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1Electricité De France R&D, Palaiseau, France
2PreMeDICaL project team, INRIA Sophia-Antipolis, Montpellier, France
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Abstract
Conformal prediction is a theoretically grounded framework
for constructing predictive intervals. We study conformal
prediction with missing values in the covariates – a setting
that brings new challenges to uncertainty quantification. We
first show that the marginal coverage guarantee of confor-
mal prediction holds on imputed data for any missingness
distribution and almost all imputation functions. However,
we emphasize that the average coverage varies depending
on the pattern of missing values: conformal methods tend to
construct prediction intervals that under-cover the response
conditionally to some missing patterns. This motivates our
novel generalized conformalized quantile regression frame-
work, missing data augmentation, which yields prediction
intervals that are valid conditionally to the patterns of miss-
ing values, despite their exponential number. We then show
that a universally consistent quantile regression algorithm
trained on the imputed data is Bayes optimal for the pin-
ball risk, thus achieving valid coverage conditionally to any
given data point. Moreover, we examine the case of a linear
model, which demonstrates the importance of our proposal
in overcoming the heteroskedasticity induced by missing
values. Using synthetic and data from critical care, we cor-
roborate our theory and report improved performance of our
methods.

1 Introduction
By leveraging increasingly large data sets, statistical algo-
rithms and machine learning methods can be used to support
high-stakes decision-making problems such as autonomous
driving, medical or civic applications, and more. To ensure
the safe deployment of predictive models it is crucial to
quantify the uncertainty of the resulting predictions, commu-
nicating the limits of predictive performance. Uncertainty
quantification attracts a lot of attention in recent years, par-
ticularly methods that are based on Conformal Prediction
(CP) (Vovk et al., 2005; Papadopoulos et al., 2002; Lei et al.,
2018). CP provides controlled predictive regions for any

*Corresponding author: margaux.zaffran@inria.fr

underlying predictive algorithm (e.g., neural networks and
random forests), in finite samples with no assumption on
the data distribution except for the exchangeability of the
train and test data. More precisely, for a miscoverage rate
α ∈ [0, 1], CP outputs a prediction interval Ĉα for the test
response Y given its corresponding covariates X such that:

P(Y ∈ Ĉα(X)) ≥ 1− α. (1)

Split CP (Papadopoulos et al., 2002; Lei et al., 2018) ach-
ieves Eq. (1) by keeping a hold-out set, the calibration set,
used to evaluate the performance of a fixed predictive model.

At the same time, as the volume of data increases, the volume
of missing values also increases. There is a vast literature on
this topic (Little, 2019; Josse & Reiter, 2018), and a recent
survey even identified more than 150 different implementa-
tions (Mayer et al., 2019). Missing values create additional
challenges to the task of supervised learning, as traditional
machine learning algorithms can not handle incomplete data
(Josse et al., 2019; Le Morvan et al., 2020b,a, 2021; Ayme
et al., 2022; Van Ness et al., 2022). One of the most popular
strategies to deal with missing values suggests imputing the
missing entries with plausible values to get completed data,
on which any analysis can be performed. The drawback of
this “impute-then-predict” approach is that single imputa-
tion can distort the joint and marginal distribution of the
data. Yet, Josse et al. (2019); Le Morvan et al. (2020b, 2021)
showed that such impute-then-predict strategies are Bayes
consistent, under the assumption that a universally consis-
tent learner is applied on an imputed data set. However, this
line of work focuses on point prediction with missing values
that aim to predict the most likely outcome. In contrast, our
goal is quantifying predictive uncertainty, which surprisingly
was not explored with missing values although its enormous
importance.

Contributions

We study CP in the presence of missing values in the co-
variates. More precisely, we study downstream quantile-
regression (QR) based CP, such as CQR (Romano et al.,
2019), on impute-then-predict strategies.
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After recalling background and notations in Section 2, our
first contribution is showing that CP on impute-then-predict
is marginally valid regardless of the model, missingness
distribution, and imputation function (Section 3).

Then, we consider valid coverage conditionally on the miss-
ing data pattern, referred to as a mask. In Section 4,
we describe how different masks introduce additional het-
eroskedasticity: the uncertainty on the output strongly de-
pends on the set of predictive features observed. We illus-
trate the need for a novel method to handle this phenomenon
on synthetic data in Figure 1 (left panel): CQR (orange
crosses) does not reach the target value of 90% on the mask
with the lowest coverage (worst group).

This motivates our second contribution: we show in Sec-
tion 5 how to form prediction intervals that are valid condi-
tional on any given mask. This is highly challenging since
there are exponentially many possible patterns to consider.
Therefore, the naive solution to perform a calibration for
each possible mask would fail as in finite samples, we often
observe test samples with missing patterns that have low
(or even null) frequency of appearance in the calibration
set. To tackle this issue, we suggest two conformal methods
that share the same core idea of missing data augmentation
(MDA): we artificially mask the calibration data to match
the mask of the point we consider at test time. The first
method, CP-MDA with exact masking, relies on building
an ideal calibration set for which the data points have the
exact same mask as of the test point. We show its validity
under exchangeability and Missing Completely At Random
assumptions. Our second method, CP-MDA with nested
masking, does not require such an ideal calibration set. In-
stead, we artificially construct a calibration set in which the
data points have at least the same mask as the test point, i.e.,
this artificial masking results in calibration points having
possibly more missing values than the test point. We show
the latter methodology also achieves the desired coverage
conditional on the mask, but at the cost of an additional as-

sumption for validity: stochastic domination of the quantiles.
Figure 1 illustrates those findings: both methods are valid
even for small training set-size.

Our third contribution further supports our design choice to
use QR. We show that QR on impute-then-predict strategy is
Bayes-consistent – it can achieve the strongest form of cov-
erage conditional on the observed test features (Section 6).

Lastly, we support our proposal using both (semi)-synthetic
experiments and real medical data (Section 7). The code to
reproduce our experiments is made available.

2 Background
Background on missing values. Consider a data set
with n exchangeable realizations of the random variable
(X,M, Y ) ∈ X ×{0, 1}d×R:

{(
X(k),M (k), Y (k)

)}n
k=1

,
where X represents the features, M the missing pattern, or
mask, and Y an outcome to predict. For j ∈ J1, dK, Mj = 0
when Xj is observed and Mj = 1 when Xj is missing, i.e.
NA (Not Available). We noteM = {0, 1}d the set of masks.
For a pattern m ∈ M, Xobs(m) is the random vector of
observed components, and Xmis(m) is the random vector of
unobserved ones. For example, if we observe (NA, 6, 2) then
m = (1, 0, 0) and Xobs(m) = (6, 2). Our goal is to predict a
new outcome Y (n+1) given X

(n+1)

obs(M(n+1))
and M (n+1).

Assumption A1 (exchangeability). The random variables(
X(k),M (k), Y (k)

)n+1

k=1
are exchangeable.

Following Rubin (1976), we consider three well-known
missingness mechanisms.

Definition 2.1 (Missing Completely At Random (MCAR)).
For any m ∈M, P (M = m|X) = P (M = m).

Definition 2.2 (Missing At Random (MAR)). For any m ∈
M, P (M = m|X) = P

(
M = m|Xobs(m)

)
.

Definition 2.3 (Missing Non At Random (MNAR)). If the
missing data is not MAR, it is MNAR. Thus, its probability
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Figure 1: Coverage and length of the predictive intervals as a function of the training size, where the performance metrics
correspond to the pattern of missing values giving the lowest coverage. Methods are Quantile Regression (QR), Conformalized
Quantile Regression (CQR), and two missing data augmentation procedures, CP-MDA-Exact and CP-MDA-Nested, on top of
CQR, using a Quantile Neural Network. Settings are given in Section 7. Results evaluated over 100 repetitions, and the (tiny)
error bars correspond to standard error.
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distribution depends on X , including the missing values.

As most predictive algorithms can not directly handle miss-
ing values, we impute the incomplete data using an imputa-
tion function Φ which maps observed values to themselves
and missing values to a function of the observed values.
With notation from Le Morvan et al. (2021), Φ belongs to
FI := { Φ : X ×M→ X : ∀j ∈ J1, dK,

Φj (X,M) = Xj1Mj=0 + ϕM
j

(
Xobs(M)

)
1Mj=1

}
.

Additionally, FI
∞ is the restriction of FI to C∞ functions

which include deterministic imputation, such as mean
imputation or imputation by regression. The imputed data
set is formed by the realizations of the n random variables
(Φ (X,M) ,M, Y ). In practice, Φ is obtained as the result
of an algorithm I trained on

{(
X(k),M (k)

)}n+1

k=1
.

Assumption A2 (Symmetrical imputation). The imputation
function Φ is the output of an algorithm I treating its input

data points symmetrically: I((X(σ(k)),M (σ(k)))n+1
k=1)

(d)
=

I((X(k),M (k))n+1
k=1) conditionally on (X(k),M (k))n+1

k=1

and for any permutation σ on J1, n+ 1K.

Assumption A2 is very mild and satisfied by all existing
imputation methods for exchangeable data. In particular,
it is valid for iterative regression imputation which allows
out-of-sample imputation.

Background on (split) conformal prediction. Split, or
inductive, CP (SCP) (Papadopoulos et al., 2002; Lei et al.,
2018) builds predictive regions by first splitting the n points
of the training set into two disjoint sets Tr,Cal ⊂ J1,nK,
to create a proper training set, Tr, and a calibration set,
Cal. On the proper training set, a model f̂ (chosen by the
user) is fitted, and then used to predict on the calibration
set. Conformity scores SCal = {(s(X(k), Y (k)))k∈Cal} are
computed to assess how well the fitted model f̂ predicts
the response values of the calibration points. For exam-
ple, Conformalized Quantile Regression (CQR, Romano
et al., 2019) fits two quantile regressions q̂low and q̂upp, on
the proper training set. The conformity scores are defined
by s(x, y) = max(q̂low(x)− y, y − q̂upp(x)). Finally, a cor-
rected (1 − α̃)-th quantile of these scores Q̂1−α̃(SCal) is
computed (called correction term) to define the predictive re-
gion: Ĉα(x) := {y such that s(y, f̂(x)) ≤ Q̂1−α̃(SCal)}.1
An illustration of CQR is provided in Appendix A.

This procedure satisfies Eq. (1) for any f̂ , any (finite) sample
size n, as long as the data points are exchangeable.2 More-
over, if the scores are almost surely distinct, the coverage
holds almost exactly: P(Y ∈ Ĉα(X)) ≤ 1− α+ 1

#Cal+1 .

For more details on SCP, we refer to Angelopoulos & Bates
(2021); Vovk et al. (2005), as well as to Manokhin (2022).
1The correction α → α̃ is needed because of the inflation of
quantiles in finite sample (see Lemma 2 in Romano et al. (2019)
or Section 2 in Lei et al. (2018)).

2Only the calibration and test data points need to be exchangeable.

3 Warm-up: marginal coverage with NAs

A first idea to get valid predictive intervals Ĉα(X,M) in the
presence of missing values M is to apply CP in combination
with impute-then-predict, which we refer to as impute-then-
predict+conformalization. More details on this approach are
given in Appendix B.1 for both classification and regression
tasks, although our main focus is regression. It turns out that
such a simple approach is marginally (exactly) valid.

