
HAL Id: hal-03895931
https://hal.science/hal-03895931

Submitted on 13 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decision making under severe uncertainty on a budget
Nawapon Nakharutai, Sébastien Destercke, Matthias Troffaes

To cite this version:
Nawapon Nakharutai, Sébastien Destercke, Matthias Troffaes. Decision making under severe uncer-
tainty on a budget. 15th International Conference Scalable Uncertainty Management (SUM 2022),
Oct 2022, Paris, France. pp.186-201, �10.1007/978-3-031-18843-5_13�. �hal-03895931�

https://hal.science/hal-03895931
https://hal.archives-ouvertes.fr

Decision making under severe uncertainty on a
budget

Nawapon Nakharutai1[0000−0002−3145−713X], Sébastien
Destercke2[0000−0003−2026−468X], and Matthias C. M.

Troffaes3[0000−0002−1294−600X]

1 Data Science Research Center, Department of Statistics, Faculty of Science, Chiang
Mai University, Chiang Mai 50200, Thailand. nawapon.nakharutai@cmu.ac.th

2 UMR CNRS 7253 Heudiasyc, Sorbonne Université,
Université de Technologie de Compiègne, France, sebastien.destercke@hds.utc.fr

3 Durham University, Department of Mathematical Sciences, UK
matthias.troffaes@durham.ac.uk

Abstract. Convex sets of probabilities are general models to describe
and reason with uncertainty. Moreover, robust decision rules defined for
them enable one to make cautious inferences by allowing sets of optimal
actions to be returned, reflecting lack of information. One caveat of such
rules, though, is that the number of returned actions is only bounded by
the number of possibles actions, which can be huge, such as in combi-
natorial optimisation problems. For this reason, we propose and discuss
new decision rules whose number of returned actions is bounded by a
fixed value and study their consistency and numerical behaviour.

Keywords: Imprecise probabilities · Decision · Regret.

1 Introduction

Imprecise probability theories [1] provide very general tools to handle uncer-
tainty, encompassing many existing uncertainty representations, including for
instance classical probability, lower and upper previsions, sets of probability
measures, choice functions, n-monotone capacities, and sets of desirable gam-
bles. Imprecise probability theories often use convex sets of probability measures
(or equivalent mathematical representations) as basic uncertainty models. They
are used in practical applications that involve severe uncertainty, including for
example wind-farm design [2] or machine learning [13].

Classical imprecise probability decision rules either deliver a single4 optimal
alternative as output, or a set of such alternatives whose size is unconstrained,
apart from the trivial bounds that are 1 and the total number of alternatives.
While such rules have been widely used and have strong theoretical properties,
there are situations where one may want more than one decision, but still limit
the number of proposed alternatives by, e.g., specifying an upper bound on the
4 up to indifference

2 N. Nakharutai et al.

number of alternatives to return. This can arise for instance in situations where
one has to account for natural human cognitive limits (a decision maker cannot
inspect dozens of possible alternatives), or where inspecting more closely the
different proposed alternatives represents a high monetary cost. Presenting set-
valued recommendations or predictions with a limited budget is already treated
in preference learning [14] and in standard machine-learning [4]. Hence, treating
it in the setting of decisions under uncertainty appears as a natural next step.

We say that a decision rule is budgeted or on a budget if it limits the number
of decisions it outputs. In Section 2, we present some basic ideas and notations
about budgeted decision rules. We then propose an study two such rules in Sec-
tions 3 and 4, one based on the idea of minmax regret, the other on maximising
diversity. We then discuss them in the light of numerical experiments as well as
with respect to the previously proposed properties in Section 5.

2 Preliminaries and definitions

We start with a finite set X = {x1, . . . , xm} of possible states of nature about
which we are uncertain. We assume this is uncertainty is represented by a credal
set P, i.e. P is a closed convex set of probability mass functions on X and this
set represents our knowledge about the unknown true value x ∈ X .

An act a : X → R is a real-valued function on X that is interpreted as an
uncertain reward, i.e. a(x) represents the reward (in utiles) if x ∈ X is the true
state of nature. We denote by A the set of all finite non-empty sets of acts. Each
element of A represents a decision problem with a finite number of options. We
set ourselves in the basic decision theoretic setting where we have to make a
single decision [12], that is recommend once options from an element of A, yet
we consider that when information is lacking, we can return or recommend as a
decision multiple options. This contrasts, for instance, with sequential problems
where one should recommend a policy over multiple time-steps and for large
state spaces [6].

