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We revisit, with a pedagogical heuristic motivation, the lambda extension of the low-temperature row correlation functions C(M, N ) of the two-dimensional Ising model. In particular, using these one-parameter series to understand the deformation theory around selected values of λ, namely λ = cos(π m/n) with m and n integers, we show that these series yield perturbation coefficients, generalizing form factors, that are D-finite functions. As a by-product these exact results provide an infinite number of highly non-trivial identities on the complete elliptic integrals of the first and second kind. These results underline the fundamental role of Jacobi theta functions and Jacobi forms, the previous D-finite functions being (relatively simple) rational functions of Jacobi theta functions, when rewritten in terms of the nome of elliptic functions.

Introduction

We revisit, with a pedagogical heuristic motivation, the lambda extension [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF] of the two-point correlation functions C(M, N ) of the two-dimensional Ising model. For simplicity we will examine in detail the lambda extension of a particular lowtemperature diagonal correlation function, namely C(1, 1), in order to make crystal clear some structures and subtleties. However similar structures and results can be obtained on the two-point correlation functions C(M, N ) for the special case ν = -k studied in [START_REF] Boukraa | The Ising correlation C(M, N ) for ν = -k[END_REF] where Okamoto sigma-forms of Painlevé VI equations also emerge.

In 1976 Wu, McCoy, Tracy and Barouch [START_REF] Wu | Spin-spin correlation functions for the two dimensional Ising model: exact theory in the scaling region[END_REF] discovered, in the scaling limit T → T c with N • (T -T c ) fixed, that the isotropic diagonal correlation C(N, N ) is given by a Painlevé III equation. This was generalized in 1980 by Jimbo and Miwa [START_REF] Jimbo | Studies on holonomic quantum fields XVII[END_REF] who defined for T < T c

σ = t • (t -1) • d dt ln C(N, N ) - t 4 with t = k 2 , (1) 
and for T > T c

σ = t • (t -1) • d dt ln C(N, N ) - 1 4 with t = k -2 , (2) 
and in both cases derived the sigma-form of Painlevé VI non-linear ODE satisfied by σ:

t • (t -1) • d 2 σ dt 2 2 (3) = N 2 • (t -1) • dσ dt -σ 2 -4 • dσ dt • (t -1) • dσ dt -σ - 1 4 • t dσ dt -σ .
The low-temperature diagonal two-point correlation functions C(N, N ) are (homogeneous) polynomial expressions [5,6] in the complete elliptic integral of the first and second kind †:

K = 2 F 1 [ 1 2 , 1 2 ], [1], t , E = 2 F 1 [ 1 2 , - 1 2 
], [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF], t .

In [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF] it has been underlined that these correlation functions C(N, N ) have lambda extensions which are also solutions of (3), that can be defined using a "form factor" low-temperature expansion [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF][START_REF] Lyberg | Form factor expansion of the row and diagonal correlation functions of the twodimensional Ising model[END_REF] (see [START_REF] Bostan | The Ising model: from elliptic curves to modular forms and Calabi-Yau equations[END_REF] in [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF]):

C -(N, N ; λ) = (1 -t) 1/4 • 1 + ∞ n=1 λ 2 n • f (2 n) N, N , (5) 
where the form factors [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF] f

(2 n)
N, N are also polynomial expressions [5,6] in the complete elliptic integral of the first and second kind [START_REF] Jimbo | Studies on holonomic quantum fields XVII[END_REF]. For instance for the simplest lowtemperature correlation function this form factor expansion reads

C -(1, 1; λ) = (1 -t) 1/4 • 1 + ∞ n=1 λ 2 n • f (2 n) 1, 1 , (6) 
where the first form factors read:

f (2) 1, 1 = 1 2 • 1 -3 E K -(t -2) • K 2 , (7) 
f (4) 1, 1 = 1 24 • 9 -30 E K -10 • (t -2) • K 2 + (t 2 -6t + 6) • K 4 + 15E 2 K 2 + 10 • (t -2) • E K 3 . ( 8 
) † In Maple K is 2/π EllipticK(t 1/2
) and E is 2/π EllipticE(t 1/2 ). With that normalization one has K = θ 3 (0, q) 2 and t 1/2 = k = θ 2 (0, q) 2 /θ 3 (0, q) 2 and thus k • K = θ 2 (0, q) 2 , where q denotes the nome.

For λ = 1 we must recover, from (6), the well-known expression of the low-temperature two-point correlation function C(1, 1) = E:

C -(1, 1; 1) = E = 1 - 1 4 • t - 3 64 • t 2 - 5 256 • t 3 - 175 16384 • t 4 + • • • = (1 -t) 1/4 • 1 + ∞ n=1 f (2 n) 1, 1 , (9) 
which corresponds to write the ratio E/(1t) 1/4 as an infinite sum of polynomial expressions of E and K.

Simple power series expansions and formal calculations

For pedagogical reasons we restrict our analysis to the low-temperature two-point correlation function C(1, 1) and its lambda extension. Since all these lambda extensions are power series in t, we can try to get, order by order, the series expansion of C -(1, 1; λ) from the non-linear ODE [START_REF] Wu | Spin-spin correlation functions for the two dimensional Ising model: exact theory in the scaling region[END_REF]. Recalling [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF] the form factor expansion (6), we can either see the series expansion in t as a deformation of the simple algebraic function (1 -t) 1/4 , or more naturally, see the series expansion of the lambda-extension of the low-temperature two-point correlation function C -(1, 1; λ) as a deformation of the exact expression C -(1, 1) = E (M denotes here a difference to λ 2 = 1, see ( 16) below):

C -(1, 1; λ) = C M (1, 1; M ) = E + M • g 1 (t) + M 2 • g 2 (t) + M 3 • g 3 (t) + • • • (10) 
Using the sigma-form of Painlevé VI equation [START_REF] Wu | Spin-spin correlation functions for the two dimensional Ising model: exact theory in the scaling region[END_REF] one can find that this expansion [START_REF] Boukraa | Selected non-holonomic functions in lattice statistical mechanics and enumerative combinatorics[END_REF] reads as a series expansion in the variable t: 

C M (1, 1; M ) = 1 - 1 
Note that this low-temperature expansion [START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF] gives for σ defined by [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF]:

σ = t • (t -1) • d dt ln C(1, 1; M ) - t 4 = (M -4) • σ M , (12) 
where:

σ M = 3 128 • t 2 + 3 256 • t 3 + 3 32768 • (3 M + 74) • t 4 + 3 65536 • (9 M + 94) • t 5 + 3 8388608 • (9 M 2 + 1270 M + 8176) • t 6 + • • • (13) 
Recalling the expansions of (1t) 1/4 (1t)

1/4 = 1 - 1 4 • t - 3 32 • t 2 - 7 128 • t 3 - 77 2048 • t 4 + • • • (14) 
one can see that this series coincides (as it should) with the series [START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF] for M = 4 (i.e. λ = 0 in (6)). Recalling the expansions of f

(2)

1, 1 and f (4)

1, 1 : 

f (2)
the series expansion [START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF] can be seen to match with the (form factor) expansion ( 6) with ( 7) and ( 8) (together with the previous expansions [START_REF] Boukraa | Singularities of n-fold integrals of the Ising class and the theory of elliptic curves[END_REF]) if one has the following correspondence:

M = 4 • (1 -λ 2 ). ( 16 
)
At the first order in λ 2 one gets from ( 11):

(1t) 

in agreement with the exact expression [START_REF] Lyberg | Form factor expansion of the row and diagonal correlation functions of the twodimensional Ising model[END_REF]. At the second order in λ 2 one gets from ( 11):

(1t) in agreement with the exact expression [START_REF] Mccoy | The Saga of the Ising susceptibility[END_REF]. At the third order in λ 2 one gets from (11):

(1t) 

Matching the form-factor expansion (6) with the series expansion [START_REF] Boukraa | Selected non-holonomic functions in lattice statistical mechanics and enumerative combinatorics[END_REF] one gets the following (infinite ...) identities:

(

1 -t) 1/4 = E + ∞ n=1 4 n • g n (t), (1 -t) 1/4 • f (2) 1, 1 = - ∞ n=1 n • 4 n • g n (t), (1 -t) 1/4 • f (4) 1, 1 = ∞ n=1 n • (n -1) 2 • 4 n • g n (t), • • • (20) 
and conversely:

E = (1 -t) 1/4 • 1 + ∞ n=1 f (2 n) 1, 1 , g 1 (t) = - (1 -t) 1/4 4 • ∞ n=1 n • f (2 n) 1, 1 , g 3 (t) = (1 -t) 1/4 32 • ∞ n=1 n • (n -1) • f (2 n) 1, 1 , • • • (21)

Algebraic subcases

It had been noticed [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF], for λ = cos(π m/n) where m and n are integers, and λ 2 = 1, that the lambda extension ( 6) is not only D-finite †, but is, in fact, an algebraic function.

2.1.1. λ = cos(π/4) For instance for λ = cos(π/4) = 1/ √ 2 , i.e. for M = 2, one finds that ( 11) is actually the series expansion of an algebraic expression 

(1 -t) 1/16 • 2 F 1 [- 3 8 , 1 8 ], [ 1 4 ], t = (1 -t) 1/16 • 1 + (1 -t)
One first finds that this series ( 23) is D-finite, being the solution of the order-four linear differential operator: 

D 4 t + 1 3 • 19 t 3 -
In fact the series ( 23) is not only D-finite, it is an algebraic series. Denoting S(t) the series [START_REF] Boukraa | High order Fuchsian equations for the square Ising model: χ(6)[END_REF], and S 12 = S(t) 12 its twelfth power, one can see that S 12 is actually solution of the quartic equation

3 36 • t 8 • S 4 12 + 2 10 • 3 26 • t 6 • (t -1) • p 6 • S 3 12 + 2 17 • 3 15 • t 4 • p 12 • (t -1) 2 • S 2 12 + 2 26 • (t -1) • p 24 • S 12 + 2 32 • (t -1) 4 • (t 2 -t + 1) 12 = 0, (25) 
where: 

p 6 =
and can be seen to be solution of an order-four linear differential operator:

D 4 t + 2 3 • 11 t -7 (t -1) t • D 3 t + 1 54 • 587 t 2 -737 t + 170 (t -1) 2 t 2 • D 2 t + 1 1458 • 2855 t 3 -5223 t 2 + 2130 t + 110 (t -1) 3 t 3 • D t + 1 11664 • 161 t 3 -702 t 2 + 1785 t -220 (t -1) 4 t 3 . (28) 
Again, the series ( 27) is not only D-finite, it is also an algebraic series. Denoting S(t) the series ( 27), and S 6 = S(t) 6 its sixth power, one can see that S 6 is solution of the quartic equation

3 27 • t 4 • S 4 6 -2 10 • 3 20 • t 4 • (t -1) • (t -2) • S 3 6 + 2 9 • 3 11 • t 2 • p 4 • (t -1) 2 • S 2 6 + 2 15 • (t -2) • p 8 • (t -1) 2 • S 6 -2 16 • (t -1) 8 = 0. ( 29 
)
where: 

p 8 =
Actually [START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF] provides [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF] an infinite number of algebraic functions for selected values of λ, namely λ = cos(π m/n), or M = 4 • sin 2 (π m/n), with m and n integers.

The g n 's are, at first sight, DD-finite

The form factor expansion ( 6) is well-suited [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF] to analyse the deformation of the (1t) 1/4 algebraic solution of the sigma-form of Painlevé VI equation [START_REF] Wu | Spin-spin correlation functions for the two dimensional Ising model: exact theory in the scaling region[END_REF]. We underlined in [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF] the fact that all the form factors f

(2 n) 1, 1
are D-finite (polynomials in E and K).