Definition 3.1 (Marginal validity). A method outputting in-
tervals Ĉα is marginally valid if the lower bound is satisfied,
and exactly valid if the upper bound is also satisfied:

1− α ≤
validity

P
(
Y (n+1) ∈ Ĉα

(
X(n+1),M (n+1)

))
≤

exact validity
1− α+

1

#Cal + 1
.

Indeed, symmetric imputation preserves exchangeability.

Lemma 3.2 (Imputation preserves exchangeability). Let A1
hold. Then, for any missing mechanism, for any imputation
function Φ satisfying A2, the imputed random variables(
Φ
(
X(k),M (k)

)
,M (k), Y (k)

)n+1

k=1
are exchangeable.

Note that if we replace A1 by an i.i.d. assumption, the
imputed data set remains only exchangeable without further
assumptions on I: indeed, imputing by the empirical mean
for example breaks the independence.

Proposition 3.3 ((Exact) validity of impute-then-pre-
dict+conformalization). If A1 and A2 are satisfied, impute-
then-predict+conformalization is marginally valid. If more-
over the scores are almost surely distinct, it is exactly valid.

This is an important first positive result (proved in Ap-
pendix B.2) showing that CP applied on an imputed data
set has the same validity properties as on complete data,
regardless of the missing value mechanism (MCAR, MAR
or MNAR) and of the symmetric imputation scheme. Note
that similar propositions could be derived for full CP (Vovk
et al., 2005) and Jackknife+ (Barber et al., 2021b).

4 Challenge: NAs induce heteroskedasticity
To better understand the interplay between missing values
and conditional coverage with respect to the mask, we con-
sider an illustrative example of a Gaussian linear model.

Model 4.1 (Gaussian linear model). The data is generated
according to a linear model and the covariates are Gaussian
conditionally to the pattern:

• Y = βTX + ε, ε ∼ N (0, σ2
ε) ⊥⊥ (X,M), β ∈ Rd.

• for all m ∈M, there exist µm and Σm such that X|(M =
m) ∼ N (µm,Σm).

In particular, Model 4.1 is verified when X is Gaussian and
the missing data is MCAR. Model 4.1 is more general: it
even includes MNAR examples (Ayme et al., 2022).
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Proposition 4.2 (Oracle intervals). The oracle predictive
interval is defined as the smallest valid interval knowing
Xobs(M) and M . Under Model 4.1, its length only depends
on the mask. For any m ∈M this oracle length is:

L∗
α(m) = 2q

N (0,1)
1−α

2

√
βT
mis(m)Σ

m
mis|obsβmis(m) + σ2

ε . (2)

See Appendix C for the definition of µm
mis|obs and Σm

mis|obs
and the quantiles of Y |(Xobs(m),M = m).

Eq. (2) stresses that even when the noise of the genera-
tive model is homoskedastic, missing values induce het-
eroskedasticity. Indeed, the covariance of the conditional
distribution of Y |(Xobs(m),M = m) depends on m. Fur-
thermore, the uncertainty increases when missing values
are associated with larger regression coefficients (i.e. the
most predictive variables): if βmis(m) is large, then L∗

α(m)
is also large, as Σm

mis|obs is positive. In the extreme case
where all the variables are missing, i.e. m = (1, · · · , 1),
L∗
α(m) = 2q

N (0,1)
1−α

2

√
βΣmβT + σ2

ε = qY1−α
2
− qYα

2
. On the

contrary, if m = (0, · · · , 0) (that is all Xj are observed),
βmis(m) is empty and L∗

α(m) = 2q
N (0,1)
1−α

2
σε = qε1−α

2
− qεα

2
.

We illustrate this induced heteroskedasticity and the impact
of the predictive power in Appendix C, along with a discus-
sion emphasizing that even with the Bayes predictor for the
conditional mean, mean-based CP does not yield intervals
that are valid conditionally on the mask.

The above analysis motivates the following two design
choices we make in this work. First, we advocate work-
ing with QR models rather than classic regression ones, as
the former can handle heteroskedastic data. Second, we
recommend providing the mask information to the model
in addition to the input covariates, as the mask may further
encourage the model to construct an interval with a length
adaptive to the given mask. Therefore, we focus on CQR
(Romano et al., 2019), an adaptive version of SCP, and con-
catenate the mask to the features. However, the predictive
intervals of this procedure may not necessarily provide valid
coverage conditionally on the masks, especially in finite
samples as shown in Figure 1 (orange crosses). This is due
to the exponential number of patterns (2d), which strongly
varies the quality of the finite sample predictions obtained
according to the mask, whereas the correction term is calcu-
lated independently of the masks.

5 Achieving mask-conditional-validity
We now aim at achieving mask-conditional-validity defined
as follows using an ordering on the masks.

Definition 5.1 (Included masks). Let (m̊, m̆) ∈M2, m̊ ⊂
m̆ if for any j ∈ J1, dK such that m̊j = 1 then m̆j = 1, i.e.
m̆ includes at least the same missing values than m̊.

Definition 5.2 (Mask-conditional-validity). A method is
mask-conditionally-valid if for any m ∈M the lower bound
is satisfied, and exactly mask-conditionally-valid if for any

m ∈M the upper bound is also satisfied:

1− α ≤
valid

P
(
Y (n+1) ∈ Ĉα

(
X(n+1),m

)
|M (n+1) = m

)
≤

exactly valid
1− α+

1

#Calm + 1
,

where Calm =
{
k ∈ Cal such that m(k) ⊂ m

}
.

5.1 Missing Data Augmentation (MDA)

To obtain a mask-conditionally-valid procedure, we suggest
modifying the calibration set according to the mask of the
test point, while the training step is unchanged. More pre-
cisely, the mask of the test point is applied to the calibration
set, as illustrated in Figure 2. The rationale is to mimic the
missing pattern of the test point by artificially augmenting
the calibration set with that mask. It ensures that the cor-
rection term is computed using data with (at least) the same
missing values as the test point. We refer to this strategy as
CP with Missing Data Augmentation (CP-MDA), and derive
two versions of it. Algorithms 1 and 2 are written using
CQR as the base conformal procedure, but they work with
any conformal method as we describe in Appendix D.1.

Algorithm 1 – CP-MDA-Exact. CP-MDA with exact mask-
ing consists of keeping the artificially masked calibration
points (l. 7) that have exactly the same missing pattern as
the test point (l. 5). Then Algorithm 1 performs as impute-
then-predict+conformalization: impute the calibration set
(l. 10), predict on it and get the calibration scores (l. 11),
compute their quantile to obtain the correction term (l. 14),
and finally impute and predict the test point with the fixed
fitted model by adding and subtracting the correction term
(l. 15) to the initial conditional quantile estimates. Note that
Algorithm 1 is described for one test point for simplicity but
extends easily to many test points. The computations are

Test point

Initial calibration set

CP-MDA with exact masking:
calibration set

CP-MDA with nested masking:-1 -10 6 1

4 -2 2

5 1 1

0 1

3 1

-1 1

4 2

5

0 1

-1 1

4 2

0 1

and

3 1

3 1

3

3 1

calibration set temporary test points

Figure 2: CP-MDA illustration. Augmented calibration
set according to one test point. For CP-MDA-Nested, the
augmented masks of the calibration set are also applied
temporarily to the test point.
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Algorithm 1 CP-MDA-Exact (with CQR)
Input: Imputation algorithm I, quantile regression al-

gorithm QR, significance level α, training set{(
x(k),m(k), y(k)

)}n
k=1

, test point
(
x(test),m(test)

)
Output: Prediction interval Ĉα

(
x(test),m(test)

)
1: Randomly split {1, . . . , n} into 2 disjoint sets Tr & Cal
2: Fit the imputation function:

Φ(·)← I
({(

x(k),m(k)
)
, k ∈ Tr

})
3: Impute the training set: ∀k ∈ Tr, x

(k)
imp = Φ(x(k),m(k))

4: Fit QR:

q̂α
2
(·)← QR

({(
x
(k)
imp, y

(k)
)
, k ∈ Tr

}
, α/2

)
q̂1−α

2
(·)← QR

({(
x
(k)
imp, y

(k)
)
, k ∈ Tr

}
, 1− α/2

)
// Generate an augmented calibration set:

5: Cal(test) =
{
k ∈ Cal such that m(k) ⊂ m(test)

}
6: for k ∈ Cal(test) do
7: m̃(k) = m(test) //Additional masking
8: end for Augmented calibration set generated. //
9: for k ∈ Cal(test) do

10: Impute the calibration set: x(k)
imp = Φ(x(k), m̃(k))

11: Set s(k) = max(q̂α
2
(x

(k)
imp)− y(k), y(k) − q̂1−α

2
(x

(k)
imp))

12: end for
13: Set S = {s(k), k ∈ Cal(test)}
14: Compute Q̂1−α̃ (S), the 1− α̃-th empirical quantile of

S, with 1− α̃ := (1− α) (1 + 1/#S)

15: Set Ĉα(x
(test),m(test)) = [ q̂α

2
◦ Φ(x(test),m(test)) −

Q̂1−α̃ (S) ; q̂1−α
2
◦ Φ(x(test),m(test)) + Q̂1−α̃ (S)

]
then shared: the training part (l. 1-4) is common to any test
point and the correction term (l. 5-14) can be reused for any
new test point with the same mask.

In high dimensions, many calibration points may be dis-
carded when applying CP-MDA-Exact since it is likely that
their missing patterns would not be included in the one of the
test point.3 This limitation brings us to the second algorithm
we propose, CP-MDA-Nested.

Algorithm 2 – CP-MDA-Nested. CP-MDA with nested
masking avoids the removal of calibration points whose
masks are not included in that of the test point. Instead, we
apply the mask of the test point to the calibration points,
and so we keep all the observations (l. 3). Next, we impute
the masked calibration points (l. 6) before computing their
scores s(k) (l. 7). Then, for each calibration point, the fitted
quantile regressors are used to predict on the test point with
a temporary mask, which matches the mask of the given
augmented calibration point. These predictions are corrected
with the score of the calibration point (l. 8-9) and stored in
two bags Zα

2
for the lower interval boundary, and Z1−α

2

for the upper interval boundary (l. 11-12). The prediction

3Yet, these discarded points could be used for training but this
comes at the cost of fitting a different model for each pattern; such
a path is reasonable if the data is scarce.

