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Homogenization of Helmholtz equation in a periodic layer to study Faraday
cage-like shielding effects

S Aiyappan1, Georges Griso2, and Julia Orlik3

Abstract

The work is motivated by the Faraday cage effect. We consider the Helmholtz equation over a 3D-
domain containing a thin heterogeneous interface of thickness δ � 1. The layer has a δ−periodic structure
in the in-plane directions and is cylindrical in the third direction. The periodic layer has one connected
component and a collection of isolated regions. The isolated region in the thin layer represents air or liquid,
and the connected component represents a solid metal grid with a δ thickness. The main issue is created
by the contrast of the coefficients in the air and in the grid and that the zero-order term has a complex-
valued coefficient in the connected faze while a real-valued in the complement. An asymptotic analysis with
respect to δ → 0 is provided, and the limit Helmholtz problem is obtained with the Dirichlet condition on
the interface. The periodic unfolding method is used to find the limit.
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1 Introduction

The work is motivated by a design of shielding textile material, that is, to design the periodic distance
between yarns in the grid and the fiber thickness so that the material would act as a shield on a particular
frequency. Therefore, in the appendix, we provide the explicit dependency of all the constants on geometric
parameters. The main modeling issue here is the chosen contrast in the coefficients of the grid compared to the
surrounding air or fluid. It is chosen as an order of δ−2, which leads to the complete shielding (zero Dirichlet
boundary condition on the interface), while δ−1 leads to a partial shielding and depends on the grid design.
The first case is focused in this article while the later case will be handled in another paper.

In this work, we consider the Helmholtz equation for two domains separated by a thin heterogeneous layer of
the thickness δ � 1. The layer has an δ− periodic structure in plane directions and is cylindrical with respect
to the third direction, i.e., the in-plane structure is the same in all cross-sections. Two balks are connected
by one of the components and another component is connected in the layer across the periodicity cells. The
isolated region should represent an air or liquid and the connected plane grid with a thickness δ a solid, maybe
metal. The first main issue is that the zero order term has a complex-valued coefficient in the connected faze
(the grid) and a real-valued in the isolated regions and in the the bulk. The second issue is the contrast in the
imaginary part of the zero-order-term-coefficient in the solid (may be metal), which relates as δ−2 to all other
coefficients.

There is a huge literature on shielding problems. One can refer to [1, 11] concerning the acoustic wave
propagation and the Maxwell equations have been extensively studied in [10, 18, 4, 5, 6, 17, 19, 13].

There exists a large number of papers devoted to the problems with thin layers of different structure. De-
pending on the relation between small parameters involved in geometry and stiffness of the layers, different
limit problems can be obtained. In particular, [8] deals with the Neumann sieves of different thickness and sizes
of inclusions. The articles [2, 3] consider the case of a thin stiff layer. A case of a soft homogeneous layer is
discussed in [12, 14]. An interface problem with contrasting coefficients has been analysed in [20].

For the study of the limiting behaviour we use the periodic unfolding method, which was first introduced
in [7], later developed in [9]. This method was used for different types of problems, particularly, problems for
the thin layers in [8] and contact problems in the thin layer [14].

A regularization for the imaginary coefficient in front of the zero-order term was introduced and a uniform
convergence with respect to this regularizing coefficient was proven. That is, we start with the regularized
problem, show its convergence to the initial one, then pass to the limit in the regularized problem and then
pass to the limit with the regularized parameter. Similar technique was used in [16] to regularize the contact
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problem with Coulomb’s friction.

The geometrical setting is similar to the one from [15], just in the complement to the domain the contrast
in coefficients is considered.

The paper is organized in the following way. Section 2 provides the geometric setting and preliminary
estimates of the solution. The wellposedness of the original problem and the convergence are studied in Section
3. Section 4 investigates the asymptotic analysis of the problem. Finally, the exact constants are given in the
Appendix, those are expressed in terms of physical known constants, size of the domain, frequency and the
source term. Those are important to design a shield with a particular frequency.

2 Geometrical setting and problem description

This section is devoted to describe the geometric structure of the domain and introduce the problem under
consideration. In the Euclidean space R2 consider a domain O with a C1,1 boundary and let L > 0 be a fixed
real number.
Define

Ω+
δ = O × (δ/2, L),

Ωδ = O × (−δ/2, δ/2),
Ω−δ = O × (−L,−δ/2),

(2.1)

and

Γ = O × {0}.

Figure 1: 3D-domain Ω

Figure 2: Grid structure and the reference cell.

Now, let us describe the thin layer. A model picture is given in Fig. 1 and 2. Here δ is a small parameter
corresponding to the thickness of the layer and also the periodicity parameter in x1 and x2 directions.
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The layer Ωδ has a periodic in-plane structure. The unit cell Y is given by

Y
.
=
(
0, 1
)2 × (−1/2, 1/2) ⊂ R3.

Let Y0 and Y1 are two open subsets of Y . The set Y0, as shown for example in Fig. 2 and Fig. 3, is an

Figure 3: 2D reference cell Y0

open set with Lipschitz boundary satisfying Y0 ⊂ Y , it will represent the periodic ”grid” and its complement
Y1 = Y \ Y0 6= ∅ represents the air or material with less conductivity.

By scaling and translating Y0 in x1 and x2 direction, we get the thin grid Ωiδ as follows

Ξδ =
{

(ξ1, ξ2) ∈ Z2 | δ
(
ξ1e1 + ξ2e2 + Y

)
⊂ Ω

}
, (2.2)

Ωiδ = Interior
⋃
ξ∈Ξδ

δ
(
ξ1e1 + ξ2e2 + Y0

)
, (2.3)

Ôδ = Interior
⋃
ξ∈Ξδ

δ
(
ξ1e1 + ξ2e2 + [0, 1]2

)
, (2.4)

Λδ = O \ Ôδ (2.5)

where e1 and e2 are the canonical vectors e1 = (1, 0, 0) and e2 = (0, 1, 0). The grid/wire structure Ωiδ is made
up of a conducting material and holes between the grid, Ω∗δ is defined as

Ω∗δ = Ωδ \ Ωiδ.