Let us now see the series expansion [START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF] as a (one-parameter) deformation (10) of the C(1, 1) = E low-temperature exact expression:

C M (1, 1; M ) = E + M • g 1 (t) + M 2 • g 2 (t) + M 3 • g 3 (t) + • • • (31) 
At first sight these g n (t)'s have no reason to be D-finite. The series expansion of g 1 (t) reads:

g 1 (t) = - 3 256 • t 2 - 9 1024 • t 3 - 441 65536 • t 4 - 1407 262144 • t 5 - 9281 2097152 • t 6 - 31405 8388608 • t 7 - 13877397 4294967296 • t 8 + • • • (32) 
Inserting [START_REF] Mckay | Fuchsian groups, Schwarzians, and theta functions[END_REF] in the sigma form of Painlevé VI non-linear ODE (3) (with σ defined by (1)), one gets straightforwardly, at the first order in M , that g 1 (t) is DD-finite † [START_REF] Bostan | On the exponential generating function of labelled trees[END_REF]: it is solution of an order-three linear differential operator L 3 with coefficients that are themselves D-finite (they are polynomials of hypergeometric 2 F 1 functions). This order-three linear differential operator is of the form L 3 = L 1 • L E where the ordertwo linear differential operator L E is the operator annihilating the complete elliptic integral of the second kind E, and where the order-one DD-finite operator L 1 reads:

L 1 = K 3 • (t -1) 2 • 2 • (t -1) • t D t + 5 t -3 -E K 2 • (t -1) • 4 • (t -1) • (t -2) • t D t + 10 t 2 -27 t + 13 -K E 2 • (t -1) • 10 • (t -1) • t D t + 26 t -17 + E 3 • 2 • (t -1) • (t -2) • t D t + 3 t 2 -14 t + 7 = 2 • (t -2) • E 3 -5 • (t -1) • K E 2 -2 (t -1) • (t -2) • E K 2 + (t -1) 2 • K 3 • (t -1) • t • D t + (t -1) 2 • (5 t -3) • K 3 -(t -1) • (10 t 2 -27 t + 13) • E K 2 -(t -1) • (26 t -17) • K E 2 + (3 t 2 -14 t + 7) • E 3 . ( 33 
) At first sight g 1 (t) is DD-finite and one easily verifies that the series expansion [START_REF] Jacobi | Fundamenta Nova Theoriae Functionum Ellipticarum[END_REF] is actually solution of the order-three DD-finite linear differential operator

L 3 = L 1 • L E .
Could it be possible that g 1 (t) is, in fact, D-finite ?

The g n (t)'s are D-finite

In order to see that the g n (t)'s are D-finite, let us recall that there actually exists an exact closed expression [START_REF] Mccoy | The Saga of the Ising susceptibility[END_REF] for the lambda extension C(1, 1; λ). This requires to rewrite everything in terms of the nome [START_REF] Bostan | The Ising model: from elliptic curves to modular forms and Calabi-Yau equations[END_REF] variable q and use extensively Jacobi theta functions. This exact expression has been given in equation (98) of [START_REF] Mccoy | The Saga of the Ising susceptibility[END_REF]:

C -(1, 1; λ) = -θ ′ 2 (u, q) sin(u) • θ 2 (0, q) • θ 3 (0, q) 2
where:

λ = cos(u), ( 34 
)
where θ ′ 2 (u, q) denotes the partial derivative of θ 2 (u, q) with respect to u. This exact expression, when rewritten in terms of the t variable, is, at first sight, a differentially algebraic function ‡. Let us write [START_REF] Manin | Sixth Painlevé Equation, Universal Ellipic Curve, and Mirror of P 2 , in Geometry of Differential Equations in Geometry of differential equations[END_REF] as

f (u) sin(u) • θ 2 (0, q) • θ 3 (0, q) 2 where: f (u) = -θ ′ 2 (u, q), sin(u) = M 4 1/2
, (35) † A D-finite function is a function solution of a linear ODE with polynomial coefficients. A DDfinite function is a function solution of a linear differential equation whose coefficients are D-finite functions [START_REF] Bostan | On the exponential generating function of labelled trees[END_REF]. ‡ A differentially algebraic function [START_REF] Boukraa | Selected non-holonomic functions in lattice statistical mechanics and enumerative combinatorics[END_REF] is a function f (t) solution of a polynomial relation

P (t, f (t), f ′ (t), • • • f (n) (t)) = 0, where f (n) (t) denotes the n-th derivative of f (t) with respect to t.
where M is defined by [START_REF] Bostan | High order Fuchsian equations for the square Ising model: χ(5)[END_REF], and let us perform the Taylor expansion ‡ of f (u)/ sin(u) in M :

f arcsin((M/4) 1/2 ) (M/4) 1/2 = f (1) (0) + 1 24 • f (3) (0) + f (1) (0) • M + 1 1920 • f (5) (0) + 10 f (3) (0) + 9 f (1) (0) • M 2 (36) 
+ 1 322560

• f (7) (0) + 35 f (5) (0) + 259 f (3) 

(0) + 225 • f (1) (0) • M 3 + • • •
where f (n) (u) denotes the n-th derivative ¶ of f (u) (with respect to u). From this Taylor expansion [START_REF] Ohyama | Differential relations of theta functions[END_REF] one gets the following exact expressions for g 1 (t), g 2 (t), etc ... (and even the first term g 0 (t) = E):

g 0 (t) = E = - θ (2) 2 (0, q) θ 2 (0, q) • θ 3 (0, q) 2 , g 1 (t) = - 1 24 • θ (4) 2 (0, q) + θ (2) 2 (0, q) θ 2 (0, q) • θ 3 (0, q) 2 , g 2 (t) = - 1 1920 • θ (6) 2 (0, q) + 10 • θ (4) 2 (0, q) + 9 • θ (2) 2 (0, q) θ 2 (0, q) • θ 3 (0, q) 2 , ( 37 
)
g 3 (t) = - 1 322560 • θ (8) 2 (0, q) + 35 • θ (6) 2 (0, q) + 259 • θ (4) 2 (0, q) + 225 • θ (2) 2 (0, q) θ 2 (0, q) • θ 3 (0, q) 2 , g 4 (t) = - 1 92897280 • N 4 θ 2 (0, q) • θ 3 (0, q) 2 , g 5 (t) = - 1 40874803200 • N 5 θ 2 (0, q) • θ 3 (0, q) 2 ,
where

N 4 = θ (10) 2 (0, q) + 84 • θ (8) 2 (0, q) + 1974 • θ (6) 2 (0, q) + 12916 • θ (4) 2 (0, q) + 11025 • θ (2) 2 (0, q), N 5 = θ (12) 2 (0, q) + 165 • θ (10) 2 (0, q) + 8778 • θ (8) 2 (0, q) + 172810 • θ (6) 2 (0, q) + 1057221 • θ (4) 2 (0, q) + 893025 • θ (2) 2 (0, q), (38) 
and where θ

(2 n) 2
(u, q) denotes the (2 n)-th partial derivative of θ 2 (u, q) with respect to u.

Let us recall that ratios of D-finite expressions are not (generically † ...) D-finite: they are differentially algebraic [START_REF] Boukraa | Selected non-holonomic functions in lattice statistical mechanics and enumerative combinatorics[END_REF]. Section (2.2) suggests that the g n (t)'s are DDfinite (or DDD-finite, ...): the previous expressions (37) of the g n (t)'s as ratio of derivatives of theta functions confirms this prejudice. On the other hand, all these g n (t)'s are globally bounded series [START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF] (see [START_REF] Jacobi | Fundamenta Nova Theoriae Functionum Ellipticarum[END_REF]), and we have seen, so many times in physics, and in particular the two-dimensional Ising model, the emergence of globally bounded series as a consequence of the frequent occurrence of diagonals of rational functions [START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF][START_REF] Abdelaziz | Diagonals of rational functions, pullbacked hypergeometric functions and modular forms[END_REF][START_REF] Abdelaziz | Heun functions and diagonals of rational functions[END_REF][START_REF] Abdelaziz | Diagonals of rational functions: from differential algebra to effective algebraic geometry[END_REF] (or n-fold integrals [START_REF] Boukraa | Singularities of n-fold integrals of the Ising class and the theory of elliptic curves[END_REF][START_REF] Bostan | High order Fuchsian equations for the square Ising model: χ(5)[END_REF][START_REF] Zenine | Ising model susceptibility: Fuchsian differential equation for χ (4) and its factorization properties[END_REF][START_REF] Boukraa | Experimental mathematics on the magnetic susceptibility of the square lattice Ising model[END_REF][START_REF] Boukraa | The diagonal Ising susceptibility[END_REF][START_REF] Bostan | Globally nilpotent differential operators and the square Ising model[END_REF][START_REF] Bostan | The Ising model: from elliptic curves to modular forms and Calabi-Yau equations[END_REF]21]). This may suggest, on the contrary, that the g n (t)'s could be D-finite. ‡ One has, at first sight, a Puiseux series in M 1/2 but all the coefficients for M -1/2 , M 1/2 , M 3/2 , ... here are equal to zero because all the even derivative f (2 n) (0) are equal to zero.

¶ Note, in this Taylor series [START_REF] Ohyama | Differential relations of theta functions[END_REF], that the terms corresponding to even derivatives f (0), f (2) (0), ..., f (2 n) (0), are identically zero, since the odd derivatives of θ 2 (u, q) with respect to u vanish: θ

(2 n +1) 2
(u, q) ) = 0. † The denominator must not be an algebraic function.

Expansions of the g n (t)'s in the t variable

From the previous exact expressions [START_REF] Farkas | Theta Constants, Riemann Surfaces and the Modular Group[END_REF] in terms of theta functions, one can obtain the series expansions of the g n (t)'s in the t variable and try to see if these g n (t)'s are solutions of linear differential operators.

From these expansions [START_REF] Farkas | Theta Constants, Riemann Surfaces and the Modular Group[END_REF], rewritten in t, one can get large enough series in t to see that g 1 (t) is in fact solution of an order-six linear differential operator L 6 which is actually the direct sum (LCLM) of an order-four linear differential operator L 4 and of the order-two linear differential operator

L E having E = 2 F 1 ([ 1 2 , -1 2 ]
, [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF], t) as a solution. Furthermore one finds that this order-four linear differential operator L 4 is homomorphic to the symmetric third power of this order-two linear differential operator L E , with an intertwiner reading:

3 8 R 1 = (39) = (t -1) • t 3 • D 3 t + 3 2 • (t -1) • t 2 • D 2 t - 1 4 • (3 t + 1) • t • D t + 3 8 • t 2 + 1 t -1 .
One finally finds that the series expansion ( 32) is exactly the linear combination of E and the order-three linear differential operator [START_REF] Abdelaziz | Modular forms, Schwarzian conditions and symmetries of differential equations in physics[END_REF] acting on E 3 :

g 1 (t) = 1 24 • E + 1 24 • R 1 (E 3 ) = 1 24 • E - 1 8 • K E 2 - t -1 12 • K 3 . (40) 
Similar calculations can be performed for g 2 (t). The series g 2 (t) can also be seen to be D-finite, being solution of an order-twelve linear differential operator which turns out to be the direct-sum (LCLM) of the previous order-two linear differential operator L E , of the previous order-four L 4 , and of an order-six linear differential operator homomorphic to the symmetric fifth power of L E with the following orderfive intertwiner:

- 5 8 R 2 = 4 3 • (t -1) • (t -2) • t 5 • D 5 t + 5 2 • (t -1) • (4 t -9) • t 4 • D 4 t + 5 • (2 t -3) • (t -3) • t 3 • D 3 t - 5 24 24 t 3 -122 t 2 + 59 t + 103 t -1 • t 2 • D 2 t + 1 24 • 90 t 4 -488 t 3 -7 t 2 + 774 t -1 (t -1) 2 • t • D t - 5 96 • 36 t 5 -205 t 4 -59 t 3 + 409 t 2 + 23 t -12 (t -1) 3 . ( 41 
)
One finally finds that the series expansion for g 2 (t) is exactly the linear combination of E, of the order-three linear differential operator [START_REF] Abdelaziz | Modular forms, Schwarzian conditions and symmetries of differential equations in physics[END_REF] acting on E 3 , and of the order-five linear differential operator [START_REF] Zagier | Elliptic Modular Forms and Applications, The 1-2-3 of Modular Forms[END_REF] acting on E 5 :

g 2 (t) = 3 640 • E + 1 192 • R 1 (E 3 ) + 1 1920 • R 2 (E 5 ) = 3 640 • E - 1 64 • E 2 K - t -1 96 • K 3 (42) + 1 128 • E 3 K 2 + t -1 64 • E K 4 + (t -1) (t -2) 240 • K 5 .
Similar calculations can be performed for g 3 (t). They are displayed in Appendix A.