A decision rule D is a function

D : A → A.

satisfying D(A) ⊆ A for every A ∈ A. For example, maximising expected utility
for a given p ∈ P is a decision rule. In case one allows for sets of possibly optimal
decisions, maximality with respect to a credal set P is one of the most used rules.
It works as follows: an act a maximally dominates a′, denote a ≻M a′, if and
only if E(a− a′) > 0, where E(f) := infp∈P Ep(f), Ep denoting the expectation
operator with respect to f . The corresponding decision rule DM then collects
all maximal elements according to ≻M, i.e.,

DM (A) := {a ∈ A : ∄a′ ∈ A s.t. a′ ≻M a},

that is all the undominated elements in A with respect to ≻M. While this rule has
strong theoretical appeal, it can deliver any subset of A, from a single decision
to the whole set [10].

Decision making under severe uncertainty on a budget 3

As argued in the introduction, one could want to limit the number of returned
decisions. To do so, we introduce the notion of a budgeted decision rule. If we
now denote by Ak := {A ∈ A : |A| ≤ k} the non-empty finite sets of acts with
at most k alternatives, we define a k-budgeted decision rule Dk as a rule

Dk : A → Ak,

meaning that Dk(A) returns at most k alternatives. Once one accepts the need
for such rules, it is natural to look which properties they should follow, as well
as look how computable they are.

A property we may want is such rules to be partially consistent with well-
known, and theoretically well-justified rules producing non-bounded recommen-
dation sets (maximality, E-admissibility). We define two such consistency prop-
erties, a strong one and a weak one:

Definition 1. A k-budgeted rule Dk is said to be strongly consistent with a rule
D if for all A ∈ A

Dk(A) ⊆ D(A)

Definition 2. A k-budgeted rule Dk is said to be weakly consistent with a rule
D if for all A ∈ A

Dk(A) ∩D(A) ̸= ∅

While strong consistency requires Dk(A) to be a subset of D(A), weak con-
sistency merely requires Dk(A) to contain some elements that are also in D(A),
while others may not belong to it. Note that a natural way to ensure strong
consistency with a rule D(A) is simply to first compute exactly D(A), and then
to apply Dk(D(A)). However, this requires first computing D(A). This may be
impossible in problems where |A| is extremely large, such as in machine learning
problems like multi-label ones [5] or in combinatorial optimisation problems [2,3].

Next, we will introduce two rules where with each A ∈ A a value is associated,
either considered as a loss or as a utility. One can then see the problem of selecting
k decisions as either picking the set within A that has at most k decisions and
that either tries to minimize a loss or to maximize a utility. The first rule is
based on the idea of regret, while the second is based on the idea of maximising
the spread of selected alternatives in terms of a pseudometric.

3 Regret-based budgeted decision rule

3.1 Definition

For any two acts a and a′, E(a′−a) = supp∈P Ep(a
′−a) = −E(a−a′) represents

the maximal expected gain in exchanging a′ for a, or alternatively the worst
possible loss we would incur by keeping a instead of exchanging it for a′. It is
negative only if a is better than a′ in terms of expected utility under all p ∈ P.
The maximal loss of retaining only a from A is then

ML({a}, A) := max
a′∈A\{a}

E(a′ − a).

4 N. Nakharutai et al.

Note that this is negative if and only if a dominates (in the sense of ≻M) all
other actions in A, and is therefore the unique optimum. Otherwise, it is positive
and something we want to miminize, since it is a loss function. Therefore, if we
have to pick exactly one action, we can define a minmax5 loss of A as follows:

mML(A) := min
a∈A

ML({a}, A) (1)

and the associated decision rule as

D1
mML(A) := argmin

a∈A
ML({a}, A). (2)

This is a kind of minmax regret criterion. We can now turn it into a set-valued
criterion. Consider a solution set S ⊆ A, then the maximal loss associated with
this set of alternatives, considering that we can pick any alternative within S
as our choice but that the opponent is then free to choose the worst adversary
(we first pick a ∈ A, then the adversary picks the worst alternatives according
to ML({a}, A)), can be defined for any ∅ ≠ S ⊆ A as

mML(S,A) := min
a∈S

ML({a}, A \ S) = min
a∈S

max
a′∈A\S

E(a′ − a). (3)

We will use (3) to define a budgeted decision rule, yet before doing so we provide
two properties of mML(S,A).

Lemma 1. For any ∅ ̸= S ⊆ S′ ⊆ A ∈ A, we have that mML(S,A) ≥
mML(S′, A).

Proof. Indeed,

mML(S′, A) = min
a∈S′

ML({a}, A \ S′)

≤ min
a∈S

ML({a}, A \ S′) (since S ⊆ S′)

= min
a∈S

max
a′∈A\S′

E(a′ − a)

≤ min
a∈S

max
a′∈A\S

E(a′ − a) (since S ⊆ S′)

= mML(S,A)

Lemma 1 tells us that as mML(S,A), any rule that tries to find a set S
minimizing it will search for the biggest possible set. In particular, among the
sets of Ak, it will always pick a set of size k. The next property shows that
mML(S,A) is negative if only if every alternative outside of S is dominated (in
the sense of maximality) by some alternative within S.

