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Abstract.

We revisit, with a pedagogical heuristic motivation, the lambda extension of
the low-temperature row correlation functions C(M,N) of the two-dimensional
Ising model. In particular, using these one-parameter series to understand the
deformation theory around selected values of λ, namely λ = cos(πm/n) with
m and n integers, we show that these series yield perturbation coefficients,
generalizing form factors, that are D-finite functions. As a by-product these
exact results provide an infinite number of highly non-trivial identities on the
complete elliptic integrals of the first and second kind. These results underline the
fundamental role of Jacobi theta functions and Jacobi forms, the previous D-finite
functions being (relatively simple) rational functions of Jacobi theta functions,
when rewritten in terms of the nome of elliptic functions.
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functions, differentially algebraic functions, globally bounded series, diagonal of
rational functions, nome of elliptic functions, Jacobi theta functions, Jacobi forms,
absolute factorisation.

1 December 2022

1. Introduction

We revisit, with a pedagogical heuristic motivation, the lambda extension [1] of
the two-point correlation functions C(M,N) of the two-dimensional Ising model.
For simplicity we will examine in detail the lambda extension of a particular low-
temperature diagonal correlation function, namely C(1, 1), in order to make crystal
clear some structures and subtleties. However similar structures and results can be
obtained on the two-point correlation functions C(M,N) for the special case ν = −k
studied in [2] where Okamoto sigma-forms of Painlevé VI equations also emerge.

http://arxiv.org/abs/2209.07434v2
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In 1976 Wu, McCoy, Tracy and Barouch [3] discovered, in the scaling limit
T → Tc with N · (T − Tc) fixed, that the isotropic diagonal correlation C(N,N) is
given by a Painlevé III equation. This was generalized in 1980 by Jimbo and Miwa [4]
who defined for T < Tc

σ = t · (t− 1) · d

dt
lnC(N,N) − t

4
with t = k2, (1)

and for T > Tc

σ = t · (t− 1) · d

dt
lnC(N,N) − 1

4
with t = k−2, (2)

and in both cases derived the sigma-form of Painlevé VI non-linear ODE satisfied by
σ:

(

t · (t− 1) · d2σ

dt2

)2

(3)

= N2 ·
(

(t− 1) · dσ

dt
− σ

)2

− 4 · dσ

dt
·
(

(t− 1) · dσ
dt

− σ − 1

4

)

·
(

t
dσ

dt
− σ

)

.

The low-temperature diagonal two-point correlation functions C(N,N) are
(homogeneous) polynomial expressions [5, 6] in the complete elliptic integral of the
first and second kind†:

K = 2F1

(

[
1

2
,
1

2
], [1], t

)

, E = 2F1

(

[
1

2
, −1

2
], [1], t

)

. (4)

In [1] it has been underlined that these correlation functions C(N,N) have lambda
extensions which are also solutions of (3), that can be defined using a “form factor”
low-temperature expansion [1, 7] (see (9) in [1]):

C−(N, N ; λ) = (1 − t)1/4 ·
(

1 +
∞
∑

n=1

λ2n · f (2n)
N,N

)

, (5)

where the form factors [1] f
(2n)
N,N are also polynomial expressions [5, 6] in the complete

elliptic integral of the first and second kind (4). For instance for the simplest low-
temperature correlation function this form factor expansion reads

C−(1, 1; λ) = (1 − t)1/4 ·
(

1 +

∞
∑

n=1

λ2n · f (2n)
1, 1

)

, (6)

where the first form factors read:

f
(2)
1, 1 =

1

2
·
(

1 − 3EK − (t − 2) · K2
)

, (7)

f
(4)
1, 1 =

1

24
·
(

9 − 30EK − 10 · (t − 2) · K2

+ (t2 − 6t + 6) · K4 + 15E2K2 + 10 · (t − 2) · EK3
)

. (8)

† In Maple K is 2/π EllipticK(t1/2) and E is 2/π EllipticE(t1/2). With that normalization one
has K = θ3(0, q)2 and t1/2 = k = θ2(0, q)2/θ3(0, q)2 and thus k · K = θ2(0, q)2, where q
denotes the nome.
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For λ = 1 we must recover, from (6), the well-known expression of the low-temperature
two-point correlation function C(1, 1) = E:

C−(1, 1; 1) = E = 1 − 1

4
· t − 3

64
· t2 − 5

256
· t3 − 175

16384
· t4 + · · ·

= (1 − t)1/4 ·
(

1 +
∞
∑

n=1

f
(2n)
1, 1

)

, (9)

which corresponds to write the ratio E/(1 − t)1/4 as an infinite sum of polynomial
expressions of E and K.

2. Simple power series expansions and formal calculations

For pedagogical reasons we restrict our analysis to the low-temperature two-point
correlation function C(1, 1) and its lambda extension. Since all these lambda
extensions are power series in t, we can try to get, order by order, the series expansion
of C−(1, 1; λ) from the non-linear ODE (3). Recalling [1] the form factor expansion
(6), we can either see the series expansion in t as a deformation of the simple algebraic
function (1−t)1/4, or more naturally, see the series expansion of the lambda-extension
of the low-temperature two-point correlation function C−(1, 1; λ) as a deformation
of the exact expression C−(1, 1) = E (M denotes here a difference to λ2 = 1, see
(16) below):

C−(1, 1; λ) = CM (1, 1; M)

= E +M · g1(t) +M2 · g2(t) +M3 · g3(t) + · · · (10)

Using the sigma-form of Painlevé VI equation (3) one can find that this expansion
(10) reads as a series expansion in the variable t:

CM (1, 1; M) = 1 − 1

4
· t −

( 3

64
+

3

256
· M

)

· t2 −
( 5

256
+

9

1024
· M

)

· t3

−
( 175

16384
+

441

65536
· M

)

· t4 −
( 441

65536
+

1407

262144
· M

)

· t5

−
( 4851

1048576
+

9281

2097152
· M − 5

16777216
· M2

)

· t6 + · · · (11)

Note that this low-temperature expansion (11) gives for σ defined by (1):

σ = t · (t− 1) · d

dt
lnC(1, 1; M) − t

4
= (M − 4) · σM , (12)

where:

σM =
3

128
· t2 +

3

256
· t3 +

3

32768
· (3M + 74) · t4 +

3

65536
· (9M + 94) · t5

+
3

8388608
· (9M2 + 1270M + 8176) · t6 + · · · (13)

Recalling the expansions of (1 − t)1/4

(1 − t)1/4 = 1 − 1

4
· t − 3

32
· t2 − 7

128
· t3 − 77

2048
· t4 + · · · (14)
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one can see that this series coincides (as it should) with the series (11) for M = 4

(i.e. λ = 0 in (6)). Recalling the expansions of f
(2)
1, 1 and f

(4)
1, 1:

f
(2)
1, 1 =

3

64
· t2 +

3

64
· t3 +

705

16384
· t4 +

321

8192
· t5 +

18795

524288
· t6 + · · · ,

f
(4)
1, 1 =

5

1048576
· t6 +

15

1048576
· t7 +

7335

268435456
· t8 +

2855

67108864
· t9

+
4052025

687194767366
· t10 +

5215005

68719476736
· t11 + · · · (15)

the series expansion (11) can be seen to match with the (form factor) expansion (6)
with (7) and (8) (together with the previous expansions (15)) if one has the following
correspondence:

M = 4 · (1 − λ2). (16)

At the first order in λ2 one gets from (11):

(1 − t)1/4 · f (2)
1, 1

=
3

64
· t2 +

9

256
· t3 +

441

16384
· t4 +

1407

65536
· t5 +

2319

131072
· t6 + · · · (17)

in agreement with the exact expression (7). At the second order in λ2 one gets from
(11):

(1 − t)1/4 · f (4)
1, 1 =

5

1048576
· t6 +

55

41943046
· t7 +

6255

2684354566
· t8

+
36625

10737418246
· t9 +

3079025

687194767366
· t10 +

15116115

2748779069446
· t11 + · · · (18)

in agreement with the exact expression (8). At the third order in λ2 one gets from
(11):

(1 − t)1/4 · f (6)
1, 1 =

7

4398046511104
· t12 +

161

17592186044416
· t13

+
33789

1125899906842624
· t14 +

332703

4503599627370496
· t15 + · · · (19)

Matching the form-factor expansion (6) with the series expansion (10) one gets the
following (infinite ...) identities:

(1 − t)1/4 = E +

∞
∑

n=1

4n · gn(t), (1 − t)1/4 · f (2)
1, 1 = −

∞
∑

n=1

n · 4n · gn(t),

(1 − t)1/4 · f (4)
1, 1 =

∞
∑

n=1

n · (n − 1)

2
· 4n · gn(t), · · · (20)

and conversely:

E = (1 − t)1/4 ·
(

1 +

∞
∑

n=1

f
(2n)
1, 1

)

, g1(t) = − (1 − t)1/4

4
·

∞
∑

n=1

n · f (2n)
1, 1 ,

g3(t) =
(1 − t)1/4

32
·

∞
∑

n=1

n · (n − 1) · f (2n)
1, 1 , · · · (21)
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2.1. Algebraic subcases

It had been noticed [1], for λ = cos(πm/n) where m and n are integers, and λ2 6= 1,
that the lambda extension (6) is not only D-finite†, but is, in fact, an algebraic function.

2.1.1. λ = cos(π/4)
For instance for λ = cos(π/4) = 1/

√
2 , i.e. for M = 2, one finds that (11) is

actually the series expansion of an algebraic expression

(1− t)1/16 · 2F1

(

[−3

8
,
1

8
], [

1

4
], t

)

= (1− t)1/16 ·
(1 + (1− t)1/2

2

)3/4

= (22)

1 − 1

4
· t − 9

128
· t2 − 19

512
· t3 − 791

32768
· t4 − 2289

131072
· t5 − 56523

4194304
· t6 + · · ·

in agreement of the exact result given in equation (99) of [8].

2.1.2. λ = cos(π/6)
Another example corresponds to M = 1 (i.e. λ =

√
3/2 = cos(π/6)). The series

(11) reads:

1 − 1

4
· t − 15

256
· t2 − 29

1024
· t3 − 1141

65536
· t4 − 3171

262144
· t5

− 151859

16777216
· t6 − 477697

67108864
· t7 + · · · (23)

One first finds that this series (23) is D-finite, being the solution of the order-four
linear differential operator:

D4
t +

1

3
· 19 t3 − 30 t2 + 36 t− 14

(t− 1) (t2 − t+ 1) t
· D3

t

+
1

216
· 1625 t4 − 3439 t3 + 5091 t2 − 3628 t+ 680

(t− 1)2 (t2 − t+ 1) t2
· D2

t

+
1

11664
· 10033 t5 − 26608 t4 + 53854 t3 − 55334 t2 + 16160 t+ 880

(t− 1)3 (t2 − t+ 1) t3
· Dt

+
1

186624
· 3689 t5 − 6725 t4 + 2573 t3 + 8 t2 + 5200 t − 3520

(t− 1)4 (t2 − t+ 1) t3
. (24)

In fact the series (23) is not only D-finite, it is an algebraic series. Denoting S(t)
the series (23), and S12 = S(t)12 its twelfth power, one can see that S12 is actually
solution of the quartic equation

336 · t8 · S4
12 + 210 · 326 · t6 · (t − 1) · p6 · S3

12

+ 217 · 315 · t4 · p12 · (t− 1)2 · S2
12 + 226 · (t− 1) · p24 · S12

+ 232 · (t− 1)4 · (t2 − t+ 1)12 = 0, (25)

where:

p6 = 5 t6 − 15 t5 + 138 t4 − 251 t3 + 138 t2 − 15 t + 5,

p12 = 113 t12 − 678 t11 + 5829 t10 − 22930 t9 + 148410 t8 − 463518 t7

+ 665661 t6 − 463518 t5 + 148410 t4 − 22930 t3 + 5829 t2 − 678 t + 113,

† Like in the λ2 = 1, M = 0 case.
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p24 = 64 t24 − 768 t23 + 4965 t22 − 22231 t21 + 3243192 t20 − 31880523 t19

+ 66263383 t18 + 309635262 t17 − 1791331236 t16 + 3209457458 t15

− 698769519 t14 − 6199132605 t13 + 10265065180 t12 − 6199132605 t11

− 698769519 t10 + 3209457458 t9 − 1791331236 t8 + 309635262 t7 (26)

+ 66263383 t6 − 31880523 t5 + 3243192 t4 − 22231 t3 + 4965 t2 − 768 t + 64.

