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Abstract. Set functions and inferences over them play an important role in many
Al-related problems. They are commonly used in kernel-based methods, game
theory, uncertainty representation and preference modelling. Of particular impor-
tance are additive set-functions and their associated expectation operator, as well
as sub-modular functions. However, specifying precisely and completely such set
functions can be a daunting task as well as a lot of data and knowledge. When
time or information is missing, it may be handy to have approximating tools of
such set-functions, that require less information and possibly enjoy nice mathe-
matical properties. In this paper, we show that if the only information we have
are atomic bounds of such functions, we can build conservative approximations
that are either sub- or super-modular. We then illustrate the potential use of our
approximation on a convolution-based signal processing problem.

1 Introduction

Set functions or measures play an important role in many aspects of artificial intel-
ligence. The most well-known are undoubtedly probability measures, i.e., additive,
normalised positive set functions. Increasing set functions, called capacities or fuzzy
measures, generalise such probability measures. They appeared in 50’s, and have been
extensively used in areas related to decision [1]. In particular, they can represent the
weights of coalitions in cooperative games, or measures of uncertainty such as lower
probabilities or belief functions (see [12]). Particular fuzzy measures that are maxitive
rather than additive are possibility measures [22], the basic building blocks of possibil-
ity theory [4,5].

Other capacities that have attracted a lot of attention are sub-modular functions, as
they have taken a very important role in many aspects of artificial intelligence. They
are used in numerous problems of machine learning and signal processing [18,11], in
social choice theory where they can be used to induce fairness in the obtained solu-
tions [3], and in modelling preferences in item selection problems [19]. Indeed, the
sub-modularity property comes with many advantages, notably the one to be able to
use greedy optimisation algorithms with good guaranteed approximation properties.
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There are good reasons to consider set functions that are not necessarily increas-
ing with respect to set inclusion, nor that are normalized as probability or possibility
measures can be. A question that follows is whether approximation tools allowing for
efficient inferences are still valid in such contexts. This is the question we address in
this paper, where we focus on approximation obtained by considering atomic bounds
(i.e., lower/upper bounds over singletons).

The paper is structured as follows. Section 2 is a brief recall of set-functions and
their use. We will focus on additive set functions and sub-modular set functions. Sec-
tion 3 is devoted to the approximation of set of additive set-functions and sub-modular
functions. Section 4 presents an application to signal convolution.

2 Set-functions and their use

In this paper, we are concerned with approximating (sets) of discrete set-functions. By
set function x over a finite space X = {x1,...,2,}, we understand a bounded real-
valued function £ : 2¥ — R from the power set of X to the reals. We furthermore
assume that (@) = 0. The conjugate x° of a set function x is k°(A) = k(X)) — K(A).

2.1 Additive set-functions and expectation

One of the most widespread set functions are additive ones, i.e., set functions defined
from a mass distribution ¢ : X — R assigning a mass to each element, from which we
have ., (A) = >, c 4 ¥(x) (in the rest of the paper, we denote by x, additive measures
derived from the mass distribution ).

Once we are given such a set-function, a very common operator applied to them to
make inferences is the linear expectation operator. If we have a real valued bounded
function f : X — R, such an operator is

B, (f) =Y f@)(x) (1)

TzeEX
= (flap) — f@p—u)re(An), (2)
=1

where [.] is the permutation such that (f (1)) < --- < f(zn)), Ap = {2, - - 2] )
with, by convention, zq) = 0 and A1) = (). Equations (2) will be helpful when con-
sidering sub-modular functions later on.

If we assume that 1) is non-negative, ¢» > 0, and that ry(X) = >° .y ¥(x) =1,
we retrieve classical probabilities and (1) is just standard expectations. Also, 1) being
positive ensures that the obtained function x is monotonic with respect to inclusion, i.e.,
Ky (A) > Ky (B) whenever B C A.

In this paper, however, we make neither of these two assumptions, i.e., K, (X') can
be any real value, as well as 1(x) that can be negative. This latter relaxation implies
that we may have B C A but k,(A4) > ky(B).

While the latter property may seem odd to some readers, there are good reasons to
consider such a relaxation. For instance, deriving a signal through convolution (the ap-
plication of Section 4 is of this kind), we are considering a non-null function ¢ such that
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k(X) = 0, meaning that some values of 1) must be negative. Similarly, in social rank-
ing problems [14], the elements x; can be individuals and one search to assess/order
the performances of groups or subsets of individuals. In this case, it can be that two
groups A C B are such that B performs worse than A (A > B), for instance because
B contains individuals that do not get along together and worsen the whole group per-
formance. Should such a statement be numerically encoded as a set function, we should
have ky (A) > Ky (B).

