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Convergence Rates of Non-Convex Stochastic Gradient Descent
Under a Generic Lojasiewicz Condition and Local Smoothness

Kevin Scaman ! 2 Cédric Malherbe? Ludovic Dos Santos >

Abstract

Training over-parameterized neural networks in-
volves the empirical minimization of highly non-
convex objective functions. Recently, a large
body of works provided theoretical evidence that,
despite this non-convexity, properly initialized
over-parameterized networks can converge to a
zero training loss through the introduction of the
Polyak-tojasiewicz condition. However, these
analyses are restricted to quadratic losses such
as mean square error, and tend to indicate fast
exponential convergence rates that are seldom ob-
served in practice. In this work, we propose to
extend these results by analyzing stochastic gradi-
ent descent under more generic L.ojasiewicz con-
ditions that are applicable to any convex loss func-
tion, thus extending the current theory to a larger
panel of losses commonly used in practice such
as cross-entropy. Moreover, our analysis provides
high-probability bounds on the approximation er-
ror under sub-Gaussian gradient noise and only
requires the local smoothness of the objective
function, thus making it applicable to deep neural
networks in realistic settings.

1. Introduction

Large neural networks trained with gradient-like methods
have proved successful in a wide variety of domains such as
natural language processing (Devlin et al., 2019), computer
vision (Krizhevsky et al., 2012) and reinforcement learning
(Silver et al., 2016). However, the non-convex nature of the
associated optimization problem makes the theoretical ex-
planation of this success notoriously difficult. Recently, a lot
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of progress has been made in that direction by analyzing the
convergence of gradient algorithms in a variety of specific
settings (Jacot et al., 2018; Ji & Telgarsky, 2019; Nitanda &
Suzuki, 2019; Li & Liang, 2018; Chizat & Bach, 2018; Song
et al., 2018; Chizat & Bach, 2020; Li & Yuan, 2017). More
specifically, in a series of works, Liu et al., 2020a; 2022
proposed a unified view on these results by observing that
the optimization problem induced by over-parameterized
models surprisingly satisfy a very simple assumption called
PL* standing for Polyak-Lojasiewicz (Lojasiewicz, 1963).
Indeed, using this assumption, they provide a theoretical
explanation of the convergence to zero training loss for a
wide variety of large networks such as ResNet (He et al.,
2016) and ConvNets (Fukushima et al., 1983). However,
despite their generality, their analysis requires the loss to
be quadratic, such as mean square error (MSE), thus lim-
iting the applicability of the results. Moreover, the direct
extension of these results to cross entropy (CE) or the lo-
gistic loss poses significant challenges as their associated
optimization problems do not satisfy the PL* condition. In
this work, we extend these results to a wider class of loss
functions by considering novel Lojasiewicz conditions and
analyzing the convergence of stochastic gradient descent
(SGD) under these assumptions. This analysis is then used
to prove convergence to a zero training loss of SGD for
neural networks satisfying a local smoothness and uniform
conditioning assumption. As a byproduct, we show that
the choice of the loss drastically impacts the convergence
rates as shown in Table 1 summarizing our results. More
precisely, our contribution can be summarized as follows:

1. The introduction of a novel assumption, called
Separable-F.ojasiewicz* (SL™), which extend PL* as
well as the Kurdyka-Lfojasiewicz” assumption (KL*)
to a wider class of non-convex objective functions;

2. The derivation of novel convergence rates for GD and
SGD under these assumptions holding with high prob-
ability and for a sub-Gaussian gradient noise;

3. We identify three different regimes, depending on the
size of the noise and the dimension of the parameter
space, leading to three different convergence rates;

4. We show that locally smooth neural networks satisfy
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Table 1. Radius and time sufficient to reach a precision € > 0 for SGD with high probability. £ > 1 is a measure of the capacity of the
model at initialization (see Section 5.4). HL? stands for squared Hinge Loss, CE for Cross Entropy and CE? for squared Cross Entropy.

Loss function MSE HL? CE? CE Logistic  Strongly Convex Convex
Radius (1) o) Q) @) 2m(l) (1) Q=)
Time(GD)  O(m(1)) O(n(3) OE") O Ol  o@()) O
Time (SGD) 5(5_2) 6(5_2) 5(5—4) 6(5—4) 6(5—4) 6(5—2) 6(5_4_4“)

these assumptions in the over-parameterized regime,
and provide the first results proving that these models
can achieve zero training loss on any convex loss;

5. We provide numerical experiments showing that the
theoretical assumptions we consider are satisfied for vi-
sion neural networks largely used in practical settings.

The rest of the paper is organized as follows. In Section 2
we present related works on smooth non-convex optimiza-
tion and over-parameterized neural networks. Then, we
introduce and motivate our framework in Section 3. In Sec-
tion 4, we show how to derive generic convergence results
for this framework using the SL* and KL* assumptions. In
Section 5, we go on and show how to apply these results to
the tuning of over-parameterized networks. Finally, in Sec-
tion 6, we provide a numerical assessment and show that our
novel assumptions are well aligned with what is observed
in practice. All the proofs can be found in Appendix A.

2. Related Works

We detail here two lines of works that are closely related
to our analysis: smooth non-convex optimization and the
analysis of over-parameterized deep learning models.

Non-Convex Optimization. We start with the body of
works that is dedicated to the generic analysis of gradient
descent methods in non-convex landscapes. First, it has to
be noticed that several universal lower bounds for this prob-
lem are provided in (Arjevani et al., 2019; Carmon et al.,
2019). For smooth and deterministic settings, (Carmon et al.,
2019) established that Q(s~1) gradient evaluations are nec-
essary for finding a e-stationary point (i.e. a point § € R?
such that E [[[V f(6)]|?] < ¢); and showed that this rate is
achieved by gradient descent. For smooth and stochastic
settings, (Arjevani et al., 2019) showed that Q(s~2) noisy
gradient evaluations are required to reach an e-stationary
point, proving that SGD is optimal with this worst case
metric using the O(¢~2) upper bound of (Ghadimi & Lan,
2013). However, all these works only prove convergence to-
wards a stationary point, and not towards a global optimum
(i.e. a point §* such that §* € argming f(6)) as witnessed
when optimizing over-parameterized networks. Moreover,
they do not exploit any assumption that specifically describe

the behavior of functions that naturally appear during the
training of neural networks. With regards to these works,
our contribution is to introduce the Separable-Lojasiewicz”
(SL*) and to consider the Kurdyka-Eojasiewicz* (KL*) as-
sumption that describe the complexity of the optimization
of non-convex functions and we provide novel convergence
results under these assumptions.