Algorithm 2 CP-MDA-Nested (with CQR)
Input: Same as Algorithm 1
Output: Same as Algorithm 1

1: Compute lines 1 to 4 of Algorithm 1
// Generate an augmented calibration set:

2: for k ∈ Cal do Additional nested masking
3: m̃(k) = max(m(test),m(k))
4: end for Augmented calibration set generated. //
5: for k ∈ Cal do
6: Impute the calibration set: x(k)

imp := Φ
(
x(k), m̃(k)

)
7: Set s(k) = max(q̂α

2
(x

(k)
imp)− y(k), y(k) − q̂1−α

2
(x

(k)
imp))

8: Set z(k)α
2

= q̂α
2
◦ Φ

(
x(test), m̃(k)

)
− s(k)

9: Set z(k)1−α
2
= q̂1−α

2
◦ Φ

(
x(test), m̃(k)

)
+ s(k)

10: end for
11: Set Zα

2
= {z(k)α

2
, k ∈ Cal}

12: Set Z1−α
2
= {z(k)1−α

2
, k ∈ Cal}

13: Compute Q̂α̃

(
Zα

2

)
14: Compute Q̂1−α̃

(
Z1−α

2

)
15: Set Ĉα

(
x(test),m(test)

)
= [Q̂α̃

(
Zα

2

)
; Q̂1−α̃

(
Z1−α

2

)
]

is finally obtained by taking the α quantiles of the bags Z
(l. 13-15).

The rationale for predicting on temporary test points with
the mask of a given augmented calibration point is that
we want to treat the test and calibration points in the same
way. We should note that this method may tend to achieve
conservative coverage, since the augmented calibration set
may have masks that overly include the missing pattern of
the test point, i.e., the augmented points may have more
missing values than the test point.

5.2 Theoretical guarantees in finite sample

Before analyzing the conditional coverage of CP-MDA, we
start by proving the marginal validity of CP-MDA-Nested.

Theorem 5.3 (Marginal validity of CP-MDA-Nested). If A1
and A2 hold, then CP-MDA-Nested is marginally valid at
the level 1− 2α, for any missing mechanism.

For conditional guarantees, let us consider the following
assumptions.

Assumption A3 (Y is not explained by M ). (Y ⊥⊥M)|X .

Assumption A4 (Stochastic domination of the quantiles).
Let (m̊, m̆) ∈M2. If m̊ ⊂ m̆ then for any δ ∈ [0, 0.5]:

• q
Y |(Xobs(m̊),M=m̊)

1−δ/2 ≤ q
Y |(Xobs(m̆),M=m̆)

1−δ/2 ,

• q
Y |(Xobs(m̊),M=m̊)

δ/2 ≥ q
Y |(Xobs(m̆),M=m̆)

δ/2 .

This assumption grasps the underlying intuition that the con-
ditional distribution of Y |(Xobs(m),M = m) tends to have
larger deviations when the number of observed variables
is smaller, in concordance with the intuition that observ-
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ing predictive variables reduce the conditional randomness
of Y |Xobs.

The following theorems (proved in Appendix D) state the
finite sample guarantees of CP-MDA.
Theorem 5.4 (Mask-conditional-validity of CP-MDA). As-
sume the missing mechanism is MCAR, and A1 to A3. Then:

1. CP-MDA-Exact is mask-conditionally-valid;
2. if the scores are almost surely distinct, CP-MDA-Exact
is exactly mask-conditionally-valid;
3. if A4 also holds, CP-MDA-Nested is mask-conditionally-
valid, up to a technical minor modification of the output.

The challenge in proving the validity of CP-MDA-Nested
is that the augmented calibration and test points are not ex-
changeable conditional on the mask and thus may result in
under-coverage. However, by imposing A4 we prove that
this violation of exchangeability still leads to valid (and
often conservative) coverage (see Lemma D.3). We conjec-
ture that CP-MDA-Nested attains valid coverage (without
any modification), as also demonstrated by our experiments.
However, we could not prove its validity without making
an independence assumption which we prefer to avoid as
exchangeability is key to imputation methods. Instead, we
prove in Theorem D.4 the validity of any variant outputting
[Q̂α̃(Z

m̃
α
2
); Q̂1−α̃(Z

m̃
1−α

2
)] for Zm̃

α
2

the subset of Zα
2

com-
posed with points using mask m̃ at l. 6-9.
Theorem 5.5 (Marginal validity of CP-MDA-Exact). As-
sume the missing mechanism is MCAR, and A1 to A3. Then
CP-MDA-Exact is marginally valid.

6 Towards asymptotic individualized
coverage

Achieving validity conditionally on the mask is an important
step toward reliable predictions. Nevertheless, in practice
one aims at the strongest coverage conditional on both X
and M . Lei & Wasserman (2014); Vovk (2012); Barber
et al. (2021a) studied a related question (without consider-
ing missing patterns) and concluded that it is impossible to
achieve informative intervals satisfying conditional cover-
age, P(Y ∈ Ĉα(x)|X = x) ≥ 1− α for any x ∈ X in the
distribution-free and finite samples setting. Still, we can ana-
lyze the asymptotic regime, similarly to Theorem 1 of Sesia
& Candès (2020), which proves the asymptotic conditional
validity of CQR (without the presence of missing values)
under consistency assumptions on the underlying quantile
regressor. Here, by contrast, we study the asymptotic condi-
tional validity of the impute-then-predict+conformalization
procedure, by analyzing the consistency of impute-then-
regress in quantile regression. That is, we aim at showing
that we satisfy the required assumption of consistency to
invoke Theorem 1 of Sesia & Candès (2020). The proofs of
this section are given in Appendix E.

To analyze the consistency of impute-then-predict proce-
dures for quantile regression, we extend the work of Le Mor-

van et al. (2021) on mean regression. Quantile regression
with missing values, for a quantile level β, aims at solving

min
f :X×M→R

Rℓβ (f) := E [ℓβ (Y, f (X,M))] , (3)

with ℓβ the pinball loss ℓβ(y, ŷ) = ρβ(y − ŷ) and
ρβ(u) = β|u|1{u≥0} + (1− β)|u|1{u≤0}.

An associated ℓβ-Bayes predictor minimizes Eq. (3). Its risk
is called the ℓβ-Bayes risk, notedR∗

ℓβ
. Impute-then-predict

procedure in quantile regression aims at solving

min
g:X→R

Rℓβ ,Φ(g) := E [ℓβ (Y, g ◦ Φ (X,M))] , (4)

for Φ any imputation. Let g∗ℓβ ,Φ ∈ argming Rℓβ ,Φ(g).
The following proposition states thatRℓβ ,Φ(g

∗
ℓβ ,Φ

) = R∗
ℓβ

and the consistency of a universal learner.

Proposition 6.1 (ℓβ-consistency of an universal learner).
Let β ∈ [0, 1]. If X admits a density on X , then, for almost
all imputation function Φ ∈ FI

∞, (i) g∗ℓβ ,Φ ◦ Φ is ℓβ-Bayes-
optimal (ii) any universally consistent algorithm for quantile
regression trained on the data imputed by Φ is ℓβ-Bayes-
consistent (i.e., asymptotically in the training set size).

Note that this quantile regression case does not require
E
[
ε|Xobs(M),M

]
= 0 , contrary to the quadratic loss

case (Le Morvan et al., 2021). We conclude our asymp-
totic analysis of conditional coverage with Corollary 6.2.

Corollary 6.2. For any missing mechanism, for almost all
imputation function Φ ∈ FI

∞, if FY |(Xobs(M),M) is continu-
ous, a universally consistent quantile regressor trained on
the imputed data set yields asymptotic conditional coverage.

In words, the intervals obtained by taking Bayes predictors
of levels α/2 and 1 − α/2 are exactly valid conditionally
to both the mask M and the observed variables Xobs(M), if
FY |(Xobs(M),M) is continuous. Importantly, while this result
is asymptotic, it holds for any missing mechanism and it
considers individualized conditional coverage.

7 Empirical study
Setup. In all experiments, the data are imputed using it-
erative regression (iterative ridge implemented in
Scikit-learn, Pedregosa et al. (2011)).4 We compare the per-
formance of our CQR-MDA-Exact and CQR-MDA-Nested
(that is CP-MDA based on CQR) to CQR as well as to a
vanilla QR (without any calibration). The predictive models
are fitted on the imputed data concatenated with the mask.
Without concatenating the mask to the features, the mask-
conditional validity of QR is worsened, as demonstrated in
Section 4. The prediction algorithm is a Neural Network
(NN), fitted to minimize the pinball loss (Sesia & Romano,
2021, see Appendix F.1 for details). For the vanilla QR, we
use both the training and calibration sets for training.

4Theoretical results hold for any symmetric imputation. In practice,
constant, mean and MICE imputations gave similar results.
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Synthetic and semi-synthetic experiments. We designed
the training and calibration data to have 20% of MCAR
values. To evaluate the test marginal coverage P(Y ∈
Ĉα(X,M)), missing values are introduced in the test set
according to the same distribution as on the training and
calibration sets. Then, to compute an estimator of P(Y ∈
Ĉα(X,m)|M = m) for each m ∈M, we fix to a constant
the number of observations per pattern, to ensure that the
variability in coverage is not impacted by P (M = m). All
experiments are repeated 100 times with different splits.

7.1 Synthetic experiments: Gaussian linear data

Data generation. The data is generated according to
Model 4.1, with X ∼ N (µ,Σ), with µ = (1, · · · , 1)T and
Σ = φ(1, · · · , 1)T (1, · · · , 1)+(1−φ)Id, φ = 0.8, Gaussian
noise ε ∼ N (0, 1) and the following regression coefficients
β = (1, 2,−1, 3,−0.5,−1, 0.3, 1.7, 0.4,−0.3)T . Here, the
oracle intervals are known (Proposition 4.2).

Coverage and length for worst and best groups. Figures 1
and 8 (Appendix F.2) show the coverage and the length
of the intervals as a function of the training set size for,
respectively, the “worst” and “best group”. The calibration
size is fixed to 1000 and the test set contains 2000 points
with the “hardest” mask, i.e. the one leading to the lowest
coverage (here it corresponds to cases where only X4 is
observed) and 2000 points with the “easiest” mask, i.e. with
the highest coverage (here it corresponds to all the variables
observed). These figures highlight that:

• CQR and QR conditional coverage improve when the
training size increases (Corollary 6.2);

• Both versions of CQR-MDA are mask-conditionally-
valid even for the worst pattern (Theorem 5.4);

• CQR-MDA-Exact is exactly mask-conditionally-valid as
the coverage on the worst and best patterns are exactly
90% (Theorem 5.4).

Coverage and length by mask size. Figure 3 displays the
average coverage and intervals’ length as a function of the
pattern size, i.e., the performance metrics are aggregated by
the masks with the same number of missing variables; the
first violin plot of each panel corresponds to the marginal
coverage (see Appendix F.2 for QR results). Note that only
the pattern sizes are presented and not the patterns them-
selves as there are 2d = 1024 possible masks.5 For each
pattern size, 100 observations are drawn according to the
distribution of M |size(M) in the test set. The training and
calibration sizes are respectively 500 and 250 (Figure 10
contains the results for other sizes). Figure 3 shows that:

• CQR is marginally valid (Proposition 3.3);
• CQR and QR undercover with an increasing number of

5Note that in practice the relationship between the coverage and
the number of missing values is not necessarily monotonic as a
mask with only one missing value can lead to more uncertainty
than a mask with many missing values, see Appendix C.
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Figure 3: Average coverage (top) and length (bottom) as
a function of the number of missing values (NA). The first
violin plot shows the marginal coverage. #Tr = 500 and
#Cal = 250. The marginal test set includes 2000 observa-
tions. The mask-conditional test set includes 100 individuals
for each missing data pattern size.

missing values. This can be explained because their length
nearly does not vary with the size of the missing pattern,
despite having the mask concatenated with the features;

• Both versions of CQR-MDA are marginally valid (The-
orem 5.5) and mask(-size)-conditionally-valid (Theo-
rem 5.4);

• CQR-MDA-Exact is exactly mask(-size)-conditionally-
valid (Theorem 5.4) and its length is close to the oracle
ones. It has more variability for the patterns with few
missing values as for these masks Cal(test) is smaller.