2.1 A preliminary result

Denote H and L two Hilbert spaces satisfying H ⊂ L. Below, we give a lemma with the exact computation
of the constant.

Lemma 2.1. [21] Let a : H ×H → C be a continuous sesquilinear form satisfying

1. |=(a(u, u))| ≥ k1‖u‖2L for all u ∈ H for some k1 > 0,

2. |<(a(u, u))| ≥ k2‖u‖2H − k3‖u‖2L for all u ∈ H for some k2, k3 > 0.

Then, there exists a constant C > 0 which only depends on k1, k2, and k3 such that

|a(u, u)| ≥ C‖u‖2H , ∀u ∈ H.

The proof of this result with the exact constant is postponed to the appendix.

2.2 The Helmholtz problem

Let α, β, ω ∈ R+ be fixed. Let M(α, β,Ω) be the set of all real valued matrix functions A ∈W 1,∞(Ω,R3×3)
such that

α|ξ|2 ≤ (Aξ, ξ), |A(ξ, ζ)| ≤ β|ξ||ζ|

for all (ξ, ζ) ∈ C3 × C3. Here (·, ·) is the usual C3 inner product.

Let us consider the following Helmholtz problem:

−div(A∇uδ)− ω2εδuδ = iωf in Ω

uδ = 0 on ∂Ω.
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where f ∈ L2(Ω,C) satisfies supp f ⊂ Ω+
δ and

εδ(x) = ε1 + i
ε2

δ2
if x ∈ Ωiδ, εδ(x) = ε3 if x ∈ Ω \ Ωiδ. (2.6)

The εi’s are strictly positive constants.
The weak form of the above problem is given by

Find uδ ∈ H1
0 (Ω,C) such that∫

Ω

A∇uδ · ∇ψ dx− ω2

∫
Ω

εδuδ · ψ dx = iω

∫
Ω

f · ψ dx, ∀ψ ∈ H1
0 (Ω,C).

(2.7)

The following lemma recalls a classical result which will be used in the upcoming sections.

Lemma 2.2. For every v ∈ H1(Ωδ,C) one has

‖v‖L2(Ωδ,C) ≤ C
(
‖v‖L2(Ωiδ,C) + δ‖∇v‖L2(Ωδ,C)

)
,

δ‖v‖2L2(Γ,C) ≤ C
(
‖v‖2L2(Ωδ,C) + δ2‖∇v‖2L2(Ωδ,C)

)
.

(2.8)

The constant does not depend on δ.

Proof. Note that for φ ∈ H1(Y,C)

‖φ‖L2(Y,C) ≤ C
(
‖φ‖L2(Y0,C) + ‖∇φ‖L2(Y,C)

)
. (2.9)

This is a classical inequality, one can proceed by contradiction and use the compact embedding of L2(Y,C)
in H1(Y,C) for a simple proof. Then, use a change of variables to give the estimates in the δ-cells, add the
obtained inequalities to get (2.8)1, then prove (2.8)2.

3 Existence of the solution to the Helmholtz problem

We endow L2(Ω,C) with the scalar product

〈u, v〉 =

∫
Ω

u v dx .

Denote

〈A∇u,∇v〉 =

∫
Ω

A∇u · ∇v dx for u, v ∈ H1(Ω,C)

and
εδ = ε1 a.e. in Ωiδ, εδ = ε3 a.e. in Ω \ Ωiδ.

The wellposedness of the Helmholtz problem (2.7) is proved in the following theorem.

Theorem 3.1. Assume that ω2ε3 is not an eigenvalue of −div (A∇) in H1
0 (Ω+,C). Then, there exist two

strictly positive constants δ0 and C such that for every δ ∈ (0, δ0] and every f ∈ L2(Ω,C), problem (2.7) admits
a unique solution uδ ∈ H1

0 (Ω,C) satisfying

‖uδ‖H1(Ω,C) ≤ C‖f‖L2(Ω,C). (3.1)

We remark about the constant in the appendix.

Proof. Step 1. In this step we prove that there exists δ0 > 0 such that: if uδ ∈ H1
0 (Ω,C), δ ∈ (0, δ0], satisfies

〈A∇uδ,∇φ〉 − ω2〈εδuδ, φ〉 − iω2

∫
Ωiδ

ε2

δ2
uδ φdx = 0, ∀φ ∈ H1

0 (Ω,C) (3.2)

then uδ = 0.

First observe that uδ satisfying (3.2) also satisfies uδ = 0 a.e. in Ωiδ.

We proceed by contradiction. Suppose that for every n ∈ N \ {0} there exist δn ∈ (0, 1/n] and uδn ∈ H1
0 (Ω,C)

such that

‖uδn‖L2(Ω,C) = 1, uδn = 0 a.e. in Ωiδn , 〈A∇uδn ,∇φ〉 = ω2〈εδnuδn , φ〉, ∀φ ∈ H1
0 (Ω,C).
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Set
vδn =

uδn
‖uδn‖L2(Ω,C)

.

By (3.2), we have (as A ∈M(α, β,Ω))

‖∇vδn‖2L2(Ω,C) ≤ C

where C = ω2 max{ε1, ε3}
α

is independent of δn. Then, up to a subsequence one has

vδn ⇀ v weakly in H1
0 (Ω,C), vδn → v strongly in L2(Ω,C).