Over-Parameterized Networks. The second line of works
connected to our analysis studies the global convergence
and generalization abilities of the gradient descent method
for over-parameterized networks (Du et al., 2018; Sankarara-
man et al., 2020; Allen-Zhu et al., 2019; Li & Liang, 2018;
Jacot et al., 2018; Arora et al., 2018; Chizat & Bach, 2018).
These works generally consider different sets of assump-
tions on the activation functions, dataset and the size of
the layers to derive convergence results. A first approach
proved convergence to the global optimum of the loss func-
tion when the width of its layers tends to infinity (Jacot
et al., 2018; Nitanda & Suzuki, 2019), using the linear-like
behavior of the network around initialization. Other works
(Li & Liang, 2018; Chizat & Bach, 2018; Ji & Telgarsky,
2019) focus on small networks with fixed architectures (i.e.
two-layer networks), and use techniques such as optimal
transport theory (Chizat & Bach, 2018), partial differen-
tial equations (Song et al., 2018; Chizat & Bach, 2020)
or analysis of the dynamics of the algorithm (Li & Yuan,
2017). In classification settings, (Allen-Zhu et al., 2019)
proved that O(e~2) iterations of SGD are required to reach
a precision ¢ for two layers with a ReLU activation func-
tion. Independently, (Ji & Telgarsky, 2019) and (Chen et al.,
2019) proved that O(e~ 1) steps of SGD are required to
reach the same precision using different sets of assumptions
with two layers. Finally, (Nitanda & Suzuki, 2019) proved
that the O(¢~!) iterations of GD are required to optimize a
two-layer network with smooth activation functions, while
(Du et al., 2018) managed to show that O(In(1/¢)) gradi-
ent iterations on a two-layer network with ReLU activation
functions with additional assumptions on the dataset. These
works are either for specific architectures (e.g. two or three
layer networks), specific losses (e.g. MSE), or approximated
algorithms (e.g. gradient flow instead of stochastic gradient
descent). With regards to these works, our analysis aims
at being more generic with regards to the assumptions on
the loss function, network architecture and optimization
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Algorithm 1 Stochastic gradient descent (SGD)

Input: number of iterations 7', gradient step 7, initial pa-
rameters 6

Qutput: optimized parameters 6

I: fort =0toT —1do

2:  Compute Gy, a noisy approximation of V f(6;)

3: 9t+1 = Gt — ﬂGt

4

5

: end for
: return O

algorithm. Finally, our assumption is closely connected
to the Polyak-Eojasiewicz (PL) and Kurdyka-fojasiewicz
(KL) conditions (Lojasiewicz, 1963; 1993; Attouch et al.,
2010; Noll, 2014; Karimi et al., 2016; Liu et al., 2020a) that
lower bound the gradient norm by a function of the approx-
imation error f(0) — f(6*). However, these works do not
consider the particular form of the SL* condition (see As-
sumption 4.4) as a product of two terms, and do not depend
on the distance from initialization. As a consequence, the
lower bound should hold on the whole space (which is not
realistic for neural networks due to the presence of multiple
stationary points) or only provide an asymptotic analysis.
Moreover, these works assume that the optimum §* € R¢
exists, which is not necessarily true for the CE loss.

3. Non-Convex Optimization Setup

Throughout this paper, our objective is to analyze the con-
vergence of stochastic gradient descent (SGD) described
in Alg. (1) on non-convex functions that verify additional
assumptions called Lojasiewicz conditions. More precisely,
we consider the generic problem of finding the set of d-
dimensional parameters § € R? which minimize the value
of a function

Inin £(6) (1)
where f is a non-convex objective function, and is S-smooth
on a ball B(6y, R) around initialization for some R > 0.
In the remainder of the paper, we will always denote as
6y € R? the initialization point of SGD, as A = f(6y) —
infgepa f(0) the maximum decrease of the function value,
and as * € argmingpa f(6) a global optimizer when such
an optimum exists. Moreover, we assume that the gradient
noise is sub-Gaussian in order to obtain high-probability
bounds on the approximation error f(6;) — infgecga f(6).

Assumption 3.1 (Noise assumption). Let ¢ > 0 and
(Fi)e>0 be the natural filtration associated to the iterates
(0¢)t>0 of Alg. (1). We assume that (G¢)¢>o are ran-
dom variables adapted to (F;11)¢>0 such that E [Gy|F;] =
V£(6;)and, forany u € R? s.t. ||lul| = 1, (Gi—V f(6;),u)

is %—sub—Gaussian when conditioned on F;.

This relatively standard assumption (see e.g. Fang et al.,

2019; Scaman & Malherbe, 2020) covers common noise
distributions such as Gaussian or bounded noises, and the
parameter o is an upper bound on the standard deviation of
the noise, i.e.

E[|G: — V(0,)|?] < o> )

Moreover, for the training of neural networks, the objective
function we wish to minimize is usually a loss of the form

n

= Ugo (i), i), 3)

i=1

where gy : X — ) is a neural network parameterized
by some parameters 6 € R ¢ Y2 R, denotes the
loss function and (z1,y1),-- -, (Zn, yn) is a collection of
n observations with z; € X (e.g. images, sentences or
input data usually preprocessed into vectors) and y; € )
(e.g. classes or regression vectors with ) = RY). Under
technical assumptions on the neural network, a recent line of
works (Liu et al., 2020a; 2022) showed that, when ¢(x, y) =
||z — y||? is the MSE loss, this objective function verifies
the PL* condition, i.e. V0 € S,

IVLO)* > pL(®), )

where S is typically a ball B(6y, R) around initialization.
Note that this condition is valid on a subset of the whole pa-
rameter space to avoid the presence of saddle points (Choro-
manska et al., 2015) for which we would have ||[VL(0)| = 0
while £(6) > 0. This condition, along with the smoothness
of the objective function, is sufficient to show convergence
of the objective to its global optimum. In what follows, we
extend this assumption to make it applicable to more losses
of the deep learning literature, and provide high-probability
convergence rates which are shown to hold during the train-
ing of a large number of neural networks. This extension
is twofold: first, the KL* condition will provide results for
most major loss functions of the deep learning literature,
then the SL* condition will provide more general results
applicable to any convex loss function.