Remark: All these R 1 (E 3 ), R 2 (E 5 ), ... which are homogeneous polynomials in the complete elliptic integrals E and K, can be directly expressed in terms of simple ratios of theta functions:

R 1 (E 3 ) = - θ (4) 2 (0, q) θ 2 (0, q) • θ 3 (0, q) 2 , R 2 (E 5 ) = - θ (6) 2 (0, q) θ 2 (0, q) • θ 3 (0, q) 2 , R 3 (E 7 ) = - θ (8) 2 (0, q) θ 2 (0, q) • θ 3 (0, q) 2 , • • • (43) 
where θ

(n) 2 (u, q) denote the n-th derivative of θ 2 (u, q) with respect to u. One can conjecture the following expression for [START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF]:

C M (1, 1; M ) = E + M • (c (1) 1 • E + c (1) 2 • R 1 (E 3 )) + M 2 • (c (2) 1 • E + c (2) 2 • R 1 (E 3 ) + c (2) 3 • R 2 (E 5 )) + M 3 • (c (3) 1 • E + c (3) 2 • R 1 (E 3 ) + c (3) 3 • R 2 (E 5 ) + c (3) 4 • R 3 (E 7 )) + • • • = (1 + c (1) 1 • M + c (2) 1 • M 2 + c (3) 1 • M 3 + • • • ) • E + (c (1) 2 • M + c (2) 2 • M 2 + c (3) 2 • M 3 + • • • ) • R 1 (E 3 ) (44) 
+ (c

(2) 3 • M 2 + c (3) 3 • M 3 + • • • ) • R 2 (E 5 ) + (c (3) 
4 • M 3 + • • • ) • R 3 (E 7 ) + • • • where the c (j)
i 's are constants obtained from equations ( 37) and [START_REF] Doran | Picard-Fuchs Uniformization: Modularity of the Mirror Map and Mirror-Moonshine[END_REF] (see [START_REF] Abdelaziz | Schwarzian conditions for linear differential operators with selected differential Galois groups[END_REF], (A.3)). One can encapsulate these results in the following closed formula, deduced from [START_REF] Manin | Sixth Painlevé Equation, Universal Ellipic Curve, and Mirror of P 2 , in Geometry of Differential Equations in Geometry of differential equations[END_REF] and its Taylor expansion (see also [START_REF] Zabrodin | Quantum Painlevé-Calogero correspondence for Painlevé VI[END_REF]):

C M (1, 1; M ) = - 2 √ M • θ ′ 2 arcsin √ M 2 , q θ 2 (0, q) • θ 3 (0, q) 2 = - 2 √ M • ∞ p=0 arcsin √ M 2 (2 p +1) • θ (2 p +2) 2 (0, q) θ 2 (0, q) • θ 3 (0, q) 2 • (2 p + 1)! = 2 √ M • ∞ p=0 arcsin √ M 2 (2 p +1) • R p (E (2 p +1) ) (2 p + 1)! . ( 45 
)

lambda-extensions and globally bounded series

Let us consider the series expansion [START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF] for values of the parameter M = 0 not yielding the previous algebraic function series (i.e. M = 4 • sin 2 (πm/n) where m and n are integers). These series are ‡ differentially algebraic [START_REF] Boukraa | Selected non-holonomic functions in lattice statistical mechanics and enumerative combinatorics[END_REF]: is it possible that such series could be D-finite for selected values of M ? Let us change t into 16 t in the series expansion [START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF]. One gets the following expansion:

1 One sees immediately that this (generically) differentially algebraic series provides, for any integer M , an infinite number of series with integer coefficients. In fact one can see that the series expansion (11) (or the series expansion ( 46)) is a globally bounded series † when M is any rational number. One thus obtains the quite puzzling result that an infinite number of (at first sight ...) differentially algebraic series can be globally bounded series.

-4 t -(12 + 3 M ) • t 2 -(80 + 36 M ) • t 3 -(700 + 441 M ) • t 4 -(7056 + 5628 M ) • t 5 -(77616 + 74248 M -5 M 2 ) • t 6 -(906048 + 1004960 M -220 M 2 ) • t 7 -(11042460 + 13877397 M -6255 M 2 ) • t 8 -(139053200 + 194712812 M -146500 M 2 ) • t 9 -(1796567344 + 2767635832 M -3079025 M 2 ) • t 10 + • • • ( 
Quite often we see the emergence of globally bounded series [START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF] as solutions of D-finite linear differential operators, and more specifically as diagonals of rational functions [START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF][START_REF] Abdelaziz | Diagonals of rational functions, pullbacked hypergeometric functions and modular forms[END_REF][START_REF] Abdelaziz | Heun functions and diagonals of rational functions[END_REF][START_REF] Abdelaziz | Diagonals of rational functions: from differential algebra to effective algebraic geometry[END_REF] (this is related to the so-called Christol's conjecture [START_REF] Abdelaziz | On Christol's conjecture[END_REF]). Along this line it is tempting to imagine that such globally bounded situation could correspond to cases where the globally bounded series are in fact D-finite. If this is not the case, it will thus be tempting to imagine that such globally bounded situation could correspond to particular ratio of D-finite functions, namely ratio of diagonals of rational functions (or even rational functions of diagonals). One finds that this series (47) does not seem to be D-finite: one does not find any linear differential operator even with a thousand coefficients. Let us recall the strategy we have used in [START_REF] Boukraa | Selected non-holonomic functions in lattice statistical mechanics and enumerative combinatorics[END_REF]: we study the series with integer coefficients modulo small increasing primes p = 3, 5, 7, 11, 13, • • • and seek for the linear differential operator annihilating these series modulo such a prime. For the prime p = 3 the series (47) mod. 3 is solution of an order-one linear differential operator (of degree one in t):

2 t + (t + 2) • t D t . (48) 
For the prime p = 5 the series (47) mod. 5 is solution of an order-one linear differential operator (of degree two in t):

3 • t • (t + 1) + (t 2 + 2 t + 2) • t D t . (49) 
These series mod. 3 or 5, are not only D-finite, they are in fact algebraic series mod. 3 or 5:

p = 3, F 16 + 2 • (t 2 + t + 1) • F 8 + (t + 2) • t 6 = 0, ( 50 
) p = 5, (t 2 + 4t + 1) 5 • F 4 + 4 • (t + 3) 4 • (t + 4) 4 = 0.
(51) † A series with rational coefficients and non-zero radius of convergence is a globally bounded series [START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF] if it can be recast into a series with integer coefficients with one rescaling t → N t where N is an integer.

For the prime p = 7 the series (47) mod. 7 is solution of an order-three linear differential operator (of degree three in t):

2 • t • (t + 2) + (9 t 3 + 13 t 2 + 4 t + 9) • t D t + (5 t 3 + 16 t 2 + 9 t + 19) • t 2 D 2 t + (t 3 + 4 t 2 + 3 t + 6) • t 3 D 3 t , (52) 
This mod. 7 series is also algebraic, but finding the corresponding characteristic polynomial equation (like (52) previously) requires more than one thousand coefficients.

For the next primes we get more and more involved linear differential operators of increasing orders and degrees of the polynomials in t. One finds for the prime p = 11 an order 5 and a degree in t also equal to five, and one gets for the following primes An inspection of the corresponding linear differential operators strongly suggests that the orders and degrees of the polynomials in t of the linear differential operator grow (linearly) with the prime p according to the formula:

order = degree = p -1 2 . ( 53 
)
These results have to be compared with the same mod. prime calculations for the D-finite (possibly algebraic) series ( 46) for M = 0, 1, 2, 3, 4. In that case, since there is a linear differential operator (in characteristic zero), the series modulo a prime is solution of the mod. prime reduction of that linear differential operator, however for small primes the series modulo a prime can be solution of a linear differential operator of smaller order (order one, ...). Therefore the previous analysis modulo increasing primes provides linear differential operators of increasing orders, but very quickly saturating to the order of the linear differential operator in characteristic zero. These calculations, thus, strongly suggest that the integer coefficient series (47) is not D-finite but is only differentially algebraic.

Similar calculations can be performed for any integer M ≥ 5 (or any integer M ≤ -1) with similar results. Similar calculations can be performed for any rational number M with similar results ruling out D-finiteness. Let us display miscellaneous algebraic equation for the series for various M and modulo various primes:

M = 6, p = 3, (t 3 + 1) • F 2 + 2 • (t 2 + t + 1) = 0, M = 7, p = 3, F 4 + (t + 2) = 0, M = 7, p = 7, (t + 1) 7 • (t + 3) 7 • (t + 5) 7 • F 6 + 6 • (t + 6) 6 • (t 2 + 2t + 5) 6 = 0, M = 11, p = 3, F 16 + 2 • (t 2 + t + 1) • F 8 + (t + 2) • t 6 = 0.
All these calculations suggest that the infinite number of integer coefficient series (46), for any integer M ≥ 5 (or any integer M ≤ -1), are not D-finite, as well as the infinite number of globally bounded series [START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF] or (46) when M is any rational number, thus providing an infinite set of globally bounded differentially algebraic series (far beyond the D-finite diagonals of rational functions [START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF][START_REF] Abdelaziz | Diagonals of rational functions, pullbacked hypergeometric functions and modular forms[END_REF][START_REF] Abdelaziz | Heun functions and diagonals of rational functions[END_REF][START_REF] Abdelaziz | Diagonals of rational functions: from differential algebra to effective algebraic geometry[END_REF] providing so many globally bounded series, see Christol's conjecture [START_REF] Abdelaziz | On Christol's conjecture[END_REF]).

The question to see whether these globally bounded series could be ratio of particular D-finite functions, namely ratio of diagonals of rational functions ‡ remains open.

Remark: Finding that a series is actually the ratio of particular D-finite functions can be a difficult task, possibly some tour-de-force, requiring a lot of (guessing) intuition. Conversely, there are very few papers, in the literature, addressing the question of ruling out the possibility that a series can be the ratio of D-finite functions, or even ruling out the possibility that a series can be DD-finite [START_REF] Bostan | On the exponential generating function of labelled trees[END_REF]. Here we have a prejudice that the series (46) for integer values M ≥ 5 are not ratio of diagonals of rational functions, but we are not able to prove such a no-go result, even for specific integer vales of M .

