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Abstract. The study of gene regulatory networks (GRNs) allows us to
better understand biological systems such as the adaptation of the or-
ganism to a disturbance in the environment. Hybrid GRNs (hGRNs) are
of interest because they integrate the continuous time evolution in GRN
modeling which is convenient in biology. This study focuses on the prob-
lem of identifying the variables of hGRN models. In a large-scale case,
previous work using constraint-based programming has failed to solve
the minimal constraints on such variables which reflect the biological
knowledge on the system behavior. In this work, we propose to trans-
form a Constraint Satisfaction Problem (CSP) into a Free Optimization
Problem (FOP) by formulating an adequate fitness function and validate
the approach on an abstract model of the circadian cycle. We compare
several continuous optimization algorithms and show that these first ex-
perimental results are in agreement with the specifications coming from
biological expertise: evolutionary algorithms are able to identify a solu-
tion equivalent to the ones found by continuous constraint solvers.

Keywords: Continuous single-objective optimization · Fitness formu-
lation · hybrid GRN · Real-world application · Bio-inspired compu-
tation.

1 Introduction

Genetic regulatory network (GRN) modeling aims at studying and understand-
ing the molecular mechanisms that enable the organism to perform essential
functions ranging from metabolism to environmental disturbance adaptation.
Two types of control rules coexist in these regulatory networks: activations and
inhibitions. Their combination allows the system to behave in a large variety of
ways and the complexity of these systems comes from the so-called positive and
negative feedbacks commonly observed, which respectively lead to multistation-
arity and homeostasis (ability to maintain a balance). Studying the dynamics of
these systems opens new perspectives with crucial applications in fundamental
biology, pharmacology, medicine, or chronotherapy for instance, which tries to
choose the best time of day to administer the medication in order to limit the
side effects while preserving the therapeutic effects.
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Numerous modeling frameworks have been proposed for representing GRNs
such as differential frameworks (using ordinary differential equations), stochas-
tic ones (considering that transitions between states have a stochastic nature),
or discrete ones (modeling the presence or absence of biological entities in the
system states). Even if each of them presents their own advantages, they all
rely on the identification of the variables that govern the model dynamics and
this variable identification remains the limiting step. To address this difficulty,
a considerable number of research groups apply evolutionary algorithms to fit
GRN models and variables to gene expression data, see e.g. the survey [16].

In the present work, we prefer to consider hybrid frameworks [1], called
hGRNs, which add to discrete ones [17] the time spent in each of the discrete
states. Once more, the variables’ identification remains the bottleneck of the
modeling process, but one can seek in such a hybrid framework for an automa-
tion of this step to build a model in agreement with the experimental observa-
tions. Indeed, modeling variations of protein concentration in a biological system
can be very hard for numerous proteins. Nevertheless, experimental observations
allow us to represent experimental traces by irregularly spaced time series of ob-
servable events. From those events, minimal constraints on the hGRN variables
can be deduced and the authors attempted to use continuous Constraint Satis-
faction Problem (CSP) solvers [2] but faced difficulties in extracting solutions.

In this paper, we show that the constraint problem, which characterizes the
set of solutions exhaustively, can be expressed as a FOP [6,8] by indirectly han-
dling constraints. More precisely, the representation of biological knowledge as a
sequence of observable events allows to define a high-dimensional non-trivial con-
tinuous optimization problem in which the search space increases exponentially
with the number of genes involved in the hGRN.

The work focuses on the FOP formulation, on the fitness characterization and
performs some comparisons between several bio-inspired algorithms, leaving out
the scalability problem which is out of the scope of the article. We illustrate the
approach on a very abstract model of the circadian cycle (subsystem allowing
an adaptation of the body to day/night alternation).

The paper is organized as follows: section 2 describes the models used for
representing the dynamics of biological systems and the biological knowledge
used as an input. Section 3 proposes a method whereby the modeling problem is
reformulated as a continuous FOP that can be solved by means of a bio-inspired
algorithm. Experimental results are discussed in section 4 and some conclusions
are drawn in section 5.

