Homogenization of Helmholtz equation in a periodic layer to study Faraday cage-like shielding effects
Georges Griso, Julia Orlik, Srinivasan Aiyappan

To cite this version:
Georges Griso, Julia Orlik, Srinivasan Aiyappan. Homogenization of Helmholtz equation in a periodic layer to study Faraday cage-like shielding effects. Complex Variables and Elliptic Equations, In press. hal-03895786

HAL Id: hal-03895786
https://hal.science/hal-03895786
Submitted on 13 Dec 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Homogenization of Helmholtz equation in a periodic layer to study Faraday cage-like shielding effects

S Aiyappan\textsuperscript{1}, Georges Griso\textsuperscript{2}, and Julia Orlik\textsuperscript{3}

Abstract

The work is motivated by the Faraday cage effect. We consider the Helmholtz equation over a 3D-domain containing a thin heterogeneous interface of thickness $\delta \ll 1$. The layer has a $\delta$–periodic structure in the in-plane directions and is cylindrical in the third direction. The periodic layer has one connected component and a collection of isolated regions. The isolated region in the thin layer represents air or liquid, and the connected component represents a solid metal grid with a $\delta$ thickness. The main issue is created by the contrast of the coefficients in the air and in the grid and that the zero-order term has a complex-valued coefficient in the connected faze while a real-valued in the complement. An asymptotic analysis with respect to $\delta \rightarrow 0$ is provided, and the limit Helmholtz problem is obtained with the Dirichlet condition on the interface. The periodic unfolding method is used to find the limit.

Keywords: Homogenization; Helmholtz equations; Periodic unfolding; Thin structure

Mathematics Subject Classification (2010): 35B27, 35J50, 35J05, 74K10

1 Introduction

The work is motivated by a design of shielding textile material, that is, to design the periodic distance between yarns in the grid and the fiber thickness so that the material would act as a shield on a particular frequency. Therefore, in the appendix, we provide the explicit dependency of all the constants on geometric parameters. The main modeling issue here is the chosen contrast in the coefficients of the grid compared to the surrounding air or fluid. It is chosen as an order of $\delta^{-2}$, which leads to the complete shielding (zero Dirichlet boundary condition on the interface), while $\delta^{-1}$ leads to a partial shielding and depends on the grid design. The first case is focused in this article while the later case will be handled in another paper.

In this work, we consider the Helmholtz equation for two domains separated by a thin heterogeneous layer of the thickness $\delta \ll 1$. The layer has an $\delta$–periodic structure in plane directions and is cylindrical with respect to the third direction, i.e., the in-plane structure is the same in all cross-sections. Two balks are connected by one of the components and another component is connected in the layer across the periodicity cells. The isolated region should represent an air or liquid and the connected plane grid with a thickness $\delta$ a solid, maybe metal. The first main issue is that the zero order term has a complex-valued coefficient in the connected faze (the grid) and a real-valued in the isolated regions and in the the bulk. The second issue is the contrast in the imaginary part of the zero-order-term-coefficient in the solid (may be metal), which relates as $\delta^{-2}$ to all other coefficients.

There is a huge literature on shielding problems. One can refer to [1, 11] concerning the acoustic wave propagation and the Maxwell equations have been extensively studied in [10, 18, 4, 5, 6, 17, 19, 13].

There exists a large number of papers devoted to the problems with thin layers of different structure. Depending on the relation between small parameters involved in geometry and stiffness of the layers, different limit problems can be obtained. In particular, [8] deals with the Neumann sieves of different thickness and sizes of inclusions. The articles [2, 3] consider the case of a thin stiff layer. A case of a soft homogeneous layer is discussed in [12, 14]. An interface problem with contrasting coefficients has been analysed in [20].

For the study of the limiting behaviour we use the periodic unfolding method, which was first introduced in [7], later developed in [9]. This method was used for different types of problems, particularly, problems for the thin layers in [8] and contact problems in the thin layer [14].

A regularization for the imaginary coefficient in front of the zero-order term was introduced and a uniform convergence with respect to this regularizing coefficient was proven. That is, we start with the regularized problem, show its convergence to the initial one, then pass to the limit in the regularized problem and then pass to the limit with the regularized parameter. Similar technique was used in [16] to regularize the contact

\begin{flushleft}
\textsuperscript{1}\text{Department of Mathematics, Indian Institute of Technology Hyderabad, Kandi, Telangana, India 502285. Email: aiyappan@math.iith.ac.in}
\textsuperscript{2}\text{Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions (LJLL), F-75005 Paris, France. Email: griso@ljll.math.upmc.fr}
\textsuperscript{3}\text{Department SMS, Fraunhofer ITWM, 1 Fraunhofer Platz, 67663 Kaiserslautern, Germany. Email: julia.orlik@itwm.fraunhofer.de}
\end{flushleft}
problem with Coulomb’s friction.

The geometrical setting is similar to the one from [15], just in the complement to the domain the contrast in coefficients is considered.

The paper is organized in the following way. Section 2 provides the geometric setting and preliminary estimates of the solution. The wellposedness of the original problem and the convergence are studied in Section 3. Section 4 investigates the asymptotic analysis of the problem. Finally, the exact constants are given in the Appendix, those are expressed in terms of physical known constants, size of the domain, frequency and the source term. Those are important to design a shield with a particular frequency.