Theorem 1. mML(S,A) < 0 if only if there is an a ∈ S such that for all
a′ ∈ A \ S we have that a ≻M a′.
5 as it minimizes a maximal loss that is E(a′ − a).

Decision making under severe uncertainty on a budget 5

Proof. By the definition, we have

mML(S,A) < 0 ⇐⇒ min
a∈S

ML({a}, A \ S) < 0

⇐⇒ ∃a ∈ S, ML({a}, A \ S) < 0

⇐⇒ ∃a ∈ S, max
a′∈A\S

E(a′ − a) < 0

⇐⇒ ∃a ∈ S, ∀a′ ∈ A \ S, E(a′ − a) < 0

⇐⇒ ∃a ∈ S, ∀a′ ∈ A \ S, E(a− a′) > 0

Corollary 1. If mML(S,A) < 0 then DM (A) ⊆ S.

Proof. By Theorem 1, all a′ ∈ A \ S are dominated, hence A \ S contains no
maximal elements, so all maximal elements must be in S.

Let us now denote by S∗
k(A) the optimal subset of size k w.r.t. mML criterion

(that we want to minimize) within A, i.e.

S∗
k(A) := arg min

S∈Ak

mML(S,A)

We can now define the mML budgeted decision rule as

Dk
mML(A) :=

{
DM (A) if mML(S∗

k(A), A) < 0

S∗
k(A) otherwise

3.2 Example and computation

The next example illustrates some behaviour of mML(S,A), as well as of S∗
k(A).

Example 1. Let us consider the space X = {x1, x2, x3} and the acts of Table 1.
Suppose furthermore that the uncertainty on the states are specified by

P = {p ∈ P : p(x1) + 2p(x2) + 3p(x3) ≤ 2, p(x3) ≤ 0.3} (4)

x1 x2 x3

a1 6 3 1
a2 2 7 4
a3 5 1 8
a4 5 4 3
a5 1 2 6

Table 1. Acts of Example 1

E(aj − ai) i = 1 i = 2 i = 3 i = 4 i = 5

j = 1 - 4.0 2.0 1.0 5.0
j = 2 4.0 - 6.0 3.0 5.0
j = 3 1.4 3.3 - 1.5 4.0
j = 4 1.0 3.0 3.0 - 4.0
j = 5 −0.4 −0.1 1.0 −1.1 -

Table 2. Values of E(aj − ai)

Table 2 gives the values of E(aj − ai),∀j ̸= i. According to this table, we
have DM (A) = {a1, a2, a3, a4} and

6 N. Nakharutai et al.

– S∗
1 (A) = {a4} with mML(S∗

1) = 3,
– S∗

2 (A) = {a1, a2} with mML(S∗
2) = 1.4,

– S∗
3 (A) = {a1, a2, a3} or {a2, a3, a4} with mML(S∗

3) = 1 and
– S∗

4 (A) = {a1, a2, a3, a4} with mML(S∗
4) = −1.1.

From Example 1, we have that S∗
k(A) ̸⊆ S∗

k+1(A), therefore showing that a
greedy approach iteratively picking the next best option to build Sk+1(A) from
Sk(A) will not be optimal in general which is unfortunate, as such property might
help constructing efficient computational algorithms that for instance iteratively
increase k. Also, S∗

3 (A) is not unique. The result also agrees with theorem 1
that once Sk(A) reaches the negative value of mML, then Sk(A) is a superset
of DM (A). Suppose we want to find S∗

k(A) with respect to the mML criteria
within a given set of acts A of size n ≥ k. One may then wonder whether we
have to verify all possible sets S of size k, of which there are

(
n
k

)
, to obtain the

minimum of mML(S,A). Fortunately, we can do it without checking all such
sets. Let us consider the previous example and see how it can be obtained, with
the formal procedure provided by Algorithm 1. Basically, it relies on the fact
that the minimum of mML(S,A) is reached at a specific alternative.

Example 2. From example 1, recall the values of E(aj − ai) for all aj ̸= ai that
are given in table 2. For k = 1, we notice that S∗

1 (A) = {ai∗}, where

i∗ = arg
5

min
i=1

5
max

j=1,j ̸=i
E(aj − ai)

which can be simply obtained by searching, for each i, the maximal value of
E(aj − ai) over j ̸= i and then finding the minimal value among maximal values
that we have. In this case, i∗ = 4 so S∗

1 (A) = {a4}
For k = 2, even though there are

(
5
2

)
= 10 sets of size 2 that we have to

consider, we do not need to search all these sets. Let ai∗ ∈ S∗
2 (A) be such that

ai∗ = arg min
ai∈S∗

2 (A)
max

aj∈A\S∗
2 (A)

E(aj − ai).