2 Problem description

2.1 Hybrid GRN

To build a digital model of a biological system, it is necessary to know precisely
how it works. Such a system is defined as a set of genes performing a biological
function and represented in the form of a GRN where vertices V correspond
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Fig. 1: Interaction graph representing the circadian cycle (a), its discrete state
graph (b) and a possible dynamic of its hybrid state graph (c).

to an abstraction of one or more biological genes (within circles) and edges
depicting activations (+) or inhibitions (−). It can be statically represented as a
labeled directed graph or interaction graph (cf. fig. 1a). For studying the GRN
evolution, we first need to define the system state as the concentrations vector of
the proteins related to genes. Because the regulations take place above particular
thresholds, we associate with the sign of the regulation an abstract threshold:
v1

+n−−→ v2 (resp. v1
−n−−→ v2) means that v1 can activate (resp. inhibit) v2 only if

the concentration of v1 is above its nth threshold (ranked by increasing order).
For example, graph of fig. 1a forms a negative feedback loop where each gene
(v1, v2 ∈ V ) has an indirect negative action on itself: when v1 is active, it is
above its first threshold (we note v1 = 1), then, v1 activates the gene v2 and v2
passes from level 0 (under its first threshold) to another level greater than its
first threshold (v2 = 1). As v2 reaches level 1, v2 inhibits v1, and so on. This
represents a highly abstracted model of regulations piloting the circadian cycle
ensuring the cyclic adaptation (day or night) of the organism.

In order to integrate dynamics in the previous model, the first step is to
enumerate all possible states: a discrete state is defined by the level of all genes
contained in the GRN. Thus, if there are n genes, each state η is defined by a
vector of n integers (ηv1 , ..., ηvn) and S denotes the set of all possible discrete
states of the GRN. For instance, state (0, 0), the bottom left gray square box in
fig. 1b, corresponds to the state where discrete levels of genes v1 and v2 are both
equal to 0. The second step consists in adding transitions between all these states
(black arrows). Thus, state graph of fig. 1b represents the dynamics associated
with the interaction graph of fig. 1a. Such kind of models is very interesting for
logically reasoning on regulatory changes. Nevertheless, this qualitative modeling
framework totally abstracts time information whereas , for numerous biological
systems, time plays a crucial role in the system’s fate.

In addition to discrete transitions (dotted red lines in fig. 1c), an hGRN
adds continuous evolution of gene product concentration in each discrete state
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represented by a continuous trajectory (linear, see straight red lines). One point
on this trajectory inside a particular discrete state, is given by a precise position
inside the square: π = (πv1 , ..., πvn) ∈ [0, 1]

n. Thus, a hybrid state h is defined
by a discrete state η and its fractional part π. For instance, the coordinates of
the initial hybrid state hi are

(
(ηv1 , ηv2)

t
, (πv1

, πv2)
t
)
=

(
(0, 0)

t
, (0.25, 0.25)

t
)

.
Starting from hi, the hGRN dynamics is given by following the evolution

direction of the discrete state (ηv1 , ηv2) = (0, 0). This direction is defined by a
so-called celerity vector. Thus, the celerity of v1 in (0, 0) is denoted Cv1,(0,0) in
order to specify that this celerity is associated with v1, when v1 and v2 levels are
0. In a similar way, the celerity of v2 in (0, 0) is denoted Cv2,(0,0). More generally,
an hGRN is defined by both a GRN and celerity vectors C = {Cv,η}, a family
of floated values indexed by (v, η) where v ∈ V and η ∈ S. Cv,η is called the
celerity of v in η. The hybrid state graph of fig. 1c depicts one possible dynamic
associated with the interaction graph of fig. 1a. Starting from the initial hybrid
state hi, v1 concentration increases until it reaches the right border of discrete
state (0, 0). From this border, the trajectory jumps into the neighbor state (1, 0)
because the celerity vector of this second state does not oppose the entry of
the trajectory (signs of v1 celerities in both states are the same). In (1, 0), the
trajectory reaches the right border of this discrete state which corresponds to
the maximum admissible concentration of v1. As there is no discrete state at the
right of (1, 0), the trajectory evolves on this border in v2 direction resulting in
a so-called slide of v1, noted slide+(v1). After sliding, the trajectory enters the
state (1, 1). This process follows up until the trajectory enters back the initial
state (0, 0). The complete definition of hGRN dynamics can be found in [1].

Such modeling frameworks are very useful to reason on the GRN trajectories.
Nevertheless, as usual, the bottleneck of the modeling process relies on the deter-
mination of variable values controlling the trajectories, that is the celerities. The
goal of this paper is to automatically determine, from some formalized biological
information, all celerity vector values in order to obtain a valid hGRN model
of the biological system studied. In the next part, we introduce the biological
knowledge (BK) from which celerity values can be determined.

