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Homogenization of Helmholtz equation in a periodic layer to study Faraday
cage-like shielding effects

S Aiyappan!, Georges Griso?, and Julia Orlik?

Abstract

The work is motivated by the Faraday cage effect. We consider the Helmholtz equation over a 3D-
domain containing a thin heterogeneous interface of thickness § < 1. The layer has a §—periodic structure
in the in-plane directions and is cylindrical in the third direction. The periodic layer has one connected
component and a collection of isolated regions. The isolated region in the thin layer represents air or liquid,
and the connected component represents a solid metal grid with a § thickness. The main issue is created
by the contrast of the coefficients in the air and in the grid and that the zero-order term has a complex-
valued coefficient in the connected faze while a real-valued in the complement. An asymptotic analysis with
respect to 6 — 0 is provided, and the limit Helmholtz problem is obtained with the Dirichlet condition on
the interface. The periodic unfolding method is used to find the limit.
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1 Introduction

The work is motivated by a design of shielding textile material, that is, to design the periodic distance
between yarns in the grid and the fiber thickness so that the material would act as a shield on a particular
frequency. Therefore, in the appendix, we provide the explicit dependency of all the constants on geometric
parameters. The main modeling issue here is the chosen contrast in the coefficients of the grid compared to the
surrounding air or fluid. It is chosen as an order of =2, which leads to the complete shielding (zero Dirichlet
boundary condition on the interface), while §~! leads to a partial shielding and depends on the grid design.
The first case is focused in this article while the later case will be handled in another paper.

In this work, we consider the Helmholtz equation for two domains separated by a thin heterogeneous layer of
the thickness 0 < 1. The layer has an §— periodic structure in plane directions and is cylindrical with respect
to the third direction, i.e., the in-plane structure is the same in all cross-sections. Two balks are connected
by one of the components and another component is connected in the layer across the periodicity cells. The
isolated region should represent an air or liquid and the connected plane grid with a thickness § a solid, maybe
metal. The first main issue is that the zero order term has a complex-valued coeflicient in the connected faze
(the grid) and a real-valued in the isolated regions and in the the bulk. The second issue is the contrast in the
imaginary part of the zero-order-term-coefficient in the solid (may be metal), which relates as 62 to all other
coefficients.

There is a huge literature on shielding problems. One can refer to [1, 11] concerning the acoustic wave
propagation and the Maxwell equations have been extensively studied in [10, 18, 4, 5, 6, 17, 19, 13].

There exists a large number of papers devoted to the problems with thin layers of different structure. De-
pending on the relation between small parameters involved in geometry and stiffness of the layers, different
limit problems can be obtained. In particular, [8] deals with the Neumann sieves of different thickness and sizes
of inclusions. The articles [2, 3] consider the case of a thin stiff layer. A case of a soft homogeneous layer is
discussed in [12, 14]. An interface problem with contrasting coefficients has been analysed in [20].

For the study of the limiting behaviour we use the periodic unfolding method, which was first introduced
in [7], later developed in [9]. This method was used for different types of problems, particularly, problems for
the thin layers in [8] and contact problems in the thin layer [14].

A regularization for the imaginary coefficient in front of the zero-order term was introduced and a uniform
convergence with respect to this regularizing coefficient was proven. That is, we start with the regularized
problem, show its convergence to the initial one, then pass to the limit in the regularized problem and then
pass to the limit with the regularized parameter. Similar technique was used in [16] to regularize the contact
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problem with Coulomb’s friction.

The geometrical setting is similar to the one from [15], just in the complement to the domain the contrast
in coeflicients is considered.

The paper is organized in the following way. Section 2 provides the geometric setting and preliminary
estimates of the solution. The wellposedness of the original problem and the convergence are studied in Section
3. Section 4 investigates the asymptotic analysis of the problem. Finally, the exact constants are given in the
Appendix, those are expressed in terms of physical known constants, size of the domain, frequency and the
source term. Those are important to design a shield with a particular frequency.

2 Geometrical setting and problem description

This section is devoted to describe the geometric structure of the domain and introduce the problem under
consideration. In the Euclidean space R? consider a domain O with a C*! boundary and let L > 0 be a fixed
real number.

Define
0f =0x(65/2.L),
Qs =0x(-4/2,6/2), (2.1)
Q5 =0x(-L,-4/2),

and

I'=0 x {0}.