The strong convergence in L2(Ω,C) implies ‖v‖L2(Ω,C) = 1. Using (2.8)1,2, we obtain that v = 0 a.e. on Γ

(since ‖vδn‖2L2(Γ) ≤ C
√
δn) and thus

〈A∇v,∇φ〉 = ω2ε3〈v, φ〉 ∀φ ∈ H1
0 (Ω±,C). (3.3)

This means that ω2ε3 is an eigenvalue and v an eigenfunction of −div(A∇) in H1
0 (Ω±,C).

−div(A∇v) = ω2ε3v in Ω±, v ∈ H1
0 (Ω±,C).

This contradicts the assumption of the theorem. Hence, the claim of this step is proved.

In the following steps we assume δ ∈ (0, δ0].

Step 2. In this step we fix δ ∈ (0, δ0] and we prove that problem (2.7) admits solutions.

Set
εδθ =

ε2

δ2
a.e. in Ωiδ, εδθ = θ a.e. in Ω \ Ωiδ,

where θ is a strictly positive constant less than
ε2

δ2
.

We consider the following variational problem:
Find uθδ ∈ H1

0 (Ω,C) such that

〈A∇uθδ ,∇φ〉 − ω2〈εδuθδ , φ〉 − iω2

∫
Ω

εδθ u
θ
δ φdx = iω

∫
Ω

f φ dx, ∀φ ∈ H1
0 (Ω,C).

(3.4)

Define Bδθ : H1
0 (Ω,C)×H1

0 (Ω,C)→ C by

Bδθ(u, v)
.
= 〈A∇u,∇v〉 − ω2〈εδu, v〉 − iω2

∫
Ω

εδθ u v dx.

Note that

|=(Bδθ(u, u))| ≥ ω2θ‖u‖2L2(Ω,C), |<(Bδθ(u, u))| ≥ α‖u‖2H1(Ω,C) − τω
2‖u‖2L2(Ω,C).

where the constant τ = max{ε1, ε3}. Besides, we have

|Bδθ(u, φ)| ≤ β|〈u, φ〉H |+ ω2|〈εδu, φ〉|+ ω2

∫
Ω

εδθ |uφ| dx ≤ C(δ)‖u‖H‖φ‖H .

Hence by Lemma 2.1 (H = H1
0 (Ω,C), L = L2(Ω,C)), we have that Bδθ is elliptic and bounded, that is

|Bδθ(u, u)| ≥ C ′(δ, θ)‖u‖2H . (3.5)

The explicit value of C ′(δ, θ) is remarked in Section 5, therefore for θ small enough (less than a strictly positive

constant C(α, τ, ω)) one has C ′(δ, θ) =
αθ

τ
. Hence, for θ small enough, by Lax-Milgram, we have a unique

solution uθδ of the problem (3.4) and

‖∇uθδ‖L2(Ω,C) ≤
τω

αθ
||f ||L2(Ω,C), ‖uθδ‖H1

0 (Ω,C) ≤
τω diam(Ω)

αθ
||f ||L2(Ω,C),

where diam(Ω) comes from the Poincaré inequality.

Claim 1: There exists a constant C(δ, f) such that for θ small enough (less than ε2/δ
2 and C(α, τ, ω))

‖uθδ‖L2(Ω,C) ≤ C(δ, f).
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First, let us replace the test function φ in (3.2) with the solution to get

〈A∇uθδ ,∇uθδ〉 − iω2

∫
Ω

εδθ |uθδ |2 dx = iω

∫
Ω

f uθδ dx+ ω2

∫
Ω

εδ|uθδ |2 dx. (3.6)

By equating the real part one arrives at

〈A∇uθδ ,∇uθδ〉 = −ω
∫

Ω

=(f uθδ) dx+ ω2

∫
Ω

εδ|uθδ |2 dx

and then

α‖∇uθδ‖2L2(Ω,C) ≤ |〈A∇u
θ
δ ,∇uθδ〉| ≤ ω

∫
Ω

|f uθδ | dx+ ω2

∫
Ω

εδ|uθδ |2 dx

≤ ω‖f‖L2(Ω,C)‖uθδ‖L2(Ω,C) + ω2τ‖uθδ‖2L2(Ω,C).

(3.7)

Now, f and δ ∈ (0, δ0] being fixed, we prove the claim by contradiction. If there exists a sequence {θk}k
converging to 0 such that ‖uθkδ ‖L2(Ω,C) → +∞. Set

vθkδ =
uθkδ

‖uθkδ ‖L2(Ω,C)

.

By (3.7), we have

‖∇vθkδ ‖
2
L2(Ω,C) =

‖∇uθkδ ‖2L2(Ω,C)

‖uθkδ ‖2L2(Ω,C)

≤ C

where C =
ω

α
(1+ωτ) is independent of θk (as

‖f‖L2(Ω,C)

‖uθkδ ‖L2(Ω,C)

� 1). Thus vθkδ is bounded in H1
0 (Ω,C) independent

of θk. Then, up to a subsequence one has

vθkδ ⇀ vδ weakly in H1
0 (Ω,C), vθkδ → vδ strongly in L2(Ω,C).

Let us divide the equation (3.4) by ‖uθkδ ‖L2(Ω,C) to get

〈A∇vθkδ ,∇φ〉 − ω
2〈εδvθkδ , φ〉 − iω

2

∫
Ω

εδθk v
θk
δ φdx =

iω

‖uθkδ ‖L2(Ω,C)

∫
Ω

f φ dx, ∀φ ∈ H1
0 (Ω,C).

Now, pass to the limit as θk → 0 to get

〈A∇vδ,∇φ〉 − ω2〈εδvδ, φ〉 − iω2

∫
Ωiδ

ε2

δ2
vδ φdx = 0 ∀φ ∈ H1

0 (Ω,C). (3.8)

As ‖vθkδ ‖L2(Ω,C) = 1 and the strong convergence in L2(Ω,C), we have ‖vδ‖L2(Ω,C) = 1. So by Step 1, vδ = 0
which is a contradiction.