2.2 Biological knowledge

As opposed to numerous works that attempt to automatically build a model from
raw experimental data [3, 5, 12, 15], the present work takes into consideration
already-formalized information analyzed by biologists themselves coming from
both biological data and expertise. This complementary approach is preferred
because raw data are subject to noisiness and scarcity. A biological experiment
consists of (i) putting the biological system in a particular initial state partially
defined, (ii) recording the sequence of observable events, and (iii) measuring
the reached final state of the observed system. While initial and final states are
described using their discrete and fractional parts hi = (ηi, πi) and hf = (ηf , πf ),
a sequence of observable events is formalized by a sequence of triplets of the form
(∆t, b, e). Each element of each triplet expresses a property on the behavior in
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Fig. 3: CSP difficulty to target solu-
tions for constraint y ≤ x2.

the current discrete state: ∆t delineates the time spent in the current state; b
specifies the observed behaviors during the continuous trajectory expressed by
slide(v) and noslide(v); finally, e represents the next discrete state transition
which is of the form v+ (resp. v−) specifying that the next discrete event is the
increasing (resp. decreasing) of the discrete level of v.

For the interaction graph of fig. 1a, biological expertise can be summarized
as follows: there exists a behavior starting from a particular point of coordinates
going through four discrete states and coming back to the initial point after 24
hours. More precisely, the time spent in each of the 4 discrete states is approx-
imately 5 hours in (0, 0), 7 in (1, 0), and so on. See the first properties of each
event in the following description of the biological knowledge:

{
hi

} 5.0
noslide (v2)

v1+

;

 7.0
slide+ (v1)

v2+

;

 8.0
noslide (v2)

v1−

;

 4.0
slide− (v1)

v2−

{
hf

}
(1)

where hi = ((0, 0)
t
, (0.0, 1.0)

t
) is the initial hybrid state and hf (final hybrid

state) is equal to hi. For the first event, v1+ constrains the trajectory to reach
the next discrete state by increasing the concentration level of v1. The second
property noslide(v2) in (0, 0) expresses that the trajectory has to reach the right
border of the discrete state without touching the upper or lower borders as ex-
plained in section 2.1. The continuous trajectory of fig. 1c satisfies all properties
of eq. (1) except for the initial point hi which is misplaced: it should be located
in the top left corner of discrete state (0, 0) to allow trajectory to be a cycle.

Figure 2 represents for each discrete state, and one after another all possible
trajectories satisfying eq. (1) using colored surfaces. Starting from hi, the purple
surface represents all compatible celerity vectors of (0, 0) which lead the trajec-
tory to the next expected state without sliding at the bottom or top border. For
illustrative purposes, two instances of compatible trajectories are highlighted in
red and blue in the figure.
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2.3 Constraint Satisfaction Problem (CSP) approach

Our goal is to identify celerity vectors that define trajectories (cf. section 2.1)
satisfying constraints given by the biological knowledge BK. An earlier attempt
has been developed using constraint-based programming [2]. This CSP formu-
lation led to constraints on celerity vectors which had to be satisfied for the
hGRN dynamics to be consistent with BK. However, the exploitation of the
constraints generated was not so easy: classical solvers were not able to extract
particular solutions. Let us consider a CSP that aims to find all solutions sat-
isfying the constraint y ≤ x2. A continuous solver paves the search space in
multiple tiles (colored rectangles in fig. 3). Green tiles only contain solutions of
the CSP whereas red tiles may contain values that do not satisfy the constraint
(i.e. y > x2 above the curve).

The problem that arises from using a continuous solver may be summed up
by its inability to extract particular solutions on the function curve. It would
be necessary to obtain a tiling of infinitesimal size. That is why we decided to
reformulate the hGRN variables’ identification as an optimization problem.