Other one-parameter deformations: deformations of algebraic functions

The "form factor" expansion (5) (see [START_REF] Bostan | The Ising model: from elliptic curves to modular forms and Calabi-Yau equations[END_REF] in [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF]) amounts to seeing the lambdaextension of the correlation function C -(N, N ; λ) as a deformation of the algebraic solution (1t) 1/4 . With section (2.1) we have seen that there are many other (algebraic) values of the parameter λ for which the lambda-extension C -(N, N ; λ) becomes an algebraic function [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF]. Let us consider "form factor" expansions [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF] similar to (6), but corresponding to seeing the lambda-extension as a deformation around these other algebraic functions (see [START_REF] Abdelaziz | On Christol's conjecture[END_REF], ( 25), ( 29)).

Recalling the exact expressions of the g n (t)'s in terms of theta functions displayed in [START_REF] Farkas | Theta Constants, Riemann Surfaces and the Modular Group[END_REF] and [START_REF] Kloosterman | The Behavior of General Theta Functions Under the Modular Group and the Characters of Binary Modular Group Congruence Groups I[END_REF], it is worth noticing that similar expressions can also be obtained for the form factors f

(2 n) 1,1 . One gets respectively (with † f (0) 1,1 = 1): (1 -t) 1/4 • f (0) 1,1 = θ (1) 1 (0; q) θ 2 (0, q) • θ 3 (0, q) 2 , (1 -t) 1/4 • f (2) 1,1 = 1 2 • θ (3) 
1 (0, q) + θ

(1)

1 (0, q) θ 2 (0, q) • θ 3 (0, q) 2 , ( 54 
) (1 -t) 1/4 • f (4) 1,1 = 1 24 • θ (5) 1 (0, q) + 10 • θ (3) 1 (0, q) + 9 • θ (1) 1 (0, q) θ 2 (0, q) • θ 3 (0, q) 2 , (1 -t) 1/4 • f (6) 1,1 = = 1 720 • θ (7) 1 (0, q) + 35 • θ (5) 1 (0, q) + 259 • θ (3) 1 (0, q) + 225 • θ (1) 1 (0, q) θ 2 (0, q) • θ 3 (0, q) 2 , (1 -t) 1/4 • f (8) 1,1 = 1 40320 • N 9 θ 2 (0, q) • θ 3 (0, q) 2 , (1 -t) 1/4 • f (10) 1,1 = 1 3628800 • N 11 θ 2 (0, q) • θ 3 (0, q) 2 , (1 -t) 1/4 • f (12) 1,1 = 1 479001600 • N 13 θ 2 (0, q) • θ 3 (0, q) 2 ,
• • • ‡ Or more generally rational functions of diagonals of rational functions. † Note that (1 -t) 1/4 = θ 4 (0, q)/θ 3 (0, q) with θ ′ 1 (0, q) = θ 2 (0, q) θ 3 (0, q) θ 4 (0, q).

where

N 9 = θ (9) 1 (0, q) + 84 • θ (7) 1 (0, q) + 1974 • θ (5) 1 (0, q) + 12916 • θ (3) 1 (0, q) + 11025 • θ (1) 1 (0, q), N 11 = θ (11) 1 (0, q) + 165 • θ (9) 1 (0, q) + 8778 • θ (7) 1 (0, q) + 172810 • θ (5) 1 (0, q) + 1057221 • θ (3) 1 (0, q) + 893025 • θ (1) 1 (0, q), N 13 = θ (13) 1 (0, q) + 286 • θ (11) 1 (0, q) + 28743 • θ (9) 1 (0, q) + 1234948 • θ (7) 1 (0, q) + 21967231 • θ (5) 1 (0, q) + 128816766 • θ (3) 1 (0, q) + 108056025 • θ (1)
1 (0, q), and where θ

(2 n +1) 1
(u, q) denotes the (2 n +1)-th partial derivative of the Jacobi theta function θ 1 (u, q) with respect to u. Let us remark that these terms can be obtained similarly to [START_REF] Farkas | Theta Constants, Riemann Surfaces and the Modular Group[END_REF] and [START_REF] Kloosterman | The Behavior of General Theta Functions Under the Modular Group and the Characters of Binary Modular Group Congruence Groups I[END_REF], using now the expansion of f (arccos(λ))/ √ 1λ 2 around λ = 0, which corresponds to u = π/2, and, then, use θ odd 2 (π/2, q) =θ odd 1 (0, q) and θ even 2 (π/2, q) = 0.

Remark 1: Similarly to (45) one can encapsulate the previous results in the following closed formula, deduced from [START_REF] Manin | Sixth Painlevé Equation, Universal Ellipic Curve, and Mirror of P 2 , in Geometry of Differential Equations in Geometry of differential equations[END_REF] and its Taylor expansion:

C -(1, 1; λ) = - θ ′ 2 arccos λ, q √ 1 -λ 2 • θ 2 (0, q) • θ 3 (0, q) 2 (55) = 1 √ 1 -λ 2 • ∞ p=0 arcsin λ ( 2 p) 
• θ

(2 p +1) 1 (0, q) θ 2 (0, q) • θ 3 (0, q) 2 • (2 p)! .
Remark 2: Introducing ratios of theta functions S (2 n +1) by:

S (2 n +1) = θ (2 n+1) 1 (0, q) θ (1) 1 (0, q) , (56) 
and the quantities κ (2 n +1) 's related to the form factors f

(2 n) 1,1 's introduced in (6): f (2 n) 1,1 = (2 n + 1) • κ (2 n +1) , (57) 
one can deduce, from the previous relations (54), the expression of the S (2 n +1) 's in terms of these κ (2 n +1) 's:

S (1) = κ (1) , S (3) 3! 
= κ (3) - 1 6 • κ (1) , S (5 
) 5! = κ (5) - 1 2 • κ (3) + 1 120 • κ (1) , (58) 
S (7) 7! = κ (7) - 5 6 • κ (5) + 13 120 • κ (3) - 1 5040
• κ (1) , S (9) 9! = κ (9) -7 6

• κ (7) + 23 72

• κ (5) -41 3024

• κ (3) + 1 362880 • κ (1) , • • •
The coefficients in these linear combinations (58) correspond exactly to the linear combinations we had to introduce for the (n-fold integrals) χ(2 n +1) 's in the analysis of the susceptibility of the square Ising model, see for instance equation ( 8) in [START_REF] Boukraa | High order Fuchsian equations for the square Ising model: χ(6)[END_REF], but in the high temperature regime:

Φ (5) = χ(5) - 1 2 • χ(3) + 1 120 • χ(1) . ( 59 
)
Along these lines we give, in Appendix B, a Taylor expansion similar to (55) but for the lambda extension of C(0, 0, λ), instead of C(1, 1, λ) in (55). From these expansions one deduces linear combinations (B.3) (similar to (58)), corresponding exactly to the linear combinations we had to introduce for the (n-fold integrals) χ(2 n) 's in the analysis of the susceptibility of the square Ising model, see for instance equation ( 26) in [START_REF] Boukraa | High order Fuchsian equations for the square Ising model: χ(6)[END_REF], in the low temperature regime:

Φ (6) = χ(6) - 2 3 • χ(4) + 2 45 • χ(2) . (60) 
5.1. Other one-parameter deformations: deformation of M = 2 (i.e. u = π/4).

Recalling that one finds that ( 11) is actually, for M = 2, the series expansion of an algebraic function [START_REF] Abdelaziz | On Christol's conjecture[END_REF], one can try to write the series [START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF] as a deformation of this M = 2 algebraic function [START_REF] Abdelaziz | On Christol's conjecture[END_REF]:

C ρ (1, 1; ρ) = G 0 (t) + ρ • G 1 (t) + ρ 2 • G 2 (t) + • • • (61) where G 0 (t) = (1 -t) 1/16 • 1 + (1 -t) 1/2 2 3/4 (62) = 1 - 1 4 • t - 9 128 • t 2 - 19 512 • t 3 - 791 32768 • t 4 - 2289 131072 • t 5 - 56523 4194304 • t 6 - 182193 16777216 • t 7 + • • • (63) 
and where ρ = M -2.

Let us introduce

G 0 (t) = - √ 2 • θ (1) 2 (π/4, q) θ 2 (0, q) • θ 3 (0, q) 2 , (64) 
which actually coincides with the algebraic expression (62). Let us also introduce the S n 's defined as

S n = θ (n) 2 (π/4, q) θ ′ 2 (π/4, q) , (65) 
where θ

(n) 2 (u, q) denotes the n-th partial derivative with respect to u of θ 2 (u, q). Similarly to [START_REF] Van Straten | Calabi-Yau operators[END_REF] one can write (61) as

C ρ (1, 1; ρ) = √ 2 • G 0 (t) √ ρ + 2 • ∞ p=0 arcsin √ ρ + 2 2 - π 4 (p -1) • S p (p -1)! . ( 66 
)
Again one can ask whether the G n (t)'s in (61) are D-finite, and, again, polynomials in the complete elliptic integrals E and K. One can find that (61), or (66), can be written as where the S n 's are defined by (65). It is crucial to note that all these ratio (65) are actually polynomial expressions in the complete elliptic integrals E and K. The first S n 's read:

C ρ (1, 1; ρ) G 0 (t) = 1 + ρ • 1 4 • S 2 - 1 4 + ρ 2 • 1 32 • S 3 - 1 16 • S 2 + 3 32 + ρ 3 • 1 384 • S 4 - 1 
S 2 = 2 t • 1 -(1 -t) 1/2 • E - 1 2 t • (t -4) • (1 -t) 1/2 -(3 t -4) • K, S 3 = 1 4 • 6 • (1 -t) 1/2 -(t -2) • K 2 -3 E K, S 4 = 3 t • (t -4) • (1 -t) 1/2 -(3 t -4) • E K 2 - 6 t • (1 -(1 -t) 1/2 ) • E 2 K + 1 8 t • (t 2 -28 t + 48) • (1 -t) 1/2 -(21 t 2 -68 t + 48) • K 3 , S 5 = 15 E 2 K 2 - 5 2 • 6 • (1 -t) 1/2 -(t -2) • E K 3 - 1 16 • 60 • (t -2) • (1 -t) 1/2 -(t 2 + 24 t -24) • K 4 , S 6 = - 1 32 t • (t 3 -168 t 2 + 944 t -960) • (1 -t) 1/2 -(183 t 3 -1160 t 2 + 1936 t -960) • K 5 - 15 8 t • (t 2 -28 t + 48) • (1 -t) 1/2 -(21 t 2 -68 t + 48) • E K 4 - 45 2 t • (t -4) • (1 -t) 1/2 -(3 t -4) • E 2 K 3 + 30 t • 1 -(1 -t) 1/2 • E 3 K 2 . ( 68 
)
Let us note that these selected ratio of theta functions (65) are not only polynomials in E and K, but homogeneous polynomials in E and K. The G n (t)'s will be D-finite, and again polynomials in E and K, as a consequence of the fact that the S n 's are polynomial expressions of E and K.