2.1.3. λ = cos(π/3)
Similarly, for M = 3 (i.e. λ = 1/2 = cos(π/3)), the series (11) reads

1 − 1

4
· t − 21

256
· t2 − 47

1024
· t3 − 2023

65536
· t4 − 5985

262144
· t5

− 300315

16777216
· t6 − 979737

67108864
· t7 + · · · (27)

and can be seen to be solution of an order-four linear differential operator:

D4
t +

2

3
· 11 t− 7

(t− 1) t
· D3

t +
1

54
· 587 t2 − 737 t + 170

(t− 1)2 t2
· D2

t

+
1

1458
· 2855 t3 − 5223 t2 + 2130 t + 110

(t− 1)3 t3
· Dt

+
1

11664
· 161 t3 − 702 t2 + 1785 t − 220

(t− 1)4 t3
. (28)

Again, the series (27) is not only D-finite, it is also an algebraic series. Denoting S(t)
the series (27), and S6 = S(t)6 its sixth power, one can see that S6 is solution of the
quartic equation

327 · t4 · S4
6 − 210 · 320 · t4 · (t − 1) · (t − 2) · S3

6

+ 29 · 311 · t2 · p4 · (t− 1)2 · S2
6 + 215 · (t − 2) · p8 · (t− 1)2 · S6

− 216 · (t − 1)8 = 0. (29)

where:

p8 = 8192 t8 − 38912 t7 + 82304 t6 − 93704 t5 + 64151 t4

− 20756 t3 + 6914 t2 + 4 t − 1,

p4 = 3584 t4 + 5312 t3 − 5307 t2 − 10 t + 5. (30)

Actually (11) provides [1] an infinite number of algebraic functions for selected values
of λ, namely λ = cos(πm/n), or M = 4 · sin2(πm/n), with m and n integers.

2.2. The gn’s are, at first sight, DD-finite

The form factor expansion (6) is well-suited [1] to analyse the deformation of the
(1 − t)1/4 algebraic solution of the sigma-form of Painlevé VI equation (3). We

underlined in [1] the fact that all the form factors f
(2n)
1, 1 are D-finite (polynomials

in E and K).
Let us now see the series expansion (11) as a (one-parameter) deformation (10)

of the C(1, 1) = E low-temperature exact expression:

CM (1, 1; M) = E +M · g1(t) +M2 · g2(t) +M3 · g3(t) + · · · (31)
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At first sight these gn(t)’s have no reason to be D-finite. The series expansion of g1(t)
reads:

g1(t) = − 3

256
· t2 − 9

1024
· t3 − 441

65536
· t4 − 1407

262144
· t5

− 9281

2097152
· t6 − 31405

8388608
· t7 − 13877397

4294967296
· t8 + · · · (32)

Inserting (31) in the sigma form of Painlevé VI non-linear ODE (3) (with σ defined by
(1)), one gets straightforwardly, at the first order in M , that g1(t) is DD-finite† [24]:
it is solution of an order-three linear differential operator L3 with coefficients that
are themselves D-finite (they are polynomials of hypergeometric 2F1 functions). This
order-three linear differential operator is of the form L3 = L1 · LE where the order-
two linear differential operator LE is the operator annihilating the complete elliptic
integral of the second kind E, and where the order-one DD-finite operator L1 reads:

L1 = K3 · (t− 1)2 ·
(

2 · (t− 1) · tDt + 5 t− 3
)

− EK2 · (t− 1) ·
(

4 · (t− 1) · (t− 2) · tDt + 10 t2 − 27 t+ 13
)

−KE2 · (t− 1) ·
(

10 · (t− 1) · tDt + 26 t− 17
)

+ E3 ·
(

2 · (t− 1) · (t− 2) · tDt + 3 t2 − 14 t+ 7
)

= 2 ·
(

(t− 2) · E3 − 5 · (t− 1) · KE2

− 2 (t− 1) · (t− 2) · EK2 + (t− 1)2 · K3
)

· (t− 1) · t · Dt

+ (t− 1)2 · (5 t− 3) · K3 − (t− 1) · (10 t2 − 27 t+ 13) · EK2

− (t− 1) · (26 t− 17) · KE2 + (3 t2 − 14 t+ 7) · E3. (33)

At first sight g1(t) is DD-finite and one easily verifies that the series expansion
(32) is actually solution of the order-three DD-finite linear differential operator
L3 = L1 · LE . Could it be possible that g1(t) is, in fact, D-finite ?

3. The gn(t)’s are D-finite

In order to see that the gn(t)’s are D-finite, let us recall that there actually exists
an exact closed expression [8] for the lambda extension C(1, 1;λ). This requires to
rewrite everything in terms of the nome [9] variable q and use extensively Jacobi theta
functions. This exact expression has been given in equation (98) of [8]:

C−(1, 1; λ) =
− θ′2(u, q)

sin(u) · θ2(0, q) · θ3(0, q)2
where: λ = cos(u), (34)

where θ′2(u, q) denotes the partial derivative of θ2(u, q) with respect to u. This
exact expression, when rewritten in terms of the t variable, is, at first sight, a
differentially algebraic function‡. Let us write (34) as

f(u)

sin(u) · θ2(0, q) · θ3(0, q)2
where: f(u) = − θ′2(u, q), sin(u) =

(M

4

)1/2

, (35)

† A D-finite function is a function solution of a linear ODE with polynomial coefficients. A DD-
finite function is a function solution of a linear differential equation whose coefficients are D-finite
functions [24].
‡ A differentially algebraic function [10] is a function f(t) solution of a polynomial relation
P (t, f(t), f ′(t), · · · f(n)(t)) = 0, where f(n)(t) denotes the n-th derivative of f(t) with respect
to t.
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where M is defined by (16), and let us perform the Taylor expansion‡ of f(u)/ sin(u)
in M :

f
(

arcsin((M/4)1/2)
)

(M/4)1/2
= f (1)(0) +

1

24
·
(

f (3)(0) + f (1)(0)
)

· M

+
1

1920
·
(

f (5)(0) + 10 f (3)(0) + 9 f (1)(0)
)

· M2 (36)

+
1

322560
·
(

f (7)(0) + 35 f (5)(0) + 259 f (3)(0) + 225 · f (1)(0)
)

· M3 + · · ·

where f (n)(u) denotes the n-th derivative¶ of f(u) (with respect to u). From this
Taylor expansion (36) one gets the following exact expressions for g1(t), g2(t), etc ...
(and even the first term g0(t) = E):

g0(t) = E = − θ
(2)
2 (0, q)

θ2(0, q) · θ3(0, q)2
,

g1(t) = − 1

24
· θ

(4)
2 (0, q) + θ

(2)
2 (0, q)

θ2(0, q) · θ3(0, q)2
,

g2(t) = − 1

1920
· θ

(6)
2 (0, q) + 10 · θ(4)2 (0, q) + 9 · θ(2)2 (0, q)

θ2(0, q) · θ3(0, q)2
, (37)

g3(t) = − 1

322560
· θ

(8)
2 (0, q) + 35 · θ(6)2 (0, q) + 259 · θ(4)2 (0, q) + 225 · θ(2)2 (0, q)

θ2(0, q) · θ3(0, q)2
,

g4(t) = − 1

92897280
· N4

θ2(0, q) · θ3(0, q)2
, g5(t) = − 1

40874803200
· N5

θ2(0, q) · θ3(0, q)2
,

where

N4 = θ
(10)
2 (0, q) + 84 · θ(8)2 (0, q) + 1974 · θ(6)2 (0, q)

+ 12916 · θ(4)2 (0, q) + 11025 · θ(2)2 (0, q),

N5 = θ
(12)
2 (0, q) + 165 · θ(10)2 (0, q) + 8778 · θ(8)2 (0, q) + 172810 · θ(6)2 (0, q)

+ 1057221 · θ(4)2 (0, q) + 893025 · θ(2)2 (0, q), (38)

and where θ
(2n)
2 (u, q) denotes the (2n)-th partial derivative of θ2(u, q) with respect

to u.
Let us recall that ratios of D-finite expressions are not (generically† ...) D-finite:

they are differentially algebraic [10]. Section (2.2) suggests that the gn(t)’s are DD-
finite (or DDD-finite, ...): the previous expressions (37) of the gn(t)’s as ratio of
derivatives of theta functions confirms this prejudice. On the other hand, all these
gn(t)’s are globally bounded series [11] (see (32)), and we have seen, so many times in
physics, and in particular the two-dimensional Ising model, the emergence of globally
bounded series as a consequence of the frequent occurrence of diagonals of rational
functions [11, 12, 13, 14] (or n-fold integrals [15, 16, 17, 18, 19, 20, 9, 21]). This may
suggest, on the contrary, that the gn(t)’s could be D-finite.

‡ One has, at first sight, a Puiseux series in M1/2 but all the coefficients for M−1/2, M1/2, M3/2,
... here are equal to zero because all the even derivative f(2n)(0) are equal to zero.

¶ Note, in this Taylor series (36), that the terms corresponding to even derivatives f(0), f(2)(0),
..., f(2n)(0), are identically zero, since the odd derivatives of θ2(u, q) with respect to u vanish:

θ
(2n+1)
2 (u, q) ) = 0.
† The denominator must not be an algebraic function.
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3.1. Expansions of the gn(t)’s in the t variable

From the previous exact expressions (37) in terms of theta functions, one can obtain
the series expansions of the gn(t)’s in the t variable and try to see if these gn(t)’s are
solutions of linear differential operators.

From these expansions (37), rewritten in t, one can get large enough series in t to
see that g1(t) is in fact solution of an order-six linear differential operator L6 which
is actually the direct sum (LCLM) of an order-four linear differential operator L4

and of the order-two linear differential operator LE having E = 2F1([
1
2 , − 1

2 ], [1], t)
as a solution. Furthermore one finds that this order-four linear differential operator
L4 is homomorphic to the symmetric third power of this order-two linear differential
operator LE , with an intertwiner reading:

3

8
R1 = (39)

= (t− 1) · t3 · D3
t +

3

2
· (t− 1) · t2 · D2

t − 1

4
· (3 t+ 1) · t · Dt +

3

8
· t2 + 1

t− 1
.