Figure 1: 3D-domain €2

Figure 2: Grid structure and the reference cell.

Now, let us describe the thin layer. A model picture is given in Fig. 1 and 2. Here ¢ is a small parameter
corresponding to the thickness of the layer and also the periodicity parameter in x; and x5 directions.



The layer 25 has a periodic in-plane structure. The unit cell Y is given by
Y = (0,1)% x (=1/2,1/2) C R®.

Let Yy and Y; are two open subsets of Y. The set Yj, as shown for example in Fig. 2 and Fig. 3, is an

Figure 3: 2D reference cell Yy

open set with Lipschitz boundary satisfying Yo C Y, it will represent the periodic ”grid” and its complement
Y1 =Y \ Yy # 0 represents the air or material with less conductivity.

By scaling and translating Yy in 1 and x5 direction, we get the thin grid Qg as follows

Z5 = {(&,&) €27 | §(ére1 + brer +Y) C O}, (2.2)

Q% = Interior U §(&re1 + Laer + Y)), (2.3)
£EEs

O; = Interior U 5(&rer + e +[0,1]7), (2.4)
£E€Es

As =0\ O (2.5)

where e; and e, are the canonical vectors e; = (1,0,0) and ez = (0,1,0). The grid/wire structure 5 is made
up of a conducting material and holes between the grid, 25 is defined as

05 = Qs \ Q5.

2.1 A preliminary result

Denote H and L two Hilbert spaces satisfying H C L. Below, we give a lemma with the exact computation
of the constant.

Lemma 2.1. [21] Let a : H x H — C be a continuous sesquilinear form satisfying
1. S(alu,u))| > ki||ul|2 for allu € H for some ki > 0,
2. [R(a(u,w))| > kallull% — ks|u||% for allu € H for some ka, ks > 0.
Then, there exists a constant C' > 0 which only depends on ki, k2, and k3 such that
la(u,u)| > C|lull%, Yu € H.

The proof of this result with the exact constant is postponed to the appendix.

2.2 The Helmholtz problem

Let o, B,w € RT be fixed. Let M (o, 3,) be the set of all real valued matrix functions A € W1 (Q, R3%3)
such that

ale? < (4€,€), A QI < BIEIIC]
for all (£,¢) € C® x C3. Here (-,) is the usual C3 inner product.
Let us consider the following Helmholtz problem:
—div(AVus) — w?esus = iwf in Q
us =0 on 0.



where f € L%(,C) satisfies supp f C @ and

es(x) =1+ 22—3 if o e Qf, es(x) =e3 if € Q\ QL (2.6)

The ¢;’s are strictly positive constants.
The weak form of the above problem is given by

Find us € H (€, C) such that

_ _ _ 2.7
/AVu(;-dea:—wQ/egug-wdx:iw/f-wdx, Vi € Hy(Q,C). 2.7)
Q Q Q
The following lemma recalls a classical result which will be used in the upcoming sections.
Lemma 2.2. For every v € H*(Q5,C) one has
lollzzsc) < C(Iollzap.e) + 8190l 2@sc) )
2 2 2 2 (28)
ool ar.c) < C(IW3e@nc) + N9V 2(000 )
The constant does not depend on 6.
Proof. Note that for ¢ € H'(Y,C)
I6llz2vey < C(I9llz2gvi,c) + Vel 2y ). (2.9)

This is a classical inequality, one can proceed by contradiction and use the compact embedding of L?(Y,C)
in HY(Y,C) for a simple proof. Then, use a change of variables to give the estimates in the d-cells, add the
obtained inequalities to get (2.8);, then prove (2.8)s. O

3 Existence of the solution to the Helmholtz problem

We endow L?(Q, C) with the scalar product
(u,v) :/ uvdz .
Q

(AVu, Vo) = / AVu-Vuvdx for u,v € HY(Q,C)
Q

Denote

and

=g, ae in QF, e =e3 ae in Q\ QL

The wellposedness of the Helmholtz problem (2.7) is proved in the following theorem.