The expansion of G 1 (t) reads: 

G 1 (t) = - 3 
The first G 1 (t) reads

G 1 (t) = G 0 (t) • G1 (t)
where : 

G1 (t) = 1 4 • S 2 - 1 4 (70) = - 1 4 + 1 -(1 -t) 1/2 2 t • E - (t -4) • (1 -t) 1/2 -(3 t -4) 8 t • K = - 1 4 + E 2 t + (3 t -4) 8 t • K -(1 -t) 1/2 • E 2 t + (t -4) 8 t • K = - 3 
where Similar results can be obtained for the other values λ = cos(π m/n) (m and n integers) yielding algebraic functions for the lambda-extension C(1, 1; λ). Again, the (form-factor-like) expansion (61) around each of these algebraic functions can be written in a similar way as (68) in terms of the corresponding ratio of theta functions

G2 (t) = 1 32 • S 3 - 1 16 • S 2 + 3 32 = 3 32 - 1 -(1 -t) 1/2 8 t • E - (t -4) • (1 -t) 1/2 -(3 t -4) 32 t • K - 3 32 • E K + 6 • (1 -t)
= - 5 128 + 13 192 • 1 -(1 -t) 1/2 t • E - 13 768 • (t -4) • (1 -t) 1/2 -(3 t -4) t • K + 3 128 • E K - 6 • (1 -t) 1/2 -(t -2) 512 • K 2 - 1 -(1 -t) 1/2 64 t • E 2 K + (t -4) • (1 -t) 1/2 -(3 t -4) 128 t • E K 2 + (1 -t) 1/2
S n = θ (n) 2 (πm/n, q) θ ′ 2 (πm/n, q) , (76) 
where θ

(n) 2 (u, q) denotes the n-th partial derivative with respect to u of θ 2 (u, q). It becomes much more difficult to see whether these new S n 's are actually polynomial expressions in E and K with more and more involved algebraic coefficients. One finds that these new S n 's are D-finite, but the reduction to polynomial expressions in E and K becomes a difficult task, in general. Let us display a few examples.

5.2.

Other one-parameter deformations: deformation of u = π/6.

For u = π/6 we find that the corresponding S 2

1 √ 3 • S 2 = 1 √ 3 • θ (2) 2 (π/6, q) θ ′ 2 (π/6, q) = 1 - 3 128 • t 2 - 3 128 • t 3 - 339 16384 • t 4 + • • • (77)
is solution of an order-eight linear differential operator which is the LCLM (directsum) of two order-four linear differential operators L 4 and M 4 . The first order-four linear differential operator L 4 is the symmetric product ‡ of the two order-two linear differential operators having, respectively, the two hypergeometric solutions:

D 2 t + 1 3 • 10 t 3 -15 t 2 + 9 t -2 (t 2 -t + 1) t (t -1) • D t + 1
t 5/6 • (1 -t) 5/6 • (t 2 -t + 1) -1/2 • 2 F 1 [ 7 6 , 5 2 ], [ 7 3 
], t , (79)

t 1/2 • (1 -t) 1/2 • (t 2 -t + 1) -1/4 • 2 F 1 [- 1 12 , 7 12 ], [1], 27 4 t 2 • (1 -t) 2 (1 -t + t 2 ) 3 . ( 80 
)
Let us first note that the first hypergeometric function

H = 2 F 1 ([7/6, 5/2], [7/3], t)
is actually an algebraic function. It is solution of the polynomial equation:

3 21 • t 8 (t -1) 8 • H 8 + 2 17 • 3 11 • t 4 • (t 2 -t + 1) • (t -1) 4 • H 4 + 2 26 • (t -2) • (2 t -1) • (t + 1) • (32 t 6 -96 t 5 + 219 t 4 -278 t 3 + 219 t 2 -96 t + 32) • H 2 -2 32 • (t 2 -t + 1) 2 = 0.
(81) ‡ This paper belonging to the symbolic computation literature and not pure mathematics, we use the standard Maple (DEtools) terminology of symmetric powers and symmetric products of linear differential operators [START_REF] Bronstein | On Symmetric Powers of Differential Operators[END_REF]. Note that "symmetric product" is not a proper mathematical name for this construction on the solution space; it is a homomorphic image of the tensor product. The (Maple/DEtools) reason for choosing the name symmetric product is the resemblance with the function symmetric power.

For the second solution (80), we use the identities

2 F 1 [- 1 12 , 7 12 ], [1], 27 4 t 2 • (1 -t) 2 (1 -t + t 2 ) 3 = -6 • t • (t -1) (t 2 -t + 1) 1/2 • dH 2 dt + 1 2 (2 t -1) • (t 2 -t -2) (t 2 -t + 1) 3/2 • H 2 , ( 82 
)
where the pullbacked hypergeometric function H 2 reads:

H 2 = 2 F 1 [ 1 12 , 5 12 ], [1], 27 4 t 2 • (1 -t) 2 (1 -t + t 2 ) 3 = (t 2 -t + 1) 1/4 • 2 F 1 [ 1 2 , 1 2 ], [1], t , (83) 
Consequently, the relevant solution of the order-four linear differential operator L 4 will be a linear combination α(t) • E + β(t) • K of the two complete elliptic integrals E, K, α(t) and β(t) being (quite) involved algebraic functions.

The other order-four linear differential operator M 4 is, at first sight, slightly more difficult to analyze. In fact we are in the typical situation of an absolute factorization † of this order-four linear differential operator, and this can be seen performing the exterior square of that order-four linear differential operator [START_REF] Compoint | Absolute reducibility of differential operators and Galois groups[END_REF]. Some calculations are displayed in Appendix C. These calculations strongly suggest that the relevant solution of the order-four linear differential operator M 4 will also be of the form α(t) • E + β(t) • K, the functions α(t) and β(t) being (very) involved algebraic functions of t.

Fortunately, one can get that result in a much more straight way, if one remarks that the two order-four linear differential operators L 4 and M 4 are actually (nontrivially) homomorphic. Introducing ρ = t 2/3 • (1t) 2/3 , one finds that a conjugate of M 4 is actually homomorphic to the first order-four linear differential operator L 4 :

L 4 • I 3 = J 3 • 1 ρ • M 4 • ρ , ( 84 
)
where I 3 and J 3 are (slightly involved) order-three intertwiners. Therefore we have shown that the relevant solution of the order-eight linear differential operator will be of the form α(t) • E + β(t) • K, α(t) and β(t) being (quite) involved algebraic functions of t.

Again, one finds that S 2 is D-finite, but the reduction to polynomials in the complete elliptic integrals E and K is far from obvious.

Deformation of u = π/6: the S 3 term

The next S n , namely

S 3 = θ (3) 2 (π/6, q) θ ′ 2 (π/6, q) , ( 85 
)
is solution of a linear differential operator of order twelve with coefficient polynomials in t of degree 67. This is a quite large order (twelve) linear differential operator, that we will not give here. This order-twelve linear differential operator is actually the direct sum of an order-three operator and an order-nine operator L 9 . The order-three linear differential operator L 3 reads

L 3 = D 3 t + 6 • q 12 q 6 • (t -1) • (t + 1) • (t -2) • (2 t -1) • (t 2 -t + 1) • t • D 2 t + r 12 q 6 • (t -1) 2 • (t + 1) • (t -2) • (t 2 -t + 1) • t 2 • D t + 3 2 • r 6 q 6 • (t -1) • (t + 1) • (t -2) • (2 t -1) • t , (86) 
where: (87) Let us denote L K the order-two linear differential operator annihilating the complete elliptic integral of the first kind

q 12 =
K = 2 F 1 ([1/2, 1/2], [1], t): L K = D 2 t + 2 t -1 t • (t -1) • D t + 1 4 t • (t -1) , (88) 
This order-three linear differential operator (86) is actually homomorphic to the symmetric square of operator L K , with order-two intertwiners. Consequently the solutions of L 3 are (quadratic) homogeneous polynomials in E and K. Actually one finds that the solution of L 3 given by (86) reads: 

Sol(L 3 ) = (t -2) 3 (t 2 -t + 1) • K 2 + 9 • E K = 1
The order-nine linear differential operator L 9 can be seen to be the symmetric product of an order-three linear differential operator A 3 , and of the order-three linear differential operator, which is the symmetric square of the order-two linear differential operator

L K annihilating K = 2 F 1 ([1/2, 1/2], [1], t) L 9 = SymProd Sym 2 (L K ), A 3 . (90) 
The order-three linear differential operator A 3 reads

A 3 = D 3 t + r 8 • (2 t -1) q 6 • t • (t -1) • ( t 2 -t + 1) • D 2 t - 5 9 • r 6 • ( t 2 -t + 1) q 6 • t 2 • (t -1) 2 • D t + 5 18 • r ′ 6 • (2 t -1) q 6 • t 2 • (t -1) 2 , (91) 
where:

r 6 = 52 -156t -3009 t 2 + 6278t 3 -3009t 4 -156t 5 + 52t 6 , r ′ 6 = r 6 -2106 • t • (t -1) • (t -2) • (t + 1), q 6 = 5 r 6 + 16038 • t 2 • (t -1) 2 , r 8 = 5 r 6 • (t 2 -t + 1) + 17172 • t 2 • (t -1) 2 + 15471 • t 3 • (t -1) 3 . (92) 
The solutions of this order-three linear differential operator A 3 are actually algebraic functions satisfying 432

• (t 2 -t + 1) 4 • F 4 -72 • P 6 • (t 2 -t + 1) 2 • F 2 -16 • (t -2) • (2 t -1) • (t + 1) • (t 2 -t + 1) • P 6 + 972 • t 2 • (t -1) 2 • F + 6480 • t 2 • (t -1) 2 • (t 2 -t + 1) 3 -P 2 6 = 0, (93) 
where the polynomial P 6 reads:

P 6 = 4 • (t 2 -t + 1) 3 -243 • t 2 • (1 -t) 2 . ( 94 
)
The well-suited solution of the order-three linear differential operator A 3 reads: 

Sol(A 3 ) = 1 - 1 2 t -
The solution of the order-nine linear differential operator L 9 reads: The series expansion of (85) reads:

Sol(L 9 ) = Sol(A 3 ) • K 2 =
- 

S 3 = - θ (3) 2 (π/6, q) θ ′ 2 (π/6, q) = 1 
Recalling the series expansions (89) and (96), one actually finds that this series (97) is exactly:

-S 3 = - θ (3) 
2 (π/6, q) θ ′ 2 (π/6, q)

= 1 3 • Sol(L 3 ) + 2 3 • Sol(L 9 ) = 1 3 • (t -2) 3 (t 2 -t + 1) • K 2 + 9 • E K + 2 3 • Sol(A 3 ) • K 2 . (98) 
Remark: More generally, for u = π/6, one has

C ρ (1, 1; ρ) = -2 • θ ′ 2 π 6 , q √ ρ + 1 • θ 2 (0, q) • θ 3 (0, q) 2 × ∞ p=0 arcsin √ ρ + 1 2 - π 6 p • S (p +1) (p)! , (99) 
where:

S n = θ (n) 2 (π/6, q) θ ′ 2 (π/6, q) . ( 100 
)
of L 3 are (quadratic) homogeneous polynomials in E and K. Actually one finds that the solution of L

3 given by (108) reads: Sol(L 

(3) 3 ) = 4 • (t -2) • K 2 + 9 • E K = 1 - 15 
The order-nine linear differential operator L

Remark 1: Let us recall the hypergeometric function t

-7/6 • (1 -t) -1/6 • 2 F 1 ([5/6, 1/6], [1/3], t)
which is an algebraic function and its order-two linear differential operator A

2 (see ( 105)). Let us also recall the order-two linear differential operator [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF], t). Let us consider the order-three linear differential operators corresponding to the symmetric square of these two ordertwo linear differential operators, and let us consider the symmetric product of these two symmetric squares. One gets that way an order-nine linear differential operator:

L K annihilating K = 2 F 1 ([1/2, 1/2],
Ω 9 = SymProd Sym 2 (L K ), Sym 2 (A (3) 2 ) . (117) 
This order-nine linear differential operator Ω 9 has a structure of solutions very similar to the one of the order-nine linear differential operator L 9 . One finds, in fact, that this order-nine linear differential operator (117) is actually non-trivially homomorphic to the order-nine linear differential operator L 9 :

I 8 • t -7/3 • Ω 9 • t 7/3 = L (3) 9 • J 8 , (118) 
where I 8 and J 8 are order-eight intertwiners. In conclusion the solution of the ordertwelve operator corresponding to S 3 and thus annihilating (107), is a homomogeneous (quadratic) polynomial of E and K with involved algebraic coefficients.