2.4 Problem characterization

Finding celerity values that satisfy BK constraints consists of finding a contin-
uous trajectory that (i) goes through the right sequence of discrete states, (ii)
spends the right elapsed time in each encountered state, and (iii) satisfies the
right behavior in each state by sliding or not. In the case of a trajectory that
does not satisfy BK, we measure how much it does not respect this knowledge.
For instance, as BK specifies spending 5 hours in (0, 0), a trajectory spending 5
hours and 10 minutes is “better” than a trajectory that only spends 2 hours in
the same discrete state. In other words, we use the notion of distance between a
trajectory and the expected properties expressed by BK: this distance vanishes
as soon as all properties of BK are satisfied. Since BK specifies the properties
of a sequence of states, we can decompose such distance by computing how a
considered trajectory tr inside each state η is far from BK properties of the
corresponding state. Thus, the global distance of one property p is defined by
summing such distances dp,η inside each encountered discrete state η ∈ S where
p is one of the three BK properties ∆t, b, or e. Therefore, we define three criteria:

Time criterion. The first criterion d∆t is related to the time spent in the current
discrete state. It is the Euclidean distance between the expected time t∗η of BK
and the time tη necessary for the current trajectory to reach the exit point from
the current state:

d∆t(tr,BK) =
∑

η
dEuclidean

(
tη, t

∗
η

)
(2)

Slide criterion. Second criterion evaluates the distance between the continuous
trajectory behaviors inside each encountered discrete state and the properties
of sliding in BK (denoted b in each observable event). Three different cases
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Fig. 4: Illustration of evaluation cases with respect to BK behavior property.

are considered and respectively illustrated in fig. 4 where green color represents
BK and black dotted lines with double arrows, the distance db: (i) “v should
slide according to BK, but the trajectory tr does not”. In this case (fig. 4a),
we compute the difference between the fractional part of the exit point of v
according to tr (πexit(v)) and e(v) which is the fractional part of the exit point
according to the sliding BK property (it either equals to 0 when slide−(v) or 1
when slide+(v)):

db,η(tr,BK) = |πexit (v)− e(v)| (3)
where v is the gene concerned by the sliding property of the current discrete state
η; (ii) “v should slide on max (resp. min) level according to BK, but the given
trajectory slides on min (resp. max)”. We consider it (see fig. 4b) as a special
case of previous item (eq. (3)) where the exit point of the trajectory πexit(v)
is either equal to 0 (sliding right in fig. 4b) or 1 (sliding left in fig. 4b); (iii)
“v should not slide according to BK, but tr does” (fig. 4c). Here we compute
the Manhattan distance between the first hybrid state where v begins to slide
hslide (v) and the expected exit face noted face∗:

db,η(tr,BK) = dManhattan (hslide (v) , face
∗) (4)

In fig. 4c, the expected exit face is the north one (black line). As for the previous
criterion, db(tr,BK) is defined as the sum of the different db,η(tr,BK) for each
encountered discrete state η.

Discrete criterium. Intuitively, we have to compare the expected next discrete
state (according to BK) with the discrete one into which the given trajectory
tr enters. Unfortunately, in some cases, it is not possible to compute tr next
discrete state because the trajectory can be blocked in the current discrete state.
Let us take as an example the situation where the celerity vector inside the (0, 0)
discrete state points towards the south-west direction (cf. fig. 5a). The trajectory
is blocked because the concentration of both gene products vanishes and there
are no neighbors in these directions. In order to accurately evaluate tr, following
the sequence of discrete states of BK, we evaluate the local distance between
the considered trajectory inside the current discrete state and the associated
BK. If the given trajectory does not allow the right discrete transition, then we
artificially restart the trajectory in the next expected discrete state of BK.

The initial restart point hrestart is defined by the new discrete state combined
with the same fractional part before it stopped. This step is illustrated by the
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Fig. 5: Illustration of blockage (a) and wrong discrete transition (b).

curved dotted lines (cf. fig. 5). Therefore, de has to take into account, on the one
hand, the Manhattan distance between the expected next discrete state η+

∗ and
the next discrete state η+ according to tr and, on the other hand, the number
of detected blockages:

de(tr,BK) =
∑

η

(
dManhattan

(
η+, η+

∗
)
+ 1blockage(η)

)
(5)

where blockage(η) is True if the trajectory is blocked in the current discrete
state η, and η+ (resp. η+∗) is the next discrete state according to tr (resp. to
BK). Note that when a blockage occurs η+ is not defined and in such a case
dManhattan

(
η+, η+

∗) is considered zero (the penalty comes from 1blockage(η)).