Theorem 3.1. Assume that w’es is not an eigenvalue of —div (AV) in H}(QT,C). Then, there exist two
strictly positive constants 6oy and C such that for every § € (0,68] and every f € L?(Q,C), problem (2.7) admits
a unique solution us € Ha (), C) satisfying

llus|| g1 ,0) < Cllfllz2@,0)- (3.1)
We remark about the constant in the appendix.
Proof. Step 1. In this step we prove that there exists dp > 0 such that: if us € H}(Q,C), 6 € (0, 5], satisfies

€2

<AVU5, v¢> - (“)2 <56u5, ¢> - iwz o 52
5

us pdr =0, Vo € H}(Q,C) (3.2)
then us = 0.
First observe that us satisfying (3.2) also satisfies us = 0 a.e. in Q5.

We proceed by contradiction. Suppose that for every n € N\ {0} there exist 6, € (0,1/n] and us;, € H}(Q,C)
such that

e =1, us, =0 ae. in Qfsn, (AVus, Vo) = w2<55"u(sn,¢>, Vo € H&(Q,C).

l|us,,



Set
us

vs, = T
" us, Iz,

By (3.2), we have (as A € M(«, 3,9))
Vs, [1720,0) < C

w2 max{sl, 53}

where C' = is independent of 4,,. Then, up to a subsequence one has

vs, — v weakly in H}(Q,C), vs, — v strongly in L?(Q2, C).

The strong convergence in L?(2,C) implies [|v]|r2(0,c) = 1. Using (2.8)1 2, we obtain that v = 0 a.e. on I’
(since [[vs, |72y < CV/0,) and thus

(AVv, V) = wle3(v,¢) Vo € HHOQF,C). (3.3)
This means that w?e3 is an eigenvalue and v an eigenfunction of —div(AV) in HE(QF,C).
—div(AVv) = w?ezv in OF, v e H} (QF,C).

This contradicts the assumption of the theorem. Hence, the claim of this step is proved.
In the following steps we assume d € (0, do].
Step 2. In this step we fix § € (0, dp] and we prove that problem (2.7) admits solutions.

Set . ' o
€ = 5—3 a.e. in Qf, gy =0 ae. in Q\Q

. . . €
where 6 is a strictly positive constant less than —;

We consider the following variational problem:

Find u} € H}(Q,C) such that

(AVug, V) — w2<65u§, @) — iw? /Q Eg ugadx = iw /Q fodx, Vo € Hy(Q,C). (3.4)

Define B : H(Q,C) x H}(2,C) — C by
BY(u,v) = (AVu, Vo) — w?(e%u,v) — iwz/ﬂag uvdr.
Note that
3(B) (w,w)| = Ollullteoc),  RBY(u,u)) = allullf ey — mw?llulZa@.c)-
where the constant 7 = max{e1,e3}. Besides, we have
|B5 (u, 9)| < Bl(u, $) 1] +w?|(%u, )] +w2/953 |ug| dz < C(0)l|ull |l -
Hence by Lemma 2.1 (H = H}(Q,C), L = L?(Q,C)), we have that B} is elliptic and bounded, that is
| B (u, w)| > C'(8,6)||ull3- (3-5)

The explicit value of C’(4,0) is remarked in Section 5, therefore for § small enough (less than a strictly positive
constant C(«a,T,w)) one has C'(4,0) = y Hence, for 6 small enough, by Lax-Milgram, we have a unique
T

solution uf of the problem (3.4) and

Tw Tw diam()
Vg || 2 0,c) < @||f||L2(sz,<C)7 [ugl| 72 00y < Tﬂf“m(sz,ccy
where diam()) comes from the Poincaré inequality.

Claim 1: There exists a constant C(4, f) such that for # small enough (less than e2/6? and C(a,T,w))
lugll L2 .00 < C(6, f).



First, let us replace the test function ¢ in (3.2) with the solution to get

(AVUY, Vul) — iwz/

& |ug|2d:r:iw/f?gdx+w2/55|u§\2dx. (3.6)
Q Q Q

By equating the real part one arrives at
(AVUY, Vul) = fw/ %(f?g) dx +w2/ eluf|? da
Q Q

and then
a||Vu§||2L2(Q’C) < [(AVuf, Vud)| < w/ |fu§|dx+w2/ O |ul)? da
Q Q (3.7
< wllfllez@.0llufliz2 .0 + @ Tllu§lZe .0
Now, f and 6 € (0,0¢] being fixed, we prove the claim by contradiction. If there exists a sequence {0y}
converging to 0 such that ||u§’°||L2(Q,<C) — +o0. Set
)
Or _ uék

’Ué =T
||u§kHL2(Q,<C)

By (3.7), we have
0
[Vus* ||2L2(Q,<C)

k ”2 -
L2(Q,0)

IVog 320,00 = =
@O [lus

I1fllz2 0,0

where C' = g(1+wr) is independent of 0y, (as < 1). Thus vg’“ is bounded in Hg (£, C) independent

0
llus*ll L2 (2.c)
of 0;. Then, up to a subsequence one has

vgk — w5 weakly in Hj (9, C), vg’“ — v strongly in L?(2, C).