We observe that ai∗ is obtained at the minimal value of the second highest value
of E(aj − ai) (circled values in table 3). This is because we are looking at the
ai that attains the minimal value of E(aj − ai) for which aj is not in the same
set of ai. In this case we have ai∗ = a1 which can be obtained only if a2 is
also in S∗

2 (A). Otherwise, a1 will not attain the minimum, as E(a2 − a1) > 1.4.
Therefore, once we find the ai∗ that attains the minimal value of the second
highest value of E(aj −ai), the aj such that E(aj −ai∗) is larger than the second
highest values of ai∗ is also in S∗

2 (A) (boxed value in table 3).
We can use the same argument for S∗

3 (A), and in fact S∗
k(A) for any k.

Specifically, for each ai, we look at the kth highest value of E(aj − ai), find the
minimum of these values say achieved at ai∗ , and then take all aj such that
E(aj − ai∗) is larger than this minimum. For instance, in this case, for k = 3,
ai∗ = a1 or a4. Again, these ai∗ can attain the minimum of S∗

3 (A) if all aj such
that E(aj − ai∗) is larger than the third highest values of ai∗ are also in S∗

3 (A).

Decision making under severe uncertainty on a budget 7

E(aj − ai) i = 1 i = 2 i = 3 i = 4 i = 5

j = 1 - 4.0 2.0 1.0 5.0

j = 2 4.0 - 6.0 3.0 5.0

j = 3 1.4 3.3 - 1.5 4.0

j = 4 1.0 3.0 3.0 - 4.0

j = 5 −0.4 −0.1 1.0 −1.1 -
Table 3. Second highest values of E(aj − ai) for each ai (values in circle).

E(aj − ai) i = 1 i = 2 i = 3 i = 4 i = 5

j = 1 - 4.0 2.0 1.0 5.0

j = 2 4.0 - 6.0 3.0 5.0

j = 3 1.4 3.3 - 1.5 4.0

j = 4 1.0 3.0 3.0 - 4.0

j = 5 −0.4 −0.1 1.0 −1.1 -
Table 4. Third highest values of E(aj − ai) for each ai (values in circle).

Thus, for selecting ai∗ = a1, we have S∗
3 (A) = {a1, a2, a3} and for selecting

ai∗ = a4, we have S∗
3 (A) = {a2, a3, a4}.

We now translate this argument into an algorithm that can find S∗
k(A).

Specifically, for each ai ∈ A, we first compute eij := E(aj − ai),∀j ̸= i, and
assign set S[i] such that for all j ∈ S[i], eij are the k largest elements of
{eij : j ̸= i}. Then, we calculate M [i] = minj∈S[i] eij and J [i] = argminj∈S[i] eij .
Next, we compute i∗ = argminni=1 M [i]. Finally, we have S∗

k(A) = {ai∗} ∪ {aj :
S[i∗] \ {J [i∗]}}. This process is summarised in algorithm 1.

The set S[i] can be obtained through a partial sort, which can be much
faster than a regular sort especially for small values of k. A partial sorting
algorithm will normally also immediately give M [i] (i.e. the value of the kth
largest element). The algorithm can be easily adapted to perform a full sort
instead of just finding the k largest elements. A full sorting can then be used to
find S∗

k(A) for all possible values of k simultaneously, with very little additional
computational effort.

The process could be sped up further by presorting the acts aj first by ex-
pectation with respect to Ep(aj) for some p ∈ P. A similar technique was shown
to be very effective in the context of maximality [11].

Provided upper natural extensions E(aj − ai) for all j ̸= i are all available,
the (partial) sorting in algorithm 1 is much faster (a full sort of n elements
typically takes O(n log(n)) comparisons, and we need to do this n times) than
directly searching throughout all possibilities sets of choosing k elements from n,
of which there are nk. We therefore go from a polynomial number of operations

8 N. Nakharutai et al.

Algorithm 1 Finding S∗
k(A)

Input: A = {a1, a2, . . . , an}, P, k
Output: S∗

k(A), mML(S∗
k(A), A)

1: for i = 1: n do
2: for j = 1: n, j ̸= i do
3: compute eij := E(aj − ai)
4: end for
5: end for
6: for i = 1: n do
7: S[i]← set such that {eij : j ∈ S[i]} are the k largest elements of {eij : j ̸= i}
8: M [i]← minj∈S[i] eij
9: J [i]← argminj∈S[i] eij

10: end for
11: i∗ ← argminn

i=1 M [i]
12: return {aj : j ∈ {i∗} ∪ S[i∗] \ {J [i∗]}}, M [i∗]

to an exponential one. However the task to evaluate n(n − 1) upper natural
extensions E(aj − ai) for all j ̸= i may still be challenging if n is quite high,
which is particularly true for combinatorial problems, where adding an element
(e.g., a node to a graph) may lead to an exponential increase of |A|.