Notations. For any z € R? we denote by |z| =
(2%, 22)1/2 the standard 5-norm and by B(0y, R) =
{6 € R? : ||0 — 6] < R} the ball of radius R > 0 cen-
tered around € R?. A real-valued function f : R? — R
is said to be convex if and only if V(z1,20) € (R9)2,
VA € [0, 1], f(/\lCl + (1 — )\)(EQ)'F < )\f(.’Ll) + (]. —
A) f(z2), and L-Lipschitz if and only if V(z1, z2) € (RY)2,
[ f(z1) = f(z2)]] < L-|lz1 — x2]|. Additionally, a func-
tion f : RY — R is S-smooth if and only if it is dif-
ferentiable and its gradient is S-Lipschitz. We say that
a real random variable X is o-sub-Gaussian if, VA € R,
logE [exp(A\(X — E[X]))] < A20?/2. Finally and for
simplicity, for any function ¢ : R — R and a € R, we
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Table 2. Details of the integral terms appearing in Proposition 4.2 for standard ¢ functions, where W/, is the Lambert W function.

oz) () L (2) I () 1 (-2)

1{z > 0} 11—z 11—z (I—2)4 (1—2)4

Vi 1-2/F log(1/) (L-222  exp(-)

x log(1/x) 1/x exp(—x) 1/(1+4x)
1—e® —log(e®—1) 1/(e®—1)—log(e*—1) log(l+e *) log(l+1/Wy(e®))

will denote as Iy, o (z) = [ ¢(u

I(];ya(. ) =sup{z € R : Iy o(z) < y}, and I any primitive
function of ¢.

)du, as its pseudo-inverse

4. Theoretical Analysis of SGD under
Lojasiewicz Conditions

In this section, we define the KL* and SL* conditions, and
provide high-probability bounds on the convergence of SGD
under these conditions. Note that KL* is a particular case
of SL*, and thus all results for the former are natural con-
sequences of proofs for the latter. However, for didactic
purposes, we first provide the simpler setting of KL*, that is
widely applicable and leads to a simpler theoretical analysis.
The proofs of all lemmas and propositions can be found in
Appendix A.

4.1. The KL* Condition

The linear dependency between ||V f(0)]|? and f(6) in the
PL* condition of Eq. (4) is rather restrictive, and a natural
generalization consists in allowing for non-linear dependen-
cies between the two quantities. This was first considered for
power functions by Lojasiewicz (1963), and later extended
to arbitrary functions by Kurdyka (1998) and Attouch et al.
(2010) with the Kurdyka-t.ojasiewicz (KL) condition. Sim-
ilarly to PL*, the KL* assumption presented below is a
local extension of the KL condition that only requires the
condition to hold in a limited subspace.

Assumption 4.1 (Kurdyka-f.ojasiewicz*). Let ¢ : R, —
R be a non-decreasing function. Then, the objective func-
tion f verifies the o-KL* condition on S C RY if, V0 € S,

IVFO = ¢(f(9)) - (5)

As we will see in Section 5, this condition is applicable
to most losses of the deep learning literature. It ensures
that gradients are large far from the optimum, and implic-
itly assumes that the objective function is equal to zero at
optimum (i.e. infgcpa f(6) = 0). Moreover, the p-PL* con-
dition of Liu et al. (2020a) is a particular case of ¢-KL*
with () = /u, and the slope of ¢ near 0 will impact
the convergence rate of SGD. Throughout the paper, we will
consider the p-KL* condition on balls B(6y, R) centered
on the initialization and that infycrg f(#) = 0. Finally,

we point out that the KL condition is usually written as
K'(f(0) — f(0%)IVf(z)|| > 1, where  is a differentiable,
concave and increasing function s.t. x(0) = 0. Here the
choice of p(x) = 1/k’(z) is made for simplicity and read-
ability of the analysis.

4.2. Convergence Rates of SGD Under KL*

We now provide non-asymptotic high-probability bounds on
the approximation error of SGD under the ¢-KL* condition.

Proposition 4.2. Let § € [0,1], n € [0,1/5] and assume
that f is $-smooth on B(0y, R), f is p-KL* on B(6y, R),
and the noisy gradients G verify Assumption 3.1. Then,
with probability at least 1 — 6, SGD achieves the error

t —nt
< '
1{1<111‘1f( i) max{[zA(2>,

—-R+2C,
AN (2 1 >}+An,t,

where A, = 4BC2, + 2d7'2LC,, C,, =

ony/2tlog(6dt/s), L IVf(0)| + BR, and A =
f(Bo) — infpera £(0).

First, we point out that the functions [ T,Q A and T,l A
are provided for several common functions @ in Table 2.
This bound contains three terms: 1) a convergence term
that decreases when the number of iterations increases, 2)
a radius term that requires the control radius R to be large
enough to reach a given precision, and 3) a stochastic term
A, ; that behaves in O(n+/tlog(t)) when ¢ > 0 and will
tend to 0 if = o(y/tlog t). When the gradient is exact (i.e.
o = 0), we have A,,; = C,,; = 0, and the approximation
error simplifies to

In<1nf( ) < maX{I;2A (_27’15) ’I;*I,A <_2]%>} .
(7

Moreover, note that Proposition 4.2 controls the best ap-
proximation error before time ¢, instead of the final iterate
f(6;). This is necessary, due to the fact that the function
is smooth only on B(fy, R), and the iterates of SGD may
fall outside this ball after reaching a good approximation
error, after which nothing can be said about the iterates as
there are no assumptions on the regularity of the function

(6)
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outside this ball. Optimizing over the gradient step pro-
vides the following convergence rates, with the notation
Te =min{t >0 : f(6;) <e}.

Corollary 4.3. Let 6 € [0,1], € > 0 and consider the same
assumptions as in Proposition 4.2. Then, if

€
48"
for a well-chosen gradient step n., with probability at least

1—9, the time for SGD to reach a precision € > 0 is bounded
by

R>—=2BI,-1 A (E) +

5 (®)

T < 1-28,24(5)

+h (ClBOQIv’?A (3)2>

3

+h (CQL?UZIW’A (3)2>

de?

©))

where h(z) = xlog(zd/d), L. = ||V f(0o)|l + /28 —

281,-1 A (%) and Cyq, Cq are fixed constants.

First, note that the ball around initialization should have a
radius of order

R>Q(-1,1(¢/2)) , (10)

in order to reach a precision ¢, as the second term is neg-
ligible as ¢ tends to 0. Second, there are three different
convergence rates, depending on the precision needed:

1. Deterministic (short-term): When the noise is small
o K \/e/1,-2(¢/2), the first term dominates and

reo(na(3)  w

2. Stochastic (mid-term): When the dimension is large
d > L2 /B¢, the second term dominates and

c\2 _ 5 (€
T. <O <IV’_2(2)10g <(ﬂ“’_(2)>) . (12)
€ oe

3. Stochastic (long-term): When the precision is small
e < L?/3d, the third term dominates and

de? oe

T.<0 <I¢>1 (%)2&9*2 (%)2 log <_Iso2 (§)>> )

13)

While the third convergence rate will become dominant as
e — 0, it is worth noting that this term is divided by the
dimension, and will thus be negligible in practice for very
high-dimensional problems and moderate target precision

or number of iterations. The reason for this is that, as
the dimension increases, the norm of the gradient noise
will remain constant, while its projection along the true
gradient (G — Vf(6,), Vf(6;)) will scale in O(1/V/d),
and thus become negligible as the dimension goes to infinity.
However, note that this behavior is tightly connected to
Assumption 3.1 and may not hold for less isotropic noises.