As a consequence one has

∀θ ∈
(
0,min{ε2/δ

2, C(α, τ, ω)}
]
, ‖uθδ‖L2(Ω,C) ≤ C

(
δ, f).

This proves the Claim 1. Thus ‖∇uθδ‖L2(Ω,C) ≤ C(δ, f).

Now, let θk be a sequence converging to 0, such that uθkδ ⇀ uδ weakly in H1
0 (Ω,C). Hence, passing to the limit,

the equation (3.4) becomes

〈A∇uδ,∇φ〉 − ω2〈εδuδ, φ〉 − iω2

∫
Ωiδ

ε2

δ2
uδ φdx = iω

∫
Ω

f φ dx, ∀φ ∈ H1
0 (Ω,C) (3.9)

which proves that (2.7) admits solutions. Then, Step 1 ensures that (2.7) admits a unique solution.

Step 3. In this step we prove that the unique solution of problem (2.7) satisfies

‖uδ‖H1(Ω,C) ≤ C‖f‖L2(Ω,C).

Claim 2: There exists a constant C > 0 such that

sup
δ∈(0,δ0], f∈L2(Ω,C), ‖f‖L2(Ω,C)=1

‖uδ(f)‖L2(Ω,C) ≤ C. (3.10)
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Here, uδ(f) denote the unique solution to (2.7).

Suppose not, then there exists a sequence {δk}k∈N converging to δ∗ ∈ [0, δ0] and fk ∈ L2(Ω,C) with ‖fk‖L2(Ω,C) =
1, such that lim

k→+∞
‖uδk‖L2(Ω,C) → +∞.

Case 1: δ∗ = 0. Now, (2.7) gives

〈A∇uδk ,∇uδk〉 − ω2

∫
Ω

εδk |uδk |2 dx− iω2

∫
Ωiδk

ε2

δk
2 |uδk |

2 dx = iω

∫
Ω

fkuδk dx. (3.11)

By considering the imaginary parts, one gets

ω2

∫
Ωiδk

ε2

δk
2 |uδk |

2 dx ≤ ω
∫

Ω

|<(fkuδk)| dx ≤ ω‖fk‖L2(Ω,C)‖uδk‖L2(Ω,C) ≤ C‖uδk‖L2(Ω,C). (3.12)

Set
vδk =

uδk
‖uδk‖L2(Ω,C)

.

Thus one gets

ω2

∫
Ωiδk

ε2

δk
2 |vδk |

2 dx ≤ C

‖uδk‖L2(Ω,C)
, (3.13)

and hence the LHS converges to 0.
The real part gives

‖∇vδk‖L2(Ω,C) ≤ C. (3.14)

Then, from Lemma 2.2 and the above estimates we get

‖vδk‖L2(Γ,C) ≤ C
√
δk

where C is independent of δk. So, up to a subsequence there exists v ∈ H1
0 (Ω,C) such that as k →∞

vδk ⇀ v weakly in H1(Ω,C), vδk → v strongly in L2(Ω,C).

The strong convergence in L2(Ω,C) implies ‖v‖L2(Ω,C) = 1. Moreover, we have v = 0 a.e. on Γ.

Let us divide the equation (2.7) by ‖uδk‖L2(Ω,C) to get

〈A∇vδk ,∇φ〉 − ω2〈εδkvδk , φ〉 − iω2

∫
Ωiδk

ε2

δ2
k

vδk φdx =
iω

‖uδk‖L2(Ω,C)

∫
Ω

fk φdx, ∀φ ∈ H1
0 (Ω,C). (3.15)

Let φ+ (resp. φ−) be in D(Ω+,C) (resp. D(Ω−,C)). If δk is sufficiently small, one has∫
Ω+

A∇vδk · ∇φ+ dx− ω2

∫
Ω+

ε3vδkφ
+ dx = iω

1

‖uδk‖L2(Ω,C)

∫
Ω+

fφ+ dx,

(resp.

∫
Ω−

A∇vδk · ∇φ− dx− ω2

∫
Ω−

ε3vδkφ
− dx = 0 ).

Passing to the limit yield∫
Ω+

A∇v · ∇φdx+ ω2ε3

∫
Ω+

vφ dx = 0, ∀φ+ ∈ D(Ω+,C)

and ∫
Ω−

A∇v · ∇φdx+ ω2ε3

∫
Ω−

vφ dx = 0, ∀φ− ∈ D(Ω−,C). (3.16)

A density argument gives

〈A∇v,∇φ〉 − ω2ε3〈v, φ〉 = 0 ∀φ ∈ H1
0 (Ω±,C)

where v ∈ H1
0 (Ω±,C) which, thanks to Step 1, contradicts the hypothesis of the theorem.
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Case 2: δ∗ 6= 0. As above (see the estimate (3.14)) we show that the sequence {vδk}k is uniformly bounded in
H1

0 (Ω,C). So, up to a subsequence there exists vδ∗ ∈ H1
0 (Ω,C) such that as k →∞

vδk ⇀ vδ∗ weakly in H1
0 (Ω,C) and vδk → vδ∗ strongly in L3(Ω,C).

The second convergence is due to Rellich-Kondrasov Theorem. The imaginary part of the energy gives∫
Ωiδk

|vδk |2 dx ≤
Cδ2

k

‖uδk‖L2(Ω,C)
.

Note that
χΩiδk

(x)→ χΩi
δ∗

(x) for a.e. x ∈ Ω

where χD denotes the characteristic function of the set D. So, the above estimate and convergence imply that

χΩiδk
vδk → 0 strongly in L2(Ω,C).