One finally finds that the series expansion (32) is exactly the linear combination of E
and the order-three linear differential operator (39) acting on E3:

g1(t) =
1

24
· E +

1

24
· R1(E

3)

=
1

24
· E − 1

8
· KE2 − t − 1

12
· K3. (40)

Similar calculations can be performed for g2(t). The series g2(t) can also be seen
to be D-finite, being solution of an order-twelve linear differential operator which
turns out to be the direct-sum (LCLM) of the previous order-two linear differential
operator LE , of the previous order-four L4, and of an order-six linear differential
operator homomorphic to the symmetric fifth power of LE with the following order-
five intertwiner:

− 5

8
R2 =

4

3
· (t− 1) · (t− 2) · t5 · D5

t +
5

2
· (t− 1) · (4 t− 9) · t4 · D4

t

+ 5 · (2 t − 3) · (t − 3) · t3 · D3
t − 5

24

24 t3 − 122 t2 + 59 t + 103

t− 1
· t2 · D2

t

+
1

24
· 90 t4 − 488 t3 − 7 t2 + 774 t − 1

(t − 1)2
· t · Dt

− 5

96
· 36 t5 − 205 t4 − 59 t3 + 409 t2 + 23 t − 12

(t − 1)3
. (41)

One finally finds that the series expansion for g2(t) is exactly the linear combination
of E, of the order-three linear differential operator (39) acting on E3, and of the
order-five linear differential operator (41) acting on E5:

g2(t) =
3

640
· E +

1

192
· R1(E

3) +
1

1920
· R2(E

5)

=
3

640
· E − 1

64
· E2 K − t − 1

96
· K3 (42)

+
1

128
· E3 K2 +

t − 1

64
· EK4 +

(t − 1) (t − 2)

240
· K5.

Similar calculations can be performed for g3(t). They are displayed in Appendix A.
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Remark: All these R1(E
3), R2(E

5), ... which are homogeneous polynomials in
the complete elliptic integrals E and K, can be directly expressed in terms of simple
ratios of theta functions:

R1(E
3) = − θ

(4)
2 (0, q)

θ2(0, q) · θ3(0, q)2
, R2(E

5) = − θ
(6)
2 (0, q)

θ2(0, q) · θ3(0, q)2
,

R3(E
7) = − θ

(8)
2 (0, q)

θ2(0, q) · θ3(0, q)2
, · · · (43)

where θ
(n)
2 (u, q) denote the n-th derivative of θ2(u, q) with respect to u.

One can conjecture the following expression for (11):

CM (1, 1; M) = E + M · (c(1)1 · E + c
(1)
2 · R1(E

3))

+ M2 · (c(2)1 · E + c
(2)
2 · R1(E

3) + c
(2)
3 · R2(E

5))

+ M3 · (c(3)1 · E + c
(3)
2 · R1(E

3) + c
(3)
3 · R2(E

5) + c
(3)
4 · R3(E

7)) + · · ·
= (1 + c

(1)
1 · M + c

(2)
1 · M2 + c

(3)
1 · M3 + · · · ) · E

+ (c
(1)
2 · M + c

(2)
2 · M2 + c

(3)
2 · M3 + · · · ) · R1(E

3) (44)

+ (c
(2)
3 · M2 + c

(3)
3 · M3 + · · · ) · R2(E

5) + (c
(3)
4 · M3 + · · · ) · R3(E

7)

+ · · ·
where the c

(j)
i ’s are constants obtained from equations (37) and (43) (see (40), (A.3)).

One can encapsulate these results in the following closed formula, deduced from (34)
and its Taylor expansion (see also (35)):

CM (1, 1; M) = − 2√
M

·
θ′2

(

arcsin
√
M
2 , q

)

θ2(0, q) · θ3(0, q)2

= − 2√
M

·
∞
∑

p=0

(

arcsin

√
M

2

)(2 p+1)

· θ
(2 p+2)
2 (0, q)

θ2(0, q) · θ3(0, q)2 · (2 p + 1)!

=
2√
M

·
∞
∑

p=0

(

arcsin

√
M

2

)(2 p+1)

· Rp(E
(2 p+1))

(2 p + 1)!
. (45)

4. lambda-extensions and globally bounded series

Let us consider the series expansion (11) for values of the parameter M 6= 0 not
yielding the previous algebraic function series (i.e. M 6= 4 · sin2(πm/n) where m
and n are integers). These series are‡ differentially algebraic [10]: is it possible that
such series could be D-finite for selected values of M?

Let us change t into 16 t in the series expansion (11). One gets the following
expansion:

1 − 4 t − (12 + 3M) · t2 − (80 + 36M) · t3 − (700 + 441M) · t4
− (7056 + 5628M) · t5 − (77616 + 74248M − 5M2) · t6
− (906048 + 1004960M − 220M2) · t7 − (11042460+ 13877397M − 6255M2) · t8
− (139053200+ 194712812M − 146500M2) · t9
− (1796567344+ 2767635832M − 3079025M2) · t10 + · · · (46)

‡ They are solutions of a non-linear ODE, the sigma-form of Painlevé VI.



The lambda extensions of the Ising correlation functions C(M,N) 11

One sees immediately that this (generically) differentially algebraic series provides, for
any integer M , an infinite number of series with integer coefficients. In fact one can
see that the series expansion (11) (or the series expansion (46)) is a globally bounded
series† when M is any rational number. One thus obtains the quite puzzling result
that an infinite number of (at first sight ...) differentially algebraic series can be
globally bounded series.

Quite often we see the emergence of globally bounded series [11] as solutions of
D-finite linear differential operators, and more specifically as diagonals of rational
functions [11, 12, 13, 14] (this is related to the so-called Christol’s conjecture [22]).
Along this line it is tempting to imagine that such globally bounded situation could
correspond to cases where the globally bounded series are in fact D-finite. If this is
not the case, it will thus be tempting to imagine that such globally bounded situation
could correspond to particular ratio of D-finite functions, namely ratio of diagonals of
rational functions (or even rational functions of diagonals).

4.1. The M = 5 case.

Let us restrict to simple integer values of M and see whether the corresponding
globally bounded series (11) are D-finite.

Let us consider an integer M different from M = 0 (the D-finite solution C(1, 1)),
and different from M = 1, 2, 3, 4, which correspond to algebraic functions. For
simplicity we will consider the integer coefficient series (46) for M = 5. The M = 5
series (46) reads:

1 − 4 t − 27 t2 − 260 t3 − 2905 t4 − 35196 t5 − 448731 t6 − 5925348 t7

− 80273070 t8 − 1108954760 t9 − 15557770879 t10 − 220998916404 t11

− 3171743667652 t12 − 45915042520880 t13 + · · · (47)

One finds that this series (47) does not seem to be D-finite: one does not find any linear
differential operator even with a thousand coefficients. Let us recall the strategy we
have used in [10]: we study the series with integer coefficients modulo small increasing
primes p = 3, 5, 7, 11, 13, · · · and seek for the linear differential operator annihilating
these series modulo such a prime.

For the prime p = 3 the series (47) mod. 3 is solution of an order-one linear
differential operator (of degree one in t):

2 t + (t + 2) · t Dt. (48)

For the prime p = 5 the series (47) mod. 5 is solution of an order-one linear
differential operator (of degree two in t):

3 · t · (t + 1) + (t2 + 2 t + 2) · t Dt. (49)

These series mod. 3 or 5, are not only D-finite, they are in fact algebraic series mod.
3 or 5:

p = 3, F 16 + 2 · (t2 + t+ 1) · F 8 + (t + 2) · t6 = 0, (50)

p = 5, (t2 + 4t+ 1)5 · F 4 + 4 · (t + 3)4 · (t + 4)4 = 0. (51)

† A series with rational coefficients and non-zero radius of convergence is a globally bounded series [11]
if it can be recast into a series with integer coefficients with one rescaling t → N t where N is an
integer.
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For the prime p = 7 the series (47) mod. 7 is solution of an order-three linear
differential operator (of degree three in t):

2 · t · (t + 2) + (9 t3 + 13 t2 + 4 t + 9) · t Dt + (5 t3 + 16 t2 + 9 t + 19) · t2 D2
t

+ (t3 + 4 t2 + 3 t + 6) · t3 D3
t , (52)

This mod. 7 series is also algebraic, but finding the corresponding characteristic
polynomial equation (like (52) previously) requires more than one thousand
coefficients.

For the next primes we get more and more involved linear differential operators of
increasing orders and degrees of the polynomials in t. One finds for the prime p = 11
an order 5 and a degree in t also equal to five, and one gets for the following primes

p = 13, order = degree = 6, p = 17, order = degree = 8,

p = 19, order = degree = 9, p = 23, order = degree = 11,

p = 29, order = degree = 14, p = 31, order = degree = 15,

p = 37, order = degree = 18, p = 41, order = degree = 20, · · ·
An inspection of the corresponding linear differential operators strongly suggests that
the orders and degrees of the polynomials in t of the linear differential operator grow
(linearly) with the prime p according to the formula:

order = degree =
p − 1

2
. (53)

These results have to be compared with the same mod. prime calculations for the
D-finite (possibly algebraic) series (46) for M = 0, 1, 2, 3, 4. In that case, since there
is a linear differential operator (in characteristic zero), the series modulo a prime is
solution of the mod. prime reduction of that linear differential operator, however for
small primes the series modulo a prime can be solution of a linear differential operator
of smaller order (order one, ...). Therefore the previous analysis modulo increasing
primes provides linear differential operators of increasing orders, but very quickly
saturating to the order of the linear differential operator in characteristic zero.

These calculations, thus, strongly suggest that the integer coefficient series (47)
is not D-finite but is only differentially algebraic.

Similar calculations can be performed for any integer M ≥ 5 (or any integer
M ≤ −1) with similar results. Similar calculations can be performed for any rational
number M with similar results ruling out D-finiteness. Let us display miscellaneous
algebraic equation for the series for various M and modulo various primes:

M = 6, p = 3, (t3 + 1) · F 2 + 2 · (t2 + t+ 1) = 0,

M = 7, p = 3, F 4 + (t + 2) = 0,

M = 7, p = 7, (t + 1)7 · (t+ 3)7 · (t + 5)7 · F 6

+ 6 · (t + 6)6 · (t2 + 2t + 5)6 = 0,

M = 11, p = 3, F 16 + 2 · (t2 + t+ 1) · F 8 + (t + 2) · t6 = 0.

All these calculations suggest that the infinite number of integer coefficient series
(46), for any integer M ≥ 5 (or any integer M ≤ −1), are not D-finite, as well as
the infinite number of globally bounded series (11) or (46) when M is any rational
number, thus providing an infinite set of globally bounded differentially algebraic series
(far beyond the D-finite diagonals of rational functions [11, 12, 13, 14] providing so
many globally bounded series, see Christol’s conjecture [22]).
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The question to see whether these globally bounded series could be ratio of
particular D-finite functions, namely ratio of diagonals of rational functions‡ remains
open.

Remark: Finding that a series is actually the ratio of particular D-finite functions
can be a difficult task, possibly some tour-de-force, requiring a lot of (guessing)
intuition. Conversely, there are very few papers, in the literature, addressing the
question of ruling out the possibility that a series can be the ratio of D-finite functions,
or even ruling out the possibility that a series can be DD-finite [24]. Here we have a
prejudice that the series (46) for integer values M ≥ 5 are not ratio of diagonals of
rational functions, but we are not able to prove such a no-go result, even for specific
integer vales of M .

5. Other one-parameter deformations: deformations of algebraic functions

The “form factor” expansion (5) (see (9) in [1]) amounts to seeing the lambda-
extension of the correlation function C−(N, N ; λ) as a deformation of the algebraic
solution (1 − t)1/4. With section (2.1) we have seen that there are many other
(algebraic) values of the parameter λ for which the lambda-extension C−(N, N ; λ)
becomes an algebraic function [1]. Let us consider “form factor” expansions [1] similar
to (6), but corresponding to seeing the lambda-extension as a deformation around
these other algebraic functions (see (22), (25), (29)).