Remark 2: More generally, for u = π/3 one has:

C ρ (1, 1; ρ) = -2 • θ ′ 2 π 3 , q √ ρ + 3 • θ 2 (0, q) • θ 3 (0, q) 2 × ∞ p=0 arcsin √ ρ + 3 2 - π 3 p • S (p +1) p! , (119) 
where:

S n = θ (n) 2 (π/3, q) θ ′ 2 (π/3, q) . ( 120 
)
6. λ corresponds to the critical exponent at t = 1

The lambda extensions C(1, 1; λ) are a one-parameter family of solutions of the Okamoto-Painlevé VI equation [START_REF] Wu | Spin-spin correlation functions for the two dimensional Ising model: exact theory in the scaling region[END_REF]. It is worth noticing that the parameter lambda cannot be seen in the non-linear ODE (3). It is not a parameter of the non-linear ODE (3). The parameter lambda actually fixes the critical exponent at t = 1 of the solution C(1, 1; λ). Paper [START_REF] Mccoy | Connection formulas for the lambda generalized Ising correlation functions[END_REF] gives, in equation ( 13) and ( 14), the behaviour of the lambda extensions C(N, N, λ) near♯ t = 1:

C(N, N, λ) ≃ K(N, σ) • (1 -t) σ 2 /4
where:

σ = 2 π • arccos(λ), (121) 
or denoting λ = cos(u):

C(N, N, λ) ≃ K(N, σ) • (1 -t) (u/π) 2 . ( 122 
)
♯ Here σ is an exponent, which has nothing to do with the σ functions (1) or [START_REF] Boukraa | The Ising correlation C(M, N ) for ν = -k[END_REF]. Painlevé papers are famous for their terrible notations.

One verifies that this power-law formula † (122) is actually valid for all the algebraic expressions displayed in section 2.1.1 (see [START_REF] Abdelaziz | On Christol's conjecture[END_REF]), section 2.1.2 (see ( 25)), and section 2.1.3 (see [START_REF] Zenine | Square lattice Ising model susceptibility: series expansion method and differential equation for χ (3)[END_REF]):

• For λ = 0, i.e. u = π/2 one has a (1t) 1/4 behaviour.

• For λ = 1/ √ 2, i.e. u = π/4 one has a (1t) 1/16 behaviour (see ( 22) and (62)).

• For λ = √ 3/2, i.e. u = π/6 one has a (1t) 1/36 behaviour: from (25) one actually gets: S(t) = 2 8/9 /3 • (1t) 1/36 + • • •

• For λ = 1/2, i.e. u = π/3, one has a (1t) 1/9 behaviour: from (29) one actually gets:

S(t) = 2 14/9 • 3 -3/2 • (1 -t) 1/9 + • • • 7.
Comments and speculations.

All these calculations, displayed on the low-temperature correlation function C(1, 1), illustrate the extremely rich structures of the lambda extensions of the two-point square ‡ Ising correlation functions C(M, N ). For an infinite set of values of lambda (λ = cos(π m/n), m and n integers) these lambda extensions become algebraic functions and for another infinite set of values of lambda (λ = (m/n) 1/2 , m and n integers) the series expansions of the lambda extension are globally bounded series [START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF] that are not D-finite ¶ but only differentially algebraic (the corresponding σ are solutions of a sigma-form of Painlevé VI).

Furthermore we have seen, in section 2, that the "form-factor-like" expansions (10) around the (D-finite) two-point correlation function C(1, 1) = E, yield new "form factors" g n (t)'s which, at first sight, should be DD-finite expressions (see section (2.2)), are, actually, D-finite expressions. The g n (t)'s are, in fact, polynomial expressions in E and K.

The "form-factor-like" [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF] expansions around the infinite set of algebraic functions at λ = cos(π m/n) yield new "form factors" G n (t)'s (see (61)) which turned out to be D-finite expressions: they are solutions of linear differential operators with (quite involved) algebraic functions coefficients. We showed that the first G n (t)'s are actually polynomial expressions in E and K and, hopefully, one can expect that all these G n (t)'s are polynomial expressions in E and K (with involved algebraic functions coefficients).

These results correspond to the (quite puzzling) fact that rational expressions of the derivatives (at selected values of u) of Jacobi theta functions (like (37)) can, in fact, be expressed as polynomial expressions in E and K, thus providing an infinite set of remarkable identities between theta functions and complete elliptic integrals of the first and second kind♯. Such calculations provide an infinite set of new D-finite expressions on the two-dimensional Ising model that will join together with all the previous D-finite expressions we have altready encountered on the two-dimensional Ising model as n-fold integrals that are diagonals of rational functions [START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF][START_REF] Abdelaziz | Diagonals of rational functions, pullbacked hypergeometric functions and modular forms[END_REF][START_REF] Abdelaziz | Heun functions and diagonals of rational functions[END_REF][START_REF] Abdelaziz | Diagonals of rational functions: from differential algebra to effective algebraic geometry[END_REF]. † It is very hard to get this result from the exact expression (34) of C(1, 1; λ) in terms of theta functions. ‡ One has similar results for the triangular, honeycomb, ... lattices. One has similar results for the high-temperature correlation functions. One has similar results for the anisotropic correlation functions C(M, N ) for ν = -k.

¶ Except when λ = 0, 1/ √ 2, 3/ √ 2, 1 where λ is also of the form λ = cos(π m/n). ♯ For identities on products of ratio of Jacobi theta functions see for instance [START_REF] Kare | Cyclic identities Involving Ratios of Jacobi Theta Functions[END_REF] This corresponds to the kind of holonomic (i.e. D-finite) studies we are used to perform on the two-dimensional Ising model [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF][START_REF] Zenine | Square lattice Ising model susceptibility: series expansion method and differential equation for χ (3)[END_REF] in the variable t = k 2 . These D-finite expressions emerge from form factor-like perturbation theory (the kind of perturbation theory physicists are used to with Feynman diagrams, Periods of algebraic varieties, ...). However, we also see that the lambda extension C(1, 1; λ) which is differentially algebraic (solution of a non-linear ODE (3) with the Painlevé property of fixed critical points [START_REF] Boukraa | Factorization of Ising correlations C(M, N ) for ν = -k and M + N odd, M ≤ N , T < Tc and their lambda extensions[END_REF]), can be understood "holistically", globally, and not using the bread and butter perturbative physicist's approach, if one switches to a description in terms of the nome q (or the ratio τ of the two periods of the elliptic function) requiring to introduce intensively Jacobi theta functions [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF][START_REF] Mccoy | The Saga of the Ising susceptibility[END_REF][START_REF] Boukraa | Factorization of Ising correlations C(M, N ) for ν = -k and M + N odd, M ≤ N , T < Tc and their lambda extensions[END_REF]. With that alternative holistic description one has a rather simple exact closed formula for the lambda extension (see [START_REF] Manin | Sixth Painlevé Equation, Universal Ellipic Curve, and Mirror of P 2 , in Geometry of Differential Equations in Geometry of differential equations[END_REF]). The "price to pay" is that this exact and elegant holistic expression of the lambda extension (like [START_REF] Manin | Sixth Painlevé Equation, Universal Ellipic Curve, and Mirror of P 2 , in Geometry of Differential Equations in Geometry of differential equations[END_REF]) is solution of a non-linear ODE (3) and, for instance, the emergence of all the D-finite expressions, displayed in this paper, is not obvious from that non-linear differential equations or Jacobi theta functions viewpoint [START_REF] Mckay | Fuchsian groups, Schwarzians, and theta functions[END_REF].

7.1. Painlevé VI transcendentals as deformations of elliptic functions and why theta functions are well-suited: Jacobi forms

The occurrence of Jacobi theta functions [START_REF] Jacobi | Fundamenta Nova Theoriae Functionum Ellipticarum[END_REF][START_REF] Legendre | [END_REF] for the exact closed expression (37) of the lambda extension solution of sigma-form of Painlevé VI is, in fact, highly relevant as far as all the symmetries of the model are concerned.

Let us first recall that Painlevé VI transcendents should be seen as deformations of elliptic functions [START_REF] Manin | Sixth Painlevé Equation, Universal Ellipic Curve, and Mirror of P 2 , in Geometry of Differential Equations in Geometry of differential equations[END_REF]. Along this line it is worth recalling Manin's idea [START_REF] Manin | Sixth Painlevé Equation, Universal Ellipic Curve, and Mirror of P 2 , in Geometry of Differential Equations in Geometry of differential equations[END_REF] that the Painlevé VI equation for a particular choice of the four Okamoto parameters, can be written extremely simply in terms of the ratio of periods τ . Let us denote P(z, τ ) the P-Weierstrass function and P z (z, τ ) = ∂P(z, τ ) ∂z . Manin's result means that the Painlevé VI equation can be written in a form (see equation (1.16) in [START_REF] Manin | Sixth Painlevé Equation, Universal Ellipic Curve, and Mirror of P 2 , in Geometry of Differential Equations in Geometry of differential equations[END_REF]):

d 2 z(τ ) dτ 2 = 1 2 π i 2 • 3 i=0 α i • P z z + T i 2 , τ . (123) 
In previous studies of the C(M, N ) correlation functions and their non-linear Painlevé ODEs, we have underlined the fundamental role of Landen transformations [START_REF] Boukraa | Factorization of Ising correlations C(M, N ) for ν = -k and M + N odd, M ≤ N , T < Tc and their lambda extensions[END_REF]. The crucial role of Landen transformations is underlined in [START_REF] Boukraa | Singularities of n-fold integrals of the Ising class and the theory of elliptic curves[END_REF][START_REF] Boukraa | Factorization of Ising correlations C(M, N ) for ν = -k and M + N odd, M ≤ N , T < Tc and their lambda extensions[END_REF][START_REF] Manin | Sixth Painlevé Equation, Universal Ellipic Curve, and Mirror of P 2 , in Geometry of Differential Equations in Geometry of differential equations[END_REF]. It is also worth recalling that the Weierstrass P-function is simply related to theta functions. The Weierstrass P-function is related † to the second log derivative of θ 1 (u, q):

P(u, τ ) = - ∂ 2 ln(θ 1 (u, τ )) ∂u 2 + c = - ∂ 2 ln(θ 1 (u, τ )) ∂u 2 + 1 3 θ ′′′ 1 (0, q) θ ′ 1 (0, q) , (124) 
The closed expressions [START_REF] Farkas | Theta Constants, Riemann Surfaces and the Modular Group[END_REF] for the lambda-extension C(1, 1; λ) underlines the occurrence of the partial derivative with respect to the u-deformation parameter (or equivalently the lambda parameter). Along this line one can recall another interesting property of the theta functions. They are solutions of the heat equation:

∂θ(u, τ ) ∂τ = q • ∂θ(u, q) ∂q = ∂ 2 θ(u, q) ∂u 2 . (125) 
Consequently, and to some extent, the partial derivatives in u can be replaced by partial derivatives in τ . It is also worth mentioning the modular group relations on the Weirstrass Pfunctions as well as the similar "modular group transformations" on the theta functions [START_REF] Farkas | Theta Constants, Riemann Surfaces and the Modular Group[END_REF][START_REF] Kloosterman | The Behavior of General Theta Functions Under the Modular Group and the Characters of Binary Modular Group Congruence Groups I[END_REF]:

P z c τ + d , a τ + b c τ + d = (c τ + d) 2 • P(z, τ ), (126) 
P z z c τ + d , a τ + b c τ + d = (c τ + d) 3 • P(z, τ ), (127) and ¶ 
κ • (c τ + d) 1/2 • θ α (u, τ ) = exp -i π cu 2 c τ + d • θ β u c τ + d , a τ + b c τ + d , (128) 
where κ is a constant, and where the integers a, b, c, d are such that a db c = 1. For u = 0 the previous modular group transformations (126), ( 128) is reminiscent of the modular forms of weight k:

(c τ + d) k • f (τ ) = f a τ + b c τ + d . (129) 
With some abuse of language we could say that the theta functions are "some kind" of "modular forms of weight 1/2". Recalling the relation (34) between λ and u, the theta functions thus provide, because of (128), some natural u-extension, and thus lambda-extension, of the modular forms (Jacobi forms). From the closed expression [START_REF] Farkas | Theta Constants, Riemann Surfaces and the Modular Group[END_REF] it is clear that the lambdaextension will naturally inheritate from (128), some symmetry properties with respect to the modular group. This kind of global (holistic) symmetry is almost impossible to see in the holonomic (D-finite) world of the linear differential operators in the variable t. Conversely all the D-finite results, we have displayed in this paper, are not an obvious consequence of the emergence of θ ′ 2 (u, q) in [START_REF] Farkas | Theta Constants, Riemann Surfaces and the Modular Group[END_REF]. All these D-finite results are "hidden" in the theta functions (considered at selected values of u). This is similar to the situation one encounters with modular forms [START_REF] Abdelaziz | Heun functions and diagonals of rational functions[END_REF][START_REF] Abdelaziz | Modular forms, Schwarzian conditions and symmetries of differential equations in physics[END_REF][START_REF] Abdelaziz | Schwarzian conditions for linear differential operators with selected differential Galois groups[END_REF] where the fact that they are D-finite in the variable t is not totally straightforward †.

Conclusion

The lambda-extensions of the two-point correlation functions C(M, N ) of the square Ising model are a good illustration of the mirror-map t ↔ q duality in mirror symmetries [START_REF] Doran | Picard-Fuchs Uniformization: Modularity of the Mirror Map and Mirror-Moonshine[END_REF][START_REF] Lian | Mirror Maps, Modular Relations and Hypergeometric Series II[END_REF][START_REF] Van Straten | Calabi-Yau operators[END_REF], where all the holonomic (D-finite) structures are well seen in the t variable but are hard to see in the nome [START_REF] Mccoy | The Saga of the Ising susceptibility[END_REF][START_REF] Bostan | The Ising model: from elliptic curves to modular forms and Calabi-Yau equations[END_REF] q (or in the ratio of periods τ ), and conversely the modular group, modular forms structures are easily seen in the nome q variable (or in the ratio of periods τ ) but are very hard to see in the original t variable. In the t variables the perturbative approach provides a large set of D-finite expressions which are n-fold integrals (and in fact diagonals of rational functions [START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF]), when the description in the nome variable (or the τ variable) provides a holistic understanding (see [START_REF] Manin | Sixth Painlevé Equation, Universal Ellipic Curve, and Mirror of P 2 , in Geometry of Differential Equations in Geometry of differential equations[END_REF]) which makes crystal clear modular group symmetries and the emergence of Landen transformations [START_REF] Boukraa | Singularities of n-fold integrals of the Ising class and the theory of elliptic curves[END_REF][START_REF] Boukraa | Factorization of Ising correlations C(M, N ) for ν = -k and M + N odd, M ≤ N , T < Tc and their lambda extensions[END_REF], and of modular forms [START_REF] Abdelaziz | Heun functions and diagonals of rational functions[END_REF][START_REF] Ohyama | Differential relations of theta functions[END_REF][START_REF] Abdelaziz | Modular forms, Schwarzian conditions and symmetries of differential equations in physics[END_REF], but requires ¶ See equation (2.16) in [START_REF] Farkas | Theta Constants, Riemann Surfaces and the Modular Group[END_REF]. † See in particular Proposition 21 page 61 in [START_REF] Zagier | Elliptic Modular Forms and Applications, The 1-2-3 of Modular Forms[END_REF]. One can find in [START_REF] Ford | Automorphic Functions[END_REF] why automorphic forms are solutions of linear differential equations to consider non-linear ODEs [START_REF] Abdelaziz | Modular forms, Schwarzian conditions and symmetries of differential equations in physics[END_REF][START_REF] Abdelaziz | Schwarzian conditions for linear differential operators with selected differential Galois groups[END_REF][START_REF] Boukraa | Factorization of Ising correlations C(M, N ) for ν = -k and M + N odd, M ≤ N , T < Tc and their lambda extensions[END_REF]. Both descriptions are complementary and necessary to describe efficiently these lambda-extensions.

Focusing, for pedagogical reasons, on a very simple example of lambda-extension, namely C(1, 1; λ), we have considered the series expansion in t as different formfactor-like expansions around the D-finite subcase C(1, 1) = E or a large set of algebraic functions subcases (see [START_REF] Boukraa | Singularities of n-fold integrals of the Ising class and the theory of elliptic curves[END_REF], ( 22), ( 25), ( 29)). For the first form-factor-like expansion [START_REF] Boukraa | Selected non-holonomic functions in lattice statistical mechanics and enumerative combinatorics[END_REF], the corresponding form-factors g n (t), which should, at first sight, be DD-finite, turn out to be D-finite and simple polynomials of the complete elliptic integrals of the first and second kind K and E. On the other hand, the form-factors G n (t), corresponding to a deformation around the algebraic functions subcases of the lambda-extension, have been seen to be D-finite, and, either, shown to be polynomials of K and E, or can be very reasonably conjectured to be polynomials of K and E. These results can be seen as remarkable, non-trivial (and rather unexpected ...), identities between ratio of Jacobi theta functions and the complete elliptic integrals of the first and second kind K and E.

These identities are a nice illustration of this complementary description of the D-finite t-variable (elliptic integrals) viewpoint and the non-linear (modular group, Jacobi theta functions [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF][START_REF] Mccoy | The Saga of the Ising susceptibility[END_REF][START_REF] Ohyama | Differential relations of theta functions[END_REF]) nome viewpoint.

where the q n polynomials read: q 5 = 600 t 5 -5379 t 4 + 16550 t 3 -15061 t 2 -8708 t + 13854, q 6 = 1080 t 6 -10287 t 5 + 30197 t 4 -9695 t 3 -59739 t 2 + 51338 t + 4402, q 7 = 12600 t 7 One finally finds that the series expansion for g 3 (t) is exactly the linear combination of E, of the order-three linear differential operator [START_REF] Abdelaziz | Modular forms, Schwarzian conditions and symmetries of differential equations in physics[END_REF] acting on E 3 , of an order-five linear differential operator [START_REF] Zagier | Elliptic Modular Forms and Applications, The 1-2-3 of Modular Forms[END_REF] acting on E 5 and the order-seven linear differential operator (A.1) acting on E 5 :

g 3 (t) = 5 7168
• E + 37 46080

• R 1 (E 3 ) -1 9216

• R 2 (E 5 ) + 1 322560

• R 3 (E 7 ) = 5 7168

• E -37 15360

• K E 2 -37 23040

• (t -1) Similarly to the Taylor expansion (55), we can write a similar identity for the lambda extension C(0, 0, λ). Introducing S n = θ

• K 3 + 5 3072 • K 2 E 3 + 5 1536 • (t -1) • K 4 E + 1 1152 • (t -1) • (t -2) • K 5 - 1 3072 • K 3 E 4 - 1 768 • (t -1) • K 5 E 2 - 1 1440 • (t -1) • (t -2) • K 6 E
(n) 4 (0, q) θ 4 (0, q) , (B.1) the lambda extension C -(0, 0, λ) can be written C -(0, 0; λ) = θ 3 (arccos λ, q) θ 3 (0, q)

= (1t) where ρ(t) = t 1/6 • (1t) 1/6 . It is worth comparing these results with similar calculations (see Appendix C.3 for a general identity on exterior square of symmetric products and direct sum of symmetric square) for the first order-four linear differential operator L 4 in section 5.2 which was the direct-sum of two linear differential operators (78). In that case the exterior square of L 4 is an order-six linear differential operator where the two order-three linear differential operators Ã3 and B3 are both symmetric squares of order-two linear differential operators having respectively the solutions t 5/6 • (1t) (1t + t 2 ) 3 , totally reminiscent of the two solutions (79) and (80).

According to [START_REF] Compoint | Absolute reducibility of differential operators and Galois groups[END_REF] the direct-sum decomposition (C.7) means that the order-four operator M 4 is absolutely reducible, i.e. it admits a factorization over an algebraic extension of C(t). This is confirmed by relation (84) in section 5.2

L 4 • I 3 = J 3 • 1 ρ • M 4 • ρ with: ρ = t 2/3 • (1 -t) 2/3 , (C.9)
where I 3 and J 3 are order-three intertwiners and where the order-four operator L 4 is a symmetric product of two order-two linear differential operators (78). † With order-two intertwiners I 2 and J 2 .

  46) ‡ They are solutions of a non-linear ODE, the sigma-form of Painlevé VI.

4. 1 .

 1 The M = 5 case.Let us restrict to simple integer values of M and see whether the corresponding globally bounded series[START_REF] Bostan | Ising n-fold integrals as diagonal of rational functions and integrality of series expansions: integrality versus modularity[END_REF] are D-finite.Let us consider an integer M different from M = 0 (the D-finite solution C(1, 1)), and different from M = 1, 2, 3, 4, which correspond to algebraic functions. For simplicity we will consider the integer coefficient series (46) for M = 5. The M = 5 series (46) reads:

p = 13 ,

 13 order = degree = 6, p = 17, order = degree = 8, p = 19, order = degree = 9, p = 23, order = degree = 11, p = 29, order = degree = 14, p = 31, order = degree = 15, p = 37, order = degree = 18, p = 41, order = degree = 20, • • •

- 1 ) • (8 t 2 -

 12 33 t + 33) • K 7 . (A.3) Appendix B. Low temperature lambda extension C -(0, 0, λ)

L 6 =

 6 Ext 2 (L 4 ) = LCLM( Ã3 , B3 ) = Ã3 ⊕ B3 , (C.7)

  1/4 • f

			(2)								
			1, 1								
	=	3 64	• t 2 +	9 256	• t 3 +	441 16384	• t 4 +	1407 65536	• t 5 +	2319 131072	• t 6 + • • •

  5 t 6 -15 t 5 + 138 t 4 -251 t 3 + 138 t 2 -15 t + 5, p 12 = 113 t 12 -678 t 11 + 5829 t 10 -22930 t 9 + 148410 t 8 -463518 t 7 24 = 64 t 24 -768 t 23 + 4965 t 22 -22231 t 21 + 3243192 t 20 -31880523 t 19 + 66263383 t 18 + 309635262 t 17 -1791331236 t 16 + 3209457458 t 15 -698769519 t 14 -6199132605 t 13 + 10265065180 t 12 -6199132605 t 11 -698769519 t 10 + 3209457458 t 9 -1791331236 t 8 + 309635262 t 7 (26) + 66263383 t 6 -31880523 t 5 + 3243192 t 4 -22231 t 3 + 4965 t 2 -768 t + 64.