Let us divide the equation (3.4) by ||ug"' ll2(a,c) to get
(AVVIF V) — w? (%02, ¢) — iwz/ e, v pdx = #/ fodx, Yo € H} (Q,C).
Q2 lus |l z2(0,c) Jo

Now, pass to the limit as 6 — 0 to get

€2

(AV05, V) — w?(eDvg, 6) — iw? / 2 usddr=0 Yo e HY(Q,0) (3.8)
o

As H'ng”[ﬁ(ﬂ’(c) = 1 and the strong convergence in L?(Q,C), we have ||v5]/12(q,c) = 1. So by Step 1, vs = 0
which is a contradiction.

As a consequence one has
V0 € (0, min{e2/6%, C(a,7,w)}], [udll 2.0 < C (6, f).

This proves the Claim 1. Thus [|[Vu§||12(0,c) < C(6, f).

Now, let 0, be a sequence converging to 0, such that ug’“‘ — ug weakly in H} (2, C). Hence, passing to the limit,
the equation (3.4) becomes

€2

(AVus, V) = w? (e us, ¢) — iw” /Q 5z U ddu = iw /Q fédz,  Vé€H(Q,0) (3.9)

which proves that (2.7) admits solutions. Then, Step 1 ensures that (2.7) admits a unique solution.

Step 3. In this step we prove that the unique solution of problem (2.7) satisfies

lusl .00 < Cllfllz2@.0)-

Claim 2: There exists a constant C' > 0 such that

sup lus(f)ll 22,0y < C. (3.10)
5€(0,60), FEL2(R,C), Ifll 12,0 =1



Here, us(f) denote the unique solution to (2.7).
Suppose not, then there exists a sequence {d; }ren converging to §* € [0, 5o] and fr € L?(Q, C) with Il fellL2,0) =
1, such that klim lus, || 22(o,c) — +o0.

—400

Case 1: 0* = 0. Now, (2.7) gives
. € . __
(AVus, , Vug, ) — w? /Q % |ug, | dx — iw? /Q 5.2 22 lus, |* do = zw/ frus, dx. (3.11)
5, Ok Q

By considering the imaginary parts, one gets

€2 —
WQ/. 52 |us, |* do < W/ (R(fwts,)| de < ol frll 2.0 llus, [ 2.0) < Cllus, | 2@.0)- (3.12)
i Ok Q
Set
€ - u(;k
" us 2.0

Thus one gets

C

T 3.13
|us, |lz2(o.0) (3.13)

€2
w2/ ) |05, |? dar <
i Ok

and hence the LHS converges to 0.
The real part gives

[Vvs,llz2.c) < C (3.14)
Then, from Lemma 2.2 and the above estimates we get
lvs, |lL2(r,c) < C\/ok
where C' is independent of dx. So, up to a subsequence there exists v € H} (2, C) such that as k — oo
vs, — v weakly in H*(Q,C), vs, — v strongly in L?(Q, C).
The strong convergence in L?(€2, C) implies [|v||r2(0,c) = 1. Moreover, we have v = 0 a.e. on I'.
Let us divide the equation (2.7) by |lus, || z2(o,c) to get

(AVvs, , Vo) — w (%5, , d) — in/ 6—3 vs, ddr = L/ fr @ dx, Vo € Hy(Q,C).  (3.15)
a3, o lus, L2 2.0) Jo

Let ¢T (resp. ¢~) be in D(QT,C) (resp. D(Q,C)). If § is sufficiently small, one has

AVvak . Wdﬁ - wz / 53v5k¢jd:p = iw; fqﬁjdx,

o+ o+ lus, L2 ,0) Jo+

(resp. / AVus, - Vo~ dx — w2/ £3v5,0~ dr =10).
Passing to the limit yield

AVv-Vodr + w%—g/ vpdr =0, Yot € D(QT,C)

Qt Qt

and

/ AVv -Vodx + w253/ vodr =0, Vo~ € D(Q7,C). (3.16)

A density argument gives
(AVV, V) — wie3(v,¢) =0 Vo € HAH(QF,C)

where v € H} (2%, C) which, thanks to Step 1, contradicts the hypothesis of the theorem.