7.2 Semi-synthetic experiments

We consider 6 benchmark real data sets for regression:
meps_19, meps_20, meps_21 (MEPS), bio, bike and
concrete (Dua & Graff, 2017), where we introduce miss-
ing values in their quantitative features. Note that some
patterns have a low (or null) frequency of appearance in the
training sets of bio and concrete. The sample sizes for
training, calibration, and testing, and simulation details are
provided in Appendix F.3, along with results for smaller
training and calibration sets.

Figure 4 depicts the results by combining validity and effi-
ciency (length) for meps_19, bio, concrete, and bike,
where this graph follows the visualization used in Zaffran
et al. (2022). The results for meps_20 and meps_21 are
given in Appendix F.3, as they are similar to meps_19.
Each of the panels in Figure 4 summarizes the results for
one data set, with the average coverage shown in the x-axis
and the average length in the y-axis. A method is mask-
conditionally-valid if all the markers of its color are at the
right of the vertical dotted line (90%). We observe that:

• CQR is marginally valid (orange diamond ♦, Proposi-
tion 3.3). It is not mask-conditionally-valid as the lowest
coverage (orange down triangle ▼) is far below 90% for the
bio, concrete, and bike data sets;
• CQR-MDA-Exact is marginally valid (purple diamond
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1Figure 4: Validity and efficiency with missing values for 4 data sets (panels) with d features, including l quantitative ones in
which missing values are introduced with probability 0.2. Colors represent the methods. Diamonds (♦) represent marginal
coverage while the patterns giving the lowest and highest coverage are represented with triangles (▼ and ▲). Vertical dotted
lines represent the target coverage of 90%.

♦, Theorem 5.5). It is also exactly mask-conditionally-valid,
as the lowest (purple down triangle ▼) and highest (purple
up triangle ▲) coverages are about 90% (Theorem 5.4);
• CQR-MDA-Nested is marginally valid (blue diamond
♦, Theorem 5.5). It is also mask-conditionally-valid, as
the lowest (blue down triangle ▼) and the highest (blue up
triangle ▲) coverages are larger than 90% (Theorem 5.4).

7.3 Predicting the level of platelets for trauma patients

We study the applicability and robustness of CPMDA on
the critical care TraumaBase® data. We focus on predict-
ing the level of platelets of severely injured patients upon
arrival at the hospital. This level is directly related to the
occurrence of hemorrhagic shock and is difficult to obtain
in real-time: predicting it accurately could be crucial to an-
ticipate the need for transfusion and blood resources. In
addition, this prediction task appears to be challenging as
Jiang et al. (2022) achieved an average relative prediction
error (∥ŷ − y∥2/∥y∥2) that is no lower than 0.23. This high-
lights the need for reliable uncertainty quantification.

After applying inclusion and exclusion criteria obtained by
medical doctors and following the pipeline of Sportisse et al.
(2020) described in Appendix F.4, we left with a subset of
28855 patients and 7 features. Missing values vary from 0%
to 24% by features, with a total average of 7%.

Results. The results are summarized in Figure 5, where
we use different markers to denote the different masks. To
ensure a fair comparison between the conformal methods,
we only keep the missing patterns for which there are more
than 200 individuals; this excludes 7 patterns. Finally, since
we found that the vanilla QR tends to be overly conservative,
we refer to Appendix F.4 for its results. Figure 5 shows
that all conformal approaches achieve marginal coverage
higher than the desired 90% level (diamonds ♦). Further-
more, for each mask (each set of linked markers) CQR-
MDA improves coverage compared to CQR by approaching

90%, and efficiency by reducing the average length. Notice-
ably, for the pattern corresponding to all features observed
(squares ■), CQR-MDA has a coverage rate above 90%
while CQR is below the target level. Therefore, we believe
CQR-MDA should be recommended as it improves upon
the vanilla impute-then-regress+CQR approach.
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1Figure 5: Average coverage and length on the TraumaBase®
analysis. See the caption of Figure 4 for details. Other
symbols than diamond correspond to computing the average
per mask. Each individual’s prediction is obtained by using
15390 observations for training, and 7694 for calibration.
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Appendices
The appendices are organized as follows.

Appendix A describes CQR, used in the paper.

Appendix B provides an explicit description of impute-then-predict+conformalization (Appendix B.1), along with its proof of
validity, that is the proofs for Section 3 (Appendix B.2).

Then, Appendix C contains the proofs for the Gaussian linear model oracle intervals presented in Section 4 (Appendix C.1),
along with the discussion on how mean-based approaches fail (Appendix C.2).

Appendix D gives the general statement of CP-MDA-Exact (Appendix D.1), and the proofs of the validity theorems for
CP-MDA-Exact (Appendix D.2), along with the theoretical study of CP-MDA-Nested (Appendix D.3).

Appendix E provides all the proofs about consistency and asymptotic conditional coverage presented in Section 6.

Finally, Appendix F contains all the details for the experimental study and additional results completing Section 7. More
precisely, Appendix F.1 gives more details about the settings. Appendix F.2 contains results on synthetic data. Appendix F.3
describes the real data sets used for the semi-synthetic experiments, and presents the remaining results. Appendix F.4 presents
the real medical data set (TraumaBase®), the pipeline and settings used and the results obtained by QR on this data set.

A Illustration and details on CQR (Romano et al., 2019) procedure
Figure 6 provides a visualization and step by step description of CQR.

B Impute-then-predict+conformalization
B.1 Description of the algorithm

Algorithm 3 SCP on impute-then-predict
Input: Imputation algorithm I, predictive algorithm A, conformity score function s, significance level α, training set{(

X(1),M (1), Y (1)
)
, · · · ,

(
X(n),M (n), Y (n)

)}
.

Output: Prediction interval Ĉα (X,M).
1: Randomly split {1, . . . , n} into two disjoint sets Tr and Cal.
2: Fit the imputation function: Φ(·)← I

({(
X(k),M (k)

)
, k ∈ Tr

})
3: Impute the data set:

{
X

(k)
imp

}n

k=1
:=
{
Φ
(
X(k),M (k)

)}n
k=1

4: Fit algorithm A: ĝ(·)← A
({(

X
(k)
imp , Y

(k)
)
, k ∈ Tr

})
5: for k ∈ Cal do
6: Set S(k) = s

(
Y (k), ĝ

(
X

(k)
imp

))
, the conformity scores

7: end for
8: Set SCal = {S(k), k ∈ Cal}
9: Compute Q̂1−αSCP (SCal), the 1− αSCP-th empirical quantile of SCal, with 1− αSCP := (1− α) (1 + 1/#Cal).

10: Set Ĉα (X,M) =
{
y such that s (y, ĝ ◦ Φ (X,M)) ≤ Q̂1−αSCP (SCal)

}
.

Similarly, Algorithm 1 can be written to include any underlying predictive algorithm (regression or classification) and any
score function.
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Figure 6: Schematic illustration of Conformalized Quantile Regression (CQR) (Romano et al., 2019).
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B.2 Proof of exchangeability after imputation

In this subsection, we provide a more formal statement of Lemma 3.2 and Proposition 3.3 in respectively Lemma B.1 and
Proposition B.2. To that end, we introduce a notion of symmetrical imputation on a set T , for T ⊂ J1, n+ 1K.

Assumption A5 (Symmetrical imputation on a set T ). For a given set of points {X(k),M (k), Y (k)}k∈T the imputation

function Φ is the output of an algorithm I that treats the data points in T symmetrically: I({X(k),M (k), Y (k)}k∈T )
(d)
=

I({X(σ(k)),M (σ(k)), Y (σ(k))})k∈T conditionally to {X(k),M (k), Y (k)}k∈T and for any permutation σ on J1,#T K.

Lemma B.1 (Imputation preserves exchangeability). Let A1 hold. Then, for any missing mechanism, for any imputation
function Φ satisfying A5, the imputed random variables

(
Φ
(
X(k),M (k)

)
,M (k), Y (k)

)
k∈T are exchangeable.

Proposition B.2 ((Exact) validity of impute-then-predict+conformalization). If A1 is satisfied, then we have the following
three results.

1. Full CP: if A5 is satisfied for T = J1, n + 1K (i.e., the imputation algorithm treats all points symmetrically), then
impute-then-predict+Full CP is marginally valid. If moreover the scores are almost surely distinct, it is exactly valid.

OR

2. Jackknife+ if A5 is satisfied for T = J1, n + 1K (i.e., the imputation algorithm treats all points symmetrically), then
impute-then-predict+Jackknife+ is marginally valid (of level 1− 2α).

OR

3. SCP with the split J1, n+1K = Tr
⋃
Cal

⋃
Test and if A5 is satisfied for T = Cal

⋃
Test (i.e., the imputation treats all

points in Cal
⋃
Test symmetrically) then impute-then-predict+conformalization is marginally valid. If moreover the

scores are almost surely distinct, it is exactly valid.

Remark B.3 (Imputation choices for SCP). In the latter case, for SCP, the coverage result can be derived conditionally on
Tr, thus the coverage results holds for: (i) any deterministic imputation function (conditionally on Tr) (that is any arbitrary
function of Tr), or (ii) any stochastic imputation function treating Cal and Test symmetrically (iii) any combination of both.

Proof of Lemma B.1. Φ is the output of an imputing algorithm I trained on
{(

X(k),M (k), Y (k)
)
k∈T

}
.

Assume
(
X(k),M (k), Y (k)

)
k∈T are exchangeable (A1).

Thus, if I treats the data points in T symmetrically,
(
Φ(X(k),M (k)),M (k), Y (k)

)
k∈T are exchangeable (see proof of

Theorem 1b in (Barber et al., 2022) for example).

Proof of Proposition B.2. Proposition B.2 is a consequence of Lemma B.1 with different choices of T , that enable to apply
the following results:

1. Full CP: Vovk et al. (2005), also re-stated in Barber et al. (2022)
2. Jackknife+: Barber et al. (2021b)
3. SCP: Lei et al. (2018) or Papadopoulos et al. (2002) and Angelopoulos & Bates (2021) for a generic version with any

score function (note that the coverage is proved conditionally on Tr).