Aggregating criteria. We are focusing on formulating an adequate fitness func-
tion by indirectly handling constraints. Constraints are embedded into the three
previously described optimization criteria such that all we need to care about is
optimizing them. Thus, identifying celerity values consists in minimizing these
criteria. One could consider this problem as a multi-criteria optimization prob-
lem. However, they are neither conflicting nor invariant: solutions exist that
simultaneously optimize each criterion. Therefore, we suggest to combine them
into a global distance g(tr,BK) which consists in a combination of d∆t(tr,BK),
db(tr,BK) and de(tr,BK) where the criteria weights are equal. Minimizing g
leads to a single-objective optimization problem and will be addressed using bio-
inspired algorithms. We propose two versions of the aggregation of three different
criteria: an additive version defined by g+ = d∆t

+ db + de and a multiplicative
version defined by g× = (1+ d∆t

)× (1+ db)× (1+ de)− 1. Although the former
is commonly used, the latter is proposed because, intuitively, it could have a
greater impact on the convergence rate: errors are amplified and improvements
are better controlled thanks to a steeper gradient. As each distance should be
as close to 0 as possible, g+ (resp. g×) should also be as close to 0 as possible
(resp. thanks to the subtraction of 1). That leads to the definition of two fitness
functions (knowing that BK is fixed):

f+(x) = g+(tr,BK) (6) f×(x) = g×(tr,BK) (7)

whose domain is
(∏

v∈V [0, bv]
)
× [0, 1]n × R|C| and codomain R+.
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3 Bio-inspired hGRN modeling search

This section presents different bio-inspired approaches for identifying celerities of
an hGRN. For this purpose, we compare several continuous single-objective bio-
inspired algorithms for searching trajectories that satisfy biological knowledge
BK as explained in section 2.4.

Representation. As presented in section 2.2, a trajectory is characterized by
all celerities of all discrete states {Cv,η} plus the initial hybrid state hi. Thus,
trajectory genotype of fig. 1c is defined by a tuple of 2 integers and 2 float
values for hi and 8 float values for celerities: the genotype is represented by x =
(hi;Cv1,(0,0);Cv2,(0,0);Cv1,(1,0); Cv2,(1,0);Cv1,(1,1);Cv2,(1,1);Cv1,(1,1);Cv2,(1,1)).
Each floated value varies in the interval [−r; r] with r equals 2 by default. In the
presented example, the problem of identifying variables of an hGRN may seem
trivial, nevertheless, in realistic models, the size of the genome is exponential
with respect to the number n of genes: the initial hybrid state hi = (ηi, πi) is
described by n integer values for the discrete state and n float values for the
fractional part. Because the number of celerities is also equal to n in each state
and because the number of states is |S| =

∏
v∈V (bv + 1), the total number of

celerities |C| is at most n × |S| = n ×
∏

v∈V (bv + 1) (possibly less in case of
equality of a priori different celerities).

Fitness evaluation. Evaluating a candidate solution consists in computing the
difference between BK formalized in 2.2 and the given trajectory obtained from
celerities contained in the genome. To do so, we simulate the trajectory thanks
to the initial state hi and evaluate, discrete state by discrete state, each of the
three introduced criteria d∆t, db, and de.

Continuous optimization methods. A baseline random optimization (RO) [11]
and the following four continuous meta-heuristic algorithms are compared:
(i) Differential Evolution (DE) [14], a global search heuristic using a binomial
crossover and a mutation operator of DE/rand/1/bin. The different control pa-
rameters are PCR = 0.3 and F is selected from the interval [0.5, 1.0] randomly
for each difference vector with the dither technique.
(ii) a simple (µ + λ) Genetic Algorithm (GA), used with a binary tournament
selection and the following operators: Simulated Binary Crossover and Polyno-
mial Mutation are applied with Fitness Survival. All duplicates are removed.
(iii) Adaptive Particle Swarm Optimization (APSO) [18] which is based on the
simulating of social behavior. The algorithm uses a swarm of particles to guide
its search. Each particle has a velocity and is influenced by locally and globally
best-found solutions. The default parameters are w = 0.9, c1 = 2.0, c2 = 2.0 with
a max_velocity_rate = 0.2.
(iv) Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [9], which
is a state-of-the-art and self-adaptive EA with the default initial standard devi-
ation in each coordinate σ = 0.1.
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(a) (b)

Fig. 6: Comparison of monotonic evolution of (a) mean and (b) median best
fitness values by algorithm and fitness function on 100 runs. The y-axis is log
scaled.

4 Experimental Study

The four meta-heuristics are implemented in pymoo [4]. To evaluate the algo-
rithms’ performance, we execute 100 independent runs for each algorithm and
each fitness function. An initial population size of 500 is applied, followed by
35000 function evaluations (NFE). Both experiments are realized on the hGRN
of fig. 1c using BK described by eq. (1) with hi fixed to ((0, 0)t, (0.0, 1.0)t).