Case 2: §* # 0. As above (see the estimate (3.14)) we show that the sequence {vs, }1 is uniformly bounded in
H(Q,C). So, up to a subsequence there exists vs« € Hg (£, C) such that as k — oo

vs, — v~ weakly in H}(Q,C) and vs, — vs- strongly in L3(Q, C).

The second convergence is due to Rellich-Kondrasov Theorem. The imaginary part of the energy gives

52
/. \Uék\zdl’ﬁ 4

Q;, s, | z2(.c)

Note that
Xai (T) = Xoi, (x) for a.e. z €
k

where xp denotes the characteristic function of the set D. So, the above estimate and convergence imply that

Xqj Vo = 0 strongly in L?(Q,C).

Since the sequence {vs, }1 converges to vs« strongly in L3(2,C), we obtain v« = 0 a.e. in Q..
Besides, we get that ||vs, ||z2(,c) = 1 for all k£ and hence [|vs- r2(ox,) = 1 as vg, converges to vs- strongly in
L?(Q,C). Finally, passing to the limit in (3.15), we obtain that vs« satisfies

(AVse, Vo) 2z, 08) — wes(vs-, d)r2(an ) =0 Vo € Hy(Q.,C). (3.17)
Due to the result of Step 1, we have vs- = 0 which is a contradiction. This completes the theorem. O

Corollary 3.1. For every § € (0,0] and every f € L?(Q,C), the solution us € H}(Q, C) to the problem (2.7)
satisfies

lusl .0y + 6 lusll 2oy < Cllfllczo.e) (3.18)
where C' > 0 is independent of § and f.

Proof. The imaginary part of the energy of (3.9) gives

3 .
2 [l <o [ R de < ol e lul o
5

Thus one gets

_ 1
Y 2||U5||iz(gg,c) < E”fHL?(Q,C)Hu&HL?(Q,C) < ClIf1720.0)- (3.19)

Lemma 2.2 and estimates (3.18) yield
luslc2osc) < COllfllz2ey,  IVusllzz@ae) < Clifle,  luslleae) < CVOlfll@e).  (3.20)
Proposition 3.1. There exists u € H} (9, C) such that
us — u  weakly in H}(2,C). (3.21)

Moreover, u =0 a.e. in Q™ and u restricted to QT belongs to HE(QT,C) and is the unique solution of

AVu-Vodr — w263/ wodr = iw fodx, Yo € Hy(QF,C). (3.22)

Q+ Q+ Q+

Proof. First, there exist a subsequence of {4}, still denoted {4}, and u € H}(Q,C) such that
us —u weakly in Hj (5, C).

Observe that due to (3.20)3, one has u = 0 a.e. on I
Let ¢ (resp. ¢~) be in D(QF,C) (resp. D(Q~,C)). For every § sufficiently small, one has

/ AVugs - Vo de — wes / usptdr =iw [ fitdr,
Q+ Q+ Q+

(resp. / AVus - V= dx — w253/ usp—dr =0).



Passing to the limit yield

/ AVu - Vi dx — w253/ wp dr = iw/ f de, vyt e DT, C)
o+ Q+ Q-+
and
/ AVu -V dr — w263/ utp dr = 0, Yy~ € D(Q7,C). (3.23)
A density argument gives (3.22). This gives the existence, the uniqueness is followed by a similar arguments in

Step 1 of Theorem 3.1. O
As the boundary of O is C'!, we have ujg+ belongs to Hj(Q+,C) N H?*(Q,C) and

lull 2(0+,c) < Cllull g @+,c) < CllfllL20.0)-
We recall the following classical result: for every ¢ € H'(QT) one has

2

99

8$3

[01172(0x(0.6/2).0) < Ol1Dl 720+ c) +6° . (3.24)

L2(Q+,C)

As a consequence, the solution to problem (3.22) satisfies (remind that Vu € HY(Q,C?), Vu = 0 in Q™ and
u=0a.e. onl)

IVullr2(0s.0) = IVullL20x(0.5/2),0) < C6Y2|[ull 20+ ©)»