Recalling the exact expressions of the gn(t)’s in terms of theta functions displayed
in (37) and (38), it is worth noticing that similar expressions can also be obtained for

the form factors f
(2n)
1,1 . One gets respectively (with† f

(0)
1,1 = 1):

(1 − t)1/4 · f (0)
1,1 =

θ
(1)
1 (0; q)

θ2(0, q) · θ3(0, q)2
,

(1 − t)1/4 · f (2)
1,1 =

1

2
· θ

(3)
1 (0, q) + θ

(1)
1 (0, q)

θ2(0, q) · θ3(0, q)2
, (54)

(1 − t)1/4 · f (4)
1,1 =

1

24
· θ

(5)
1 (0, q) + 10 · θ(3)1 (0, q) + 9 · θ(1)1 (0, q)

θ2(0, q) · θ3(0, q)2
,

(1 − t)1/4 · f (6)
1,1 =

=
1

720
· θ

(7)
1 (0, q) + 35 · θ(5)1 (0, q) + 259 · θ(3)1 (0, q) + 225 · θ(1)1 (0, q)

θ2(0, q) · θ3(0, q)2
,

(1 − t)1/4 · f (8)
1,1 =

1

40320
· N9

θ2(0, q) · θ3(0, q)2
,

(1 − t)1/4 · f (10)
1,1 =

1

3628800
· N11

θ2(0, q) · θ3(0, q)2
,

(1 − t)1/4 · f (12)
1,1 =

1

479001600
· N13

θ2(0, q) · θ3(0, q)2
, · · ·

‡ Or more generally rational functions of diagonals of rational functions.

† Note that (1 − t)1/4 = θ4(0, q)/θ3(0, q) with θ′1(0, q) = θ2(0, q) θ3(0, q) θ4(0, q).
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where

N9 = θ
(9)
1 (0, q) + 84 · θ(7)1 (0, q) + 1974 · θ(5)1 (0, q)

+ 12916 · θ(3)1 (0, q) + 11025 · θ(1)1 (0, q),

N11 = θ
(11)
1 (0, q) + 165 · θ(9)1 (0, q) + 8778 · θ(7)1 (0, q) + 172810 · θ(5)1 (0, q)

+ 1057221 · θ(3)1 (0, q) + 893025 · θ(1)1 (0, q),

N13 = θ
(13)
1 (0, q) + 286 · θ(11)1 (0, q) + 28743 · θ(9)1 (0, q) + 1234948 · θ(7)1 (0, q)

+ 21967231 · θ(5)1 (0, q) + 128816766 · θ(3)1 (0, q) + 108056025 · θ(1)1 (0, q),

and where θ
(2n+1)
1 (u, q) denotes the (2n +1)-th partial derivative of the Jacobi theta

function θ1(u, q) with respect to u. Let us remark that these terms can be obtained
similarly to (37) and (38), using now the expansion of f(arccos(λ))/

√
1 − λ2 around

λ = 0, which corresponds to u = π/2, and, then, use θodd2 (π/2, q) = − θodd1 (0, q)
and θeven2 (π/2, q) = 0.

Remark 1: Similarly to (45) one can encapsulate the previous results in the
following closed formula, deduced from (34) and its Taylor expansion:

C−(1, 1; λ) = −
θ′2

(

arccosλ, q
)

√
1 − λ2 · θ2(0, q) · θ3(0, q)2

(55)

=
1√

1 − λ2
·

∞
∑

p=0

(

arcsinλ
)(2 p)

· θ
(2 p+1)
1 (0, q)

θ2(0, q) · θ3(0, q)2 · (2 p)!
.

Remark 2: Introducing ratios of theta functions S(2n+1) by:

S(2n+1) =
θ
(2n+1)
1 (0, q)

θ
(1)
1 (0, q)

, (56)

and the quantities κ(2n+1)’s related to the form factors f
(2n)
1,1 ’s introduced in (6):

f
(2n)
1,1 = (2n + 1) · κ(2n+1), (57)

one can deduce, from the previous relations (54), the expression of the S(2n+1)’s in
terms of these κ(2n+1)’s:

S(1) = κ(1),

S(3)

3!
= κ(3) − 1

6
· κ(1),

S(5)

5!
= κ(5) − 1

2
· κ(3) +

1

120
· κ(1), (58)

S(7)

7!
= κ(7) − 5

6
· κ(5) +

13

120
· κ(3) − 1

5040
· κ(1),

S(9)

9!
= κ(9) − 7

6
· κ(7) +

23

72
· κ(5) − 41

3024
· κ(3) +

1

362880
· κ(1), · · ·

The coefficients in these linear combinations (58) correspond exactly to the linear
combinations we had to introduce for the (n-fold integrals) χ̃(2n+1)’s in the analysis
of the susceptibility of the square Ising model, see for instance equation (8) in [23],
but in the high temperature regime:

Φ(5) = χ̃(5) − 1

2
· χ̃(3) +

1

120
· χ̃(1). (59)
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Along these lines we give, in Appendix B, a Taylor expansion similar to (55) but
for the lambda extension of C(0, 0, λ), instead of C(1, 1, λ) in (55). From these
expansions one deduces linear combinations (B.3) (similar to (58)), corresponding
exactly to the linear combinations we had to introduce for the (n-fold integrals) χ̃(2n)’s
in the analysis of the susceptibility of the square Ising model, see for instance equation
(26) in [23], in the low temperature regime:

Φ(6) = χ̃(6) − 2

3
· χ̃(4) +

2

45
· χ̃(2). (60)

5.1. Other one-parameter deformations: deformation of M = 2 (i.e. u = π/4).

Recalling that one finds that (11) is actually, for M = 2, the series expansion of an
algebraic function (22), one can try to write the series (11) as a deformation of this
M = 2 algebraic function (22):

Cρ(1, 1; ρ) = G0(t) + ρ · G1(t) + ρ2 · G2(t) + · · · (61)

where

G0(t) = (1− t)1/16 ·
(1 + (1− t)1/2

2

)3/4

(62)

= 1 − 1

4
· t − 9

128
· t2 − 19

512
· t3 − 791

32768
· t4 − 2289

131072
· t5

− 56523

4194304
· t6 − 182193

16777216
· t7 + · · · (63)

and where ρ = M − 2.
Let us introduce

G0(t) = −
√
2 · θ

(1)
2 (π/4, q)

θ2(0, q) · θ3(0, q)2
, (64)

which actually coincides with the algebraic expression (62). Let us also introduce the
Sn’s defined as

Sn =
θ
(n)
2 (π/4, q)

θ′2(π/4, q)
, (65)

where θ
(n)
2 (u, q) denotes the n-th partial derivative with respect to u of θ2(u, q).

Similarly to (45) one can write (61) as

Cρ(1, 1; ρ) =

√
2 · G0(t)√
ρ + 2

·
∞
∑

p=0

(

arcsin
(

√
ρ + 2

2

)

− π

4

)(p−1)

· Sp

(p − 1)!
. (66)

Again one can ask whether the Gn(t)’s in (61) are D-finite, and, again, polynomials
in the complete elliptic integrals E and K. One can find that (61), or (66), can be
written as

Cρ(1, 1; ρ)

G0(t)
= 1 + ρ ·

(1

4
· S2 − 1

4

)

+ ρ2 ·
( 1

32
· S3 − 1

16
· S2 +

3

32

)

+ ρ3 ·
( 1

384
· S4 − 1

128
· S3 +

13

384
· S2 − 5

128

)

+ ρ4 ·
( 1

6144
· S5 − 1

1536
· S4 +

17

3072
· S3 − 19

1536
· S2 +

35

2048

)

+ ρ5 ·
( 1

122880
· S6 − 1

24576
· S5 +

7

12288
· S4 − 23

12288
· S3

+
263

40960
· S2 − 63

8192

)

+ · · · (67)
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where the Sn’s are defined by (65). It is crucial to note that all these ratio (65) are
actually polynomial expressions in the complete elliptic integrals E and K. The first
Sn’s read:

S2 =
2

t
·
(

1 − (1 − t)1/2
)

· E − 1

2 t
·
(

(t − 4) · (1 − t)1/2 − (3 t − 4)
)

· K,

S3 =
1

4
·
(

6 · (1 − t)1/2 − (t − 2)
)

· K2 − 3EK,

S4 =
3

t
·
(

(t − 4) · (1 − t)1/2 − (3 t − 4)
)

· EK2 − 6

t
· (1 − (1 − t)1/2) · E2 K

+
1

8 t
·
(

(t2 − 28 t + 48) · (1 − t)1/2 − (21 t2 − 68 t + 48)
)

· K3,

S5 = 15E2K2 − 5

2
·
(

6 · (1 − t)1/2 − (t − 2)
)

· EK3

− 1

16
·
(

60 · (t − 2) · (1 − t)1/2 − (t2 + 24 t − 24)
)

· K4,

S6 = − 1

32 t
·
(

(t3 − 168 t2 + 944 t − 960) · (1 − t)1/2

− (183 t3 − 1160 t2 + 1936 t − 960)
)

· K5

− 15

8 t
·
(

(t2 − 28 t + 48) · (1 − t)1/2 − (21 t2 − 68 t + 48)
)

· EK4

− 45

2 t
·
(

(t − 4) · (1 − t)1/2 − (3 t − 4)
)

· E2 K3

+
30

t
·
(

1 − (1 − t)1/2
)

· E3 K2. (68)

Let us note that these selected ratio of theta functions (65) are not only polynomials
in E and K, but homogeneous polynomials in E and K. The Gn(t)’s will be D-finite,
and again polynomials in E and K, as a consequence of the fact that the Sn’s are
polynomial expressions of E and K.

The expansion of G1(t) reads:

G1(t) = − 3

256
t2 − 9

1024
t3 − 441

65536
t4 − 1407

262144
t5 − 18557

4194304
t6

− 62755

16777216
t7 − 13852377

4294967296
t8 − 48531703

17179869184
t9 + · · · (69)

The first G1(t) reads

G1(t) = G0(t) · G̃1(t) where :

G̃1(t) =
1

4
· S2 − 1

4
(70)

= −1

4
+
(1 − (1− t)1/2

2 t

)

· E − (t − 4) · (1− t)1/2 − (3 t − 4)

8 t
· K

= −1

4
+

E

2 t
+

(3 t − 4)

8 t
· K − (1− t)1/2 ·

( E

2 t
+

(t− 4)

8 t
· K

)

= − 3

256
· t2 − 3

256
· t3 − 687

65536
· t4 − 303

32768
· t5 − 34355

4194304
· t6

− 30681

4194304
· t7 − 28298151

4294967296
· t8 − 6422951

1073741824
· t9 + · · · (71)
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and the next two read

G2(t) = G0(t) · G̃2(t)

=
5

16777216
· t6 +

55

67108864
· t7 +

6255

4294967296
· t8 +

36625

17179869184
· t9

+
3079025

1099511627776
· t10 +

15116115

4398046511104
· t11 + · · · (72)

where

G̃2(t) =
1

32
· S3 − 1

16
· S2 +

3

32

=
3

32
− 1 − (1− t)1/2

8 t
· E − (t − 4) · (1− t)1/2 − (3 t − 4)

32 t
· K

− 3

32
· EK +

6 · (1 − t)1/2 − (t − 2)

128 t
· K2

=
5

67108864
· t6 +

15

67108864
· t7 +

7305

17179869184
· t8 +

2825

4294967296
· t9

+
3978105

4398046511104
· t10 +

5075805

4398046511104
· t11 +

1575278229

1125899906842624
· t12 + · · ·

and

G3(t) = G0(t) · G̃3(t)

= − 7

281474976710656
· t12 − 161

1125899906842624
· t13

− 33789

72057594037927936
· t14 − 332703

288230376151711744
· t15 (73)

− 4379312 7

18446744073709551616
· t16 − 318184713

73786976294838206464
· t17 + · · ·

where:

G̃3(t) =
1

384
· S4 − 1

128
· S3 +

13

384
· S2 − 5

128
(74)

= − 5

128
+

13

192
· 1 − (1 − t)1/2

t
· E

− 13

768
· (t− 4) · (1 − t)1/2 − (3 t − 4)

t
· K

+
3

128
· EK − 6 · (1 − t)1/2 − (t− 2)

512
· K2

− 1 − (1 − t)1/2

64 t
· E2 K +

(t− 4) · (1 − t)1/2 − (3 t − 4)

128 t
· EK2

+
(1 − t)1/2 · (t2 − 28 t+ 48) − (21 t2 − 68 t+ 48)

3072 t
· K3

= − 7

281474976710656
· t12 − 21

140737488355328
· t13 (75)

− 36603

72057594037927936
· t14 − 93149

72057594037927936
· t15 + · · ·

We have obtained similar results for the next Gn(t)’s, namely polynomial
expressions in E and K with algebraic function coefficients.