Since the sequence {vδk}k converges to vδ∗ strongly in L3(Ω,C), we obtain vδ∗ = 0 a.e. in Ωiδ∗ .
Besides, we get that ‖vδk‖L2(Ω,C) = 1 for all k and hence ‖vδ∗‖L2(Ω∗

δ∗ ) = 1 as vδk converges to vδ∗ strongly in

L2(Ω,C). Finally, passing to the limit in (3.15), we obtain that vδ∗ satisfies

〈A∇vδ∗ ,∇φ〉L2(Ω∗
δ∗ ,C3) − ω2ε3〈vδ∗ , φ〉L2(Ω∗

δ∗ ,C) = 0 ∀φ ∈ H1
0 (Ω∗δ∗ ,C). (3.17)

Due to the result of Step 1, we have vδ∗ = 0 which is a contradiction. This completes the theorem.

Corollary 3.1. For every δ ∈ (0, δ0] and every f ∈ L2(Ω,C), the solution uδ ∈ H1
0 (Ω,C) to the problem (2.7)

satisfies

‖uδ‖H1(Ω,C) + δ−1‖uδ‖L2(Ωiδ)
≤ C‖f‖L2(Ω,C) (3.18)

where C > 0 is independent of δ and f .

Proof. The imaginary part of the energy of (3.9) gives

ε2

δ2

∫
Ωiδ

|uδ|2 dx ≤ ω
∫

Ω

|<(fuδ)| dx ≤ ω‖f‖L2(Ω,C)‖uδ‖L2(Ω,C).

Thus one gets

δ−2‖uδ‖2L2(Ωiδ,C) ≤
1

ωε2
‖f‖L2(Ω,C)‖uδ‖L2(Ω,C) ≤ C‖f‖2L2(Ω,C). (3.19)

Lemma 2.2 and estimates (3.18) yield

‖uδ‖L2(Ωδ,C) ≤ Cδ‖f‖L2(Ω,C), ‖∇uδ‖L2(Ωδ,C) ≤ C‖f‖L2(Ω,C), ‖uδ‖L2(Γ,C) ≤ C
√
δ‖f‖L2(Ω,C). (3.20)

Proposition 3.1. There exists u ∈ H1
0 (Ω,C) such that

uδ ⇀ u weakly in H1
0 (Ω,C). (3.21)

Moreover, u = 0 a.e. in Ω− and u restricted to Ω+ belongs to H1
0 (Ω+,C) and is the unique solution of∫

Ω+

A∇u · ∇φdx− ω2ε3

∫
Ω+

uφ dx = iω

∫
Ω+

f φ dx, ∀φ ∈ H1
0 (Ω+,C). (3.22)

Proof. First, there exist a subsequence of {δ}, still denoted {δ}, and u ∈ H1
0 (Ω,C) such that

uδ ⇀ u weakly in H1
0 (Ω,C).

Observe that due to (3.20)3, one has u = 0 a.e. on Γ.
Let ψ+ (resp. ψ−) be in D(Ω+,C) (resp. D(Ω−,C)). For every δ sufficiently small, one has∫

Ω+

A∇uδ · ∇ψ+ dx− ω2ε3

∫
Ω+

uδψ+ dx = iω

∫
Ω+

fψ+ dx,

(resp.

∫
Ω−

A∇uδ · ∇ψ− dx− ω2ε3

∫
Ω−

uδψ− dx = 0 ).
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Passing to the limit yield∫
Ω+

A∇u · ∇ψ dx− ω2ε3

∫
Ω+

uψ dx = iω

∫
Ω+

fψ dx, ∀ψ+ ∈ D(Ω+,C)

and ∫
Ω−

A∇u · ∇ψ dx− ω2ε3

∫
Ω−

uψ dx = 0, ∀ψ− ∈ D(Ω−,C). (3.23)

A density argument gives (3.22). This gives the existence, the uniqueness is followed by a similar arguments in
Step 1 of Theorem 3.1.

As the boundary of O is C1,1, we have u|Ω+ belongs to H1
0 (Ω+,C) ∩H2(Ω+,C) and

‖u‖H2(Ω+,C) ≤ C‖u‖H1(Ω+,C) ≤ C‖f‖L2(Ω,C).

We recall the following classical result: for every φ ∈ H1(Ω+) one has

‖φ‖2L2(O×(0,δ/2),C) ≤ δ‖φ‖
2
L2(Ω+,C) + δ2

∥∥∥∥ ∂φ∂x3

∥∥∥∥2

L2(Ω+,C)

. (3.24)

As a consequence, the solution to problem (3.22) satisfies (remind that ∇u ∈ H1(Ω+,C3), ∇u = 0 in Ω− and
u = 0 a.e. on Γ)

‖∇u‖L2(Ωδ,C) = ‖∇u‖L2(O×(0,δ/2),C) ≤ Cδ1/2‖u‖H2(Ω+,C),

=⇒ ‖u‖L2(Ωδ,C) = ‖u‖L2(O×(0,δ/2),C) ≤ Cδ‖∇u‖L2(O×(0,δ/2),C) ≤ Cδ3/2‖u‖H2(Ω+,C).
(3.25)

The constant does not depend on δ.

Lemma 3.1. The solution uδ satisfies

‖uδ − u‖L2(Ωδ,C) ≤ Cδ3/2‖f‖L2(Ω,C), ‖uδ − u‖H1(Ω,C) ≤ Cδ1/2‖f‖L2(Ω,C). (3.26)

The constant does not depend on δ.