C Gaussian linear model
C.1 Distribution of Y |(Xobs(m),M) and oracle intervals

Proposition C.1 (Distribution of Y |(Xobs(M),M) (Le Morvan et al., 2020b)). Under Model 4.1, for any m ∈ {0, 1}d:

Y |(Xobs(m),M = m) ∼ N
(
µ̃m, Σ̃m

)
,
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with:

µ̃m = βT
obs(m)Xobs(m) + βT

mis(m)µ
m
mis|obs

µm
mis|obs = µm

mis(m) +Σm
mis(m),obs(m)(Σ

m
obs(m),obs(m))

−1(Xobs(m) − µm
obs(m)),

Σ̃m = βT
mis(m)Σ

m
mis|obsβmis(m) + σ2

ε

Σm
mis|obs = Σm

mis(m),mis(m) − Σm
mis(m),obs(m)(Σ

m
obs(m),obs(m))

−1Σm
obs(m),mis(m).

Proposition C.2 (Oracle intervals). Under Model 4.1, for any m ∈ {0, 1}d, for any δ ∈ (0, 1):

q
Y |(Xobs(m),M=m)

δ = βT
obs(m)Xobs(m) + βT

mis(m)µ
m
mis|obs + q

N (0,1)
δ

√
βT
mis(m)Σ

m
mis|obsβmis(m) + σ2

ε ,

and the oracle predictive interval length is given by:

L∗
α(m) = 2q

N (0,1)
1−α

2

√
βT
mis(m)Σ

m
mis|obsβmis(m) + σ2

ε . (5)

Proof. Using multivariate Gaussian conditioning (Eaton, 1983), for any subset of indices L ∈ J1, dK:

XK |(XL,M) ∼ N (µM
K|L,Σ

M
K|L), (6)

with K = L̄ (the complement indices) and:

µM
K|L = µM

K +ΣM
K,LΣ

M
L,L

−1
(XL − µM

L ),

ΣM
K|L = ΣM

K,K − ΣM
K,LΣ

M
L,L

−1
ΣM

L,K .

Given that Y = βTX + ε, with ε ∼ N (0, σ2
ε) ⊥⊥ (X,M), the following holds:

Y |(XL,M)
(d)
= (βTX + ε)|(XL,M)

(d)
= βT

LXL + (ε+ βT
KXK)|(XL,M)

and by Equation (6), βT
KXK |(XL,M) ∼ N (βT

KµM
K|L, β

T
KΣM

K|LβK), and (ε|(XL,M)) ∼ N (0, σ2
ε), and (βT

KXK ⊥⊥
ε)|(XL,M) . Thus:

Y |(XL,M) ∼ N (βT
LXL + βT

KµM
K|L, β

T
KΣM

K|LβK + σ2
ε).

Consequently, for any δ ∈ (0, 1):

q
Y |(XL,M)
δ = βT

LXL + βT
KµM

K|L + q
N (0,1)
δ

√
βT
KΣM

K|LβK + σ2
ε . (7)

For any pattern m ∈ {0, 1}d, applying Equation (7) with K = mis(m) = obs(m), L = obs(m), we have, for any δ ∈ (0, 1):

q
Y |(Xobs(m),M=m)

δ =βT
obs(m)Xobs(m) + βT

mis(m)µ
m
mis|obs + q

N (0,1)
δ

√
βT
mis(m)Σ

m
mis|obsβmis(m) + σ2

ε ,

and:
L∗
α(m) = 2× q

N (0,1)
1−α/2 ×

√
βT
mis(m)Σ

m
mis|obsβmis(m) + σ2

ε ,

with:

µm
mis|obs = µm

mis(m) +Σm
mis(m),obs(m)(Σ

m
obs(m),obs(m))

−1(Xobs(m) − µm
obs(m)),

Σm
mis|obs = Σm

mis(m),mis(m) − Σm
mis(m),obs(m)(Σ

m
obs(m),obs(m))

−1Σm
obs(m),mis(m).

C.2 Discussion on how mean-based approaches fail

Under Model 4.1, the Bayes predictor for a quadratic loss in presence of missing values – E
[
Y |
(
Xobs(M),M

)]
– is fully

characterized (Le Morvan et al., 2020b,a; Ayme et al., 2022).

Figure 7 is obtained by generating the data according to Model 4.1 with d = 3, β = (1, 2,−1)T and σε = 1, with multivariate
Gaussian X and MCAR mechanism (X ⊥⊥M ) (which is a particular case of Model 4.1 with µm ≡ µ and Σm ≡ Σ). The left
panel represents the method Oracle mean + SCP where SCP is applied on the regressor being the Bayes predictor for the
mean with absolute residuals as the score function. The first violin plot represents the marginal coverage whereas the other 7
represent conditional coverage with respect to the different possible patterns: conditional on observing all the variables, on
observing all the variables except X1, except X2 etc (see Section 7 for details on the simulation process).
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Figure 7: Calibration set contains 500 points. Test size for each pattern is of 500 individuals and for marginal is of 2000. 200
repetitions allow to display violin plots, the horizontal black line representing the mean.

SCP on a (oracle) mean regressor lacks of conditional coverage with respect to the mask. Figure 7 (left) highlights that
even with the best mean regressor (the Bayes predictor) and an homoskedastic noise, usual SCP intervals:

• over-cover when there are no missing values;
• cover less for a mask m̆ than for a mask m̊ when m̊ ⊂ m̆ (e.g. m̊ = (1, 0, 0) only X1 is missing, m̆ = (1, 1, 0) that is
X1 and X2 are missing);

• cover less when the most informative variable (X2) is missing.

To tackle this issue, one could calibrate conditionally to the missing data patterns. This is in the same vein as calibrating
conditionally to the categories of a categorical variable or to different groups (Romano et al., 2020). This strategy is not viable
as there are 2d patterns: the number of subsets grows exponentially with the dimension, implying the creation of subsets with
too little data to perform the calibration. As an alternative, one could consider to perform calibration conditionally to the
pattern size (e.g. when d = 3, either 0 missing value, 1 or 2). This is possible as there are only d different pattern sizes.

Calibrating by pattern size does not provide validity conditionally to the missing data patterns. Figure 7 (right) shows
the coverages of Oracle mean + SCP per pattern size where SCP is applied on the Bayes predictor for the mean and the
calibration is protected by pattern size. The previous statements still hold with this strategy, even if the coverage disparities
are smaller. Therefore, it is not enough to calibrate per pattern size.

D Finite sample algorithms
D.1 General statement of Algorithm 1

We provide in Algorithm 4 a general statement of CP-MDA-Exact handling any learning algorithm (both regression and
classification) and any score function.

D.2 Mask-conditional valitidy of CP-MDA-Exact

Before proving the results, we introduce a slightly stronger notion of mask-conditional-validity, when the calibration set is
itself of random cardinality.

Definition D.1 (Mask-conditional-validity-random-calibration-size). A method is mask-conditionally-valid with a random
calibration size #Cal if for any m ∈M, the lower bound is satisfied, and exactly mask-conditionally-valid if for any m ∈M,
1 ≤ c ≤ n, the upper bound is also satisfied:

1− α ≤
valid

P
(
Y (n+1) ∈ Ĉα

(
X(n+1),m

)
|M (n+1) = m,#Cal = c

)
≤

exactly valid
1− α+

1

c+ 1
.

We start by proving Theorem D.2 that implies the result on CP-MDA-Exact in Theorem 5.4.

Theorem D.2. [Conditional validity of CP-MDA-Exact with calibration of random cardinality] Assume the missing mechanism
is MCAR, and that Assumptions A1 to A3 hold. Then:
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Algorithm 4 CP-MDA-Exact
Input: Imputation algorithm I , predictive algorithmA, conformity score function sg paramatrized by a model g, significance

level α, training set
{(

X(k),M (k), Y (k)
)}n

k=1
, test point

(
X(test),M (test)

)
.

Output: Prediction interval Ĉα

(
x(test),m(test)

)
.

1: Randomly split {1, . . . , n} into two disjoint sets Tr and Cal.
2: Fit the imputation function: Φ(·)← I

({(
X(k),M (k)

)
, k ∈ Tr

})
3: Impute the training set:

{
X

(k)
imp

}
k∈Tr

:=
{
Φ
(
X(k),M (k)

)}
k∈Tr

4: Fit algorithm A: ĝ(·)← A
({(

X
(k)
imp , Y

(k)
)
, k ∈ Tr

})
// Generate an augmented calibration set:

5: Cal(test) =
{
k ∈ Cal such that M(k) ⊂ M(test)

}
6: for k ∈ Cal(test) do
7: M̃ (k) = M (test) Additional masking
8: end for

Augmented calibration set generated. //
9: Impute the calibration set:

{
X

(k)
imp

}
k∈Cal(test)

:=
{
Φ
(
X(k), M̃ (k)

)}
k∈Cal(test)

10: for k ∈ Cal(test) do
11: Set S(k) = sĝ

(
Y (k), X

(k)
imp

)
, the conformity scores

12: end for
13: Set SCal = {S(k), k ∈ Cal(test)}
14: Compute Q̂1−α̃ (SCal), the 1− α̃-th empirical quantile of SCal, with 1− α̃ := (1− α) (1 + 1/#SCal).
15: Set Ĉα

(
X(test),M (test)

)
=
{
y such that sĝ

(
y,Φ

(
X(test),M (test)

))
≤ Q̂1−α̂ (SCal)

}
.

• CP-MDA-Exact is valid with a random calibration size #Cal conditionally to the missing patterns;
• if the scores S(k) are almost surely distinct, CP-MDA-Exact is exactly mask-conditionally-valid with a random calibration
size #Cal.

Proof of Theorem D.2. Let Tr and Cal be two disjoint sets on J1, nK. Let ĝ be some model. Given A1,

the sequence
{(

X(k),M (k), Y (k)
)
k∈Cal

,
(
X(test),M (test), Y (test)

)}
is exchangeable. Therefore, the sequence{(

X(k), Y (k)
)
k∈Cal

,
(
X(test), Y (test)

)}
is also exchangeable.

Let m inM. We define Calm =
{
k ∈ Cal such that M(k) ⊂ m

}
.

Let c ∈ J1,#CalK.

As the M ⊥⊥ X (missingness is MCAR) and (M ⊥⊥ Y )|X (Assumption A3), then M ⊥⊥ (X,Y ), and #Calm ⊥⊥(
X(k),Y(k)

)
k∈Cal

,
(
X(test),Y(test)

)
. It follows that the sequence

{(
X(k), Y (k)

)
k∈Calm

,
(
X(test), Y (test)

)}
is exchangeable

conditionally to #Calm = c.

Similarly, M (test) ⊥⊥
(
X(k), Y (k)

)
k∈Cal

,
(
X(test), Y (test)

)
. Thus the sequence

{
(
X(k),M (test), Y (k)

)
k∈Calm

,
(
X(test),M (test), Y (test)

)
} is exchangeable conditionally to #Calm = c and M (test) = m.

Therefore, we can now invoke Proposition 3.3 in combination with Lemma 1 of Romano et al. (2020) to conclude the proof.
But we can state a more rigorous version here, since in fact Calm is a random variable (as discussed in Definition D.1).

Since the algorithm I treats the calibration and test data points symmetrically (A5 with T =
Cal

⋃
Test), A5 also holds for any T ′ ⊂ T . Therefore, by Lemma B.1 the sequence{(

Φ(X(k),M (test)),M (test), Y (k)
)
k∈Calm

,
(
Φ(X(test),M (test)),M (test), Y (test)

)}
is exchangeable conditionally to

#Calm = c and M (test) = m.