Similar results can be obtained for the other values λ = cos(πm/n) (m and
n integers) yielding algebraic functions for the lambda-extension C(1, 1;λ). Again,
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the (form-factor-like) expansion (61) around each of these algebraic functions can be
written in a similar way as (68) in terms of the corresponding ratio of theta functions

Sn =
θ
(n)
2 (πm/n, q)

θ′2(πm/n, q)
, (76)

where θ
(n)
2 (u, q) denotes the n-th partial derivative with respect to u of θ2(u, q). It

becomes much more difficult to see whether these new Sn’s are actually polynomial
expressions in E and K with more and more involved algebraic coefficients. One finds
that these new Sn’s are D-finite, but the reduction to polynomial expressions in E
and K becomes a difficult task, in general. Let us display a few examples.

5.2. Other one-parameter deformations: deformation of u = π/6.

For u = π/6 we find that the corresponding S2

1√
3
· S2 =

1√
3
· θ

(2)
2 (π/6, q)

θ′2(π/6, q)

= 1 − 3

128
· t2 − 3

128
· t3 − 339

16384
· t4 + · · · (77)

is solution of an order-eight linear differential operator which is the LCLM (direct-
sum) of two order-four linear differential operators L4 and M4. The first order-four
linear differential operator L4 is the symmetric product‡ of the two order-two linear
differential operators

D2
t +

1

3
· 10 t3 − 15 t2 + 9 t− 2

(t2 − t+ 1) t (t− 1)
· Dt

+
1

12
· 11 t6 − 33 t5 + 47 t4 − 39 t3 + 3 t2 + 11 t− 5

t2 (t− 1)2 (t2 − t+ 1)2
,

D2
t +

1

4
· t6 − 3 t5 + 15 t4 − 25 t3 + 15 t2 − 3 t+ 1

t2 (t− 1)2 (t2 − t+ 1)2
, (78)

having, respectively, the two hypergeometric solutions:

t5/6 · (1 − t)5/6 · (t2 − t+ 1)−1/2 · 2F1

(

[
7

6
,
5

2
], [

7

3
], t

)

, (79)

t1/2 · (1 − t)1/2 · (t2 − t+ 1)−1/4 · 2F1

(

[− 1

12
,
7

12
], [1],

27

4

t2 · (1 − t)2

(1 − t + t2)3

)

. (80)

Let us first note that the first hypergeometric function H = 2F1([7/6, 5/2], [7/3], t)
is actually an algebraic function. It is solution of the polynomial equation:

321 · t8 (t − 1)8 · H8 + 217 · 311 · t4 · (t2 − t+ 1) · (t− 1)4 · H4

+ 226 · (t− 2) · (2 t− 1) · (t+ 1) · (32 t6 − 96 t5 + 219 t4 − 278 t3

+ 219 t2 − 96 t+ 32) · H2 − 232 · (t2 − t+ 1)2 = 0. (81)

‡ This paper belonging to the symbolic computation literature and not pure mathematics, we use
the standard Maple (DEtools) terminology of symmetric powers and symmetric products of linear
differential operators [25]. Note that ”symmetric product” is not a proper mathematical name for
this construction on the solution space; it is a homomorphic image of the tensor product. The
(Maple/DEtools) reason for choosing the name symmetric product is the resemblance with the
function symmetric power.
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For the second solution (80), we use the identities

2F1

(

[− 1

12
,
7

12
], [1],

27

4

t2 · (1 − t)2

(1 − t + t2)3

)

= −6 · t · (t− 1)

(t2 − t+ 1)1/2
· dH2

dt
+

1

2

(2 t− 1) · (t2 − t− 2)

(t2 − t+ 1)3/2
· H2, (82)

where the pullbacked hypergeometric function H2 reads:

H2 = 2F1

(

[
1

12
,
5

12
], [1],

27

4

t2 · (1 − t)2

(1 − t + t2)3

)

= (t2 − t+ 1)1/4 · 2F1

(

[
1

2
,
1

2
], [1], t

)

, (83)

Consequently, the relevant solution of the order-four linear differential operator L4

will be a linear combination α(t) · E + β(t) · K of the two complete elliptic integrals
E, K, α(t) and β(t) being (quite) involved algebraic functions.

The other order-four linear differential operator M4 is, at first sight, slightly more
difficult to analyze. In fact we are in the typical situation of an absolute factorization†
of this order-four linear differential operator, and this can be seen performing the
exterior square of that order-four linear differential operator [26]. Some calculations
are displayed in Appendix C. These calculations strongly suggest that the relevant
solution of the order-four linear differential operator M4 will also be of the form
α(t) · E + β(t) · K, the functions α(t) and β(t) being (very) involved algebraic
functions of t.

Fortunately, one can get that result in a much more straight way, if one remarks
that the two order-four linear differential operators L4 and M4 are actually (non-
trivially) homomorphic. Introducing ρ = t2/3 · (1 − t)2/3, one finds that a conjugate
of M4 is actually homomorphic to the first order-four linear differential operator L4:

L4 · I3 = J3 ·
(1

ρ
· M4 · ρ

)

, (84)

where I3 and J3 are (slightly involved) order-three intertwiners.

Therefore we have shown that the relevant solution of the order-eight linear
differential operator will be of the form α(t) · E + β(t) · K, α(t) and β(t) being
(quite) involved algebraic functions of t.

Again, one finds that S2 is D-finite, but the reduction to polynomials in the
complete elliptic integrals E and K is far from obvious.

5.2.1. Deformation of u = π/6: the S3 term
The next Sn, namely

S3 =
θ
(3)
2 (π/6, q)

θ′2(π/6, q)
, (85)

is solution of a linear differential operator of order twelve with coefficient polynomials
in t of degree 67. This is a quite large order (twelve) linear differential operator, that
we will not give here. This order-twelve linear differential operator is actually the

† A linear differential operator L ∈ C(x)[d/dx] is called absolutely reducible [26] if it admits a
factorization over an algebraic extension of C(x).



The lambda extensions of the Ising correlation functions C(M,N) 20

direct sum of an order-three operator and an order-nine operator L9. The order-three
linear differential operator L3 reads

L3 = D3
t + 6 · q12

q6 · (t − 1) · (t + 1) · (t − 2) · (2 t − 1) · (t2 − t + 1) · t · D
2
t

+
r12

q6 · (t − 1)2 · (t + 1) · (t − 2) · (t2 − t + 1) · t2 · Dt

+
3

2
· r6
q6 · (t− 1) · (t + 1) · (t − 2) · (2 t − 1) · t , (86)

where:

q12 = t12 − 6 t11 + 2536 t10 − 12625 t9 + 18414 t8 + 2028 t7 − 31302 t6

+ 33849 t5 − 16458 t4 + 4084 t3 − 528 t2 + 7 t − 1,

q6 = t6 − 3 t5 + 1518 t4 − 3031 t3 + 1518 t2 − 3 t + 1,

r12 = t12 − 6 t11 + 4881 t10 − 24350 t9 + 24459 t8 + 48198 t7 − 120498 t6

+ 90597 t5 − 20496 t4 − 5105 t3 + 2304 t2 + 15 t − 2,

r6 = 59 t6 − 177 t5 + 4512 t4 − 8729 t3 + 4512 t2 − 177 t + 59. (87)

Let us denote LK the order-two linear differential operator annihilating the complete
elliptic integral of the first kind K = 2F1([1/2, 1/2], [1], t):

LK = D2
t +

2 t − 1

t · (t− 1)
· Dt +

1

4 t · (t − 1)
, (88)

This order-three linear differential operator (86) is actually homomorphic to the
symmetric square of operator LK , with order-two intertwiners. Consequently the
solutions of L3 are (quadratic) homogeneous polynomials in E and K. Actually one
finds that the solution of L3 given by (86) reads:

Sol(L3) =
(t − 2)3

(t2 − t+ 1)
· K2 + 9 · EK

= 1 +
177

32
t2 +

177

32
t3 +

1095

8192
t4 − 21561

4096
t5 − 1384095

262144
t6 +

22467

262144
t7

+
2927958291

536870912
t8 +

730823955

134217728
t9 + · · · (89)

The order-nine linear differential operator L9 can be seen to be the symmetric
product of an order-three linear differential operator A3, and of the order-three linear
differential operator, which is the symmetric square of the order-two linear differential
operator LK annihilating K = 2F1([1/2, 1/2], [1], t)

L9 = SymProd
(

Sym2(LK), A3

)

. (90)

The order-three linear differential operator A3 reads

A3 = D3
t +

r8 · (2 t− 1)

q6 · t · (t − 1) · ( t2 − t + 1)
· D2

t

− 5

9
· r6 · ( t

2 − t + 1)

q6 · t2 · (t − 1)2
· Dt +

5

18
· r′6 · (2 t − 1)

q6 · t2 · (t − 1)2
, (91)

where:

r6 = 52− 156t− 3009 t2 + 6278t3 − 3009t4 − 156t5 + 52t6,

r′6 = r6 − 2106 · t · (t− 1) · (t− 2) · (t+ 1),

q6 = 5 r6 + 16038 · t2 · (t− 1)2,

r8 = 5 r6 · (t2 − t+ 1) + 17172 · t2 · (t− 1)2 + 15471 · t3 · (t− 1)3. (92)
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The solutions of this order-three linear differential operator A3 are actually algebraic
functions satisfying

432 · (t2 − t+ 1)4 · F 4 − 72 · P6 · (t2 − t+ 1)2 · F 2

− 16 · (t− 2) · (2 t− 1) · (t+ 1) · (t2 − t+ 1) ·
(

P6 + 972 · t2 · (t− 1)2
)

· F
+ 6480 · t2 · (t− 1)2 · (t2 − t+ 1)3 − P 2

6 = 0, (93)

where the polynomial P6 reads:

P6 = 4 · (t2 − t + 1)3 − 243 · t2 · (1 − t)2. (94)

The well-suited solution of the order-three linear differential operator A3 reads:

Sol(A3) = 1 − 1

2
t − 165

64
t2 − 165

128
t3 +

26655

16384
t4 +

101085

32768
t5 +

6546741

4194304
t6

− 12198135

8388608
t7 − 3182706057

1073741824
t8 − 3159215679

2147483648
t9 + · · · (95)