4.3. The SL* Condition

Our convergence results can be further extended to settings
in which, instead of controlling the gradient norm on a ball
B(6y, R) around initialization, the lower bound on ||V f ()|
also depends on the distance to initialization.

Assumption 4.4 (Separable-Lojasiewicz*). Let 6y € R,
and ¢, ¢ : R — R, be two non-increasing functions. Then,
the objective function f verifies the (¢, 1), 8y)-SL* condi-
tion if, V6 € RY,

IVFO) = &(£(00) = £(0)) (1l = boll) . (14)

Moreover, we will say that a function is (¢, %, 6)-SL*
on the ball B(y, R) if ¢»(x) = 0 for any x > R. This
assumption allows for more flexibility, and its particular
form as a product of two terms is motivated by deep learn-
ing objectives (see Section 5). Finally, it is interesting to
note that the p-KL* condition on B(fy, R) is a particular
case of (¢, 1, 60p)-SL* where ¢(z) = ¢(f(6p) — x) and
b(w) = 1{z < R},

Remark 4.5. The lack of dependence in f(6*) in SL* com-
pared to the standard PL and KL conditions allows to con-
sider settings in which 6* does not exist (e.g. f(0) =
In(1 + exp(—#)) appearing in the cross entropy loss or
even f(6) = 6 for which infy f(0) = —o0).

4.4. Convergence Rates of SGD Under SL*

We now provide non-asymptotic high-probability bounds on
the approximation error of SGD under the (¢, v, 6y)-SL*
condition on the ball B(6, R).

Proposition 4.6. Let § € [0,1], n € [0,1/8], and as-
sume that f is L-Lipschitz and B-smooth on B(6y, R), f
is (¢,,00)-SL* on B(0y, R), and the noisy gradients G
verify Assumption 3.1. Then, with probability at least 1 — 6,
SGD achieves a decrease

t
min (6 < £60) - 1L (5 ) + Ape. 019

where x (1) = ¢p(z)~2(¢p o IL-,Cn,t 02141 0(x)) 7% Ay =
4BC2, +2d~Y2LC, 4, and C,; = ony/2tlog(6dt/5).

This result is more general than Proposition 4.2, and can
be applied to prove convergence to a global minimum, or
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decrease beyond a local minima. The key function appear-
ing in the convergence rate y is the product of two terms:
1) the function ¢~2 that also appears in Proposition 4.2,
and 2) the function (9 o I}, 0 2141 o(x)) =2 that will
decrease the convergence rate of SGD as the iterates move
away from the initialization, and ¢ (||@; — 6p]|) becomes
small. The term IL,CM 0 214-1 o(x) is indeed an upper
bound on the distance from initalization ||, — 6| upon
reaching a decrease of f(fy) — f(6;) = «. In Section 5.4,
we will see that Proposition 4.6 can be applied to prove the
convergence of SGD to a global minima of the training loss
when the loss function ¢ is convex. Finally, we point out that
these results can be extended to the current iterates f(6;)
instead of the minimum observed during the optimization
min;<, f(6;) if the regularity assumptions (Lipschitz con-
tinuity, smoothness and SL* condition) hold on the whole
space.

5. Application to Deep Learning

In this section, we show how to apply the theoretical re-
sults presented in Section 4 to derive global convergence of
the training loss for locally smooth and over-parameterized
neural networks.

5.1. Background

As discussed in Section 3, tuning over-parameterized neural
networks typically requires the minimization of the empiri-
cal risk
1 n
L£(0) = = ¢ i)y Yi) s 16
()2 =3 tlgolwi). i) (16)

i=1

with SGD. In this case, a direct application of the chain rule
gives that

1 n
VLO) =~ dogo(w:) Vallgo(@i),vs), ()

i=1

and the norm of the gradient can be reformulated as a
quadratic function involving the Neural Tangent Kernel of
Jacot et al. (2018) defined below.

Definition 5.1 (Neural Tangent Kernel, adapted from Jacot
etal., 2018). Letgy : X — R’ be a differentiable model.
The Neural Tangent Kernel (NTK) kg : X2 — RY*! of the
model g at § € R4 is the function defined by, Va,y € X,

ko(x,y) = Dogo(x) X Dago(y) ", (18)
where Jgge () € R*? is the Jacobian matrix of 6 + gg(z).

As shown in e.g. Liu et al. (2020a), controlling the spectrum
of the NTK directly implies a lower bound on the gradient

norm, as
IVLO)]]? > Min ((me(xi,xj))i,je[[l,nﬂ)

1 n
x5 S Vatlgolw), I,

i=1

(19)
where Apin (+) denotes the minimal eignenvalue of the NTK
matrix. Thus, the gradient of the objective function can
be lower bounded by a product of two terms: one related
to the behavior of the gradient of the loss function ¢, and
another related to over-parameterization of the model at
initialization through the NTK.

5.2. Assumptions on the Network and Losses

For clarity, we list here the assumptions used in our analysis.
The first assumption relates to the local smoothness of the
neural network on a ball B(fy, R) around initialization.

Assumption 5.2 (Model Regularity). We assume that, for
any « € X, the model 6 — gg(x) is Ly-Lipschitz and
Bg-smooth in B(6y, R).

The above assumption is satisfied as soon as all the layers
and activation functions of the model are smooth, by compo-
sition of locally smooth functions. However, it is interesting
to note that, for a given model, increasing the radius R will
often increase the smoothness (as deep learning models are
generally not globally smooth). Nonetheless, recent results
(see Theorem 3.2 of Liu et al. (2020b)) show that, for a large
class of neural networks, and any radius R > 0, the smooth-
ness of the model on B(fy, R) tends to 0 as the number
of neurons tend to +oo (in 1/y/m where m is the number
of neurons). As a consequence, for any desired precision
e > 0, we can for example fix R = —2I,-1 o (§) + /%
(i.e. Eq. (8) where 3 = 1). Then, there is a number of neu-
rons such that 5 = 1 in B(fy, R), and the condition holds.
Thus, we deduce that imposing a fixed smoothness on any
given radius R is possible for standard neural networks with
a large number of neurons. The next assumption relates
the conditioning of the over-parameterized model around
initialization, and is adapted from Liu et al. (2020a).