One way to circumvent this needs is to be able to find maxaj∈A\S∗
2
E(aj −ai)

without a complete enumeration, something that is sometimes doable in struc-
tured problems [3]. In this case, one solution could either be to simply sample a
reasonable number of alternatives from A, and use the fact that maxaj∈A\S∗

2
E(aj−

ai) can be evaluated without enumerating the whole set A to greedily add sam-
pled alternatives to the set of k returned alternatives. This is why in further
experiments, we include results of the greedy algorithm, denoted by Sg

k(A), and
compare them with the non-greedy, global optimal solution.

3.3 Weak Consistency of S∗
k and Dk

mML

Let us now show that S∗
k (and consequently, also Dk

mML) is weakly consistent
with maximality. Weak consistency for A that satisfy mML(S∗

k(A), A) < 0 fol-
lows from Corollary 1, so we are left to consider the case mML(S∗

k(A), A) ≥ 0.
The proof uses the observations we have made to obtain Algorithm 1.

Theorem 2. For any k and A, if mML(S∗
k(A), A) ≥ 0 then S∗

k(A)∩DM (A) ̸=
∅.

Proof. For brevity, define S := S∗
k(A) and S′ := A \ S∗

k(A). Suppose that
mML(S,A) ≥ 0. Let

ai∗ := arg min
ai∈S

max
aj∈S′

E(aj − ai), (5)

aj∗ := arg max
aj∈S′

E(aj − ai∗). (6)

Decision making under severe uncertainty on a budget 9

Note that

0 ≤ mML(S,A) = min
ai∈S

max
aj∈S′

E(aj − ai) = E(aj∗ − ai∗), (7)

and it follows that

E(aj∗ − ai∗) ≥ 0, (8)

∀aj ∈ S′, E(aj − ai∗) ≤ E(aj∗ − ai∗) (9)

∀ai ∈ A, ∀j ∈ S[i], E(aj − ai) ≥ E(aj∗ − ai∗) (10)

where S[i] is defined as in the algorithm. Equation (10) holds because, from the
algorithm, we know that

M [i] = min
j∈S[i]

E(aj − ai) ≥ M [i∗] = E(aj∗ − ai∗) (11)

We have now everything in place to show that ai∗ is maximal, i.e. E(ai∗ −
aℓ) ≥ 0 for all aℓ ∈ A. Fix any aℓ ∈ A and consider the set

B := {am : E(am − aℓ) ≥ E(aj∗ − ai∗)} (12)

This set has at least k elements by eq. (10). If ai∗ ∈ B, then we are done, by
eq. (8). Otherwise, B must contain at least one element outside of S and thus
in S′, since S has exactly k elements and ai∗ ∈ S. Choose am ∈ B ∩ S′. Then

E(ai∗ − aℓ) ≥ E(am − aℓ)− E(am − ai∗)

= E(am − aℓ)− E(aj∗ − ai∗)︸ ︷︷ ︸
non-negative by eq. (12)

+E(aj∗ − ai∗)− E(am − ai∗)︸ ︷︷ ︸
non-negative by eq. (9)

≥ 0.

and thus, in this case, the desired inequality also holds.

We then have the following corollaries from Theorem 2 and Corollary 1.

Corollary 2. S∗
k and Dk

mML are weakly consistent with DM .

Corollary 3. S∗
1 and D1

mML are strongly consistent with DM .

4 Metric-based budgeted decision rule

We now discuss an alternative to regret-based rules, by considering a metric
argument according to which one selects alternatives that are the most dissim-
ilar to one another. However, a naive application of this criterion may actually
selects options without any considerations for their possible optimality, as will
demonstrate our experiments in Section 5. For this reason, metric-based bud-
geted decision rule should only be used once good options have already been
selected, typically by first applying a decision rule filtering sub-optimal options,
e.g., by first applying DM to A.

10 N. Nakharutai et al.

4.1 Definition

We now consider a different angle, where we want to retained alternatives to
cover as much as possible the space of all possible alternatives. The underly-
ing idea is that retained alternatives should be as diverse as possible, so as to
expose the decision maker to varied options. For this, we will try to maximise
the distances between alternatives, given our knowledge represented by P. The
underlying idea is close to the one of space filling designs [8], where one tries to
find samples that provide maximal coverage of a given space.

For easy of notation, for any act a, let |a| be the act defined by |a|(x) := |a(x)|
for all x ∈ X . For any pair of alternatives a and a′, E(|a − a′|) as a function of
a and a′ defines a pseudo-metric between alternatives. It is clearly non-negative
and symmetric. Moreover, it satisfies the triangle inequality since E(|a− a′′|) ≤
E(|a− a′|) + E(|a′ − a′′|) [15, §2.6.1]. Thus, E(|a− a′|) is a pseudometric on the
set of all acts.