The solution of the order-nine linear differential operator L9 reads:

Sol(L9) = Sol(A3) · K2 = 1 − 159

64
t2 − 159

64
t3 +

2973

16384
t4 +

23325

8192
t5

+
11858901

4194304
t6 +

510591

4194304
t7 − 2771276211

1073741824
t8 − 695778099

268435456
t9 + · · · (96)

The series expansion of (85) reads:

− S3 = −θ
(3)
2 (π/6, q)

θ′2(π/6, q)
= 1 +

3

16
t2 +

3

16
t3 +

339

2048
t4 +

147

1024
t5

+
262047

2097152
t6 +

230109

2097152
t7 +

1632105

16777216
t8 +

365061

4194304
t9 + · · · (97)

Recalling the series expansions (89) and (96), one actually finds that this series (97)
is exactly:

− S3 = −θ
(3)
2 (π/6, q)

θ′2(π/6, q)
=

1

3
· Sol(L3) +

2

3
· Sol(L9)

=
1

3
·
( (t − 2)3

(t2 − t+ 1)
· K2 + 9 · EK

)

+
2

3
· Sol(A3) · K2. (98)

Remark: More generally, for u = π/6, one has

Cρ(1, 1; ρ) = −2 ·
θ′2

(

π
6 , q

)

√
ρ + 1 · θ2(0, q) · θ3(0, q)2

×
∞
∑

p=0

(

arcsin
(

√
ρ + 1

2

)

− π

6

)p

· S(p+1)

(p)!
, (99)

where:

Sn =
θ
(n)
2 (π/6, q)

θ′2(π/6, q)
. (100)
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5.3. Other one-parameter deformations: deformation of u = π/3.

Note: To avoid any confusion with the linear differential operators introduced in
the u = π/3 case (see subsection 5.2 and Appendix C.2) we will add an extra (3)
subscript for the linear differential operators of this u = π/3 case.

For u = π/3 we also find that

√
3 · S2 =

√
3 · θ

(2)
2 (π/3, q)

θ′2(π/3, q)

= 1 − 9

128
· t2 − 9

128
· t3 − 261

4096
· t4 + · · · (101)

is actually D-finite: it is solution of a (slightly involved) order-eight linear differential

operator L
(3)
8 . In fact, revisiting the calculations performed in section 2.2, but this

time with a perturbation around an algebraic solution A(t) (see (29)), one easily finds,
using the sigma-form of Painlevé VI non-linear differential equation (3), that the first
correction term G1(t) is solution of an order-three linear differential operator, with
very involved algebraic coefficients depending on the algebraic solution A(t) and its
derivatives. This provides lower order linear differential operators, but with a price
to pay, namely very involved algebraic coefficients. In fact one can study directly the
previous order-eight linear differential operator.

If one conjugates this order-eight linear differential operator L
(3)
8 by t4/3,

changing L
(3)
8 into L̃

(3)
8 = t−4/3 · L

(3)
8 · t4/3, one can easily see that this new

order-eight linear differential operator L̃
(3)
8 is actually the direct-sum (LCLM) of two

order-four linear differential operators: L̃
(3)
8 = LCLM(L

(3)
4 , M

(3)
4 ) = L

(3)
4 ⊕ M

(3)
4 .

Furthermore, one finds that these two order-four linear differential operators are
non-trivially homomorphic, after performing a conjugation of one of the two linear
differential operator by ρ = t1/3 · (1 − t)1/3

M
(3)
4 · I3 = J3 ·

(1

ρ
· L(3)

4 · ρ
)

, (102)

where I3 and J3 are order-three intertwiners. Let us focus on the simplest order-four

linear differential operator, namely L
(3)
4 :

L
(3)
4 = D4

t +
4

3
· 9 t− 5

(t− 1) · t · D
3
t +

1

9
· 337 t2 − 373 t+ 73

(t− 1)2 · t2 · D2
t (103)

+
1

54
· 1590 t3 − 2627 t2 + 1085 t− 42

(t− 1)3 · t3 · Dt +
1

162
· 350 t3 − 769 t2 + 485 t− 84

(t− 1)4 · t3 .

We have a prejudice that this order-four linear differential operator could correspond
to an absolute factorisation [26], and could be written† as a symmetric product of
two order-two linear differential operators (see also Appendix C). In order to check
this scenario, let us calculate the exterior square of that order-four linear differential
operator. One finds that it is actually the direct-sum (LCLM) of two order-three linear
differential operators

Ext2
(

L
(3)
4

)

= LCLM(A
(3)
3 , B

(3)
3 ) = A

(3)
3 ⊕ B

(3)
3 , (104)

† This prejudice comes from subsection (5.2), see (78).
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where the second order-three linear differential operator B
(3)
3 is exactly the symmetric

square of an order-two linear differential operator A
(3)
2

A
(3)
2 = D2

t +
2

3
· 7 t − 4

t · (t− 1)
· Dt +

1

36
· 117 t2 − 133 t + 21

t2 · (t − 1)2
, (105)

which has the two algebraic function solutions:

t−1/2 · (1 − t)−1/6 · 2F1

(

[
5

6
,
3

2
], [

5

3
], t

)

, t−7/6 · (1 − t)−1/6 · 2F1

(

[
1

6
,
5

6
], [

1

3
], t

)

.

Recalling (106) the order-two linear differential operator LK annihilating the complete
elliptic integral of the first kind K = 2F1([1/2, 1/2], [1], t), let us consider the
symmetric product of the order-two linear differential operator A2 and of LK . One
finds that this symmetric product is non-trivially homomorphic to some conjugate of
L4

SymProd(A
(3)
2 , LK) · I2 = J2 ·

(1

ρ
· L(3)

4 · ρ
)

, (106)

where ρ = t1/6· (1−t)1/6, and where I2 and J2 are order-two intertwiners. This shows

that the solution of L
(3)
4 (and thus M

(3)
4 ), and therefore the solution of the order-eight

linear differential operator L
(3)
8 , are actually of the form α(t) · E + β(t) · K where

α(t) and β(t) are algebraic functions.

Remark: Note, eventually, that these two order-four linear differential operators

L
(3)
4 and M

(3)
4 can, in fact, be seen to be (non-trivially) homomorphic to some well-

suited conjugates of the two order-four operators L4 and M4 emerging for u = π/6
in the previous subsection (5.2).

5.3.1. Deformation of u = π/3: the S3 term
The next Sn, namely

S3 =
θ
(3)
2 (π/3, q)

θ′2(π/3, q)
, (107)

is solution of a linear differential operator of order twelve with coefficient polynomials
in t of degree 52. This is a quite large order twelve linear differential operator, that
we will not give here. This order twelve linear differential operator is actually the
direct sum of an order-three operator and an order-nine linear differential operator
L9. The order-three linear differential operator L3 reads:

L
(3)
3 = D3

t +
6 · (64 t4 − 170 t3 + 40 t2 + 3 t − 1)

(128 t2 + t − 1) · (t − 1) · (t − 2) · t · D
2
t

+
(128 t5 − 410 t4 − 55 t3 + 218 t2 − 11 t + 2)

(128 t2 + t − 1) · (t − 1)2 · (t − 2) · t2 · Dt

− 3 · (32 t2 + 5 t − 5)

2 · (128 t2 + t − 1) · (t− 1)2 · (t − 2) · t . (108)

This order-three linear differential operator (108) is actually homomorphic to the
symmetric square of the order-two linear differential operator LK , annihilating
K = 2F1([1/2, 1/2], [1], t), with order-two intertwiners. Consequently the solutions
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of L3 are (quadratic) homogeneous polynomials in E and K. Actually one finds that

the solution of L
(3)
3 given by (108) reads:

Sol(L
(3)
3 ) = 4 · (t − 2) · K2 + 9 · EK

= 1 − 15

32
t2 − 15

32
t3 − 3513

8192
t4 − 1593

4096
t5 − 92895

262144
t6 − 85245

262144
t7

− 161330925

536870912
t8 − 37507821

134217728
t9 + · · · (109)

The order-nine linear differential operator L
(3)
9 can be seen to be the symmetric

product of an order-three linear differential operator A
(3)
3 and of the order-three linear

differential operator which is the symmetric square of the order-two linear differential
operator LK annihilating K = 2F1([1/2, 1/2], [1], t):

L
(3)
9 = SymProd

(

Sym2(LK), A
(3)
3

)

. (110)

The order-three linear differential operator A3 reads:

A
(3)
3 = D3

t +
16 t3 − 94 t2 + 165 t − 55

t · (t − 1) · (16 t2 − 55 t + 55)
· D2

t (111)

+
32 t4 − 130 t3 + 75 t2 + 110 t − 55

9 · t2 · (t − 1)2 · (16 t2 − 55 t + 55)
· Dt − 64 t3 − 240 t2 + 165 t + 55

18 · t2 · (t − 1)2 · (16 t2 − 55 t + 55)
.

The solutions of this order-three linear differential operator A
(3)
3 are actually algebraic

functions satisfying the algebraic equation:

27 · F 4 − 18 · (16 t2 − t + 1) · F 2 − 4 (t − 2) · (128 t2 + t − 1) · F
− (256 t4 − 752 t3 + 753 t2 − 2 t + 1) = 0. (112)

The well-suited solution of the order-three linear differential operator A3 reads:

Sol(A
(3)
3 ) = 1 − 1

2
t +

9

64
t2 +

9

128
t3 +

747

16384
t4 +

1089

32768
t5 +

108603

4194304
t6

+
176679

8388608
t7 +

18959247

1073741824
t8 +

32508009

2147483648
t9 + · · · (113)

The solution of the order-nine linear differential operator reads:

Sol(L
(3)
9 ) = Sol(A

(3)
3 ) · K2 = 1 +

15

64
t2 +

15

64
t3 +

3513

16384
t4 +

1593

8192
t5

+
743115

4194304
t6 +

681825

4194304
t7 +

161265045

1073741824
t8 +

37482261

268435456
t9 + · · · (114)

The series expansion of (107) reads:

− S3 = −θ
(3)
2 (π/3, q)

θ′2(π/63 q)
= 1 − 15

2097152
t6 − 45

2097152
t7 − 2745

67108864
t8

− 1065

16777216
t9 − 3011265

34359738368
t10 − 3858885

34359738368
t11 + · · · (115)

Recalling the series expansions (109) and (114), one actually finds that this series
(115) is exactly

− S3 = −θ
(3)
2 (π/3, q)

θ′2(π/3, q)
=

1

3
· Sol(L(3)

3 ) +
2

3
· Sol(L(3)

9 )

=
1

3
·
(

4 · (t − 2) · K2 + 9 · EK
)

+
2

3
· Sol(A(3)

3 ) · K2. (116)
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Remark 1: Let us recall the hypergeometric function t−7/6 · (1 − t)−1/6 ·
2F1([5/6, 1/6], [1/3], t) which is an algebraic function and its order-two linear

differential operator A
(3)
2 (see (105)). Let us also recall the order-two linear differential

operator LK annihilating K = 2F1([1/2, 1/2], [1], t). Let us consider the order-three
linear differential operators corresponding to the symmetric square of these two order-
two linear differential operators, and let us consider the symmetric product of these
two symmetric squares. One gets that way an order-nine linear differential operator:

Ω9 = SymProd
(

Sym2(LK), Sym2(A
(3)
2 )

)

. (117)

This order-nine linear differential operator Ω9 has a structure of solutions very similar
to the one of the order-nine linear differential operator L9. One finds, in fact, that
this order-nine linear differential operator (117) is actually non-trivially homomorphic
to the order-nine linear differential operator L9:

I8 ·
(

t−7/3 · Ω9 · t7/3
)

= L
(3)
9 · J8, (118)

where I8 and J8 are order-eight intertwiners. In conclusion the solution of the order-
twelve operator corresponding to S3 and thus annihilating (107), is a homomogeneous
(quadratic) polynomial of E and K with involved algebraic coefficients.