Example 1. Consider a digital signal f taking values on two successive points:

f(z1) =3, f(z2) =5

computing its derivative in 23 comes down to compute E,. | with)(x) = —1,1(22) =
1, giving E; =2

2.2 Sub-modular set functions

Another kind of set functions that are widely used in artificial intelligence are sub-
modular set functions. Sub-modularity means that, for any pair A, B C X of event, x
is such that

k(AUB)+ k(AN B) < k(A) + k(B), 3)
or equivalently [15, Ch. 44] that, for any A C B and any « ¢ B, we have
k(AU {z}) — k(A) > k(BU{x}) — k(B). )

This latter formulation is sometimes referred as the property of diminishing return,
modelling the fact that element {2} has a higher value when added to a smaller subset.

However, in contrast with the additive case, specifying a sub-modular set-function
requires in general to specify or to work with 2/ values, a daunting quantity. In prac-
tice, it may be useful to have approximations requiring to collect and work with a lim-
ited number of values. In this paper, we will see that this can be done by simply con-
sidering 2|X| values of k. Note that the idea of non-monotonic (w.r.t. inclusion), non-
additive set functions already appears in [10], precisely to model numerically rankings
of subsets.

Sub-modular set functions have many interesting properties, but we will only men-
tion those useful for our purpose, and proved in [7]. A first property is that its core

Co = {10 : VA C X,y (A) < K(A), 0(X) = K(X))}, )

that is the set of additive measures that is dominated by it is never empty. In particular,
this means that sub-modular set functions can be useful to describe or approximate sets
of additive set functions, e.g., in convolution problems where the convolution filter is
ill-known.
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A second property one can also show [7] that applying the Choquet integral to a
bounded function f : X — R gives

n

Ec(f) = (flap) — flap-u)k(Ap), (6)
=1
= sup E,,(f) ™
PeCy

Similar properties apply to the super-modular ¢

E.(f) => (flzp) — fl@p-u)s(Ay), ®)
=1
= inf B (f) ©

3 Approximating set-functions with atomic bounds

In this section, we provide our main results concerning non-additive set functions,
that show that one can build sub-modular approximations by only focusing on atomic
bounds of some sets of additive measures or of some initial sub-modular function. This
provides a very easy way to get approximations by focusing on only 2n values.

3.1 Approximating sets of additive set-functions

We first consider the case where we have a set M of possible additive measures. In
signal processing, those may come from the fact that the convoluting kernel has an
ill-known bandwidth, while in preference modelling they may represent the doubt an
agent has about the strength or rankings of coalitions. M may also be a neighbourhood
around some initial distribution 1)y, used for instance to make a sensitivity/robustness
study around .

However, working with general sets M is highly inconvenient, whether they are
discrete or continuous. We will now show that we can easily obtain a sub-modular
approximation of M. To do this, we will denote by

b(a) = inf U(),

P(z) = sup P(x).

peEM
Let us now define the two set functions
m@)m%ZM@W%ZM@, (10)
€A rEA°C
Fir(A) = min (Z (), kp(X) = > ¢(I)> ; an
€A rzEA°C

with x4, () the value for any ¢» € M. The subscript 1 a4 denotes that 4 originates from
a set of additive measures.
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Example 2. Let us assume that some group of persons want to pack some food before
going on a hike. They can choose between (a)pples, (b)ananas, (c)horizo and (d)anish
pastries, so that X = {a, b, ¢, d}. In order to know what to take (it is impossible to take
all four types of food), members of the group are allowed to distribute 10 points between
all food types to express their individual preferences. They can also give negative scores
(up to -5) if they really dislike a food. We assume that food values are additive. So
we know that k(X)) = 10, and the span of scores given by the group to each type
of food is summarised in Table 1. Everyone likes apples as even the lower score 1 is

Food (X) «a b c d

RSERSS
2
N
N

Table 1: Table of scores of Example 2

positive (some more than others), but some dislikes bananas (e.g., because of their taste)
while some dislikes chorizo (e.g., as they are vegetarian). We can now try to assess the
possible values of various packages to compare them. For instance, evaluating the set
{a,b,c}, we get

i({a,b,c}) =min(5+7+4,10 — (—2)) =12

u({a,b,c}) =max(1 -3 —-3,10—-4) =6

so that this package is clearly interesting, for instance compared to {b, ¢, d} for which

ﬁ({b> = d}) =9.