Note that, for all p ∈ P,

|Ep(a)− Ep(a
′)| ≤ E(|a− a′|)

Thus, E(|a−a′|) is a measure of how different a and a′ are with respect to expec-
tation. Usually, maximizing dispersion only makes sense as a security criterion,
i.e. in practice we want to apply it after we have already calculated the set of
optimal decisions, to reduce the size of the optimal set whilst maximizing disper-
sion. Finding the pair of alternatives in A that are the most different according
to this pseudometric comes down to find a pair of ai∗ and aj∗ such that

E(|ai∗ − aj∗ |) = max
ai,aj∈A, i<j

E(|ai − aj |)

A value function for a given set S could then be the sum of the pairwise distances,
i.e.,

MS(S) =
∑

ai,aj∈S, i<j

E(|ai − aj |)

that we would like to maximise, in order to select those alternatives that are far
apart from each other. Consider a decision rule D returning k alternatives such
that these k alternatives are spread over the set of acts.

Dk
MS(A) = arg max

S∈Ak

MS(S) (13)

One can readily see that MS is an increasing function, meaning that if we restrict
ourselves to sets of size k, the maximum of (13) will be reached for a set of size
k. We can therefore restrict our attention to those. Note that this rule cannot
handle the case k = 1, for which one can simply take S∗

1 as a solution.

4.2 Example and computation

Example 3. Consider a space X = {x1, x2, x3} together with the actions pro-
vided in Table 5 and the credal set given by eq. (4). The values E(|ai − aj |) for
all i < j are given in Table 6.

According to the result, we find that

Decision making under severe uncertainty on a budget 11

x1 x2 x3

a1 8 9 3
a2 1 5 4
a3 8 2 6
a4 3 1 2
a5 5 4 9

Table 5. Acts of Example 3

E(|ai − aj |) j = 2 j = 3 j = 4 j = 5

i = 1 7.0 7.0 8.0 5.0
i = 2 - 7.0 4.0 4.3
i = 3 - - 5.0 6.0
i = 4 - - - 3.9

Table 6. Pairwise distance for Example 3

– D2
MS = {a1, a4} with MS(D2

MS) = 8,
– D3

MS = {a1, a2, a3} with MS(D3
MS) = 21 and

– D4
MS = {a1, a2, a3, a4} with with MS(D4

MS) = 38.

We see that D2
MS ̸⊆ D3

MS . Therefore, Dk
MS ̸⊆ Dk+1

MS , from which we can
conclude that a greedy algorithm will again not be optimal in general. However,
unlike the regret-based approach, we were unable to find an efficient algorithm
to directly find Dk

MS , and it is therefore quite relevant to study the quality of
the answer provided by a greedy approach, summarised in algorithm 2. Note
that for k = 2, Dk

MS = Dk
gMS . Also note that only a1 and a3 are maximal,

so this example also verifies the behaviour that maximizing dispersion captures
non-maximal options too. Despite seeing this result, we would like to see how
much Dk

MS and its greedy approximation can capture the maximal elements or
being consistency with maximality, which will be investigate in Section 5.

Algorithm 2 Greedy approximation of Dk
MS

Input: A, P, k, where k ≥ 2
Output: an approximate solution of Dk

MS(A)
1: Dk

gMS ← ∅
2: for i = 1: n− 1 do
3: for j = 2: n do
4: compute E(|ai − aj |), ∀i < j
5: end for
6: end for
7: Dk

gMS ← argmaxai,aj∈A E(|ai − aj |),∀i < j

8: while |Dk
gMS | < k do

9: a∗ ← argmaxaj∈A\Dk
gMS

(∑
ai∈Dk

gMS
E(|ai − aj |)

)
, ∀i < j

10: Dk
gMS ← Dk

gMS ∪ {a∗}
11: end while
12: return Dk

gMS ▷ an approximate solution of Dk
MS

4.3 On some properties of Dk
gMS

When maximising a value function (here MS) under cardinality constraint (here
k), submodularity is a property guaranteeing the quality of greedy approxima-

12 N. Nakharutai et al.

tion [9]. Recall that a set function f is submodular iff f(S ∪ {v}) − f(S) ≥
f(T ∪ {v}) − f(T) whenever S ⊆ T . Unfortunately, we can show that MS has
the reverse, supermodularity property.

Lemma 2. If S1 ⊆ S2, then

MS(S2 ∪ {ak})−MS(S2) ≥ MS(S1 ∪ {ak})−MS(S1) (14)

Proof. Without loss of generality, let’s k be an index such that k > j for all
aj ∈ S2.

(MS(S2 ∪ {ak})−MS(S2))− (MS(S1 ∪ {ak})−MS(S1)) =∑
ai∈S2

E(|ai − ak|)−
∑

ai∈S1

E(|ai − ak|) =
∑

ai∈S2\S1

E(|ai − ak|) ≥ 0.

Since MS is positive, monotone increasing but supermodular, there is no
guarantee on polynomial-time constant approximating algorithm for maximizing
MS with respect to a maximum cardinality of size k. Nevertheless, in the next
section, we will perform an experiment to see how close of the outcomes of the
greedy algorithm to optimal solutions.