The conclusion follows from usual arguments (Papadopoulos et al., 2002; Lei et al., 2018; Angelopoulos & Bates, 2021).

Precisely,
{(

sĝ(Y
(k),Φ(X(k),M (test)))

)
k∈Calm

, sĝ(Y
(test),Φ(X(test),M (test)))

}
is exchangeable conditionally to
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#Calm = c and M (test) = m. Therefore,

P
(
sĝ(Y

(test),Φ(X(test),M (test))) ≤ Q̂1−α̃((sĝ(Y
(k),Φ(X(k),M (test))))k∈Calm)

∣∣∣M (test) = m,#Calm = c
)
≥ 1− α,

and if the
((

sĝ(Y
(k),Φ(X(k),M (test)))

)
k∈Calm

, sĝ(Y
(test),Φ(X(test),M (test)))

)
are almost surely distinct (i.e. have a

continuous distribution) then (Lei et al., 2018; Romano et al., 2019):

P
(
sĝ(Y

(test),Φ(X(test),M (test))) ≤ Q̂1−α̃((sĝ(Y
(k),Φ(X(k),M (test))))k∈Calm)

∣∣∣M (test) = m,#Calm = c
)
≤ 1−α+ 1

c+ 1
.

This proves the first two points (with respect to Definition D.1) of Theorem 5.4, by observing that{
Y (test) ∈ Ĉα(X

(test),M (test))
}
=
{
sĝ(Y

(test),Φ(X(test),M (test))) ≤ Q̂1−α̃

((
sĝ(Y

(k),Φ(X(k),M (test)))
)
k∈Calm

)}
.

Then, the proof of Theorem 5.5 (marginal validity of the CP-MDA-Exact) is direct by marginalizing the result of Theorem 5.4.

D.3 Validities of CP-MDA-Nested.

Next, we give more details on the results on CP-MDA-Nested.

D.3.1 MARGINAL VALIDITY OF CP-MDA-NESTED.

The proof of Theorem 5.3 (recalled below) is highly inspired from the Jackknife+ Barber et al. (2021b) proof.

Theorem 5.3 (marginal validity of CP-MDA-Nested). If A1 and A2 hold, then, for any missingness mechanism, CP-MDA-
Nested outputs intervals Ĉα such that: P(Y (n+1) ∈ Ĉα(X

(n+1),M (n+1))) ≥ 1− 2α.
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Proof.{
Y (n+1) /∈ Ĉα(X

(n+1),M (n+1))
}
=
{
Y (n+1) > Q̂1−α̃(Z1−α

2
) or Y (n+1) < Q̂α̃(Zα

2
)
}

=

{
(1− α)(n+ 1) ≤

n∑
k=1

1
{
Y (n+1) > Z

(k)
1−α

2

}
or (1− α)(n+ 1) ≤

n∑
k=1

1
{
Y (n+1) < Z

(k)
α
2

}}

⊂
{
(1− α)(n+ 1) ≤

n∑
k=1

1
{
Y (n+1) > Z

(k)
1−α

2
or Y (n+1) < Z

(k)
α
2

}}

=

{
n∑

k=1

1
{
Y (n+1) > Z

(k)
1−α

2
or Y (n+1) < Z

(k)
α
2

}
≥ (1− α)(n+ 1)

}

using CQR scores for simplicity→ =

{
n∑

k=1

1
{
Y (n+1) > q̂1−α

2
◦ Φ

(
X(n+1),max(M (n+1),M (k))

)
+ S(k),n+1

or Y (n+1) < q̂α
2
◦ Φ

(
X(n+1),max(M (n+1),M (k))

)
− S(k),n+1

}
≥ (1− α)(n+ 1)

}
=

{
n∑

k=1

1
{
Y (n+1) − q̂1−α

2
◦ Φ

(
X(n+1),max(M (n+1),M (k))

)
> S(k),n+1

or q̂α
2
◦ Φ

(
X(n+1),max(M (n+1),M (k))

)
− Y (n+1) > S(k),n+1

}
≥ (1− α)(n+ 1)

}
=

{
n∑

k=1

1
{
max

(
Y (n+1) − q̂1−α

2
◦ Φ

(
X(n+1),max(M (n+1),M (k))

)
,

q̂α
2
◦ Φ

(
X(n+1),max(M (n+1),M (k))

)
− Y (n+1)

)
> S(k),n+1

}
≥ (1− α)(n+ 1)

}
{
Y (n+1) /∈ Ĉα(X

(n+1),M (n+1))
}
⊂
{

n∑
k=1

1
{
S(n+1),k > S(k),n+1

}
≥ (1− α)(n+ 1)

}
,

where we defined S(k),l = max
(
Y (k) − q̂1−α

2
◦ Φ

(
X(k),max(M (k),M (l))

)
, q̂α

2
◦ Φ

(
X(k),max(M (k),M (l))

)
− Y (k)

)
or more generally S(k),l = s

(
(X(k),max(M (k),M (l))), Y (k)

)
, that is the score of the point k when the mask of the point l

is applied to it, on top of its own mask M (k).

Following Barber et al. (2021b), we now define a comparison matrix A ∈ {0, 1}(n+1)×(n+1), such that for (k, l) ∈ J1, n+1K2:
Ak,l = 1

{
S(k),l > S(l),k

}
. Hence, we now have (since by definition An+1,n+1 = 0):

{
Y (n+1) /∈ Ĉα(X

(n+1),M (n+1))
}
⊂
{

n+1∑
k=1

An+1,k ≥ (1− α)(n+ 1)

}
.

Denote W (A) = {l ∈ J1, n+ 1K :
n+1∑
k=1

Al,k ≥ (1− α)(n+ 1)}. We can re-write:

{
Y (n+1) /∈ Ĉα(X

(n+1),M (n+1))
}
⊂ {n+ 1 ∈W (A)} .

Therefore P
{
Y (n+1) /∈ Ĉα(X

(n+1),M (n+1))
}
≤ P {n+ 1 ∈W (A)}. Thus, we will now bound P {n+ 1 ∈W (A)}.
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Remark that #W (A) ≤ 2α(n+ 1) deterministically: this is proven in Barber et al. (2021b) for any comparison matrix.

To conclude the proof, observe that the matrix A can be viewed as the output of a deterministic6 function C of the exchangeable
(by A1) sequence

(
X(k),M (k), Y (k)

)n+1

k=1
: A = C

((
X(k),M (k), Y (k)

)n+1

k=1

)
.

Thus, for any permutation σ on J1, n+ 1K, C
((

X(k),M (k), Y (k)
)n+1

k=1

)
(d)
= C

((
X(σ(k)),M (σ(k)), Y (σ(k))

)n+1

k=1

)
:= Aσ .

It follows that for any k ∈ J1, n+ 1K, P{k ∈W (A)} = P{k ∈W (Aσ)} for any permutation σ. Therefore P{k ∈W (A)}
does not depend on k.

Finally:

P(Y (n+1) /∈ Ĉα(X
(n+1),M (n+1))) ≤ P{n+ 1 ∈W (A)}

=
1

n+ 1

n+1∑
k=1

P{k ∈W (A)}

=
1

n+ 1
E[ #W (A)]

≤ 1

n+ 1
2α(n+ 1)

P(Y (n+1) /∈ Ĉα(X
(n+1),M (n+1))) ≤ 2α.

D.3.2 MASK-CONDITIONAL-VALIDITY OF CP-MDA-NESTED.

Let m ∈M.

We start by describing the links between CP-MDA-Nested and CP-MDA-Exact. CP-MDA-Exact can be re-written in the
same way as CP-MDA-Nested, but keeping the subselection step of l. 5.

Indeed, first mention that the output of Algorithm 1 can be written in the following ways:

• Ĉα(X
(test),m(test)) =

[
q̂α

2
◦ Φ(X(test),m(test))− Q̂1−α̃ (S) ; q̂1−α

2
◦ Φ(X(test),m(test)) + Q̂1−α̃ (S)

]
• Ĉα(X

(test),m(test)) =
[
Q̂α̃

(
q̂α

2
◦ Φ(X(test),m(test))− SCal(test)

)
; Q̂1−α̃

(
q̂1−α

2
◦ Φ(X(test),m(test)) + SCal(test)

)]
• Ĉα(X

(test),m(test)) =
[
Q̂α̃

(
Zm(test)

α
2

)
; Q̂1−α̃

(
Zm(test)

1−α
2

)]
.

With Zm
α
2

:= {z(k)α
2
, k ∈ Cal and M̃(k) = m}, and similarly for the upper bag. Recall that we have: z

(k)
α
2

= q̂α
2
◦

Φ
(
x(test), m̃(k)

)
− s(k).

On the other hand, the output predictive interval of Algorithm 2 is then written as:

• Ĉα

(
X(test),m(test)

)
= [Q̂α̃

(
Zα

2

)
; Q̂1−α̃

(
Z1−α

2

)
].

With these notations, Zα
2

can be partitioned as

Zα
2
= Zm

α
2

⋃( ⋃
m̃(k)⊃m

Zm̃(k)

α
2

)
. (8)

With

Zα
2
= {Z(k)

α
2

, k ∈ Cal}

Z
(k)
α
2

= q̂α
2
◦ Φ

(
X(test), M̃ (k)

)
− S(k)

s(k) = max(q̂α
2
(x

(k)
imp)− y(k), y(k) − q̂1−α

2
(x

(k)
imp)).

6In fact, C is only required to be “independent of its input”. If we denote by ξ the randomness of C, we can write that C(·) = D(·; ξ) with
D a deterministic function and the requirement is that ξ and the argument of C are independent.
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The result of Algorithm 1 implies that for any mask m ∈M, we have :

P
(
Y (test) ∈ Ĉα

(
X(test),m

)
|M (test) = m

)
≥ 1− α,

i.e.

P
(
Y (test) /∈

[
q̂α

2
◦ Φ(X(test),m)− Q̂1−α̃ (Sm) ; q̂1−α

2
◦ Φ(X(test),m) + Q̂1−α̃ (Sm)

]
|M (test) = m

)
≤ α. (9)

Where: Q1−α̃ (S) is the (1− α)(1 + 1/#S)-quantile of S and Sm = {s(k) for k ∈ Cal and M̃(k) = m}. Equivalently:

P
(
Y (test) ∈

[
Q̂α̃

(
Zm

α
2

)
; Q̂1−α̃

(
Zm
1−α

2

)]
|M (test) = m

)
≥ 1− α. (10)

In the following Lemma, we show that for m̃ ⊃ m the result extends under Assumption A4.

Lemma D.3. Assume Assumption A4. For any m ∈M, for any m̃ ⊃ m

P
[(

Y (test) ∈
[
Q̂α̃

(
Zm̃

α
2

)
; Q̂1−α̃

(
Zm̃
1−α

2

)])
|M (test) = m

]
≥ 1− α. (11)

This inequality shows the conservativeness of the quantiles of the bags resulting from larger missing patterns m̃ than m when
the construction of the output of Algorithm 2.