(3.25)
= |ullzz,0) = lull20x0,5/2),c) < COlVull 20 (0,6/2),0) < CO*?||ull 20+ ) -
The constant does not depend on 4.
Lemma 3.1. The solution us satisfies
lus = ull 20500 < C82| fllzeys  llus = ullmioe) < C82(Ifll2u0)- (3.26)
The constant does not depend on 6.
Proof. Recall the weak formulations
/AVU5~de—w2/€5u5-adx =iw [ f-dx,
¢ ¢ h Vip € HY (9, C)
/AVu~de—w2/53u-@dx=iw f-de,
Q Q Q
Subtracting we get
/ AV (us —u) - Vip dz — w2/ es(us —u) - dr = w2/ (65 —e3)u - dx
Q Q :
Substitute ¥ = us — u
/ AV (us —u) - V(us — u) dx — w2/ es|lus — ul|* dr = w2/ (es —e3)u - (us — u) dx. (3.27)
Q Q Qi
Let us look at the imaginary part. The above equality yields
752/ lus — u*dz = (g1 — £3)9? / S(u - (us —w)) dx + &9 R(u - (us —u)) da.
Qi o Qi
So, we have
[ s = do < (14 C8)ull o s = wlz2cos
5
where C' does not depend on §. Then, from (3.25) we get
lus = ull 2y, < Cllullzeayc) < C82lulluz@r o) < O fllr2@.0)- (3.28)



This estimate together with (2.8); leads |lus — ullz2(0s,c) < CO||fllL2(0,c)- This estimate will be improved
below.

Now, let us look at the real part. We have

AV (us —u) - V(us — u) dz
Q

= —WQ(% / S(u- (usg —w))de + w2/ R(es)|us — ul* dx + w2/ (e1 —e3)R(u - (usg — u)) de.
Qi Q o

5
Then, the above estimate of ||us — u||12(q,) together with (3.28)-(3.25)2 give

[
o [ 19 =) do < o? [ Res)lus —uf do -+ (5 +ler = al) ey

€2
52

where C is independent of §. This proves (3.26)2. Now, (3.28)-(3.26)2 together with (2.8); yield (3.26);. O

|us _UHLQ(Qg)

< O8I f 2aacy + < (52 + Cler — 3l £ B2y < OOl 2

4 Asymptotic behaviour of the the sequence {w; — u} 5

Set
Vs = Us — U.

This function belongs to Hg (O, C) and is the solution to

/ AVvs - Vi dx — wz/ esvs - Y dr = w2/ (65 — e3)u - dx, Vip € Hy(Q,C).
Q Q Qi

4.1 The unfolding operator ’T(;#
We use the method described in [9, Subsection 13.7.2]. Denote

Y=(0,1)° xR and Y =(0,1)% x (=1/2,1/2)
and 2’ = (z1, 22).

Definition 4.1. For ¢ Lebesque-measurable on O x R, the unfolding operator 7:;# 1s defined by

/

E#(w)(x',z) _ 50(5{%} v + (52',523) for a.e. (2',2) € Os x Y

0 for a.e. (z',2) € As x V.

Proposition 4.1 (Properties of the operator 7:5#).
1. For any ¢ € L'(O x R),

/ pdx.
65 xR

Sell

1 1
T (o) (2, 2)da'dz = f/ pdr — f/ pdr =
OxYy o OxR o As xR

2. For any ¢ € L*(O x R),

1
\|73#(%0)||L2(0xy) < %”‘P”LQ(OXR)-
3. Let p € HY (O x R), then
SIWVATH (@) = T (Vo) ace in O x V.

The proofs are omitted here as it can be proved following the similar lines of arguments in [7] and [9, Subsection
13.7.2).
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Now, estimates (3.26) yield

1T (v8) 22 (0x3) < CllFlz20):
175 @s)llszoxv) < Colflzco), (@)
and ||VZ<7:5#(U5))||L2(0><31) < Co|[fllz2(0)-

Denote H'(Y) the closure of H).,.(V) = {® € H'(Y) | ® is e; and e, periodic} for the norm

per

o]l = \// \v\2dz+/ Vool2ds,  we HYY).
Y %

Remind that for every ¢ > 1/2 and every ® € H'())) one has

1017 20,1)2 % (—c.c0) < 4CUPN 20y + ClVPNT2(0,1)2 % (—c.0)-
As a consequence, we get for every ® € H(Y)

1

V¢ > 5 1@l 1 (0,1)2 % (—c.c) < 262 @

From the estimates (4.1), there exists a subsequence of {d}, still denoted {6} and v € L?(O;H())) such that
7}#(1)5) — 0 weakly in L*(O x ),

1
57}#(1&5) — v weakly in L*(0O; H. .())),

(4.2)

VC>1

2’ %TS#(U&) — v  weakly in L? (O§ H'Y((0,1)% x (¢, C)))’

%vz (T (v5)) = V.v  weakly in L?(O x Y)*.