Remark 2: More generally, for u = π/3 one has:

Cρ(1, 1; ρ) = −2 ·
θ′2

(

π
3 , q

)

√
ρ + 3 · θ2(0, q) · θ3(0, q)2

×
∞
∑

p=0

(

arcsin
(

√
ρ + 3

2

)

− π

3

)p

· S(p+1)

p!
, (119)

where:

Sn =
θ
(n)
2 (π/3, q)

θ′2(π/3, q)
. (120)

6. λ corresponds to the critical exponent at t = 1

The lambda extensions C(1, 1; λ) are a one-parameter family of solutions of the
Okamoto-Painlevé VI equation (3). It is worth noticing that the parameter lambda
cannot be seen in the non-linear ODE (3). It is not a parameter of the non-linear
ODE (3). The parameter lambda actually fixes the critical exponent at t = 1 of the
solution C(1, 1; λ).

Paper [27] gives, in equation (13) and (14), the behaviour of the lambda extensions
C(N,N, λ) near♯ t = 1:

C(N,N, λ) ≃ K(N, σ) · (1 − t)σ
2/4 where: σ =

2

π
· arccos(λ), (121)

or denoting λ = cos(u):

C(N,N, λ) ≃ K(N, σ) · (1 − t)(u/π)
2

. (122)

♯ Here σ is an exponent, which has nothing to do with the σ functions (1) or (2). Painlevé papers
are famous for their terrible notations.
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One verifies that this power-law formula† (122) is actually valid for all the algebraic
expressions displayed in section 2.1.1 (see (22)), section 2.1.2 (see (25)), and section
2.1.3 (see (29)):

• For λ = 0, i.e. u = π/2 one has a (1 − t)1/4 behaviour.

• For λ = 1/
√
2, i.e. u = π/4 one has a (1 − t)1/16 behaviour (see (22) and

(62)).

• For λ =
√
3/2, i.e. u = π/6 one has a (1 − t)1/36 behaviour: from (25) one

actually gets: S(t) = 28/9/3 · (1 − t)1/36 + · · ·
• For λ = 1/2, i.e. u = π/3, one has a (1 − t)1/9 behaviour: from (29) one

actually gets: S(t) = 214/9 · 3−3/2 · (1 − t)1/9 + · · ·

7. Comments and speculations.

All these calculations, displayed on the low-temperature correlation function C(1, 1),
illustrate the extremely rich structures of the lambda extensions of the two-point
square‡ Ising correlation functions C(M, N). For an infinite set of values of lambda
(λ = cos(πm/n), m and n integers) these lambda extensions become algebraic
functions and for another infinite set of values of lambda (λ = (m/n)1/2, m and n
integers) the series expansions of the lambda extension are globally bounded series [11]
that are not D-finite¶ but only differentially algebraic (the corresponding σ are
solutions of a sigma-form of Painlevé VI).

Furthermore we have seen, in section 2, that the “form-factor-like” expansions
(10) around the (D-finite) two-point correlation function C(1, 1) = E, yield new
“form factors” gn(t)’s which, at first sight, should be DD-finite expressions (see
section (2.2)), are, actually, D-finite expressions. The gn(t)’s are, in fact, polynomial
expressions in E and K.

The “form-factor-like” [1] expansions around the infinite set of algebraic functions
at λ = cos(πm/n) yield new “form factors” Gn(t)’s (see (61)) which turned out to
be D-finite expressions: they are solutions of linear differential operators with (quite
involved) algebraic functions coefficients. We showed that the first Gn(t)’s are actually
polynomial expressions in E and K and, hopefully, one can expect that all these
Gn(t)’s are polynomial expressions in E and K (with involved algebraic functions
coefficients).

These results correspond to the (quite puzzling) fact that rational expressions of
the derivatives (at selected values of u) of Jacobi theta functions (like (37)) can, in
fact, be expressed as polynomial expressions in E and K, thus providing an infinite
set of remarkable identities between theta functions and complete elliptic integrals of
the first and second kind♯. Such calculations provide an infinite set of new D-finite
expressions on the two-dimensional Ising model that will join together with all the
previous D-finite expressions we have altready encountered on the two-dimensional
Ising model as n-fold integrals that are diagonals of rational functions [11, 12, 13, 14].

† It is very hard to get this result from the exact expression (34) of C(1, 1; λ) in terms of theta
functions.
‡ One has similar results for the triangular, honeycomb, ... lattices. One has similar results for
the high-temperature correlation functions. One has similar results for the anisotropic correlation
functions C(M, N) for ν = −k.

¶ Except when λ = 0, 1/
√
2, 3/

√
2, 1 where λ is also of the form λ = cos(πm/n).

♯ For identities on products of ratio of Jacobi theta functions see for instance [28]
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This corresponds to the kind of holonomic (i.e. D-finite) studies we are used to perform
on the two-dimensional Ising model [1, 29] in the variable t = k2. These D-finite
expressions emerge from form factor-like perturbation theory (the kind of perturbation
theory physicists are used to with Feynman diagrams, Periods of algebraic varieties,
...). However, we also see that the lambda extension C(1, 1; λ) which is differentially
algebraic (solution of a non-linear ODE (3) with the Painlevé property of fixed critical
points [30]), can be understood “holistically”, globally, and not using the bread and
butter perturbative physicist’s approach, if one switches to a description in terms of
the nome q (or the ratio τ of the two periods of the elliptic function) requiring to
introduce intensively Jacobi theta functions [1, 8, 30]. With that alternative holistic
description one has a rather simple exact closed formula for the lambda extension
(see (34)). The “price to pay” is that this exact and elegant holistic expression of the
lambda extension (like (34)) is solution of a non-linear ODE (3) and, for instance, the
emergence of all the D-finite expressions, displayed in this paper, is not obvious from
that non-linear differential equations or Jacobi theta functions viewpoint [31].

7.1. Painlevé VI transcendentals as deformations of elliptic functions and why theta
functions are well-suited: Jacobi forms

The occurrence of Jacobi theta functions [32, 33] for the exact closed expression (37) of
the lambda extension solution of sigma-form of Painlevé VI is, in fact, highly relevant
as far as all the symmetries of the model are concerned.

Let us first recall that Painlevé VI transcendents should be seen as deformations
of elliptic functions [34]. Along this line it is worth recalling Manin’s idea [34] that
the Painlevé VI equation for a particular choice of the four Okamoto parameters, can
be written extremely simply in terms of the ratio of periods τ . Let us denote P(z, τ)

the P-Weierstrass function and Pz(z, τ) = ∂P(z, τ)
∂z . Manin’s result means that the

Painlevé VI equation can be written in a form (see equation (1.16) in [34]):

d2z(τ)

dτ2
=

( 1

2 π i

)2

·
3

∑

i=0

αi · Pz

(

z +
Ti

2
, τ

)

. (123)

In previous studies of the C(M, N) correlation functions and their non-linear Painlevé
ODEs, we have underlined the fundamental role of Landen transformations [30]. The
crucial role of Landen transformations is underlined in [15, 30, 34]. It is also worth
recalling that the Weierstrass P-function is simply related to theta functions. The
Weierstrass P-function is related† to the second log derivative of θ1(u, q):

P(u, τ) = − ∂2 ln(θ1(u, τ))

∂u2
+ c = − ∂2 ln(θ1(u, τ))

∂u2
+

1

3

θ′′′1 (0, q)

θ′1(0, q)
, (124)

The closed expressions (37) for the lambda-extension C(1, 1; λ) underlines the
occurrence of the partial derivative with respect to the u-deformation parameter (or
equivalently the lambda parameter). Along this line one can recall another interesting
property of the theta functions. They are solutions of the heat equation:

∂θ(u, τ)

∂τ
= q · ∂θ(u, q)

∂q
=

∂2θ(u, q)

∂u2
. (125)

† The constant c is defined so that the Laurent expansion of P(u, τ) at u = 0 has zero constant
term (θ′1(0, q) is the derivative with respect to u), see (B.7), (B.8) in [35]. See for instance
https://handwiki.org/wiki/Theta function in the paragraph Relation to the Weierstrass elliptic
function. See also [36].
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Consequently, and to some extent, the partial derivatives in u can be replaced by
partial derivatives in τ .

It is also worth mentioning the modular group relations on the Weirstrass P-
functions as well as the similar “modular group transformations” on the theta
functions [37, 38]:

P
( z

c τ + d
,
a τ + b

c τ + d

)

= (c τ + d)2 · P(z, τ), (126)

Pz

( z

c τ + d
,
a τ + b

c τ + d

)

= (c τ + d)3 · P(z, τ), (127)

and¶

κ · (c τ + d)1/2 · θα(u, τ) = exp
(

− i π
cu2

c τ + d

)

· θβ
( u

c τ + d
,
a τ + b

c τ + d

)

, (128)

where κ is a constant, and where the integers a, b, c, d are such that a d − b c = 1.
For u = 0 the previous modular group transformations (126), (128) is reminiscent
of the modular forms of weight k:

(c τ + d)k · f(τ) = f
(a τ + b

c τ + d

)

. (129)

With some abuse of language we could say that the theta functions are “some kind”
of “modular forms of weight 1/2”.

Recalling the relation (34) between λ and u, the theta functions thus provide,
because of (128), some natural u-extension, and thus lambda-extension, of the modular
forms (Jacobi forms). From the closed expression (37) it is clear that the lambda-
extension will naturally inheritate from (128), some symmetry properties with respect
to the modular group. This kind of global (holistic) symmetry is almost impossible to
see in the holonomic (D-finite) world of the linear differential operators in the variable
t. Conversely all the D-finite results, we have displayed in this paper, are not an
obvious consequence of the emergence of θ′2(u, q) in (37). All these D-finite results
are “hidden” in the theta functions (considered at selected values of u). This is similar
to the situation one encounters with modular forms [13, 39, 40] where the fact that
they are D-finite in the variable t is not totally straightforward†.

8. Conclusion

The lambda-extensions of the two-point correlation functions C(M,N) of the square
Ising model are a good illustration of the mirror-map t ↔ q duality in mirror
symmetries [43, 44, 45], where all the holonomic (D-finite) structures are well seen in
the t variable but are hard to see in the nome [8, 9] q (or in the ratio of periods τ), and
conversely the modular group, modular forms structures are easily seen in the nome q
variable (or in the ratio of periods τ) but are very hard to see in the original t variable.
In the t variables the perturbative approach provides a large set of D-finite expressions
which are n-fold integrals (and in fact diagonals of rational functions [11]), when the
description in the nome variable (or the τ variable) provides a holistic understanding
(see (34)) which makes crystal clear modular group symmetries and the emergence
of Landen transformations [15, 30], and of modular forms [13, 36, 39], but requires

¶ See equation (2.16) in [37].
† See in particular Proposition 21 page 61 in [41]. One can find in [42] why automorphic forms are
solutions of linear differential equations
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to consider non-linear ODEs [39, 40, 30]. Both descriptions are complementary and
necessary to describe efficiently these lambda-extensions.