	2.1.3. λ = cos(π/3)							
	Similarly, for M = 3 (i.e. λ = 1/2 = cos(π/3)), the series (11) reads
	1 -	1 4	• t -	21 256	• t 2 -	47 1024	• t 3 -	2023 65536	• t 4 -	5985 262144	• t 5
			-	300315 16777216	• t 6 -	979737 67108864	• t 7 + • • •

+ 665661 t 6 -463518 t 5 + 148410 t 4 -22930 t 3 + 5829 t 2 -678 t + 113, † Like in the λ 2 = 1, M = 0 case. p

  t 12 -6 t 11 + 2536 t 10 -12625 t 9 + 18414 t 8 + 2028 t 7 -31302 t 6 + 33849 t 5 -16458 t 4 + 4084 t 3 -528 t 2 + 7 t -1, q 6 = t 6 -3 t 5 + 1518 t 4 -3031 t 3 + 1518 t 2 -3 t + 1, r 12 = t 12 -6 t 11 + 4881 t 10 -24350 t 9 + 24459 t 8 + 48198 t 7 -120498 t 6 + 90597 t 5 -20496 t 4 -5105 t 3 + 2304 t 2 + 15 t -2, r 6 = 59 t 6 -177 t 5 + 4512 t 4 -8729 t 3 + 4512 t 2 -177 t + 59.

  -125991 t 6 + 346295 t 5 + 108127 t 4 -1210745 t 3 + 868060 t 2 + 142022 t + 4016, q 8 = 1800 t 8 -18801 t 7 + 47986 t 6 + 43466 t 5 -233350 t 4 + 147125 t 3 + 40936 t 2 + 1378 t + 180. (A.2)

  1/4 • . From (B.2) one can deduce the expression of the S 2 p 's in terms of the κ (2 p) 's: Appendix C. Exterior squares and absolute factorisation. corresponds to algebraic solutions associated with the polynomial equation: (16 t 17 -184 t 16 -135149 t 15 + 1128329 t 14 -6708683 t 13 + 26956928 t 12 -65809991 t 11 + 96341783 t 10 -88006226 t 9 + 63929329 t 8 -60215242 t 7 + 59165527 t 6 -37633087 t 5 + 12783832 t 4 -1787515 t 3 -7679 t 2 -1957 t -32) + 4 (t -1) (t 2t + 1) (20 t 15 -186 t 14 -20481 t 13 + 138367 t 12 -473685 t 11 + 1069635 t 10 -1516399 t 9 + 1115037 t 8 -53199 t 7 -617857 t 6 + 547761 t 5 -255237 t 4 + 78967 t 3 -12885 t 2 + 156 t -16) • y(t) (C.4) + 18 • (8 t 6 -33 t 5 -447 t 4 + 943 t 3 -447 t 2 -33 t + 8) (t -1) 2 (t 2t + 1) 5 t • y(t) 2 + 108• (t -1) 4 (t 2t + 1) 7 • y(t) 3 + 27 t 3 (t -1) 4 (t 2t + 1) 7 t 2 • y(t) 4 = 0.The second order-three linear differential operator B 3 is homomorphic † to the symmetric square of an order-two linear differential operator L 2 which is simply conjugated to the order-two linear differential operator L K annihilating the complete elliptic integral of the first kind K = 2 F 1 ([1/2, 1/2],[START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF], t)B 3 • I 2 = J 2 • Sym 2 (L 2 ),

	(2 p) 0,0 S 2 where κ (2 p) = f 2! = κ (2) ,									
		S 4 4!	= κ (4) -	1 3	κ (2) ,					
		S 6 6!	= κ (6) -	2 3	κ (4) +	2 45	κ (2) ,
		S 8 8!	= κ (8) -κ (6) +	1 5	κ (4) -	1 315	κ (2) ,
		S 10 10!	= κ (10) -	4 3	κ (8) +	7 15	κ (6) -	34 945	κ (4) +	2 14175	κ (2) ,	• • •	(B.3)
														where:	(C.5)
	L 2 =	1 ρ(t)	• L K • ρ(t) = D 2 t +	4 3	•	2 t -1 t (t -1)	• D t +	25 t 2 -25 t + 1 36 t 2 (t -1) 2 ,	(C.6)
					∞ p=0		arcsinλ	(2 p)	•	S 2 p (2 p)!
	= (1 -t) 1/4 • 1 +	S 2 2	• λ 2 +	S 2 6	+	S 4 24	• λ 4 +	4 S 2 45	+	S 4 36	+	S 6 720	• λ 6
									+		2 S 2 35	+	7 S 4 360	+	S 6 720	+	S 8 40320	• λ 8 + • • •
			= (1 -t) 1/4 •	∞ p=0	κ (2 p) • λ (2 p) ,	(B.2)

  5/6 • (t2t + 1) -1/2 • 2 F 1 [

	7 6	,	5 2	], [	7 3	], t ,	(C.8)
	-	1 12	,	7 12	], [1],	27 4	t 2 • (1 -t) 2

t 1/6 • (1t) 1/6 • (t 2t + 1) -3/4 • 2 F 1 [

† A linear differential operator L ∈ C(x)[d/dx]is called absolutely reducible[START_REF] Compoint | Absolute reducibility of differential operators and Galois groups[END_REF] if it admits a factorization over an algebraic extension of C(x).

† The constant c is defined so that the Laurent expansion of P(u, τ ) at u = 0 has zero constant term (θ ′ 1 (0, q) is the derivative with respect to u), see (B.7), (B.8) in[START_REF] Zabrodin | Quantum Painlevé-Calogero correspondence for Painlevé VI[END_REF]. See for instance https://handwiki.org/wiki/Theta function in the paragraph Relation to the Weierstrass elliptic function. See also[START_REF] Ohyama | Differential relations of theta functions[END_REF].
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Other one-parameter deformations: deformation of u = π/3.

Note: To avoid any confusion with the linear differential operators introduced in the u = π/3 case (see subsection 5.2 and Appendix C.2) we will add an extra (3) subscript for the linear differential operators of this u = π/3 case.

For u = π/3 we also find that

2 (π/3, q) θ ′ 2 (π/3, q) = 1 -

is actually D-finite: it is solution of a (slightly involved) order-eight linear differential operator L

8 . In fact, revisiting the calculations performed in section 2.2, but this time with a perturbation around an algebraic solution A(t) (see [START_REF] Zenine | Square lattice Ising model susceptibility: series expansion method and differential equation for χ (3)[END_REF]), one easily finds, using the sigma-form of Painlevé VI non-linear differential equation [START_REF] Wu | Spin-spin correlation functions for the two dimensional Ising model: exact theory in the scaling region[END_REF], that the first correction term G 1 (t) is solution of an order-three linear differential operator, with very involved algebraic coefficients depending on the algebraic solution A(t) and its derivatives. This provides lower order linear differential operators, but with a price to pay, namely very involved algebraic coefficients. In fact one can study directly the previous order-eight linear differential operator.

If one conjugates this order-eight linear differential operator L 

, one can easily see that this new order-eight linear differential operator L(3) 8 is actually the direct-sum (LCLM) of two order-four linear differential operators: L(3)

4 . Furthermore, one finds that these two order-four linear differential operators are non-trivially homomorphic, after performing a conjugation of one of the two linear differential operator by

where I 3 and J 3 are order-three intertwiners. Let us focus on the simplest order-four linear differential operator, namely L

We have a prejudice that this order-four linear differential operator could correspond to an absolute factorisation [START_REF] Compoint | Absolute reducibility of differential operators and Galois groups[END_REF], and could be written † as a symmetric product of two order-two linear differential operators (see also Appendix C). In order to check this scenario, let us calculate the exterior square of that order-four linear differential operator. One finds that it is actually the direct-sum (LCLM) of two order-three linear differential operators Ext 2 L

(3) 4

= LCLM(A

3 where the second order-three linear differential operator B

(3)

3 is exactly the symmetric square of an order-two linear differential operator

which has the two algebraic function solutions:

], t .

Recalling (106) the order-two linear differential operator L K annihilating the complete elliptic integral of the first kind [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF], t), let us consider the symmetric product of the order-two linear differential operator A 2 and of L K . One finds that this symmetric product is non-trivially homomorphic to some conjugate of L 4

SymProd(A

where ρ = t 1/6 • (1 -t) 1/6 , and where I 2 and J 2 are order-two intertwiners. This shows that the solution of L Remark: Note, eventually, that these two order-four linear differential operators L can, in fact, be seen to be (non-trivially) homomorphic to some wellsuited conjugates of the two order-four operators L 4 and M 4 emerging for u = π/6 in the previous subsection (5.2).

Deformation of u = π/3: the S 3 term

The next S n , namely

is solution of a linear differential operator of order twelve with coefficient polynomials in t of degree 52. This is a quite large order twelve linear differential operator, that we will not give here. This order twelve linear differential operator is actually the direct sum of an order-three operator and an order-nine linear differential operator L 9 . The order-three linear differential operator L 3 reads:

This order-three linear differential operator (108) is actually homomorphic to the symmetric square of the order-two linear differential operator L K , annihilating

], t), with order-two intertwiners. Consequently the solutions can be seen to be the symmetric product of an order-three linear differential operator A

(3) 3 and of the order-three linear differential operator which is the symmetric square of the order-two linear differential operator

.

(110)

The order-three linear differential operator A 3 reads: .

The solutions of this order-three linear differential operator A

are actually algebraic functions satisfying the algebraic equation:

The well-suited solution of the order-three linear differential operator A 3 reads:

3 ) = 1 - The solution of the order-nine linear differential operator reads:

3 The series expansion of (107) reads:

- 

3

3

Appendix A. Calculation of the coefficient g 3 (t)

The series g 3 (t) can also be seen to be D-finite, being solution of an order-twelve linear differential operator which turns out to be the direct-sum (LCLM) of the previous order-two linear differential operator L E , of the previous order-four L 4 , of the previous order-six linear differential operator homomorphic to the symmetric fifth power of L E , and of an order-eight linear differential operator homomorphic to the symmetric seventh power of L E , with the following order-seven intertwiner 256 315

Let us recall a simple example of an absolute factorisation of an order-four linear differential operator given in [START_REF] Compoint | Absolute reducibility of differential operators and Galois groups[END_REF]:

The fact that such a factorisation over an algebraic extension of C(t) exists can be deduced [START_REF] Compoint | Absolute reducibility of differential operators and Galois groups[END_REF] from the fact that one has a direct-sum (LCLM) decomposition of the (order-five) exterior square of the order-four linear differential operator A 4 : Let us now study here the order-four linear differential operator M 4 occurring in section 5.2 for the deformations of u = π/6. The order-four linear differential operator M 4 is slightly more difficult to analyse than the first order-four linear differential operator L 4 in (5.2). We seem to have a solution of this order-four linear differential operator M 4 of the form α(t) • E + β(t) • K, α(t) and β(t) being (very) involved algebraic functions, however finding a symmetric product form, like in the previous order-four linear differential operator L 4 , is difficult. Let us show, in a quite indirect way, that this is probably the case. Let us consider the exterior square of this order-four linear differential operator M 4 . This is an order-six linear differential operator M 6 , which is actually the direct-sum (LCLM) of two order-three linear differential operators A 3 and B 3

where one finds easily that the first order-three linear differential operator A 3

Appendix C.3. Exterior square of symmetric products and direct sum of symmetric squares.

Let us consider two order-two linear differential operators where w L (t) is the wronskian of L 2 and w M (t) is the wronskian of M 2 . We have the following identity between the exterior square of symmetric product of these two linear differential operators and the LCLM (i.e. direct sum) of the symmetric squares of these two linear differential operators †:

In a more general framework, like in (C.5), we do not have an identity but an equivalence (homomorphisms) between the LHS and the RHS: see for instance Lemma 8 in [START_REF] Compoint | Absolute reducibility of differential operators and Galois groups[END_REF].