We will now study the properties of the set functions given by Equations 10-11. Let
us first show that the two set functions are conjugate ones.

Proposition 1. For any M, p M and i, are conjugate.
Proof.
HM(A) - HM(X) B HM(AC)

= kg (X) —max{ ) (@), my(X) = D P(@)}

T A z€A
= min{ry(X) = Y _ (@), Y ¥(@)} =T (A).
A T€A

We can then show that 71, , can be used as a conservative approximation of jta¢, by
the following proposition.

Proposition 2. We have M C Cy “
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Proof. The proof simply consists in showing that for any ¢ € M, we have ¢(A) <
n(A) for any A C X. To see this, observe that for any v, we have ¥ > 1. This means
that >, ¥(z) > > c4¢(z). Similarly, since 9 < 1), we have nyf‘ P(z) <

D aga (@), hence ry(X) = 3 o qe ¥(2) = Fyp(X) = 3o pe V() = Dpea ¥()
where the last equality comes from 1) being additive and ) | 1(2) = iy (X).

We now demonstrate that ., is a super-modular set function. Among other things,
this ensures that applying Equation (8) (that is computationally cheap to evaluate) to a
function f will yield bounds that correspond to an expectation operator applied to an
additive measure.

Proposition 3. 1, is a sub-modular set function.

Proof. Following the ideas of [6] that prove super-modularity of ™ when v are proba-
bilities, we will demonstrate the super-modularity of 4 e which by Proposition 1 is the
same as proving sub-modularity of i , .. To do so, we consider arbitrary subsets A, B C
X and we define the sets C = ANBand D = (AUB)\ (ANB). Wehave CND = ()
and CUD = AUB, as well as i (ANB) +pm(AUB) = pupm (C)+pm(CUD). So
we are going to prove the property considering C' and D subsets such that C' N D = .

The idea of the proof is to define an additive set function ky, : 2% — R and its mass
function ¢ such that y1 | (C) = ky(C)and pr, (CUD) = ky(CUD) and ) < ¢ < .

This is sufficient to prove sub-modularity of p , , since £y (C) + £y (C U D) =
Ky (B) + ky(A) due to its additivity, and ry(A) > p (A) and ky(B) = p (B),
follows from ¢ < ¢ < 1.

There are four possible cases to study (two possible values for 1 ™ (C) and two for
Hoag (C'UD)). All the cases are similar since the sets C' and D are such that C N D = .
We will therefore provide the details for only one of them.

Let us consider the specific case pu, (C) = 3_ o () and p, (CUD) = k(X)—
> egCuD 1 (x). On each z € X we are going to define the weights () as follows:

- Vo € O, ¢(z) = ¥(x),

- Va & CU D, d(x) = h(a),

This ensures that £y, coincide with pu, (C'U D) and p, (C)
We are now going to see how we can assign masses d, := () on elements of
the subset D so that that ¢(z) < ¥(x) = d, < +(x)and ) _, = k(X). Observe

that we still have to assign a total (potentially negative) mass (X) =3, ccup P(x) —
Do cC 1 (x) on elements of D. To do so, consider first that, given the considered case,
we have

R = D ) =Y p().

£gCUD zeC
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As, 1, (C) =X co ¥(@) > K(X) = 32,00 P(x), we have
HM(CU D) _HM(C) <
RX) = Y P@) = k(X)) + D P(e) < Y ().

xZCUD zgC xzeD
Similarly, as p, (C'U D) = k(X) = > ccup P(z) >3 coup Y(x), we have

b (CUD) = p (C)

> Y g =Y W) =) d@).

zeCUD zeC zeD

So Y ,cp¥(@) < p (CUD) —p (C) <3, cp(x). This means that we can
divide the difference 1, (C'UD) — p, (C) (equal to the remaining mass to assign) on
D and choose a real d,, for all z € D such that (z) < d, < ¢(z) and Y, . dy =

1 (CUD) = 11 (C).

What Propositions 2 and 3 show is that previous results obtained for the probabilistic
case (summative functions 1) summing up to one) readily extend to more general and
complex cases, opening up new areas of applications such as the signal treatment one
described in Section 4 and already suggested in Example 1.

3.2 Approximating sub-modular functions

We will now show that our approximation also works when one starts from a sub-
modular function « to approximate. There are at least two ways in which our proposed
results can be useful: as an upper bound®, it can be useful in Branch and Bound tech-
niques applied to sub-modular optimization [20]; as a trace on the singletons of a po-
tentially unknown &, it allows to build an approximation of x while collecting only a
2n of its values.