Assumption 5.3 (Uniform conditioning). Let x> 0, D =
(%4, Yi)ic{1,n} a training dataset, and gg : X' — R! a model.
Then the smallest eigenvalue of the tangent kernel of gg
satisfies, V0 € B(6y, R),

Amin ((He(ﬂ% xj))i,je[[lmﬂ) > . (20)

This assumption provides a measure of the conditioning of
the NTK matrix around initialization through the value of p,
and several rencent works developed techniques to bound
this value. More precisely, Liu et al. (2020b) showed that
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[Amin(£(0)) — Amin(£(00))| = O(1/y/m) for any fully-
connected network with smooth Lipschitz activation func-
tions including MLP, ResNet and ConvNet where m denotes
the width of the network. In other words, they show that
the NTK minimum eigenvalues are nearly constant around
initialization for smooth networks with large m. Moreover,
they go on and show that the tools provided in (Du et al.,
2019; 2018) allow to bound the NTK eigenvalue at initial-
ization thus providing an interval for ;« combined with their
result for any smooth over-parameterized network. For fur-
ther details on this topic, we refer the reader to (Liu et al.,
2020a), Section 1. Finally, we consider that the loss function
is sufficiently regular.

Assumption 5.4 (Loss Regularity). The loss function
£(x,y) is Ly-Lipschitz and ,-smooth w.r.t. its first input.

This assumption is necessary to ensure smoothness of the
objective function £ on the ball B(fy, R), and is satisfied
by most losses of the deep learning literature.

5.3. Convergence Rates for o-KL* Loss Functions

As shown in Table 3, most losses of the literature verify
a p-KL* condition with ¢ ranging from linear to square
root behaviors. When such a condition is verified, Eq. (19)
implies that the objective function £ is itself KL*. More
specifically, two cases should be distinguished depending
on the convexity of ¢?.

Lemma 5.5. Under Assumptions 5.2, 5.3 and 5.4, if the loss
Sunction £ is p-KL* on Y w.r.t. its first input, the objective
L verifies the ‘/ﬁgo—KL* condition. Furthermore, if ©? is

n

convex, then L verifies the \/g o-KL* condition.

As the convergence rates in Corollary 4.3 depend on the in-
tegral of ¢ 2, the additional multiplicative factor in 1/y/n
when ¢? is not convex will induce a multiplicative factor
n on the convergence rate. While such a multiplicative fac-
tor will significantly slow down convergence and may be
prohibitive in practice, it is worth mentioning that the con-
vergence rate is not changed. Applying Corollary 4.3 thus
gives the following convergence rate without any additional
assumption on the function .

Proposition 5.6. Let ¢ € [0,1], ¢ > 0, and w : Ry — R
any increasing function such that lim,_, y . w(zx) = +o0.
Moreover, consider the same assumptions as in Lemma 5.5,
and assume that the noisy gradients G verify Assump-
tion 3.1. Then, there is a gradient step 7. such that, if
R > —w(1/e)l,-1(g/2)), with probability at least 1 — 4,
the time for SGD to reach a precision € > (0 is bounded by

_ (fw (5) 1= (5)° ) (—fw (3))) |

g2 de
2n

First, note that, in most cases of interest, we have

I,-1 (5) = O(log(1/e)) and I,-2 (5) = O(e~*) where

« > 0, and thus in such a case
T. <0 (Lpfg (¢)? 5*2) . 22)

For example, for MSE, we have I,,-2(¢/2) = O(log(1/¢))
and the convergence rate is in 6(5*2), while for cross en-
tropy, we have I,-2(¢/2) = O(e~') and the convergence
rate is in 6(6*4). Convergence rates for other common
losses are available in Table 1. Note that, as shown in
Lemma 5.5, the convexity of the function ¢? will increase
the speed of convergence. However, this effect only changes
the constant factors but the limiting behavior remains the
same.

5.4. Convergence Rates for Convex Loss Functions

As shown in Table 3, most common losses ¢ verify the ¢-
KL* condition on the whole input space. However, this
condition is not necessarily implied by convexity, and a gen-
eral convergence rate for convex losses cannot be deduced
from Proposition 5.6. Fortunately, convexity does imply a
lower bound in the gradient norm, as, for convex functions
f, we have, for any § € R? and 6* € argmingcga f(6),

|5 10 =10
= le-eT

As a consequence, controlling the distance from initializa-
tion should also imply a Lojasiewicz condition. To under-
stand why a new Lojasiewicz condition is required, let us
first try to apply Corollary 4.3 by noting that, if the model
is L4-Lipschitz, the objective function £ is then ¢-KL* on
B(6y, R) where ¢(z) = x/Ly(||6p — 6*]] + R). Unfortu-
nately, the condition on the radius thus becomes

R>2L,(R+ 16" —6o]) In(2A/e) + +/Be/2, (24)

and as ¢ tends to 0, the condition will become impossible
to verify. Fortunately, we can still use the SL* condition to
derive meaningful convergence rates in such a setting.

V() (23)

Lemma 5.7. Under Assumptions 5.2 and 5.3, if { is convex
w.rL. its first input, the objective L verifies the SL* condition
with ¢(x) = (A —z) 4 and p(x) = k1 1{z < R}/(||00 —
0*|| + x), where k = Lg\/n/p and 0* € argming £(6).

Note that the multiplicative term 1/(||6g — 0*|| + 2) in ¥ (z)
will slow down convergence as the distance to initializa-
tion increases, and thus will lead to slower convergence
rates. Equipped with this lemma one can directly apply
Proposition 4.6 to obtain the following convergence result.

! The hinge loss and MAE are not smooth, and the gradient is
not defined everywhere. These thus require a more general analysis
than that provided in this work. For the sake of completeness, we
nonetheless provide these losses to show the generality of the KL*
condition.
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Table 3. Description of standard losses and their associated KL* functions.

Name Loss £(z,y) KL* function ¢(z) 2 convex ¢ smooth
MSE |z — y)? 2T v v
Logistic loss  log(1 4 e~*¥) 1—e™® X v
Cross entropy ~ — >, y;log(e® /> . e®) 1—e™" X v
Squared CE > yilog(e™ /37, e®)?  min{z,/x} v v
Hinge loss' >, max{0,1 — z;y;} 1{z > 0} X X
Squared hinge )", max{0,1 — z;y; }* 2z v v
MAE ! >oilzi — il 1 v X

Proposition 5.8. Let§ € [0,1], e > 0, andw : Ry — Ry
any increasing function such that lim,_, y ., w(zx) = 4o0.
Moreover, consider the same assumptions as in Lemma 5.7,
and assume that the noisy gradients G verify Assump-
tion 3.1. Then, there is a gradient step 7. such that, if
R > w(1/e)e™", with probability at least 1 — 0, the time
for SGD to reach a precision € > 0 is bounded by

T. <O (e . (25)

More precise bounds on the approximation error are avail-
able in Appendix A. While the convergence rate can be rela-
tively slow when x > 1, this result is nonetheless the first
to prove convergence of SGD for arbitrary convex losses,
thus showing the flexibility of the approach and robustness
of SGD for the training of deep learning architectures.

6. Numerical experiments

The purpose of this section is to illustrate that the assump-
tions and results presented in the paper are satisfied in prac-
tice on a standard neural network used in vision for both the
deterministic and stochastic settings.