While inequality Equation (10) is “tight” in the sense that the probability is almost exactly 1 − α (item 2 of Theo-
rem 5.4), the proof hereafter shows that Equation (11) can be pessimistic in terms of actual coverage, as one may have
P[(Y (test) /∈[Q̂α̃(Z

m̃
α
2
); Q̂1−α̃(Z

m̃
1−α

2
)])|M (test) = m]≪ α.

More precisely, we have the following inequality:

E

[
P

(
Y (test) /∈

[
q̂α

2
◦ Φ(X(test), m̃)− Q̂1−α̃

(
Sm̃
)
; q̂1−α

2
◦ Φ(X(test), m̃) + Q̂1−α̃

(
Sm̃
)] ∣∣∣∣M (test) = m,X

(test)
obs(m)

) ∣∣∣∣M (test) = m

]
≤ α .

(12)

The interpretation of that Lemma is that the intervals resulting from the prediction on xtest, m̃ (more data hidden) and
corrected with the residuals of the calibration points (Xk,Mk = m̃, Y k) have a larger probability of containing Y test,
conditionally to Xobs(m) than the interval built using prediction on xtest,m (more data available) and corrected with the
residuals of the calibration points (Xk,Mk = m,Y k) (more data available)

Proof of Lemma D.3. We start by invoking Equation (9) for m̃:

P
(
Y (test) /∈

[
q̂α

2
◦ Φ(X(test), m̃)− Q̂1−α̃

(
Sm̃
)
; q̂1−α

2
◦ Φ(X(test), m̃) + Q̂1−α̃

(
Sm̃
)]
|M (test) = m̃

)
≤ α. (13)

Consequently, by the tower property of conditional expectations:

E

[
P

(
Y (test) /∈

[
q̂α

2
◦ Φ(X(test), m̃)− Q̂1−α̃

(
Sm̃
)
; q̂1−α

2
◦ Φ(X(test), m̃) + Q̂1−α̃

(
Sm̃
)] ∣∣∣∣M (test) = m̃, S(m̃), X

(test)
obs(m̃)

) ∣∣∣∣M (test) = m̃

]
≤ α .

(14)

Observe that q̂α
2
◦ Φ(X(test), m̃)− Q̂1−α̃

(
Sm̃
)

is {M (test) = m̃, S(m̃), X
(test)
obs(m̃)}-measurable.

Moreover, by Assumption A4, we have that for any δ ∈ [0, 0.5]:

q
Y |(Xobs(m),M=m)

1−δ/2 ≤ q
Y |(Xobs(m̃),M=m̃)

1−δ/2 (15)

q
Y |(Xobs(m),M=m)

δ/2 ≥ q
Y |(Xobs(m̃),M=m̃)

δ/2 . (16)

In other words the conditional distribution of Y given Xobs(m̃) and M = m̃ “stochastically dominates” the conditional
distribution of Y given Xobs(m) and M = m.
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We thus have, with FZ denoting the cumulative distribution function of Z: FY |(Xobs(m̃),M=m̃) the cumulative distribution
function of Y |(Xobs(m̃),M = m̃):

P

(
Y (test) /∈

[
q̂α

2
◦ Φ(X(test), m̃)− Q̂1−α̃

(
Sm̃

)
; q̂1−α

2
◦ Φ(X(test), m̃) + Q̂1−α̃

(
Sm̃

)] ∣∣∣∣M (test) = m̃, S(m̃), X
(test)

obs(m̃)

)
= 1−

[
FY |(Xobs(m̃),M=m̃)

(
q̂1−α

2
◦ Φ(X(test), m̃) + Q̂1−α̃(S

m̃)
)
− FY |(Xobs(m̃),M=m̃)

(
q̂α

2
◦ Φ(X(test), m̃)− Q̂1−α̃(S

m̃)
)]

(i)

≥ 1−
[
FY |(Xobs(m),M=m)

(
q̂1−α

2
◦ Φ(X(test), m̃) + Q̂1−α̃(S

m̃)
)
− FY |(Xobs(m),M=m)

(
q̂α

2
◦ Φ(X(test), m̃)− Q̂1−α̃(S

m̃)
)]

= P

(
Y (test) /∈

[
q̂α

2
◦ Φ(X(test), m̃)− Q̂1−α̃

(
Sm̃

)
; q̂1−α

2
◦ Φ(X(test), m̃) + Q̂1−α̃

(
Sm̃

)] ∣∣∣∣M (test) = m,S(m̃), X
(test)

obs(m)

)
.

(17)

At (i) we use (16) FY |(Xobs(m),M=m)(q̂α
2
◦ Φ(X(test), m̃) − Q̂1−α̃(S

m̃)) ≤ FY |(Xobs(m̃),M=m̃)(q̂α
2
◦ Φ(X(test), m̃) − Q̂1−α̃(S

m̃)),

and (15): FY |(Xobs(m),M=m)(q̂1−α
2
◦ Φ(X(test), m̃) + Q̂1−α̃(S

m̃)) ≥ FY |(Xobs(m̃),M=m̃)(q̂1−α
2
◦ Φ(X(test), m̃) + Q̂1−α̃(S

m̃)) by

A4. Remark that here we assume that
(
q̂1−α

2
◦ Φ(X(test), m̃) + Q̂1−α̃(S

m̃)
)
≥ median(Y(test)|(X(test)

obs(m̃),M = m̃) and(
q̂α

2
◦ Φ(X(test), m̃)− Q̂1−α̃(S

m̃)
)
≤ median(Ytest|(X(test)

obs(m̃),M = m̃).

We obtain Equation (12) in Lemma D.3 by plugging (17) in (14), then Equation (11) by the tower property.

Theorem D.4. Assume the missing mechanism is MCAR, and that Assumptions A1 to A3 hold. Additionally Assumption A4 is
satisfied.

Consider the partition described in Equation (8), and consider CP-MDA-Nested running on a test point with missing pattern
m(test), with any of the following outputs, instead of l. 15 Ĉα

(
x(test),m(test)

)
= [Q̂α̃

(
Zα

2

)
; Q̂1−α̃

(
Z1−α

2

)
]:

1. Ĉα

(
x(test),m(test)

)
= [Q̂α̃(Z

m̃
α
2
); Q̂1−α̃(Z

m̃
1−α

2
)] where m̃ ⊃ m(test) is an arbitrary choice.

2. Ĉα

(
x(test),m(test)

)
= [Q̂α̃(Z

m̂
α
2
); Q̂1−α̃(Z

m̂
1−α

2
)] where m̂ is a randomly selected pattern in {m̃, m̃ ⊃ m(test)}, possibly

with varying probability depending on the cardinality of the sets Zm̃
α/2 .

Then the resulting algorithm is mask-conditionally-valid.

Proof of Theorem D.4. The proof immediately follows from Equation (11), and gives the result without difficulty for any
arbitrary pattern or random variable independent of all other randomness.

Extension to a choice that involves the cardinality of the sets Zm̃
α/2, leveraging the independence between these cardinals and

the coverage properties (same as in the proof of Theorem D.2).

E Infinite data results
Proposition 6.1 (ℓβ-consistency of an universal learner). Let β ∈ [0, 1]. If X admits a density on X , then, for almost all
imputation function Φ ∈ FI

∞, the function g∗ℓβ ,Φ ◦ Φ is Bayes optimal for the pinball risk of level β.

Proof of Proposition 6.1. The proof starts in the exact same way than Le Morvan et al. (2021), based on their Lemmas A.1
and A.2. For completeness, we copy here the statements of these lemmas without their proof and rewrite the two first parts of
the main proof.

Let Φ be an imputation function such that for each missing data pattern m, ϕm ∈ C∞
(
R|obs(m)|,R|mis(m)|).

Lemma E.1 (Lemma A.1 in Le Morvan et al. (2021)). Let ϕm ∈ C∞
(
R|obs(m)|,R|mis(m)|) be the imputation function

for missing data pattern m, and let Mm =
{
x ∈ Rd : xmis(m) = ϕm

(
xobs((m))

)}
. For all m, Mm is an |obs((m))|-

dimensional manifold.

In Lemma E.1,Mm represents the manifold in which the data points are sent once imputed by ϕm. Lemma E.1 states that
this manifold is of dimension |obs(m)|.
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Lemma E.2 (Lemma A.2 in Le Morvan et al. (2021)). Let m and m′ be two distinct missing data patterns with the same
number of missing (resp. observed) values |mis| (resp |obs|). Let ϕm ∈ C∞

(
R|obs(m)|,R|mis(m)|) be the imputation function

for missing data pattern m, and letMm =
{
x ∈ Rd : xmis(m) = ϕm

(
xobs(m)

)}
. We define similarly Φ(m

′) andM(m′).

For almost all imputation functions ϕm and Φ(m
′),

dim
(
Mm ∩M(m′)

)
=

{
0 if |mis|> d

2

d− 2|mis| otherwise.

Note that, as by Lemma E.1 dim (Mm) = dim
(
M(m′)

)
= |obs|= d − |mis|, Lemma E.2 states that

dim
(
Mm ∩M(m′)

)
≤ dim (Mm) = dim

(
M(m′)

)
.

Now, to prove Proposition 6.1 the missing data patterns are ordered as in Le Morvan et al. (2021): the first one will be the one
in which all the variables are missing, while the last one will be the one in which all the variables are observed. For two data
patterns with the same number of missing variables, the ordering is picked at random. We denote by m(i) the i-th missing
data pattern according to this ordering.

We are going to build a function gΦ which, composed with Φ, will reach the ℓ-Bayes risk.

For each missing data pattern, and starting by m(1) of all variables missing, we can define gΦ on the data points from the
current missing data pattern. More precisely, for each i, gΦ is built for every imputed data point belonging toM(m(i)) except
for those already considered in previous steps (one imputed data point can belong to multiple manifolds):

∀Z = Φ(X,M) ∈M(m(i))\
⋃
k<i

M(m(k)), g⋆(Z) = f̃⋆(X̃)

That is, gΦ ◦ Φ(X,M) will equal f̃∗(X,M) except possibly if Φ(X,M) = Φ(Ỹ ) for some Ỹ that has more missing values
than X,M . Therefore, for each missing data pattern m(i), gΦ ◦ Φ equals f̃∗ except on

⋃
k<iM(m(k)). The question that

remains is: what is the dimension ofM(m(i))
⋂(⋃

k<iM(m(k))
)
, these points for which there is no necessarily equality

between gΦ ◦ Φ and f̃∗. First, note thatM(m(i))
⋂(⋃

k<iM(m(k))
)
=
⋃

k<i

(
M(m(i))

⋂M(m(k))
)
. For each space in this

reunion, there are two cases:

• either |obs(m(k))|< |obs(m(i))|: using Lemma E.1, dim
(
M(m(k))

)
= |obs(m(k))|< |obs(m(i))|= dim

(
M(m(i))

)
.

Thus,M(m(i))
⋂M(m(k)) is of measure zero inM(m(i)).

• either |obs(m(k))|= |obs(m(i))|: using Lemma E.2, M(m(i))
⋂M(m(k)) is of dimension 0 or smaller than

dim
(
M(m(i))

)
, thus it is of measure zero inM(m(i)).