We consider a sub-modular ~ : 2¥ — R. Recall that the conjugate set-function ¢
of kis VA, k°(A) = k(X) — k(A°). It is easy to check that for any pair A, B C X, k°
is such that

KS(AUB) 4+ k°(AN B) > k°(A) + k(B),

it is super-modular. « is sub-modular so we have k¢ < k. Now let us assume that
we know only x and x° on each element x € X. This is equivalent to know ~ on
each x and {z}°. In Example 2, this could amount to ask group member the value of
every single food element, as well as the value of packages if we remove each food
element, assuming that they aggregate values in a sub-modular way. By Equation (4),
it means that adding a food element to an existing package is all the less interesting as
the package grows bigger, which seems a reasonable assumption.

For all z € X let us define’ " (z) = x¢({z}) and ¥" (z) = x({x}). The knowl-

edge of 9" (z) and 4" () entails the following property:

* or lower bound if we consider the complementary measure
5 The reason for also calling them 1) is clarified in the proof of Proposition 6
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Proposition4. Y ¢"(2) < K(X) <3, 4 ¥ (2).

Proof. ¥*(x) < 9"(z) = w({z}) = K(X) — x({z}°) < K(X) S e ¥ (@), 50
e have £, 0¥(2) < (X |

3" (@) 2 9 (@) = s°({z}) = w(X) — K({2}%) = K(X) - Dot 3" (&), s0 we have
A(X) < Then ¥ ().

As in the previous section, we now define two set functions

= max{ > ¥ (@), n(X) - 3 (@)}, (12)
T€EA zZ A

B, (A) = min{ > 7" (2), n(X) = 3 (@)}, (13)
T€A T A

with the subscript x denoting that they come from an initial sub-modular set function.
We will now proceed to show that p1 and fi,; approximate « and that they are respec-
tively sub-and super-modular. Indeed even if x has a non-empty core C,;,, we are not
especially interested in positioning N and 1z, with respect to this core, but with respect
to the initial . Let us first show that N and z,, can act as lower/upper bounds.
Proposition 5. In < k¢ <,
Proof. Let us first prove that < x°. There are two possible values for HH(A):

- I.f B (A) =3 ca gk () then p_(A) < x°(A) since £ is a sub-modular set func-

tion.

—Ifp (A) = K(X) = Y, ¥ (x) then O T (2) > K(A®) = K(X) — ro(A)
which entails p_(A) < £(X) — k(X) + £°(A) = £°(A).

The proof of k¢ < Ti,, is similar.

Note that Proposition 1 also applies here, from which follows that N and [z, can
also be used to approximate x, as we can reproduce Proposition 5 proof for .

Corollary 1. N <k <k <q,

We can now prove that I enjoys the same interesting property as the function & it
approximates.

Proposition 6. 7i,. is a sub-modular set function i.e.,
VA, B C X7, (AUB) + i, (AU B) < i (A) + i, (B).
Proof. The proof is quite simple once we notice that C, is not empty and that
V(@) = inf ¥(a)
¢ (x) = sup (),
PeCx

which can be obtained by applying Equations (9) and (7) to the indicator function I
(= 1 on z and zero everywhere else). Since the bounds 9" and wm are atomic bounds
over the set of additive measures C,;, one can apply Proposition 3.
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Corollary 2. 71, is super-modular.

Our results demonstrate that M, and [z, are interesting approximations of a sub-
modular function «, possibly partially unknown. They are tight outer approximations,
. -k .
in the sense thatas ¢" (x) = x°({z}) and ¢ (z) = k({x}), any smaller intervals would
not be outer approximations on the singletons. Finally, we can show an interesting link

.. . Kk Tk . _
between the precision of the intervals [¢)", ¢ ] and the functions 7z,., u

- L

Proposition 7. Forall A C X,
(7 (A) — p, (A)] < card(A)[|u — 1] a,00
where ||u — l|| 4,00 = maxge 4 [¢(z) — Y(x)| and card(A)is the cardinality of A.

Proof. According to the definition of x and 7,,, we have for possible cases.

