14), then Equation (11) by the tower property. O
Theorem E.4. Assume the missing mechanism is MCAR, and that Assumptions Al to A3 hold. Additionally Assumption A4 is
satisfied.

Consider the partition described in Equation (8), and consider CP-MDA-Nested running on a test point with missing pattern

m(tesY) with any of the following outputs, instead of . 15 Cl, ( )= Qa (Zs) :Q1-4 (Z1-2)):
1. C, ( )= [@&(Zgl); @1_d(ZfL_%)} where i > m(*Y) is an arbitrary choice.
2. C, ( )= [Q\d(Zg”); @\1,&(Z{h_%)] where 1 is a randomly selected pattern in {1, m > mt*Y}, possibly

with varying probability depending on the cardinality of the sets Zg‘/z .
Then the resulting algorithm is mask-conditionally-valid.

Proof of Theorem E.4. The proof immediately follows from Equation (11), and gives the result without difficulty for any
arbitrary pattern or random variable independent of all other randomness.

Extension to a choice that involves the cardinality of the sets 2! /2, leveraging the independence between these cardinals and
the coverage properties (same as in the proof of Theorem E.2). O

Then, the proof of Theorem 5.4 (marginal validity of the CP-MDA-Nested) is direct by marginalizing the result of Theorem E.4.
O
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F Infinite data results

Proposition 6.1 ({3-consistency of an universal learner). Let 8 € [0,1]. If X admits a density on X, then, for almost all
imputation function ® € FL, the function glfﬂ’q) o ® is Bayes optimal for the pinball risk of level (3.

Proof of Proposition 6.1. The proof starts in the exact same way than Le Morvan et al. (2021), based on their Lemmas A.1
and A.2. For completeness, we copy here the statements of these lemmas without their proof and rewrite the two first parts of
the main proof.

Let ® be an imputation function such that for each missing data pattern m, ¢™ € C°° (Rlebstm)l R mis(m)l),

Lemma F.1 (Lemma A.1 in Le Morvan et al. (2021)). Let ¢™ € C> (RI°Ps(m)I RImis(m)1) pe the imputation function
for missing data pattern m, and let M™ = {x eRY: Tmis(m) = O™ (%bs((m))) } For all m, M™ is an |obs((m))|-
dimensional manifold.

In Lemma F.1, M™ represents the manifold in which the data points are sent once imputed by ¢". Lemma F.1 states that this
manifold is of dimension |obs(m)].

Lemma F.2 (Lemma A.2 in Le Morvan et al. (2021)). Let m and m’ be two distinct missing data patterns with the same
number of missing (resp. observed) values |mis| (resp |obs|). Let ¢ € C* (R'Obs(m)‘7R‘mis(m)‘) be the imputation function
for missing data pattern m, and let M™ = {x cR?: Tmis(m) = @ (a:obs(m)) } We define similarly @(m/) and ./\/l<m/).

For almost all imputation functions ¢™ and p(m )

dim (M A M) = {0 if Jmis|> 3

d — 2|mis| otherwise.

Note that, as by Lemma F.I dim(M™) = dim (M(m,)) = J|obs|= d — |mis|, Lemma F.2 states that
dim (M7 0 M) < dim (M) = dim (M),

Now, to prove Proposition 6.1 the missing data patterns are ordered as in Le Morvan et al. (2021): the first one will be the one
in which all the variables are missing, while the last one will be the one in which all the variables are observed. For two data
patterns with the same number of missing variables, the ordering is picked at random. We denote by m(%) the i-th missing
data pattern according to this ordering.

We are going to build a function g which, composed with @, will reach the ¢-Bayes risk.

For each missing data pattern, and starting by m(1) of all variables missing, we can define go on the data points from the
current missing data pattern. More precisely, for each i, g is built for every imputed data point belonging to M (™) except
for those already considered in previous steps (one imputed data point can belong to multiple manifolds):

VZ = ®(X, M) € MO\ JMB) - gr(7) = f1(X)

k<i

That is, gg o ®(X, M) will equal f*(X, M) except possibly if &(X, M) = :P(Y) for some Y that has more missing values
than X, M. Therefore, for each missing data pattern m(i), go o ® equals f* except on | J,,_; M) The question that
remains is: what is the dimension of M (™)) N (U k<i M(m(’“))), these points for which there is no necessarily equality
between gg o ® and f*. First, note that M (™) N (Uppey MMEDY =, _; (MMO) N\ AMm(K))) | For each space in this
reunion, there are two cases:

+ either |obs(m(k))|< |obs(m(i))|: using Lemma F.1, dim (M™*)) = |obs(m(k))|< [obs(m(i))|= dim (M @=D)).
Thus, M ™) | M™(K) is of measure zero in M (™(2)),

» either |obs(m(k))|= |obs(m(i))|: using Lemma F.2, M) N M) is of dimension 0 or smaller than
dim (M(m(i))), thus it is of measure zero in M (")
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Therefore, the set of data points for which g o @ does not equal the oracle is of measure 0 for each missing data pattern.

Let 5 € [0, 1]. We can now write down the £g-risk of this built function:

Els(Y,9" 0 ®(X,M))] =E[ps (Y — g" o ®(X, M))]
—F [pﬁ (Y — (X, M) + f*(X, M) — g* 0 B(X, M))}
() < B [ps (¥ = F<(X. M) | + B [ps (F+(X, M) — g" 0 0(X, M) )|

< Rj, +E s (£(X.M) = g0 00X, M) )|,

where (¢) holds thanks to the shape of pz. For any w € R and any A € Ry:

pg (Aw) = BA|w|ly>o + (1 — B)A|w|Ly<o
ps (Aw) = Apg (w).

Furthermore, pg is convex, thus for any (u,v) € R?:

11 1 1
po | qut5v ) < 5ps(u) + 5ps(v)
1 1 1
58 (w+v) < Sps(u) + 5pp(v)

pg (u+v) < pa(u) + ps(v).

As f* and g* o ® are equals almost everywhere on each missing subspace, I [pg (f*(X, M) — g* o ®(X, M))} = 0.
Indeed, decomposing by pattern one can write:

E [ps (F1(X.M) = g" 0 (X, M)) | = > P(M = m)E [ps (*(X, M) = g" 0 (X, M)) [M = m]
M=m

and thus by equality almost everywhere for each pattern every term in this sum is null.

Therefore one obtains:

E[ls(Y,g" 0o ®(X,M))] < Rzﬁ.
Thus:

Ells (Y,g9" 0 (X, M))] =Ry,

and g* o ® is Bayes optimal. This implies that R;B@ = Rjﬁ. Thus, a universally consistent algorithm learning gs chained
with ¢ will lead to a Bayes consistent function. [

Proof of Corollary 6.2. Corollary 6.2 states that “For any missing mechanism, for almost all imputation function ® € FZL , if
Fy Xoba(u) M) is continuous, a universally consistent quantile regressor trained on the imputed data set yields asymptotic
conditional coverage.”.

Let 5 € [0,1].

Remark that Proposition 6.1 states that for any missing mechanism, for almost all imputation function ® € FZL
a universally consistent quantile regressor trained on the imputed data set achieves the Bayes risk asymptotically.
We will thus show that any {3-Bayes predictor f; (any function achieving the {3-Bayes-risk) is such that P(Y <
(X, M) Xopsmy, M) = B if Fy|(X,un.M) 18 continuous. Therefore, any two Bayes predictors f;/z and f1*—a/2
form an interval [f /2 (X, M); ff_, /2 (X, M)] that achieves conditional coverage (conditionally to X,y and M).

Let f7 be a {3-Bayes predictor. Then:
f5 € argmin Efpg (Y — f (X, M))]
[ AXM—=R
=E [E [ps (Y — f (X, M)) [ Xonsuy, M]] -
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Let (z,m) € X x M. Denote Hy 1 (2) := E [pg (Y — 2) | Xobs(M) = Zobs(m), M = m]. AsY # z almost surely, we have:

H,, . (2) = E [—pj (Y — 2) | Xobs(M) = Tobs(m)s M = m]
=E [~ (—=Bly_.30+ (1 = B) Ly —2<0)|Xobs(M) = Tobs(m), M = m)]
=E [Bly>: — (1 = B)Ly <z Xobs(M) = Zobs(m), M = m]
= BP (Y > 2| XobsM) = Zobs(m)s M =m) — (1 = B)P (Y < 2| Xobs(M) = Tobs(m), M = m)
=B(1 =P (Y < 2| Xopsem) = Zobs(m), M =m)) — (1 = B)P (Y < 2[Xobs(m) = Tobs(m), M = m)
H,, . (2) = B—=P (Y < 2| Xobs(m) = Tobs(m), M =m).