Protocol and Metrics. To test our theoretical framework,
we performed a series of experiments over the MNIST (Le-
Cun et al., 2010) and CIFAR10 (Krizhevsky et al., 2009)
classification datasets (denoted by (x;,y;)i<n) using the
ResNet-18 convolutional network (He et al., 2016) with
smooth GELU activation functions (Hendrycks & Gimpel,
2016) denoted here by g and containing more than 10°
parameters. We considered the minimization of the empiri-
calloss f(6) = > | £(go(x;), ;) using three different
loss functions ¢: (1) the mean squared error (MSE), (2) the
cross entropy (CE) and (3) the squared cross entropy (CE2).
To perform the optimization, we ran a mini-batch GD (de-
terministic) and SGD (stochastic) over the empirical loss
using PyTorch (Paszke et al.) and the Pytorch image models
library (Wightman, 2019).

We focus here on the MNIST dataset. For the deterministic
setting we performed a gradient descent (GD) on the first
batch of size B = 128 of the dataset at each epoch and run

Gradient norm |[VF(6:)]|
Gradient norm ||Vf(6,)]|
=
o

# ~-- Lower bound y = o(x) -~ Lower bound y = 9(x)
1021 107

0% 10 102 107 10° 0% 102
Loss (6,)

(a) GD with MSE

10"
Loss f(6:)

(b) SGD with MSE

Gradient norm |[Vf(@)]|
Gradient norm |[vf(6)]|

=== Lower bound y = o(x) === Lower bound y = p(x)

- - -
102 107" 100 10 107° 103 107! 10
Loss f(6;) Loss f(6r)

(c) GD with CE (d) SGD with CE

Gradient norm [|Vf(8:)||
5

~-- Lower bound y = o(x) -=- Lower bound y = o(x)

e Al
107 102 107 10° 10t 10 107 107t 10t
Loss f(6:) Loss f(6r)

(e) GD with CE2 (f) SGD with CE2

Figure 1. Gradient norm vs. overall train loss for 1000 (GD) and 3
(SGD) runs (one color per run) with ResNet-18 on MNIST using
different loss functions.
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this experiment 1000 times while for the stochastic setting
we used the full dataset. We also point out that the same
experiments have also been tested on the CIFAR dataset
(provided in Appendix B due to space issue) and that the
same conclusions hold.

The initial parameter 6y was set randomly using the default
initialization method of PyTorch, the learning rate n was
selected over a grid [1, 0.1, 0.01] providing the best training
loss at the end of the optimization consisting of T = 100
epochs. At the beginning of each epoch ¢ € {0,..., 7 — 1},
we recorded the value of the gradient norm ||V f(6;)|| and
the loss f(6;) computed over the full dataset for SGD and
first batch for GD. The profile of the runs iterates of the
gradient norm vs. the loss recorded during the optimization
are displayed in Figure 1.

Discussion. First, by looking at the values of the loss f(6;)
recording during the optimization (x-axis), it is important
to note that the model achieves almost zero training loss,
suggesting that the model is over-parameterized enough to
achieve global convergence as expected in the lazy training
regime (Chizat et al., 2019; Geiger et al., 2020). We now
investigate whether the assumptions formulated in the paper
that can explain this phenomenon are satisfied. Looking at
the profile of the gradient norm vs. the loss recorded dur-
ing the optimization and the lower bounds y o ¢ (f(6:))
provided in Table 3 and plotted here in red lines, the decreas-
ing rate of each lower bound exactly matches the empirical
slope, thus validating that the SL* assumption is satisfied
in practice. More precisely, for the MSE the general slope
is equal to 1/2 as opposed to other losses, illustrating the
presence of the square root in ¢ in practical settings. Finally,
observe that, without surprise, the points are more spread in
the stochastic setting.

7. Conclusion

In this work, we introduced two novel Lojasiewicz condi-
tions called KL* and SL* that extend PL* to a larger class
of objective functions. We then provided high-probability
bounds on the convergence rate of SGD under these assump-
tions, and used these results to prove the convergence to zero
training loss of locally smooth and over-parameterized neu-
ral networks for a large panel of loss functions. In particular,
our results provide the first convergence rates applicable
to any convex loss function, thus extending the applicabil-
ity of the Lojasiewicz approach to the analysis of neural
network training. The derived convergence rates heavily de-
pend on the behavior of the loss function near optimum, and
could help practitioners decide which loss function to use
during training. Promising research directions include: (1)
investigating whether the convergence rates provided in the
document are tight and optimal, (2) extending the bounds
we obtain to the analysis of non-smooth over-parameterized

networks and (3) investigating whether the KL* and SL*
assumptions are satisfied in practice for a wider variety of
networks, including natural language processing and rein-
forcement learning networks.
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A. Proofs of the theoretical section
A.1. Proofs of the analysis of stochastic gradient descent

As o-KL* on B(6y, R) is a particular case of (¢, 1), 8p)-SL*, we first provide a proof of the latter, and will then derive the
convergence for p-KL* as a consequence.

Proof of Proposition 4.6. Let X; = Gy — V f(0;) be the gradient noise at iteration ¢t > 0. If ) € [0, 1//3], using Lemma 3.4
in (Bubeck et al., 2015) for S-smooth functions, a direct calculation gives

(VF(0), 00401 — 02) + 21|01 — 0]

—n(Vf(0:), VF(0:) + Xe) + SV () + X2

—n (1= Z2) |V £ (02 + 28 B X = (1 — fn) (X, T £(60) (26)
(

-7 1J3" IVFO)? + App1 — Ay

f(Ory1) — f(61)

A

where A; =3, , BT”QHXZH2 —n(1 = Bn) > ¢(Xi, Vf(0;)). Moreover, we have

> (V) n|[>_ v

1<t i<t

16: = boll =7 + B, 27)

where B; = n|| >, ., Xi||. By assumption, the noise terms A; and B; are sub-Gaussian, and we can control all of them
with high probability using a union bound.

Lemma A.1. Let § € [0,1] and t > 0. With probability 1 — 6, we have, simultaneously, Vi € {1, ... t},
|A7‘ S An,t/2 and Bi S Cn,t7 (28)
where Ay, = 46C2 |, + 2d'2LC,  and C,, 1 = on/2tlog(6dt/0).

Proof. First, note that all (X x)jcqo,....t—1},ke{1,....dy and ((X;, V£(0;))/IIV f(0;)]])jeq0.....—1) are %—sub—Gaussian
when conditioned on F}, and thus, for any A € R, we have

E [Mx | Fj] < X't/ (29)

and
E [eA(Xj,Vf(aj)) | ]_-j} < NIV I 0,202 /2d < NL20% /24 (30)

Thus, by Chernoff’s bound, for any i € {1,...,¢} and s > 0, we have

AX; .