A (A) =, (A) =

— e(A) = Yea 0 (@) < R(X) = Y00 0" (@)
B (A) = e a ¥ (@) 2 5(X) = Y04 0 ().
Fo(A) = i1 (A) = ¥, (0" (@) — ¥*(2))
— e(A) = Yea 0 (@) < R(X) = Y00 05 (@)
B (A) = 5(X) = Y, 0a ¥ (1) 2 Y0 (@),
B A) g (A) = e a0 (@)= R(X) 4,00 O (@) < Xuea@ (2)—1" (@)
— Fe(A) = B(X) = Y (@) £ e ¥ (@)
B (A) =0 ¥5(@) > 5(X) = 000 (@)
Fo(A)—p (A) = £(X) =g V" (@)= en ¥"(@) € e a(@ (@) 0" ()
() = B(X) = T (@) < T ¥ ()
B (A) = K(X) = Y, 0a 0 (2) 2 Y0 (@),
To(A)—p_(A) = K(X) =Y 00 05 (@) ()T g B (1) < e (@ ()~
V* ().
So we have [, (A) — p (A)] < card(A)||u — || 4,00

Note that if & is linear the previous result proves that i, = H, which is trivially true.
More over, the further  is from additivity ,the greater the difference |7z, (A) — p_(A)]
can be. This result also seems to connect our approximation with the total variation
distance, routinely used in statistics [8].

Finally, let us remark that in Example 2, we would have derived the same bounds
if we assumed that the group computed the utility of a subset A according to a sub-
modular aggregation function. In particular, this means that if we concentrate on atomic
bounds only, it does not really matter whether ;. and 7z approximate a set M of additive
set functions or a sub-modular set function (which itself can be considered as a non-
empty set of dominated additive set functions), as both approximations will coincide if
the bounds 1, 1) are the same.
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4 An application to signal convolution

We illustrate our approximation technique on an application in signal processing, as
signal processing is strongly based on the notion of linear system, i.e. additive set func-
tions.

4.1 Signal processing and additive set functions

We speak of continuous systems when the signals are continuous and of discrete sys-
tems when the signals are discrete. However, a signal is rarely discrete by nature. Dis-
crete signals are generally continuous signals that have been discretized. For example,
natural digital images are discretizations, by the retina of a camera, of continuous lumi-
nance images in real space. When they are naturally discrete, signals are often produced
to mimic a discretized signal (synthetic images and sounds) with the aim of being used
in the real world (special effects, electronic music, etc.).

Except in very rare cases, signal processing only really makes sense in continuous
space. When the processing of the sound signal is used to recognize a sound for exam-
ple (voice dictation) it is indeed recognition of the continuous signal that is involved via
the recognition of the discrete signal from which it originates. So, doing digital signal
processing generally means digitally performing a modification or analysis of the con-
tinuous signal from which it is being sampled. We limit ourselves here to linear signal
processing.

The classical view consists in supposing that the processing of the signal, for which
itis a question of finding a digital equivalent, is obtained thanks to a known continuous
linear system (e.g. noise reduction filter (sound), texture modification (images), ... ).

When a system (continuous or discrete) is linear, then the relation between input
and output is completely defined by a continuous () or discrete (1) signal called im-
pulse response of the system and a linear operation called convolution. If the system is
continuous, s the output of the system is written as a function of e the input:

s(t) = (e + P)(t) = /fo e(w).o(t — w)du, (14)
and in the discrete case :
s(y) = (exP)(y) = > el@)Ply—x). (15)

Most signal processing being inherently continuous, one needs to go from the con-
tinuous ideal impulse response ¢(t), ¢ € R to a corresponding discrete impulse response
Y (x) x € Z. One standard way to do that is to consider 1 (x) = 8.p(k.A), A being the
sampling period, and 3 a normalization coefficient allowing to respect the dynamics of
the system, i.e. [, ¢(t)dt = >, (x). This approach is based on a modeling of the
sampling by a Dirac impulse, which is very far from reality.

A more reasonable way to see the problem is to assume that the sampling was
performed by a real system allowing to go from continuous space to discrete space
whose impulse response 7 is of finite support and bound to the sampling period A. This
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is written ¥(x) = (¢ * n)(x.A) (see Figure (1)). n is called the summative sampling
kernel, summative meaning that it integrates to one ( f]R n(t)dt = 1) and its support is
included in [—A, A] (.e. VE & [— A, A], n(t) = 0).

Note that the input signal e being generally finite, i.e. it is made of n samples, the
expression (15) is generally written:

s(y) = (ex¥)(y) = D _e(a)p(y — z) = Ey,, (e), (16)

with Vy € Z, ¥, (y) = ¥(y — =). When the operation of the equation (16) does not
represent a system but a mathematical operation aimed at modifying a signal, 1) is more
generally named convolution kernel.