5 First experimentation

In this section, we will perform some first experiments to compare S∗
k , Dk

MS

and their greedy approximations Sg
k and Dk

gMS . Each set will be checked for
consistency with respect to maximality. Specifically, we would like to find out
how much S∗

k , Sg
k , Dk

MS and Dk
gMS can capture maximal alternatives in the set

DM . In addition, we will measure the quality of the greedy approximations. Note
that we do not consider case k = 1 since by Corollaries 2 and 3, S∗

1 is weekly
and strongly consistent with DM while the size of Dk

MS requires k ≥ 2.
We fix |A| = 20, |X | = 5 and k ∈ {2, . . . , 6}. Throughout the experiment, we

consider the credal set P that satisfies the following condition:

p(x1) + p(x2) + p(x3) + p(x4) + p(x5) = 1

3p(x1) + 2p(x2) + p(x3) + p(x4) + p(x5) ≤ 1

p(x1) ≤ 0.3, 0.1 ≤ p(x2), 0.2 ≤ p(x3) ≤ 0.4

We generate a set of alternatives A on X as follows. For each xj , we sample
ai(xj) uniformly from (0, 1). Then, we compute E(aj −ai) for all ai, aj ∈ A with
respect to the credal set P. Next, for each A, we find DM and check whether
|DM | > k or not. If |DM | ≤ k, then we regenerate A since we are not interested
in this case due to S∗

k simply returning DM . Otherwise, we compute S∗
k , Sg

k ,
Dk

MS and Dk
gMS with respect to A. Next, we verify whether S∗

k , Sg
k , Dk

MS and
Dk

gMS are weakly consistent or strongly consistent with DM or not. As being
weakly (having only one maximal element in the set) and strongly (having all
elements in the set being maximal) consistent are two extreme situations, we

Decision making under severe uncertainty on a budget 13

also calculate the proportion of alternatives in S∗
k , Sg

k , Dk
MS and Dk

gMS that
are in DM . The process was repeated 500 times. The percentages of these sets
that satisfy the properties and the average percentages of elements in these sets
that are in DM are presented in the 3rd-5th columns of table 7. As expected
from the result, unlike S∗

k and Sg
k , Dk

MS and Dk
gMS are not guaranteed to be

weakly consistency and rarely strongly consistency with DM . In addition, the
average percentages of maximal elements in Dk

MS and Dk
gMS are much smaller

than in S∗
k and Sg

k . This result confirms our earlier comment that applying Dk
MS

and Dk
gMS to obtain sets of size k makes little sense if we do not start with an

optimal set, and that maximizing dispersion should only serve as a refinement
of another rule.

To see how Sg
k is close to S∗

k and Dk
gMS is close to Dk

MS , we also compare
the optimal solution with their greedy approximations. Specifically, for each
iteration, we count how many time Sg

k = S∗
k and Dk

gMS = Dk
MS . The percent-

ages of these sets that satisfy this condition is presented in the 6th column.
We also calculate the proportion of elements in Sg

k that are in S∗
k and the pro-

portion of elements in Dk
gMS that are in Dk

MS and present the average of the
proportions in the 7th column. Finally, we calculate mML(Sg

k)/mML(S∗
k) and

MS(Dk
gMS)/MS(Dk

MS) and present the averages of these ratios in the last col-
umn of table 7. While the greedy approximation of S∗

k quickly degrade as k
increases, this is not the case for Dk

MS , with the greedy set often being pretty
close in terms of quality to the optimal set. This is rather good news, as we do
not have an efficient algorithm at our disposal to compute Dk

MS .

6 Discussion and conclusion

In this study, we have introduced k-budgeted decision rules that return an op-
timal subset of size k according to some value function. We have adopted two
different views: one where we consider a regret-based argument, and the other
where we want to have alternatives that are well-dispersed in the space of al-
ternatives. This second approach is very close in spirit to some recent work
bearing on E-admissibility (another well-known decision rule) [7] as well as to
space-filling designs.

Concerning future work, we could look at other possibilities in each direc-
tion drafted in this paper. For instance, one could look for an alternative to
eq. (3) where the maximisation is done before the minimisation (i.e., the oppo-
nent chooses the alternative within A\S before we pick our alternative within S).
Similarly, one could replace the sum with a minimum in eq. (13). Finally, as we
hinted already in the paper, it would be interesting to look at situations where
the alternatives are too numerous to be explicitly listed/treated, and where even
estimating E(ai − aj) for every pair would be computationally prohibitive.