. ]E[Hj<i€ ’] o,
E Xjkzs <min—— = < mine
— ’ A>0 ers A>0
j<t

No?/2d—Xs _ e—szd/Qtaz _ (31)

As the same result holds for — 3, X ., we have, for any ¢’ € [0, 1],

Xl > ov/2tlog(2/8)/d | <& (32)
> Xiw| = 0/2t108(2/8)/

j<i

Using the same argument, we have, for any 7 € {1,...,t},

S0, V10)] = LoV2rlog(2/8) | <5 (33)

7<1i
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Finally, classical results for -% N -sub-Gaussian random variables state that E [e fnd/8o } < 2, and thus

E [ex,;{kd/sﬁ} .
P (Xl2k 2 S) < d/8c2 < 26_5d/80 )
’ eS g

(34
and, forany i € {1,...,t}and k € {1,...,d},
P (X7, > 80°log(2/8")/d) < &' (35)

Using the union bound, we now combine the (2d + 1)¢ equations in Eq. (32), Eq. (33) and Eq. (35), and obtain that, with
probability at least 1 — (2d + 1)td’, simultaneously, for alli € {1,...,t} and k € {1,...,d},

‘Zj<i Xj-,k’ = U\/m

|5l X5 VIO < Loy/2HIog(/8)/d (36)
Xﬁk < 8o%log(2/8")/d.
As a consequence, we have
A = ] Zyei SN =01 = Bn) X, i (X5, VH6,)]
< 2 E]<zk<dX]k+n‘Z]<z J’vf( J)>‘ (37)
< 4Bn*to?log(2/8") + nLo/2tlog(2/8")/d,
and
2
Bi=n|>_Xil|=mn> <Z Xi7k> < noy/2tlog(2/8") . (38)
i<t k<d \i<t
We obtain the desired result by taking ¢’ = ¢/3d¢ and reformulating the bounds with C,, , = ony/2t log(6dt/d). O

Then, using Lemma A.1 to bound A; and B; for all ¢ < t, with f; = f(6y) — f(6;) + Ai + A, /2 and d; =
n>2<i IVF(0;)[l + Cy.t. Eq. (26), Eq. (27), and the SL” condition becomes

fiv1 = fi = nal|V f(6:)]° (39)
div1 —di = ||V f(0:)]l (40)
16; — 0ol < d; (41)
IVFO) > & (fi) ¥ (di) (42)

where a = 1 — 37/2. Using these equations, we can derive a bound on d; as follows. First, we have

fir1i = fi _ nallVO)I? _ aldips — di)IVF(8:)]l o
o(fi) = o(f)) 3(f) > a(dit1 — d;)(d;) . (43)

Summing both sides for i € {0,¢ — 1} and bounding these Riemann sum by their corresponding integrals (as ¢! is
non-decreasing and ¢ is non-increasing) leads to

/ » ¢ / e (44)

16: — 6ol < If, . (@™ Tp-10(f:)) - (45)

and thus, for all 7 < ¢,
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Finally, replacing d; by this quantity gives

nal|V.£(0:)]?
firn = fi)x(fi) 2 nallVf xfl_i_n, (46)

(firs = fi)x(fi) = nal V£ (O 1*x(£:) S 20 (d)?
and summing over all i € {0,...,t — 1} and bounding this Riemann sum by its corresponding integral (as x is non-
decreasing) provides the desired result (noting that a = 1 — n/2 € [1/2,1]). O

If f was L-Lipschitz and 3-smooth on R?, then Proposition 4.6 with ¢(x) = ¢(A — z) and ¢(z) = 1{z > R} would
prove Proposition 4.2. However, additional work is required due the fact that our assumptions on f only hold in B(fy, R).
Fortunately, as long as R is larger than the distance after which ¢ (z) = 0, Proposition 4.6 still holds.

Lemma A.2. Let R = min{x : ¢(x) = 0}. If f is only L-Lipschitz and B-smooth on B(6y, R), and R, > R+ C, ,, then
Proposition 4.6 still hold by replacing f(0,) by min;<; f(6;).

Proof. First, note that, if ij,cm o a_1[¢71 (z) > R, then x(z) = 0. As a consequence,
If (ant) < (I}, oalyc,,)(R). @7)

If 3i < ¢ such that (6;) < f(60) — (I} e alyc,,)(R) + Ay, then Eq. (47) implies that

min f(6;) < f(6) — I} (ant) + Ay . (48)

i<t

Otherwise, for all ¢ < ¢, we have f(6;) > f(6y) — (I{;,1 oaly.c,,)(R)+A, ., and, by induction on i € {0, ...,t}, we have
6; € B(0o, R): First, 6y € B(8y, R). Second, if, forall j < 4, 8; € B(6p, R), then ||0; — 6| < [|0;—1 —bol|+|6: —0i—1|| <
R+C,; < R, by Lemma A.1, and thus Eq. (45) holds and 0; € B(6, R). As a consequence, the function is S-smooth and
L-Lipschitz along the iterates (6;);<¢, and the proof of Proposition 4.6 is applicable. O

We can now use Proposition 4.6 to prove Proposition 4.2 using ¢(x) = (A — x) and ¢(z) = 1{z > R}.

Proof of Proposmon 4.2. First, note that I fo o(A Y ldu = — AA‘*“"

r<R, I 1[} c, t( x) = x + C, 4. Thus, for —2]807 AlA—x)+ C,],t < R, we have

@(u)"rdu = I,~1 A(A — ), and, for

x(x) = ¢(z)2(Y o IL}CM 02l41)(x) "2 = p(A —z)72, (49)

and x(z) = 400 otherwise. Hence, we have I, (z) = [ ¢(A — ) 2du = —I -2 A(A —2)ifz < A — It o1 al—(R—
Cy,¢)/2), and I, (z) = +o0 otherwise, and

f(0) = f(0F) < A-— IT(nt/2)+Ant
= A—min{A = I, A (=7t/2),A =TT\ \(=(R—Cy1)/2)} + Ay (50)
= max{I|_, (- nt/2) I A(—(R=Cot)/2)} + Ay,

which gives the desired result using Lemma A.2. O

In order to prove Corollary 4.3, we will need the following Lemma.