Proof. Recall the weak formulations∫
Ω

A∇uδ · ∇ψ dx− ω2

∫
Ω

εδuδ · ψ dx =iω

∫
Ω

f · ψ dx,∫
Ω

A∇u · ∇ψ dx− ω2

∫
Ω

ε3u · ψ dx =iω

∫
Ω

f · ψ dx,
∀ψ ∈ H1

0 (Ω,C)

Subtracting we get∫
Ω

A∇(uδ − u) · ∇ψ dx− ω2

∫
Ω

εδ(uδ − u) · ψ dx = ω2

∫
Ωiδ

(εδ − ε3)u · ψ dx

Substitute ψ = uδ − u∫
Ω

A∇(uδ − u) · ∇(uδ − u) dx− ω2

∫
Ω

εδ|uδ − u|2 dx = ω2

∫
Ωiδ

(εδ − ε3)u · (uδ − u) dx. (3.27)

Let us look at the imaginary part. The above equality yields

−ε2

∫
Ωiδ

|uδ − u|2 dx = (ε1 − ε3)δ2

∫
Ωiδ

=(u · (uδ − u)) dx+ ε2

∫
Ωiδ

<(u · (uδ − u)) dx.

So, we have ∫
Ωiδ

|uδ − u|2 dx ≤ (1 + Cδ2)‖u‖L2(Ωiδ,C)‖uδ − u‖L2(Ωiδ,C)

where C does not depend on δ. Then, from (3.25) we get

‖uδ − u‖L2(Ωiδ),C ≤ C‖u‖L2(Ωiδ,C) ≤ Cδ3/2‖u‖H2(Ω+,C) ≤ Cδ3/2‖f‖L2(Ω,C). (3.28)
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This estimate together with (2.8)1 leads ‖uδ − u‖L2(Ωδ,C) ≤ Cδ‖f‖L2(Ω,C). This estimate will be improved
below.

Now, let us look at the real part. We have∫
Ω

A∇(uδ − u) · ∇(uδ − u) dx

= −ω2 ε2

δ2

∫
Ωiδ

=(u · (uδ − u)) dx+ ω2

∫
Ω

<(εδ)|uδ − u|2 dx+ ω2

∫
Ωiδ

(ε1 − ε3)<(u · (uδ − u)) dx.

Then, the above estimate of ‖uδ − u‖L2(Ωδ) together with (3.28)-(3.25)2 give

α

∫
Ω

|∇(uδ − u)|2 dx ≤ ω2

∫
Ω

<(εδ)|uδ − u|2 dx+ ω2
(ε2

δ2
+ |ε1 − ε3|

)
‖u‖L2(Ωiδ)

‖uδ − u‖L2(Ωiδ)

≤ Cδ2‖f‖2L2(Ω,C) + ω2
(ε2

δ2
+ C|ε1 − ε3|

)
δ3‖f‖2L2(Ω,C) ≤ Cδ‖f‖

2
L2(Ω,C)

where C is independent of δ. This proves (3.26)2. Now, (3.28)-(3.26)2 together with (2.8)1 yield (3.26)1.

4 Asymptotic behaviour of the the sequence
{
uδ − u

}
δ
.

Set
vδ = uδ − u.

This function belongs to H1
0 (O,C) and is the solution to∫

Ω

A∇vδ · ∇ψ dx− ω2

∫
Ω

εδvδ · ψ dx = ω2

∫
Ωiδ

(εδ − ε3)u · ψ dx, ∀ψ ∈ H1
0 (Ω,C).

4.1 The unfolding operator T #
δ

We use the method described in [9, Subsection 13.7.2]. Denote

Y .
=
(
0, 1
)2 × R and Y

.
= (0, 1)2 × (−1/2, 1/2)

and x′ = (x1, x2).

Definition 4.1. For ϕ Lebesgue-measurable on O × R, the unfolding operator T #
δ is defined by

T #
δ (ϕ)(x′, z) =

ϕ
(
δ
[x′
δ

]
Y ′

+ δz′, δz3

)
for a.e. (x′, z) ∈ Ôδ × Y

0 for a.e. (x′, z) ∈ Λδ × Y.

Proposition 4.1 (Properties of the operator T #
δ ).

1. For any ϕ ∈ L1(O × R),∫
O×Y

T #
δ (ϕ)(x′, z)dx′dz =

1

δ

∫
O×R

ϕdx− 1

δ

∫
Λδ×R

ϕdx =
1

δ

∫
Ôδ×R

ϕdx.

2. For any ϕ ∈ L2(O × R),

‖T #
δ (ϕ)‖L2(O×Y) ≤

1√
δ
‖ϕ‖L2(O×R).

3. Let ϕ ∈ H1(O × R), then

δ−1∇z(T #
δ (ϕ)) = T #

δ (∇ϕ) a.e. in Ôδ × Y.

The proofs are omitted here as it can be proved following the similar lines of arguments in [7] and [9, Subsection
13.7.2].
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Now, estimates (3.26) yield

‖T #
δ (vδ)‖L2(O×Y) ≤ C‖f‖L2(O),

‖T #
δ (vδ)‖L2(O×Y ) ≤ Cδ‖f‖L2(O),

and
∥∥∇z(T #

δ (vδ)
)∥∥
L2(O×Y)

≤ Cδ‖f‖L2(O).

(4.1)

Denote H1(Y) the closure of H1
per(Y)

.
=
{

Φ ∈ H1(Y) | Φ is e1 and e2 periodic
}

for the norm

‖v‖H
.
=

√∫
Y

|v|2 dz +

∫
Y
|∇zv|2 dz, v ∈ H1(Y).

Remind that for every ζ > 1/2 and every Φ ∈ H1(Y) one has

‖Φ‖2L2((0,1)2×(−ζ,ζ)) ≤ 4ζ‖Φ‖2L2(Y ) + ζ2‖∇zΦ‖2L2((0,1)2×(−ζ,ζ).

As a consequence, we get for every Φ ∈ H(Y)

∀ζ > 1

2
, ‖Φ‖H1((0,1)2×(−ζ,ζ)) ≤ 2ζ2‖Φ‖H.