Therefore HY, ,,,(z) < 0if and only if 8 <P (Y < 2| Xobs(M) = Zobs(m), M = m).
Thus, z minimizes H, ,, if and only if 5 = P (Y < 2| Xobs(M) = Zobs(m), M = m).

If Fy|(X e, M) IS continuous, there exists at least a solution, that might not be unique if it is not additionally strictly

increasing. Therefore, if Fy|(x_,. (ay > M) is continuous, all the £3-Bayes predictors can be written as f; (x,m) = qg,m With

P (Y < q:vgleobs(M) = Zobs(m)> M = m) =P (Y < f;(x7m)|Xobs(M) = Zobs(m)>» M = m) = ﬁ
O

G Experimental study
G.1 Settings detail

Quantile Neural Network. The architecture and optimization of the Quantile Neural Network used in the experiments is
taken from Sesia and Romano (2021) (their code is freely available). This is the description provided in the original paper of
the neural network: “The network is composed of three fully connected layers with a hidden dimension of 64, and ReLU
activation functions. We use the pinball loss to estimate the conditional quantiles, with a dropout regularization of rate 0.1.
The network is optimized using Adam Kingma and Ba (2014) with a learning rate equal to 0.0005. We tune the optimal
number of epochs by cross validation, minimizing the loss function on the hold-out data points; the maximal number of
epochs is set to 2000.”

G.2 Gaussian linear results

) X QR
g CQR
_; CQR-MDA-exact
g CQR-MDA-nested
z -====Oracle
z <
= X
X .
0.29 x 51 % X
PN} N\ N\ N\ N\ N\ N\ N} N\ N\ N\ N\ \ N\
N S %Q@ RN S & D %QQQ
Training size Training size

Figure 8: Coverage and interval’s length for the mask leading to the lowest coverage. Model is NN. Calibration size fixed to
1000. The mask is concatenated in the features. Data is imputed using Iterative Ridge. 100 repetitions allow to display error
bars, corresponding to standard error.

Figure 9 is the analogous of Figure 8, but by evaluating the performances on the mask leading to the highest coverage.

Hereafter, we present in Figure 10 the exact same figure than Figure 3 but with a panel (the first) for vanilla QR. The 3 other
methods are displayed again to facilitate the comparison.

Finally, Figure 11 is the analogous of Figure 10, but for a training set containing 1000 observations and a calibration set
containing 500 observations.
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Figure 9: Coverage and interval’s length for the mask leading to the highest coverage. See caption of Figure 8 for the setting.
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Figure 10: Average coverage (top) and length (bottom) as a function of the pattern size, i.e. the number of missing values
(N2). First violin plot corresponds to marginal coverage. Stars correspond to the oracle length. Settings are: model is NN,
train size is 500, calibration size is 250. The marginal test set includes 2000 observations. The conditional test set includes
100 individuals for each possible missing data pattern size. The mask is concatenated to the features. Data is imputed using
Iterative Ridge. 100 repetitions are performed.
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Figure 11: Model is NN. Train size is 1000. Calibration size fixed to 500. The marginal test set includes 2000 observations.
The conditional test set includes 100 individuals for each possible missing data pattern size. The mask is concatenated in the
features. Data is imputed using Iterative Ridge. 100 repetitions are performed.
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G.3 Higher proportion of missing values

We present synthetic experiments where the proportion of MCAR missing values is of 40% (instead of 20% in Figure 3).
Except from this, the settings are exactly the same than the ones of Figure 3. Precisely, the data is generated with d = 10
according to Model 4.1, with X ~ N (u,2), p = (1,---,1)T and X = ¢(1,---, 1)T(1,---,1) + (1 — p) 14, ¢ = 0.8,
Gaussian noise € ~ A/(0, 1) and the following regression coefficients 5 = (1,2, —1,3, 0.5, —1,0.3,1.7,0.4, —0.3)”. For
each pattern size, 100 observations are drawn according to the distribution of M |size( M) in the test set. The training and
calibration sizes are respectively 500 and 250. The experiment is repeated 100 times. The results are displayed in Figure 12.
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Figure 12: Same caption than Figure 10.