Results. For each algorithm and each fitness function, at each generation we
compute the best candidate solution so far, repeat 100 times the executions and
compute the mean (resp. median) over the 100 runs. Monotonic evolutions of
all algorithms are depicted in fig. 6 where straight lines represent f+ and dotted
lines, f×. It can be observed that (i) as expected, meta-heuristics results are
(far) better performing compared to RO algorithm, (ii) decreases of f+ and f×
values are done at the same pace (the curves are roughly parallel), except for
CMA-ES whose f× median evolution has a better convergence rate than with
f+, and (iii) apart from this case, GA convergence of the fitness function is one
of the best (with both f+ and f×) when focusing on the mean (resp. median).

Table 7a summaries statistics of the results obtained after 100 runs of the five
considered algorithms. The best result (column by column) for f+ (resp. f×) is
bolded. Minimum, average and standard deviation are reported along with the
Biological Success Rate (BSR) defined by the number of times an algorithm finds
a solution with a fitness close to 0 with a precision error ε equal to 10−2. BSR
is based on the traditional success rate but introduces an important precision
error coherent with biological expertise. For instance, a trajectory which would
slide in η = (0, 0) during a fraction of seconds (< ε) very next to the exit point
e(v1) = 1.0 before going to the next discrete state is an acceptable trajectory
despite BK stating noslide(v). In addition, Cumulative Distribution Function
(CDF) curves are constructed in fig. 7b for f+ (top) and f× (bottom). Each CDF
curve describes the probability that a solution is found at, or below, a given
fitness score. For instance, in f× experiment, there is almost 60% probability
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(a)
A FE avg stdev min BSR

CMA- f+ 0.9644 1.18 3e-9 0.41
ES f× 0.7661 2.51 4e-10 0.86

DE
f+ 0.3102 0.23 0.0171 0.13
f× 0.6004 0.77 0.0373 0.04

GA
f+ 0.0029 2e-3 6e-4 1.
f× 0.0172 0.05 0.0016 0.98

PSO
f+ 0.8053 0.98 4e-4 0.48
f× 0.6938 1.71 2e-4 0.68

RO
f+ 9.1934 1.11 5.1679 0.
f× 16.6763 2.5 7.9144 0.

(b)

Fig. 7: Summary (a) and CDF curves (b) of overall best results.

that a user obtains a solution at a fitness score less than or equal to 10−4 with
CMA-ES (given 35000 NFE). From both diagrams, two algorithms stand out:
GA has the highest probability to obtain good results and there is a non-zero
probability for CMA-ES to perform top results (< 10−8).

To statistically validate the observed differences among the algorithms, we
conducted a statistical validation campaign on the reported performance values
of the two following scenarios: (i) algorithms performances obtained with f+
objective function and (ii) algorithms performances achieved with f× one. In
addition, a third scenario is suggested as being a comparison of algorithms per-
formances between f+ and f×. First, we employ the Friedman rank-sum test [10]
to assess whether at least two algorithms exhibit significant differences in the
observed performance values. The p-values for the null hypothesis are p+ = 5e-56
and p× = 2e-64 for f+ and f× respectively. At the 0.05 confidence level, the dif-
ferences among the algorithms are significant. The statistical analysis proceeds
with a post hoc analysis to determine which pairs of algorithms show significant
differences in performance (for the three scenarios considered). In this step, we
proceed to the Wilcoxon signed-rank test (as neither normality nor homoscedas-
ticity conditions required for the application of parametric tests hold [7]) on the
performance samples of each pair of algorithms. In addition, to reduce the issue
of having Type I errors given multiple comparisons, the Bonferroni correction
method is applied.

For all scenarios, Table 1 present tile-plots to illustrate all pairwise differences
in the observed performance samples at the 0.05 confidence level. More specifi-
cally, the outcomes of the pairwise Wilcoxon-signed rank tests, without and with
the application of the Bonferroni correction method, are provided on the left and
right-hand side of the table respectively. Each tile corresponds to a pairwise sig-
nificance test between the algorithms of the corresponding row and column. The
color of the tile indicates if the observed performance differences were enough to
reject the null hypothesis at the significance level (p-value < 0.05). Light gray
tiles indicate significant differences between the pair of algorithms, while dark
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Fail to reject H0 Reject H0 (p < 0.05)