Aln(A)

Lemma A.3. Let A > 1andt > T—1/¢

. Then, we have ﬁ > A

Proof. Let g(t) = In(A) 4+ -5. We have g(t) > In(¢) by concavity of the logarithm and ¢ > ’?lfl(ﬁ) implies ¢t > Ag(t)

>
Aln(t). =
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Proof of Corollary 4.3. The idea of the proof is to impose A, ; < &/2 by chosing 7, and then deriving the necessary
conditions for t and R. As A, ; = 4ﬁC2 +2d-1Y/ 2LC77 ¢ is a sum of two terms, we consider the two cases in which each
term dominates, and choose 7 accordmgly We then take the minimum of these two terms and 1/, which gives

—mind L € evd (51)
e = ﬂ’\/ 3202 Bt10g(6dL/0)’ 8Lo~/2t1og(6di0) | |

This choice of 7 ensures that A, ; < ¢/2 by imposing that 43C7 , < /4 and 2d~Y/2LC,; < e/4. Thus, imposing

I’ i A( Net/2) < e/2and I;*RA( (R—2C,,+)/2) < £/2 would immediately imply that min;; f(6;) < ¢, and 7 < t.
These two conditions give

t> 21,2 aA(c/2)/ne (52)
and
R> —2I,-1 A(g/2) +2C,, (53)

First, as 4BC3M < £/4, we have Chpe <4 /€/168. Then, we consider each possible value of 7. separately, and choose ¢
accordingly:

1. If n. = 1/, then we need t > —2531,-2 A(c/2).

then we need

t 1280261 ,-2 A(g/2)?
\| n(6dt/0) = \/ : : >

and using Lemma A.3, it is sufficient to take

2. Ifn. = 32026t1§g(6dt/5)’

1280281 - 2)2
o (52l 55
where h(z) = xlog(6dz/0)/(1 —1/e).
_ eVd
3. Ifn. = SZo /2105005 then we need
t —16V2Lo1,-2 A(g/2) 56)
In(6dt/5) ~ eVd ’
and using Lemma A.3, it is sufficient to take
512L2%02%] - 2)2
> h( o 5622,A(5/ ) > 7 (57)

where h(z) = zlog(6dxz/d)/(1 —1/e).

Finally, taking the maximum of these three values ensures that the condition is always satisfied, and thus leads to the desired
result.

O
A.2. Proofs of the application to over-parameterized neural networks
Proof of Lemma 5.5. If ©? is convex, then we have
VL@ = H% i 900 () #l(90(x:),y I’

2 Zz:] ”V f(gg(l‘l), z)2|

> B (g, w)), (58)

> (ki Uao(wi),vi)

= Lo(L)",
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where the first inequality is due to uniform conditioning, the second inequality due to the definition of ¢, and the last from
Jensen’s inequality. Otherwise, we have

IVEON? = || X, G090 (@) " Vallgo i), )|
> LS [Vallge (i) ui)|?
> A o(Uge(ai) i)
> 4 max, << < >,yl>)2 (59)
= %‘P(maxz )ayz))
> Lo(L)”

O
Proof of Proposition 5.6. First, note that, as the model is L -Lipschitz and §3,-smooth on B(f, R), the objective function
is also Lipschitz and smooth on this ball.

Lemma A4. The objective function L(6) = 1377 U(go(x;),y:) is L-Lipschitz and 3-smooth on B(6y, R), where
L =LyLyand B = ByL¢ + By L2

Proof.
IVLO) = |23, oga(xi) T Val(ge(wi), yi)|
< A5 190g0 (i) TV allgo ). )] )
< i Ll Vatlge(ai), yo)
< LgLZ

and, similarly,

IVL(O) = VLEO )| = III% >21(0ogo(x:) " Vul(go(z:), yz)— bger (2:) " Vaul(gor (i), i)
< glzl |(Oage(x:) — 3990'( )" Val(go(w), yi)| ©1)
+3 22 106ger (2:) T (Val(ge(xs), s) — Vallge (2:), 3)|
< ByLello— 0| + BeL)l0 — 0|
O
Finally, we can apply Corollary 4.3 with ¢(z) = /E¢(x), which directly gives the desired result. O

Proof of Lemma 5.7. Using Eq. (23), we have

2
IVL©O)]? ||:1LZ%<9999(9:¢)T #lg0(x:),y v |
i S [V ool )),Qy>||
2(go(zi),yi

nZ ZZ 1 [lge(zi)—gex (xi)]]?

uos e Ege (i) yi)? (62)

n? Zui=1 L2[[0—0+]?

AVARAVAR VAR

Y

Z L(go(x4),y:)

n2 i=1 L2([[00—0*[[+]10—001])>
5(9)2

nLZ([[00—0*[[+]16—001])2

Vv

O

Proof of Proposition 5.8. Let ¢ € [0,1], b = k||fp — 0*|| and ¢ = k. Our approach is to apply Proposition 4.6 with

¢(z) = (A —z); and ¢Y(x) = ﬂ%ﬁif} First, by Lemma A.4, the objective function is L-Lipschitz and 3-smooth on

B(6y, R), where L= LyLy, B = ByL¢ + BeL?, and, using Lemma A.2, we can apply Proposition 4.6 if we replace R
by R — C,+ and f(6;) by min;<; f(6;). Using Lemma 5.7, we thus apply Proposition 4.6 to ¢(z) = (A — z)4 and
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P(x) = 1?55}. We obtain that ;-1 (z) = —log(l — x/A) and ¢ o IL,Cn,t(x) = (b4 cCpt) L exp(—cx)1{z < R}.

—a/c
Hence, with a = 1 — /2, we have, if z < A (1 - (bitcc:Rt) )’
s

X(@) = $(a) 2ol oalya(x) 7
= (b+cCpe)2(A —2) % exp(2cl-1(x)/a)
= (b+cCp)X(A—2)*(1 —a/A)~2/a (63)

b+cCy) ¢ _ cla
_ +A ) (1 — z/A)~20+c/a)

and thus, )
1+ 2¢/a)Ax] TH2e/a
It =Al|1-|1 (7 . 4
() ( [ + b7 (64)
As a consequence, we have that
—aje N
) b+ cR (14 2¢/a)Aant]| TF2e/=
0;) <A _— 14+ —— Aoy, 65
r2n<1]tf1f( )< max{(b_‘_ccmt) [ + (b+ cCy1)? At (0

and thus, the conditions to reach a precision ¢ on the function value, with probability at least 1 — §, and before iteration ¢,
are:

c/a
* R>(b/c+Cypy) (ﬁ) +GCs

. (b+cCype)? NI
"2 (iac/a)Aa (E*Aw) '

As in the proof of Corollary 4.3, we choose 7 in order to ensure that A, ; = €/2. This gives . = O(e/+/tlog(t)), which in
turn implies that

* R>Q(e7¢/),
s Vt/In(t) > O (e7272¢/9),

and using Lemma A.3 and the fact that ¢ — 1 when 1 — 0 gives the desired result. O

B. Numerical results for the deterministic (GD) and stochastic (SGD) setting on the CIFAR10
dataset

For the CIFAR10 dataset, Figure 2, we point out the same conclusions hold as for the MNIST dataset (see Section 6).
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Figure 2. Gradient norm vs. overall train loss for 1000 (GD) and 3 (SGD) runs (one color per run) with ResNet-18 on CIFAR10 using
different loss functions.