Focusing, for pedagogical reasons, on a very simple example of lambda-extension,
namely C(1, 1; λ), we have considered the series expansion in t as different form-
factor-like expansions around the D-finite subcase C(1, 1) = E or a large set of
algebraic functions subcases (see (15), (22), (25), (29)). For the first form-factor-like
expansion (10), the corresponding form-factors gn(t), which should, at first sight, be
DD-finite, turn out to be D-finite and simple polynomials of the complete elliptic
integrals of the first and second kind K and E. On the other hand, the form-factors
Gn(t), corresponding to a deformation around the algebraic functions subcases of the
lambda-extension, have been seen to be D-finite, and, either, shown to be polynomials
of K and E, or can be very reasonably conjectured to be polynomials of K and
E. These results can be seen as remarkable, non-trivial (and rather unexpected ...),
identities between ratio of Jacobi theta functions and the complete elliptic integrals
of the first and second kind K and E.

These identities are a nice illustration of this complementary description of the
D-finite t-variable (elliptic integrals) viewpoint and the non-linear (modular group,
Jacobi theta functions [1, 8, 36]) nome viewpoint.
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this work. J-M. Maillard would like to thank I. Dornic and R. Conte for many fruitful
discussions on Painlevé equations. JMM also wants to thank A. Bostan and J-A. Weil
for many fruitful diff. algebra discussions.

Appendix A. Calculation of the coefficient g3(t)

The series g3(t) can also be seen to be D-finite, being solution of an order-twelve
linear differential operator which turns out to be the direct-sum (LCLM) of the
previous order-two linear differential operator LE , of the previous order-four L4,
of the previous order-six linear differential operator homomorphic to the symmetric
fifth power of LE, and of an order-eight linear differential operator homomorphic to
the symmetric seventh power of LE , with the following order-seven intertwiner

256

315
· R3 =

1

8
· (t− 1) · (8 t2 − 33 t+ 33) · t7 · D7

t

+
7

16
· (t− 1) · (40 t2 − 173 t+ 181) · t6 · D6

t

+
7

32
· (360 t3 − 2077 t2 + 3795 t− 2166)) · t5 · D5

t (A.1)

+
35

64
· 120 t4 − 975 t3 + 2968 t2 − 3933 t+ 1900

t− 1
· t4 D4

t − 7

128
· q5
(t− 1)2

· t3 D3
t

+
7

256
· q6
(t− 1)3

· t2 · D2
t − 1

512
· q7
(t− 1)4

· t · Dt +
7

1024
· q8
(t− 1)5

,
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where the qn polynomials read:

q5 = 600 t5 − 5379 t4 + 16550 t3 − 15061 t2 − 8708 t + 13854,

q6 = 1080 t6 − 10287 t5 + 30197 t4 − 9695 t3 − 59739 t2 + 51338 t + 4402,

q7 = 12600 t7 − 125991 t6 + 346295 t5 + 108127 t4 − 1210745 t3

+ 868060 t2 + 142022 t + 4016,

q8 = 1800 t8 − 18801 t7 + 47986 t6 + 43466 t5 − 233350 t4 + 147125 t3

+ 40936 t2 + 1378 t + 180. (A.2)

One finally finds that the series expansion for g3(t) is exactly the linear combination
of E, of the order-three linear differential operator (39) acting on E3, of an order-five
linear differential operator (41) acting on E5 and the order-seven linear differential
operator (A.1) acting on E5:

g3(t) =
5

7168
· E +

37

46080
· R1(E

3) − 1

9216
· R2(E

5) +
1

322560
· R3(E

7)

=
5

7168
· E − 37

15360
· K E2 − 37

23040
· (t− 1) · K3

+
5

3072
· K2 E3 +

5

1536
· (t− 1) · K4 E +

1

1152
· (t− 1) · (t− 2) · K5

− 1

3072
· K3 E4 − 1

768
· (t− 1) · K5 E2 − 1

1440
· (t− 1) · (t− 2) · K6 E

− 1

80640
· (t− 1) · (8 t2 − 33 t+ 33) · K7. (A.3)

Appendix B. Low temperature lambda extension C−(0, 0, λ)

Similarly to the Taylor expansion (55), we can write a similar identity for the lambda
extension C(0, 0, λ). Introducing

Sn =
θ
(n)
4 (0, q)

θ4(0, q)
, (B.1)

the lambda extension C−(0, 0, λ) can be written

C−(0, 0; λ) =
θ3(arccosλ, q)

θ3(0, q)

= (1 − t)1/4 ·
∞
∑

p=0

(

arcsinλ
)(2 p)

· S2 p

(2 p)!

= (1 − t)1/4 ·
(

1 +
S2

2
· λ2 +

(S2

6
+

S4

24

)

· λ4 +
(4S2

45
+

S4

36
+

S6

720

)

· λ6

+
(2S2

35
+

7S4

360
+

S6

720
+

S8

40320

)

· λ8 + · · ·
)

= (1 − t)1/4 ·
∞
∑

p=0

κ(2 p) · λ(2 p), (B.2)
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where κ(2 p) = f
(2 p)
0,0 . From (B.2) one can deduce the expression of the S2 p’s in terms

of the κ(2 p)’s:

S2

2!
= κ(2),

S4

4!
= κ(4) − 1

3
κ(2),

S6

6!
= κ(6) − 2

3
κ(4) +

2

45
κ(2),

S8

8!
= κ(8) − κ(6) +

1

5
κ(4) − 1

315
κ(2),

S10

10!
= κ(10) − 4

3
κ(8) +

7

15
κ(6) − 34

945
κ(4) +

2

14175
κ(2), · · · (B.3)

Appendix C. Exterior squares and absolute factorisation.

Appendix C.1. Absolute factorisation.

Let us recall a simple example of an absolute factorisation of an order-four linear
differential operator given in [26]:

A4 = D4
t − 1

t
· D3

t +
3

4 t2
· D2

t − t

=
(

D2
t − 1

t
· Dt +

3

4 t2
+
√
t
)

·
(

D2
t −

√
t
)

. (C.1)

The fact that such a factorisation over an algebraic extension of C(t) exists can be
deduced [26] from the fact that one has a direct-sum (LCLM) decomposition of the
(order-five) exterior square of the order-four linear differential operator A4:

Ext2(A4) = Dt ⊕
(

D4
t − 3

2 t
· D3

t +
9

4 t2
· D2

t − 15

8 t3
· Dt + 4 t

)

. (C.2)

Appendix C.2. Exterior square of M4 and absolute factorisation of M4 .

Let us now study here the order-four linear differential operator M4 occurring in
section 5.2 for the deformations of u = π/6.

The order-four linear differential operator M4 is slightly more difficult to analyse
than the first order-four linear differential operator L4 in (5.2). We seem to have
a solution of this order-four linear differential operator M4 of the form α(t) · E +
β(t) · K, α(t) and β(t) being (very) involved algebraic functions, however finding a
symmetric product form, like in the previous order-four linear differential operator
L4, is difficult. Let us show, in a quite indirect way, that this is probably the case.
Let us consider the exterior square of this order-four linear differential operator M4.
This is an order-six linear differential operator M6, which is actually the direct-sum
(LCLM) of two order-three linear differential operators A3 and B3

M6 = Ext2(M4) = LCLM(A3, B3) = A3 ⊕ B3, (C.3)

where one finds easily that the first order-three linear differential operator A3
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corresponds to algebraic solutions associated with the polynomial equation:

(16 t17 − 184 t16 − 135149 t15 + 1128329 t14 − 6708683 t13 + 26956928 t12

− 65809991 t11 + 96341783 t10 − 88006226 t9 + 63929329 t8 − 60215242 t7

+ 59165527 t6 − 37633087 t5 + 12783832 t4 − 1787515 t3 − 7679 t2 − 1957 t− 32)

+ 4 (t− 1) (t2 − t+ 1) (20 t15 − 186 t14 − 20481 t13 + 138367 t12 − 473685 t11

+ 1069635 t10 − 1516399 t9 + 1115037 t8 − 53199 t7 − 617857 t6 + 547761 t5

− 255237 t4 + 78967 t3 − 12885 t2 + 156 t− 16) · y(t) (C.4)

+ 18 · (8 t6 − 33 t5 − 447 t4 + 943 t3 − 447 t2 − 33 t+ 8) (t− 1)2 (t2 − t+ 1)5 t · y(t)2
+ 108 · (t− 1)4 (t2 − t+ 1)7 · y(t)3 + 27 t3 (t− 1)4 (t2 − t+ 1)7 t2 · y(t)4 = 0.

The second order-three linear differential operator B3 is homomorphic† to the
symmetric square of an order-two linear differential operator L2 which is simply
conjugated to the order-two linear differential operator LK annihilating the complete
elliptic integral of the first kind K = 2F1([1/2, 1/2], [1], t)

B3 · I2 = J2 · Sym2(L2), where: (C.5)

L2 =
1

ρ(t)
· LK · ρ(t) = D2

t +
4

3
· 2 t − 1

t (t− 1)
· Dt +

25 t2 − 25 t + 1

36 t2 (t− 1)2
, (C.6)

where ρ(t) = t1/6 · (1 − t)1/6. It is worth comparing these results with similar
calculations (see Appendix C.3 for a general identity on exterior square of symmetric
products and direct sum of symmetric square) for the first order-four linear differential
operator L4 in section 5.2 which was the direct-sum of two linear differential operators
(78). In that case the exterior square of L4 is an order-six linear differential operator

L6 = Ext2(L4) = LCLM(Ã3, B̃3) = Ã3 ⊕ B̃3, (C.7)

where the two order-three linear differential operators Ã3 and B̃3 are both symmetric
squares of order-two linear differential operators having respectively the solutions

t5/6 · (1 − t)5/6 · (t2 − t+ 1)−1/2 · 2F1

(

[
7

6
,
5

2
], [

7

3
], t

)

, (C.8)

t1/6 · (1 − t)1/6 · (t2 − t+ 1)−3/4 · 2F1

(

[− 1

12
,
7

12
], [1],

27

4

t2 · (1 − t)2

(1 − t + t2)3

)

,

totally reminiscent of the two solutions (79) and (80).
According to [26] the direct-sum decomposition (C.7) means that the order-four

operator M4 is absolutely reducible, i.e. it admits a factorization over an algebraic
extension of C(t). This is confirmed by relation (84) in section 5.2

L4 · I3 = J3 ·
(1

ρ
· M4 · ρ

)

with: ρ = t2/3 · (1 − t)2/3, (C.9)

where I3 and J3 are order-three intertwiners and where the order-four operator L4

is a symmetric product of two order-two linear differential operators (78).

† With order-two intertwiners I2 and J2.
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Appendix C.3. Exterior square of symmetric products and direct sum of symmetric
squares.

Let us consider two order-two linear differential operators

L2 = D2
t − 1

wL(t)
· dwL(t)

dt
· Dt + l(t),

M2 = D2
t − 1

wM (t)
· dwM (t)

dt
· Dt +m(t), (C.10)

where wL(t) is the wronskian of L2 and wM (t) is the wronskian of M2. We have
the following identity between the exterior square of symmetric product of these two
linear differential operators and the LCLM (i.e. direct sum) of the symmetric squares
of these two linear differential operators†:

Ext2
(

SymProd(L2, M2)
)

=

=
(

wM (t) · Sym2(L2) ·
1

wM (t)

)

⊕
(

wL(t) · Sym2(M2) ·
1

wL(t)

)

. (C.11)

In a more general framework, like in (C.5), we do not have an identity but an
equivalence (homomorphisms) between the LHS and the RHS: see for instance Lemma
8 in [26].
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