From the estimates (4.1), there exists a subsequence of {δ}, still denoted {δ} and v ∈ L2(O;H(Y)) such that

T #
δ (vδ) ⇀ 0 weakly in L2(O × Y),

1

δ
T #
δ (vδ) ⇀ v weakly in L2(O;H1

loc(Y)),

∀ζ > 1

2
,

1

δ
T #
δ (vδ) ⇀ v weakly in L2

(
O;H1((0, 1)2 × (−ζ, ζ))

)
,

1

δ
∇z
(
T #
δ (vδ)

)
⇀ ∇zv weakly in L2(O × Y)3.

(4.2)

Lemma 4.1. We have
1

δ
T #
δ (u) −→ u1 strongly in L2(O × Y )

where u1 = z3
∂u

∂x3 |Γ
a.e. in O × (0, 1)2 × (0, 1/2) and u1 = 0 a.e. in O × (0, 1)2 × (−1/2, 0).

Proof. From (3.25) and Proposition 4.1, one has

‖T #
δ

(
δ−1u

)
‖L2(Ω×(0,1)2×(0,1/2)) ≤ δ−1/2‖

(
δ−1u

)
‖L2(Ωδ) ≤ C‖f‖L2(Ω,C),∥∥∥∇zT #

δ

(
δ−1u

)∥∥∥
L2(Ω×(0,1)2×(0,1/2))

=
∥∥∥T #

δ (∇u)
∥∥∥
L2(Ω×(0,1)2×(0,1/2))

≤ δ−1/2 ‖∇u‖L2(Ωδ)
≤ C‖f‖L2(Ω,C).

One also has ((i, j) ∈ {1, 2, 3}2)∥∥∥ ∂2

∂zi∂zj
T #
δ

(
δ−1u

)∥∥∥
L2(Ω×(0,1)2×(0,1/2))

= δ
∥∥∥T #

δ

( ∂2u

∂xi∂xj

)∥∥∥
L2(Ω×(0,1)2×(0,1/2))

≤ δ1/2 ‖u‖H2(Ω,C)

≤ Cδ1/2‖f‖L2(Ω,C).

Thus, there exists u1 ∈ L2(O;H2((0, 1)2 × (0, 1/2))) such that for a subsequence

T #
δ

(
δ−1u

)
⇀ u1 weakly in L2

(
Ω;H2((0, 1)2 × (0, 1/2))

)
4

∂2

∂zi∂zj
T #
δ

(
δ−1u

)
−→ 0 strongly in L2(Ω× (0, 1)2 × (0, 1/2)).

Since u(x′, 0) = 0, we have
∂u

∂xi
(x′, 0) = 0 for i = 1, 2 and T #

δ

(
δ−1u

)
= 0 a.e. on O × (0, 1)2 × {0} and due to

the above convergences, one has

u1(x′, z) = z3u1,3(x′) for a.e. (x′, z) ∈ O × (0, 1)2 × (0, 1/2).

By [9, Lemma 13.24(iii)], we have for any Φ ∈ H1(Ω+)

T #
δ (Φ) −→ Φ|Γ strongly in L2(O × (0, 1)2 × (0, 1/2)).

11



It also holds for Φ = A. Thus

∂

∂z3
T #
δ

(
δ−1u

)
= T #

δ

(
∂u

∂x3

)
−→ ∂u

∂x3 |Γ
strongly in L2(O × (0, 1)2 × (0, 1/2)).

Hence u1 = z3
∂u

∂x3 |Γ
a.e. in O × (0, 1)2 × (0, 1/2) and u1 = 0 a.e. in O × (0, 1)2 × (−1/2, 0).

Now, we will identify v. Let us consider the test function Ψδ
ζ(x) = ψ(x′)Ψζ

({x′
δ

}
,
x3

δ

)
where ψ ∈

C∞0 (O), Ψζ ∈ H1
per,e1,e2

(
Y
)
, satisfying Ψζ(·, z3) = 0 for all |z3| > ζ > 1.

If δ is small enough, one has δζ < L, so ψδ is an admissible test function. Then

T #
δ (Ψδ

ζ)→ ψΨζ strongly in L2(O;H(Y)),

δT #
δ (∇Ψδ

ζ)→ ψ∇zΨζ strongly in L2(O × Y).

Now, let us consider the weak form with the test function ψδ

δ

∫
O×Y

T #
δ AT #

δ ∇vδ · T
#
δ ∇ψδ dx

′dz − ω2δ

∫
O×Y0

T #
δ (εδ)T #

δ vδ · T #
δ ψδ dx

′dz

− ω2δ

∫
O×Y\Y0

ε3T #
δ vδ · T #

δ ψδ dx
′dz = ω2δ

∫
O×Y

T #
δ (εδ − ε3)T (u)T #

δ (ψδ) dx
′dz. (4.3)

Due to convergences (4.2), one has

δ

∫
O×Y

T #
δ AT #

δ ∇vδ · T
#
δ ∇ψδ dx

′dz − δω2

∫
O×Y0

T #
δ (εδvδ) · T #

δ ψδ dx′dz − δω2

∫
O×(Y\Y0)

ε3T #
δ vδ · T #

δ ψδ dx
′dz

=

∫
O×Y

T #
δ A∇zT #

δ (δ−1vδ) · T #
δ (δ∇ψδ) dx′dz − ω2

∫
O×Y0

T #
δ (δεδvδ) · T #

δ ψδ dx′dz

− ω2δ

∫
O×(Y\Y0)

ε3T #
δ vδ · T #

δ ψδ dx
′dz

−→
∫
O×Y

A(x′, 0)∇zv · ∇zψ dx′dz − iω2ε2

∫
O×Y0

v · ψ dx′dz.

Lemma 4.1 gives
T #
δ (δ−1u) ⇀ du3 and T #

δ (δεδu) ⇀ iε2u1 weakly in L2(O × Y ).