(f+)
PSO 4e-18
GA 4e-16 4e-18
DE 4e-18 2e-4 4e-18

CMA-ES 3e-5 5e-13 2e-1 4e-18
DE GA PSO RO

PSO 4e-17
GA 4e-15 4e-17
DE 4e-17 2e-3 4e-17

CMA-ES 3e-4 5e-12 1.0 4e-17
DE GA PSO RO

(f×)
PSO 4e-18
GA 1e-6 4e-18
DE 4e-18 9e-5 4e-18

CMA-ES 2e-7 7e-4 2e-5 4e-18
DE GA PSO RO

PSO 4e-17
GA 1e-5 4e-17
DE 4e-17 9e-4 4e-17

CMA-ES 2e-6 7e-3 2e-4 4e-17
DE GA PSO RO

(f+ vs. f×) 5e-6 3e-5 1e-15 2e-2 5e-18
CMA DE GA PSO RO

3e-5 1e-4 5e-15 8e-2 2e-17
CMA DE GA PSO RO

Table 1: Pairwise Wilcoxon statistical tests (left) with Bonferroni post hoc anal-
ysis (right) for the three considered scenarios.

gray tiles indicate that no significant differences were observed. Analyzing these
results, if we base acceptance or rejection of the above hypotheses, we arrive
at the following insights: (i) in f+ scenario PSO performances are not signif-
icantly different and (ii) Bonferroni correction reveals that PSO performances
are the same whatever fitness function. Nevertheless, the performances of other
algorithms depend on the chosen fitness function. Therefore, according to the
algorithm considered, the fitness function choice has definitely an impact on the
performances: f+ is preferred when considering DE and GA while f× is in the
case of CMA-ES and PSO.
Finally, with respect to the conducted experiments, GA and CMA-ES will be
investigated in the future as the first one gives good and stable results with
high probability, whereas the second performs better overall (the best solutions
are obtained using CMA-ES), but is subject to instability (due to exploration
phases).

Visualization of the results. The application of bio-inspired algorithms allows us
to exhibit different solutions consistent with BK and they seem complementary
to the CSP approach. Both diagrams of fig. 8 present in red the overall best
trajectory obtained by GA (a) and CMA-ES (b) together with the one in blue,
obtained by the CSP approach using the CSP solver Absolute [13] combined with
a possible strategy for cutting the search space [2]. The solutions provided by
GA and CMA-ES illustrate the diversity of acceptable solutions that are compli-
ant (the structure of the trajectories is similar) with BK. From a modelization
perspective, it would be great to exhibit a diverse sampling of possible solutions,
in order to reason not only on one possible identification but on a set of sensible
identifications.
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Fig. 8: Best trajectories (red) obtained by GA (a) and CMA-ES (b) with f+
compared to one of the solutions obtained by the CSP approach (blue).

5 Conclusion

The goal of this paper is to show that the problem of identifying variables in
an hGRN, already formalized as a CSP, can be transformed into a bio-inspired
optimization problem.

In previous works, many biological experiments have been formalized as con-
straints on time, behavior, and discrete events with the help of biologists’ exper-
tise. From these constraints, our work focused on finding how to model them as
an FOP: we proposed a representation of a candidate solution and designed two
appropriate fitness evaluation functions. To empirically test our approach, we
conducted a study with a random optimization algorithm and four well-known
continuous meta-heuristics: the proposed method shows satisfying results as the
newly introduced BSR metric is high. In our experiments, CMA-ES obtains the
overall best solutions satisfying BK constraints. Nevertheless, for this kind of
problem, GA appears to be the best meta-heuristic because of its high probabil-
ity of getting good results.

The proof-of-concept developed in this paper will shortly be applied to de-
signing a new cell cycle hGRN model where time plays a crucial role in passing
through each phase. Although this cell cycle model contains only 5 abstract
genes, the number of celerities is about 240. The optimization problem will be
challenging and lead us to apply large-scale optimization algorithms.

Moreover, when working with biologists, our ability to propose different solu-
tions compliant with BK is of great importance because it leads to considerate
new information which would not exhibit otherwise. Diversity in solutions re-
flects, on the one hand, a plurality of functioning within an observed system
and, on the other hand, helps to evaluate the robustness of oscillating biological
systems (the more diversity, the more robustness). From such a perspective, fu-
ture work will focus on multimodal approaches that could be able to sample the
set of solutions compliant with the formalized biological knowledge.
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