Therefore, the set of data points for which gΦ ◦ Φ does not equal the oracle is of measure 0 for each missing data pattern.

Let β ∈ [0, 1]. We can now write down the ℓβ-risk of this built function:

E [ℓβ (Y, g
∗ ◦ Φ(X,M))] = E [ρβ (Y − g∗ ◦ Φ(X,M))]

= E
[
ρβ

(
Y − f̃∗(X,M) + f̃∗(X,M)− g∗ ◦ Φ(X,M)

)]
(i) ≤ E

[
ρβ

(
Y − f̃∗(X,M)

)]
+ E

[
ρβ

(
f̃∗(X,M)− g∗ ◦ Φ(X,M)

)]
≤ R∗

ℓβ
+ E

[
ρβ

(
f̃∗(X,M)− g∗ ◦ Φ(X,M)

)]
,

where (i) holds thanks to the shape of ρβ . For any w ∈ R and any λ ∈ R+:

ρβ (λw) = βλ|w|1w≥0 + (1− β)λ|w|1w≤0

ρβ (λw) = λρβ (w) .
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Furthermore, ρβ is convex, thus for any (u, v) ∈ R2:

ρβ

(
1

2
u+

1

2
v

)
≤ 1

2
ρβ(u) +

1

2
ρβ(v)

1

2
ρβ (u+ v) ≤ 1

2
ρβ(u) +

1

2
ρβ(v)

ρβ (u+ v) ≤ ρβ(u) + ρβ(v).

As f̃∗ and g∗ ◦ Φ are equals almost everywhere on each missing subspace, E
[
ρβ

(
f̃∗(X,M)− g∗ ◦ Φ(X,M)

)]
= 0.

Indeed, decomposing by pattern one can write:

E
[
ρβ

(
f̃∗(X,M)− g∗ ◦ Φ(X,M)

)]
=
∑

M=m

P(M = m)E
[
ρβ

(
f̃∗(X,M)− g∗ ◦ Φ(X,M)

)
|M = m

]
and thus by equality almost everywhere for each pattern every term in this sum is null.

Therefore one obtains:
E [ℓβ (Y, g

∗ ◦ Φ(X,M))] ≤ R∗
ℓβ
.

Thus:
E [ℓβ (Y, g

∗ ◦ Φ(X,M))] = R∗
ℓβ
,

and g∗ ◦ Φ is Bayes optimal. This implies thatR∗
ℓβ ,Φ

= R∗
ℓβ

. Thus, a universally consistent algorithm learning gΦ chained
with Φ will lead to a Bayes consistent function.

Proof of Corollary 6.2. Corollary 6.2 states that “For any missing mechanism, for almost all imputation function Φ ∈ FI
∞, if

FY |(Xobs(M),M) is continuous, a universally consistent quantile regressor trained on the imputed data set yields asymptotic
conditional coverage.”.

Let β ∈ [0, 1].

Remark that Proposition 6.1 states that for any missing mechanism, for almost all imputation function Φ ∈ FI
∞

a universally consistent quantile regressor trained on the imputed data set achieves the Bayes risk asymptotically.
We will thus show that any ℓβ-Bayes predictor f∗

β (any function achieving the ℓβ-Bayes-risk) is such that P(Y ≤
f∗
β(X,M)|Xobs(M),M) = β if FY |(Xobs(M),M) is continuous. Therefore, any two Bayes predictors f∗

α/2 and f∗
1−α/2

form an interval [f∗
α/2(X,M); f∗

1−α/2(X,M)] that achieves conditional coverage (conditionally to Xobs(M) and M ).

Let f∗
β be a ℓβ-Bayes predictor. Then:

f∗
β ∈ argmin

f :X×M→R
E [ρβ (Y − f (X,M))]

=E
[
E
[
ρβ (Y − f (X,M)) |Xobs(M),M

]]
.

Let (x,m) ∈ X ×M. Denote Hx,m(z) := E
[
ρβ (Y − z) |Xobs(M) = xobs(m),M = m

]
. As Y ̸= z almost surely, we have:

H ′
x,m(z) = E

[
−ρ′β (Y − z) |Xobs(M) = xobs(m),M = m

]
= E

[
−(−β1Y−z≥0 + (1− β)1Y−z≤0)|Xobs(M) = xobs(m),M = m

]
= E

[
β1Y≥z − (1− β)1Y≤z|Xobs(M) = xobs(m),M = m

]
= βP

(
Y ≥ z|Xobs(M) = xobs(m),M = m

)
− (1− β)P

(
Y ≤ z|Xobs(M) = xobs(m),M = m

)
= β

(
1− P

(
Y ≤ z|Xobs(M) = xobs(m),M = m

))
− (1− β)P

(
Y ≤ z|Xobs(M) = xobs(m),M = m

)
H ′

x,m(z) = β − P
(
Y ≤ z|Xobs(M) = xobs(m),M = m

)
.

Therefore H ′
x,m(z) ≤ 0 if and only if β ≤ P

(
Y ≤ z|Xobs(M) = xobs(m),M = m

)
.

Thus, z minimizes Hx,m if and only if β = P
(
Y ≤ z|Xobs(M) = xobs(m),M = m

)
.

If FY |(Xobs(M),M) is continuous, there exists at least a solution, that might not be unique if it is not additionally strictly
increasing. Therefore, if FY |(Xobs(M),M) is continuous, all the ℓβ-Bayes predictors can be written as f∗

β(x,m) = qx,m with

P
(
Y ≤ qx,m|Xobs(M) = xobs(m),M = m

)
= P

(
Y ≤ f∗

β(x,m)|Xobs(M) = xobs(m),M = m
)
= β.
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F Experimental study
F.1 Settings detail

Quantile Neural Network. The architecture and optimization of the Quantile Neural Network used in the experiments is
taken from Sesia & Romano (2021) (their code is freely available). This is the description provided in the original paper of
the neural network: “The network is composed of three fully connected layers with a hidden dimension of 64, and ReLU
activation functions. We use the pinball loss to estimate the conditional quantiles, with a dropout regularization of rate 0.1.
The network is optimized using Adam Kingma & Ba (2014) with a learning rate equal to 0.0005. We tune the optimal number
of epochs by cross validation, minimizing the loss function on the hold-out data points; the maximal number of epochs is set
to 2000.”

F.2 Gaussian linear results

Figure 8 is the analogous of Figure 1, but by evaluating the performances on the group leading to the highest coverage.
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Figure 8: Coverage and interval’s length for the easiest pattern. Model is NN. Calibration size fixed to 1000. The mask is
concatenated in the features. Data is imputed using Iterative Ridge. 100 repetitions allow to display error bars, corresponding
to standard error.

Hereafter, we present in Figure 9 the exact same figure than Figure 3 but with a panel (the first) for vanilla QR. The 3 other
methods are displayed again to facilitate the comparison.

Finally, Figure 10 is the analogous of Figure 9, but for a training set containing 1000 observations and a calibration set
containing 500 observations.

F.3 Semi-synthetic

In the smi-synthetic experiments, two settings are examined: one where the training size is small in comparison to the number
of parameters of the Neural Network – “Medium” –, and one where the training size is even smaller so that some masks have
a really low (or null) frequency of appearance in the training set – “Small”. In both cases, the calibration size is approximately
half the training size. Figure 4 presented the results for the “Medium” case.

Table 1: Semi-synthetic settings: training and calibration sizes for each of the 6 data sets depending on the setting.

meps_19 meps_20 meps_21 bio bike concrete
d = 139, l = 5 d = 139, l = 5 d = 139, l = 5 d = 9, l = 9 d = 18, l = 4 d = 8, l = 8
n = 15785 n = 17541 n = 15656 n = 45730 n = 10886 n = 1030

Small Tr size 500 500 500 500 500 330
Cal size 250 250 250 250 250 100

Medium Tr size 1000 1000 1000 1000 1000 630
Cal size 500 500 500 500 500 200
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Figure 9: Average coverage (top) and length (bottom) as a function of the pattern size, i.e. the number of missing values
(NA). First violin plot corresponds to marginal coverage. Stars correspond to the oracle length. Settings are: model is NN,
train size is 500, calibration size is 250. The marginal test set includes 2000 observations. The conditional test set includes
100 individuals for each possible missing data pattern size. The mask is concatenated to the features. Data is imputed using
Iterative Ridge. 100 repetitions are performed.
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Figure 10: Model is NN. Train size is 1000. Calibration size fixed to 500. The marginal test set includes 2000 observations.
The conditional test set includes 100 individuals for each possible missing data pattern size. The mask is concatenated in the
features. Data is imputed using Iterative Ridge. 100 repetitions are performed.

Figure 11 respresents the results for both of these settings, using the same parameters than Figure 4. For the results on the
two other meps data sets (meps_20 and meps_21) see Figure 12, which repeats the visualisation of meps_19 to ease
comparison.

F.4 Real data

Data set description. Sportisse et al. (2020) selected 7 variables to model the level of platelets, after discussion with medical
doctors. Thus, we followed their pipeline. Here are the 7 variables used:

• Age: the age of the patient (no missing values);
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Figure 11: Model is NN. The mask is concatenated in the features. Data is imputed using Iterative Ridge. 100 repetitions are
performed, allowing to display the standard error as error bars. The vertical dotted lines represent the target coverage of 90%.
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Figure 12: Model is NN. The mask is concatenated in the features. Data is imputed using Iterative Ridge. 100 repetitions are
performed, allowing to display the standard error as error bars. The vertical dotted lines represent the target coverage of 90%.

• Lactate: the conjugate base of lactic acid, upon arrival at the hospital (17.66% missing values);

• Delta_hemo: the difference between the hemoglobin upon arrival at hospital and the one in the ambulance (23.82%
missing values);

• VE: binary variable indicating if a Volume Expander was applied in the ambulance. A volume expander is a type of
intravenous therapy that has the function of providing volume for the circulatory system (2.46% missing values);

• RBC: a binary index which indicates whether the transfusion of Red Blood Cells Concentrates is performed (0.37%
missing values);

• SI: the shock index. It indicates the level of occult shock based on heart rate (HR) and systolic blood pressure (SBP),
that is SI = HR

SBP, upon arrival at hospital (2.09% missing values);

• HR: the heart rate measured upon arrival of hospital (1.62% missing values).

Splitting strategy. To study the coverage conditionally on the masks, we must handle the scarcity of some of them. For each
individual in the data set, we make only one prediction, this way avoiding too many repetitions of the same test point when
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computing the average. We split the data set into 5 folds, and predict on each fold by training the procedure on the 4 others,
with 15390 observations for training, and 7694 for calibration.
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Figure 13: Average coverage and length on the TraumaBase® data when predicting the platelets level. Colors correspond to
the methods. Diamond (♦) corresponds to taking the average among all individuals. Other symbols correspond to computing
the average among the individuals having a fixed mask. The vertical dotted line represents the target coverage of 90%. Model
is NN. The mask is concatenated to the features. Imputation is Iterative Ridge. Each individual is predicted using 15390
observations for training, and 7694 for calibration.
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