Lemma 4.1. We have 1
575 () — w1 strongly in L*(O x Y)

9]
where uy = 2367“ a.e. in O x(0,1)% x(0,1/2) and uy =0 a.e. in O x (0,1)% x (—1/2,0).
30

Proof. From (3.25) and Proposition 4.1, one has

\\7:5# (67 )|l L2 (% (0,1)2 x (0,1/2)) < 5_1/2“(5_1U)||L2(95) < Ol fllz2(,0),
V-7 (57| T (V)| <672 ||Vull oy < Clf 2@

L2Qx(0,1)2%(0,1/2)) H L2(Q2%(0,1)2x(0,1/2))

One also has ((4,5) € {1,2,3}?)

Thus, there exists uy € L2(O; H2((0,1)? x (0,1/2))) such that for a subsequence

62
822‘82’]‘

767 w)

< 61/2
L2(Qx(0,1)2%(0,1/2)) — lll 20,09

< 051/2||f||L2(Q,<C)~

8%u
= |7 |
L2(Q2x(0,1)2x(0,1/2)) Ts <3xi3xj)

T (67 ) — uy weakly in L2(Q; H2((0,1)% x (0,1/2)))*
82
8Zi82j

73# (6 'u) — 0 strongly in L*(Q x (0,1)% x (0,1/2)).

ou
Si 0)=0 h
ince u(x’,0) , we have o

-(2,0) = 0 for i = 1,2 and T (67 u) = 0 a.e. on O x (0,1)2 x {0} and due to

the above convergences, one has
ui (2, 2) = zzup 3(2’)  for ae. (2/,2) € O x (0,1) x (0,1/2).
By [9, Lemma 13.24(iii)], we have for any ® € H*(Q*)

T (®) — ®|r strongly in L2(O x (0,1)% x (0,1/2)).
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It also holds for ® = A. Thus

0 _ ou ou .
8—237:5#(6 L) =T (8:03) — Bra e strongly in L*(O x (0,1)% x (0,1/2)).
Hence u; = zg(?—u a.e. in O x (0,1)? x (0,1/2) and u; = 0 a.e. in O x (0,1)% x (—1/2,0). O
Z3|r
!/
Now, we will identify v. Let us consider the test function \I/g(x) = w(x')q/<<{%},%) where ¢ €
C3°(0), U¢ € H),\ o) 0, (), satisfying We(-, 23) = 0 for all |z5| > ¢ > 1.

If 6 is small enough, one has 6¢ < L, so ¢° is an admissible test function. Then

7:5#(\112) — ¢ ¢ strongly in L*(O;H(Y)),
ST (VW?) — V. W, strongly in L*(O x V).

Now, let us consider the weak form with the test function 1°

5 / THATH Vs - T Vips da' dz — w?s T (e5) T vs - T s da'dz
OxYy OxYy

—w? 3T v - T3 s da'dz = w26 T (25 — e3)T ()T (5) da'dz. (4.3)
OXy\YO OXy

Due to convergences (4.2), one has
) 7:;#A7;#Vv5 . %#Vwé dz'dz — dw? / 7:5# (esvs) - 7:5#@ dz'dz — dw? / 837:5#125 . 7:;#% dz'dz
OxYy OxYy Ox(Y\Yo)

- TH AV TH (67 vs) - T (OV0) da’dz — w? / T (0e5v5) - TP da'd=
OXy OXYO

— w2 5373#1)5 . 7:;#% dz'dz
Ox(Y\Yo)

— Az, 0)V v - V.9 dr'dz — iw’es / v-da'dz.
OoxYy OxYy

Lemma 4.1 gives
7:;#(5_111) — dus and 7:5#((55571) — igou;  weakly in L*(O x Y).