From a more practical perspective, it would be useful to do more complete
and varied experiments, even if those we conducted already allowed us to high-
light several aspects of our proposals. In addition, it would be interesting to apply
those rules to actual problems such as uncertainty elicitation or system design,

14 N. Nakharutai et al.

Dk k w.c. s.c.
|Dk ∩DM |
|Dk|

S∗
k

2 100% 100% 100%

S∗
k = Sg

k

|Sg
k ∩ S∗

k |
|Sg

k |
mML(Sg

k)

mML(S∗
k)

3 100% 92.6% 97.5%
4 100% 81.0% 97.5%
5 100% 68.4% 94.9%
6 100% 55.8% 91.1%

Sg
k

2 100% 90.2% 95.1% 24.8% 60.9% 0.841
3 100% 74.2% 90.1% 5.2% 52.7% 0.721
4 100% 60.8% 88.1% 1.8% 52.9% 0.651
5 100% 44.8% 84.8% 0.4% 53.2% 0.569
6 100% 33.2% 83.0% 0.4% 56.3% 0.509

Dk
MS

2 86.4% 15.4% 50.9%

Dk
MS = Dk

gMS

|Dk
gMS ∩Dk

MS |
|Dk

gMS |
MS(Dk

gMS)

MS(Dk
MS)

3 96.6% 6.0% 51.9%
4 99.8% 1.8% 54.2%
5 100% 0.2% 52.4%
6 100% 0.4% 55.0%

Dk
gMS

2 86.4% 15.4% 50.9% 100% 100% 1.000
3 95.2% 5.0% 51.5% 52.4% 71.9% 0.986
4 99.8% 1.8% 53.7% 44.4% 75.1% 0.987
5 99.8% 0.6% 52.4% 41.0% 79.9% 0.991
6 99.8% 1.0% 52.2% 36.4% 82.1% 0.993

Table 7. Percentages and averages of S∗
k , Sg

k , Dk
MS and Dk

gMS that satisfy different
conditions.

where the decision maker can only scrutinise and analyse a limited number of
options.

Acknowledgements Work by NN was supported by CMU Junior Research
Fellowship Program, and the SAFE AI chair funded by the Fondation UTC
pour l’innovation. This work was also supported by ANR grant PreServe (ANR-
18-CE23-0008).

References

1. Augustin, T., Coolen, F.P., de Cooman, G., Troffaes, M.C.: Introduction to impre-
cise probabilities. John Wiley & Sons (2014)

2. Bains, H., Madariaga, A., Troffaes, M.C., Kazemtabrizi, B.: An economic model for
offshore transmission asset planning under severe uncertainty. Renewable Energy
160, 1174–1184 (2020)

3. Benabbou, N., Perny, P.: Interactive resolution of multiobjective combinatorial
optimization problems by incremental elicitation of criteria weights. EURO journal
on decision processes 6(3), 283–319 (2018)

4. Chzhen, E., Denis, C., Hebiri, M., Lorieul, T.: Set-valued classification–overview
via a unified framework. arXiv preprint arXiv:2102.12318 (2021)

Decision making under severe uncertainty on a budget 15

5. Destercke, S.: Multilabel predictions with sets of probabilities: the hamming and
ranking loss cases. Pattern Recognition 48(11), 3757–3765 (2015)

6. Huntley, N., Troffaes, M.: Normal form backward induction for decision trees with
coherent lower previsions. Annals of Operations Research 195(1), 111–134 (2012)

7. Jansen, C., Georg, S., Thomas, A.: Quantifying degrees of e-admissibility in deci-
cion making with imprecise probabilities (2018)

8. Joseph, V.R.: Space-filling designs for computer experiments: A review. Quality
Engineering 28(1), 28–35 (2016)

9. Krause, A., Golovin, D.: Submodular function maximization. Tractability 3, 71–
104 (2014)

10. Nakharutai, N.: Algorithms for generating sets of gambles for decision making
with lower previsions. In: Huynh, V.N., Entani, T., Jeenanunta, C., Inuiguchi, M.,
Yenradee, P. (eds.) Integrated Uncertainty in Knowledge Modelling and Decision
Making. pp. 62–71. Springer International Publishing, Cham (2020)

11. Nakharutai, N., Troffaes, M.C.M., Caiado, C.C.S.: Improving and benchmarking
of algorithms for decision making with lower previsions. International Journal of
Approximate Reasoning 113, 91–105 (Oct 2019). https://doi.org/10.1016/j.
ijar.2019.06.008

12. Troffaes, M.: Decision making under uncertainty using imprecise probabilities. Int.
J. of Approximate Reasoning 45, 17–29 (2007)

13. Utkin, L.V.: An imprecise extension of svm-based machine learning models. Neu-
rocomputing 331, 18–32 (2019)

14. Viappiani, P., Boutilier, C.: On the equivalence of optimal recommendation sets
and myopically optimal query sets. Artificial Intelligence 286, 103328 (2020)

15. Walley, P.: Statistical reasoning with imprecise Probabilities. Chapman and Hall,
New York (1991)

https://doi.org/10.1016/j.ijar.2019.06.008
https://doi.org/10.1016/j.ijar.2019.06.008
https://doi.org/10.1016/j.ijar.2019.06.008
https://doi.org/10.1016/j.ijar.2019.06.008

	Decision making under severe uncertainty on a budget