Interestingly, although expected, these experiments lead CP-MDA-Exact to frequently output infinite intervals. This is because
the subsampling step with few calibration data — with respect to the dimension and proportion of missing values — reached a
point where there are not enough observations for CP-MDA-Exact to calibrate accurately for some patterns.

To compare CP-MDA-Exact and CP-MDA-Nested in this setting, Figure 12 is obtained by replacing the infinite intervals

by max y®—  min  y®. It highlights that CP-MDA-Exact is less efficient (i.e. outputs larger intervals) than
keTruCal keTruCal

CP-MDA-Nested for patterns with less than 4 NAs. With a smaller calibration set or a higher proportion of missing values,
this effect would be amplified and generalized to more patterns. Figure 12 also emphasizes that CP-MDA-Exact leads to more
coverage variability than CP-MDA-Nested, on the patterns for which CP-MDA-Exact does not almost surely cover.

G.4 Semi-synthetic experiments

In the semi-synthetic experiments, two settings are examined: one where the training size is small in comparison to the
number of parameters of the Neural Network — “Medium” —, and one where the training size is even smaller so that some
masks have a really low (or null) frequency of appearance in the training set — “Small”. In both cases, the calibration size is
approximately half the training size. Figure 4 presented the results for the “Medium” case.

Table 1: Semi-synthetic settings: training and calibration sizes for each of the 6 data sets depending on the setting.

meps_19 meps_20 meps_21 bio bike concrete
d=139,1=5 | d=139,l=5 | d=139,l=5 | d=9,1=9 | d=18,l=4 | d=8,1=8
n = 15785 n = 17541 n = 15656 n = 45730 n = 10886 n = 1030
Small Tr size 500 500 500 500 500 330
Cal size 250 250 250 250 250 100
Medium Tr size 1000 1000 1000 1000 1000 630
W Cal size 500 500 500 500 500 200

Figure 13 represents the results for these settings, using the same parameters than Figure 4. For the results on the two other
meps data sets (meps_20 and meps_21) see Figure 14, which repeats the visualisation of meps_19 to ease comparison.
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Figure 13: Model is NN. The mask is concatenated in the features. Data is imputed using Iterative Ridge. 100 repetitions are
performed, allowing to display the standard error as error bars. The vertical dotted lines represent the target coverage of 90%.
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G.5 Real data

Figure 14: Same caption than Figure 13.

Data set description. Sportisse et al. (2020) selected 7 variables to model the level of platelets, after discussion with medical
doctors. Thus, we followed their pipeline. Here are the 7 variables used:

L]

Age: the age of the patient (no missing values);

Lactate: the conjugate base of lactic acid, upon arrival at the hospital (17.66% missing values);

Delta_hemo: the difference between the hemoglobin upon arrival at hospital and the one in the ambulance (23.82%
missing values);

VE: binary variable indicating if a Volume Expander was applied in the ambulance. A volume expander is a type of
intravenous therapy that has the function of providing volume for the circulatory system (2.46% missing values);

RBC: a binary index which indicates whether the transfusion of Red Blood Cells Concentrates is performed (0.37%
missing values);

SI: the shock index. It indicates the level of occult shock based on heart rate (HR) and systolic blood pressure (SBP),
that is SI = %, upon arrival at hospital (2.09% missing values);

HR: the heart rate measured upon arrival of hospital (1.62% missing values).
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Splitting strategy. To study the coverage conditionally on the masks, we must handle the scarcity of some of them. For each
individual in the data set, we make only one prediction, this way avoiding too many repetitions of the same test point when
computing the average. We split the data set into 5 folds, and predict on each fold by training the procedure on the 4 others,
with 15390 observations for training, and 7694 for calibration.
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Figure 15: Average coverage and length on the TraumaBase® data when predicting the platelets level. Colors correspond to
the methods. Diamond (4) corresponds to taking the average among all individuals. Other symbols correspond to computing
the average among the individuals having a fixed mask. The vertical dotted line represents the target coverage of 90%. Model
is NN. The mask is concatenated to the features. Imputation is Iterative Ridge. Each individual is predicted using 15390
observations for training, and 7694 for calibration.
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