Moreover

5 T (e5 — e3)T ()T (5) da'dz = / (T (Oesu) — T (0e3u)) Ty (vs) dx'dz

OxYy OxYy

— iEg/ dusp dz.
OxYo

Thus, passing to the limit (§ — 0) gives

/ (A2, 0)V v - V. U¢)¢pda'dz — iwley /
OxYy

(v- V) da'dz = iw’es / duzV o da'dz (4.4)
OXYO

OxYy

for all ¢ € C§°(0), V¢ € H),, (), satisfying We(-,23) =0, V|2 > ¢ > 1.

/ (/ A2, 0)V,0 -V, Ucdz — iw?ey / v Uedz — iw?ey dug‘l'gdz) Ydr' =0 (4.5)
(@ Yy Yo Yo

for all ¢ € C§°(O). Hence,

/ A(2',0)V,v -V, Uedz — iw262/
Yy

v-Uedz = insg/ duzVedz ae 2’ €O. (4.6)
Yo

Yo
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By a density argument, we finally get that v satisfies

/ A(x',0)V, v -V i dz — iw252/
y

Yo

vipdz = iez/ uy Y dz, Vi € H(Y), a.e. in O. (4.7)
Yo

Now, let v; and vo be two solutions of (4.7). Then, v = v; — vo satisfies

/ A2, 0)V.0 - V. 0dz —iw?ey | |0]°dz =0. (4.8)
y Yo

By equating the real and imaginary parts we get [|[V,9|| =0 in Y and ||9]| =0 in Yy. Hence © = 0 in Y. Thus
(4.7) admits a unique solution.

Let V € H()) be the solution to

/ A2, 0)V.V(2) - V.4(2) dz — iw’ey / V(2)9(2) dz = iw’eq / N 23(2) dz, Vi € H(Y),
Y Y,

Yo 0
where Y;" = Y51 (0,1)%. Then, we have

v(z',2) = V(z)g—;(x’,O) a.e. in O x Y.

Lemma 4.2. There exists two positive constants C' and ¢ independent of ( such that

/ V. V|?dz < Ce™, ¥(>0, and / 2|V, V|?dz < C.
(0,1)2%(¢,00) y

Moreover, V,V € LY(Y)? and there exist two complex numbers V(+00), V(—o0) such that as ( — +00

V(-,¢) — V(400) strongly in L*((0,1)%),
V(-,—¢) — V(=00) strongly in L*((0,1)?).

Proof. The proof is similar to that of [9, Lemma 13.26] with the test function ¢(z3) where ¢ € C5°(1,00). O

5 Appendix

This section is devoted to give some explicit constants involved in the estimates which are of numerical
importance. The proof of Lemma 2.1 is provided below.

Proof of Lemma 2.1. First, for every v € H such that ka|[v||% — ksl|v]|2 < 0 and accounting for the first
condition of the lemma,

kik
la(v,v)| > |S(a(v,v))| > ;{}—32Hv||%{, Vv € H such that kollv||3 — kslv||% < 0.
Now, if ko|lv]|%; — k3v[|2 > 0 then
la(v,v)[> = [R(a(v,0))[* + [S(a(v,0)) [ > (ka|lv]|F — ksllvl|7)? + kT [o]L. (5.1)
Let us introduce the quadratic form @ defined for every (x1,z2) € R? by

Qz1,72) = (ka1 — k3w2)? + ki23 = XTAX,

_[*1 _ kg 7]432]{53
= () A= (e w¥)

The eigenvalues of the matrix A are

with

k3 + k3 + kI £VA
uE = 2+ 3"’21 \/>>

where A = ((ky — k1) 4+ k?)((k2 + k1)% + k?) > 0. In this case the Rayleigh quotient is bounded so that,

0,

0oy < XTAX _
bo="xrx =t

13



It follows that

Q(z1,29) = XTAX > p~ (aF +a3) > p~ a7,

Then, using the inequality (5.1) and the above inequalities, the form a(-,-) satisfies

ja(o,0)P = Q(ol%. IvI3) 2w lvlldy, Vo€ H such that koljvl% — kallo]3 = 0.

k1k
Taking 7 = min {¥7 \//r} > 0, one obtains finally

k3

la(v,v)] = Billvllz, Vv € H,

which implies that the sesquilinear form a(-,-) is coercive w.r.t. || - || 5. O

Remark 5.1. The exact constant in the estimate (3.5) is

> 0.

C'(6,6) = min a79 Vor + @+ @02 - V- w;‘))Q T (@20)%)((a + w20)? + («20)2)
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