Moreover

δ

∫
O×Y0

T #
δ (εδ − ε3)T (u)T #

δ (ψδ) dx
′dz =

∫
O×Y0

(
T #
δ (δεδu)− T (δε3u)

)
T #
δ (ψδ) dx

′dz

→ iε2

∫
O×Y0

du3ψ dz.

Thus, passing to the limit (δ → 0) gives∫
O×Y

(
A(x′, 0)∇zv · ∇zΨζ

)
ψ dx′dz − iω2ε2

∫
O×Y0

(
v ·Ψζ

)
ψ dx′dz = iω2ε2

∫
O×Y0

du3Ψζψ dx
′dz (4.4)

for all ψ ∈ C∞0 (O), Ψζ ∈ H1
per

(
Y
)
, satisfying Ψζ(·, z3) = 0 , ∀ |z3| > ζ > 1.

∫
O

(∫
Y
A(x′, 0)∇zv · ∇zΨζdz − iω2ε2

∫
Y0

v ·Ψζdz − iω2ε2

∫
Y0

du3Ψζdz

)
ψ dx′ = 0 (4.5)

for all ψ ∈ C∞0 (O). Hence,

∫
Y
A(x′, 0)∇zv · ∇zΨζdz − iω2ε2

∫
Y0

v ·Ψζdz = iω2ε2

∫
Y0

du3Ψζdz a.e x′ ∈ O. (4.6)
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By a density argument, we finally get that v satisfies∫
Y
A(x′, 0)∇zv · ∇zψ dz − iω2ε2

∫
Y0

v ψ dz = iε2

∫
Y0

u1 ψ dz, ∀ψ ∈ H(Y), a.e. in O. (4.7)

Now, let v1 and v2 be two solutions of (4.7). Then, v̂ = v1 − v2 satisfies∫
Y
A(x′, 0)∇z v̂ · ∇z v̂ dz − iω2ε2

∫
Y0

|v̂|2 dz = 0. (4.8)

By equating the real and imaginary parts we get ‖∇z v̂‖ = 0 in Y and ‖v̂‖ = 0 in Y0. Hence v̂ = 0 in Y. Thus
(4.7) admits a unique solution.

Let V ∈ H(Y) be the solution to∫
Y
A(x′, 0)∇zV (z) · ∇zψ(z) dz − iω2ε2

∫
Y0

V (z)ψ(z) dz = iω2ε2

∫
Y +

0

z3ψ(z) dz, ∀ψ ∈ H(Y),

where Y +
0 = Y0 ∩ (0, 1)3. Then, we have

v(x′, z) = V (z)
∂u

∂x3
(x′, 0) a.e. in O × Y.

Lemma 4.2. There exists two positive constants C and c independent of ζ such that

∫
(0,1)2×(ζ,∞)

|∇zV |2 dz ≤ Ce−cζ , ∀ζ ≥ 0, and

∫
Y
z3|∇zV |2 dz ≤ C.

Moreover, ∇zV ∈ L1(Y)3 and there exist two complex numbers V(+∞), V(−∞) such that as ζ → +∞

V (·, ζ) −→ V(+∞) strongly in L2((0, 1)2),

V (·,−ζ) −→ V(−∞) strongly in L2((0, 1)2).

Proof. The proof is similar to that of [9, Lemma 13.26] with the test function φ(z3) where φ ∈ C∞0 (1,∞).

5 Appendix

This section is devoted to give some explicit constants involved in the estimates which are of numerical
importance. The proof of Lemma 2.1 is provided below.

Proof of Lemma 2.1. First, for every v ∈ H such that k2‖v‖2H − k3‖v‖2L ≤ 0 and accounting for the first
condition of the lemma,

|a(v, v)| ≥ |=(a(v, v))| ≥ k1k2

k3
||v||2H , ∀v ∈ H such that k2‖v‖2H − k3‖v‖2L ≤ 0.

Now, if k2‖v‖2H − k3‖v‖2L ≥ 0 then

|a(v, v)|2 = |<(a(v, v))|2 + |=(a(v, v))|2 ≥ (k2‖v‖2H − k3‖v‖2L)2 + k2
1‖v‖4L. (5.1)

Let us introduce the quadratic form Q defined for every (x1, x2) ∈ R2 by

Q(x1, x2)
.
= (k2x1 − k3x2)2 + k2

1x
2
2 = XTAX,

with

X =

(
x1

x2

)
, A =

(
k2

2 −k2k3

−k2k3 k2
3 + k2

1

)
.

The eigenvalues of the matrix A are

µ± =
k2

2 + k2
3 + k2

1 ±
√

∆

2
> 0,

where ∆ = ((k2 − k1)2 + k2
1)((k2 + k1)2 + k2

1) > 0. In this case the Rayleigh quotient is bounded so that,

0 < µ− ≤ XTAX

XTX
≤ µ+.
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It follows that
Q(x1, x2) = XTAX ≥ µ−(x2

1 + x2
2) ≥ µ−x2

1.

Then, using the inequality (5.1) and the above inequalities, the form a(·, ·) satisfies

|a(v, v)|2 ≥ Q
(
‖v‖2H , ‖v‖2L

)
≥ µ−‖v‖4H , ∀v ∈ H such that k2‖v‖2H − k3‖v‖2L ≥ 0.

Taking β1 = min
{k1k2

k3
,
√
µ−
}
> 0, one obtains finally

|a(v, v)| ≥ β1‖v‖2H , ∀v ∈ H,

which implies that the sesquilinear form a(·, ·) is coercive w.r.t. ‖ · ‖H .

Remark 5.1. The exact constant in the estimate (3.5) is

C ′(δ, θ) = min

αθτ ,
√
α2 + (ω2τ)2 + (ω2θ)2 −

√
((α− ω2θ)2 + (ω2θ)2)((α+ ω2θ)2 + (ω2θ)2)

2

 > 0.
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