Fig. 1: Sampling of the impulse response ¢ with the kernel 7.

4.2 Sampling and fuzzy transformation

A major problem posed by this approach is that the values of v strongly depend on the
arbitrary choice of the chosen sampling kernel. For the discrete-continuous approach to
be valid, the continuous convolution kernel must be digitized with the same sampling
kernel as the discrete signal to be filtered. In most applications, this kernel is at best
unknown or even, in the case of image processing, non-existent because the sampling
is not invariant by translation: each pixel has its own impulse response.

To overcome this problem, Loquin et al. [13] propose to replace the summative
sampling kernel by a family of continuous sampling kernels (which are formally equiv-
alent to probability distributions) represented by a possibility distribution 7 [9], and
called maxitive kernels. Within the framework of this theory, the triangular maxitive
kernel plays a particular role since it allows to represent all the symmetric monomodal
sampling kernels of lesser granularity [2].

This technique has been used in [17] under the name of imprecise fuzzy transforma-

tion to obtain an interval-valued impulse response [1)(z), ¥(z)] (x € Z) of all the values

that could have been obtained by considering a family of sampling kernels represented
by .
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We propose to extend the convolution operation defined in Equation (16) to the

interval-valued impulse response [¢, 1] by:

[5(y),5()] = (e* [, ¥])(y) = [Eﬁw(e)fﬁm(e)]a a7

with v being defined by Equations (10), considering Vx € Z, gy(a:) =Yy — x)
and likewise for i ” ‘

4.3 Derivation of a discrete signal

The derivation of a discrete signal does not make sense. Indeed, only continuous sig-
nals can be differentiable. However, many signal analysis techniques are based on their
derivation (extraction of contours or particular points in images, extraction of patterns
in physiological signals, ...). In this context, it is not the discrete signal that we want
to derive. What we want to do is to find an operation equivalent to a derivation of the
continuous signal (before digitization) then sampling of the derivative obtained. It has
been shown in [21] that this succession of operations is equivalent to convoluting the
discrete signal with the sampling of the derivative of the kernel used for the reconstruc-
tion. One of the kernels often used to perform this operation is the Shen-Castan kernel

(16]
1

VEER, ¢(t) = —@ﬂ't', (18)
where 3 €]0,1[ is a form factor of the kernel. The derivation of the kernel ¢ leads to
the continuous kernel

1 2
VieR, ¢(t) = fsign(t).@ﬂlt|

Let us assume, without any loss of generality, that the sampling step A = 1. Then,
sampling ¢ as proposed in Section 4.2 by using a possibility distribution 7 leads to the
interval-valued impulse response of the form [¢), 9/]:

In(B).(81+1 — ")

ifo >0, Pla) = — 5 ,
o) = O =)
andif z < 0, ¥(z) = 1“(”3)'(6‘1_6‘%”),
AN G ICAESL)

It is interesting to note that, in this application, u My(X ) = Tiag, (X) = 0. Figure (2)
shows the corresponding bounds, together with some discrete ¢ obtained by the use of
sampling kernels that are within the family represented by r, that is symmetric kernels
with support [—4, 8] (§ €]0, 1]). Such kernels includes, e.g., linear and quadratic kernels,
as well as the Dirac kernel (whose result is in black in Figure (2)).
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Fig. 2: v (in blue), 9 (in red), 8 impulse responses for different kernels within the family repre-
sented by 7 (in magenta), and the response of the Dirac kernel (in black).

Figure (3) and Figure (4) respectively show a time-attenuated signal and its deriva-
tive bounds obtained by our approach, together with some sampled filters. We can see
on Figure (4) that our approach makes a good job, providing wide bounds when varia-
tions are important (bottom box in Figure (4)), while providing very tight bounds when
variation decreases along time (upper box).

257

Fig. 3: Synthesis signal composed of a sum of attenuated sinusoids.

5 Conclusion

In this paper, we have discussed how having only atomic bounds can be used to effi-
ciently approximate very generic sets of very generic additive or sub-modular measures
(i.e., non-monotonic with arbitrary bounds).

We have shown how they can successfully be applied to perform robust signal pro-
cessing. Our next step will be to investigate how our results regarding sub-modular and
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-0.04 . ! F—t————— sec.

Fig. 4: Original signal derived by the imprecise Shen filter (lower bound in red, upper bound in
blue) superimposed with derived signals obtained by various sampled Shen filters.

super-modular set functions can be instrumental to represent non-monotonic rankings
of sets or as approximation tools in optimisation problems using sub-modular functions.
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