2 Geometrical setting and problem description

This section is devoted to describe the geometric structure of the domain and introduce the problem under consideration. In the Euclidean space \( \mathbb{R}^2 \) consider a domain \( \mathcal{O} \) with a \( C^{1,1} \) boundary and let \( L > 0 \) be a fixed real number.

Define

\[
\begin{align*}
\Omega_+^\delta &= \mathcal{O} \times (\delta/2, L), \\
\Omega_-^\delta &= \mathcal{O} \times (-\delta/2, \delta/2), \\
\Omega_0^\delta &= \mathcal{O} \times (-L, -\delta/2),
\end{align*}
\]

and

\[ \Gamma = \mathcal{O} \times \{0\}. \]

Now, let us describe the thin layer. A model picture is given in Fig. 1 and 2. Here \( \delta \) is a small parameter corresponding to the thickness of the layer and also the periodicity parameter in \( x_1 \) and \( x_2 \) directions.

Figure 1: 3D-domain \( \Omega \)

Figure 2: Grid structure and the reference cell.

Now, let us describe the thin layer. A model picture is given in Fig. 1 and 2. Here \( \delta \) is a small parameter corresponding to the thickness of the layer and also the periodicity parameter in \( x_1 \) and \( x_2 \) directions.
The layer $\Omega_\delta$ has a periodic in-plane structure. The unit cell $Y$ is given by

$$Y = (0, 1)^2 \times (-1/2, 1/2) \subset \mathbb{R}^3.$$ 

Let $Y_0$ and $Y_1$ are two open subsets of $Y$. The set $Y_0$, as shown for example in Fig. 2 and Fig. 3, is an open set with Lipschitz boundary satisfying $Y_0 \subset Y$, it will represent the periodic “grid” and its complement $Y_1 = Y \setminus Y_0 \neq \emptyset$ represents the air or material with less conductivity.

By scaling and translating $Y_0$ in $x_1$ and $x_2$ direction, we get the thin grid $\Omega_\delta^i$ as follows

$$\Xi_\delta = \left\{ (\xi_1, \xi_2) \in \mathbb{Z}^2 \mid \delta(\xi_1 e_1 + \xi_2 e_2 + Y) \subset \Omega \right\}, \quad (2.2)$$

$$\Omega_\delta^i = \text{Interior} \bigcup_{\xi \in \Xi_\delta} \delta(\xi_1 e_1 + \xi_2 e_2 + [0,1]^2), \quad (2.3)$$

$$\hat{\Omega}_\delta = \text{Interior} \bigcup_{\xi \in \Xi_\delta} \delta(\xi_1 e_1 + \xi_2 e_2), \quad (2.4)$$

$$\Lambda_\delta = \Omega \setminus \hat{\Omega}_\delta, \quad (2.5)$$

where $e_1$ and $e_2$ are the canonical vectors $e_1 = (1, 0, 0)$ and $e_2 = (0, 1, 0)$. The grid/wire structure $\Omega_\delta^i$ is made up of a conducting material and holes between the grid, $\Omega_\delta^*$ is defined as $\Omega_\delta^* = \Omega \setminus \hat{\Omega}_\delta^i$.

2.1 A preliminary result

Denote $H$ and $L$ two Hilbert spaces satisfying $H \subset L$. Below, we give a lemma with the exact computation of the constant.

**Lemma 2.1.** [21] Let $a : H \times H \to \mathbb{C}$ be a continuous sesquilinear form satisfying

1. $|\Im(a(u, u))| \geq k_1 \|u\|_H^2$ for all $u \in H$ for some $k_1 > 0$,
2. $|\Re(a(u, u))| \geq k_2 \|u\|_H^2 - k_3 \|u\|_L^2$ for all $u \in H$ for some $k_2, k_3 > 0$.

Then, there exists a constant $C > 0$ which only depends on $k_1, k_2$, and $k_3$ such that

$$|a(u, u)| \geq C \|u\|_H^2, \quad \forall u \in H.$$ 

The proof of this result with the exact constant is postponed to the appendix.

2.2 The Helmholtz problem

Let $\alpha, \beta, \omega \in \mathbb{R}^+$ be fixed. Let $M(\alpha, \beta, \Omega)$ be the set of all real valued matrix functions $A \in W^{1,\infty}(\Omega, \mathbb{R}^{3 \times 3})$ such that

$$\alpha|\xi|^2 \leq (A\xi, \xi), \quad |A(\xi, \zeta)| \leq \beta|\xi||\zeta|$$

for all $(\xi, \zeta) \in \mathbb{C}^3 \times \mathbb{C}^3$. Here $(\cdot, \cdot)$ is the usual $\mathbb{C}^3$ inner product.

Let us consider the following Helmholtz problem:

$$-\text{div}(A\nabla u_\delta) - \omega^2 \varepsilon_\delta u_\delta = i\omega f \quad \text{in } \Omega$$

$$u_\delta = 0 \quad \text{on } \partial\Omega.$$
where \( f \in L^2(\Omega, \mathbb{C}) \) satisfies \( \text{supp} f \subset \overline{\Omega}_\delta^1 \) and
\[
\varepsilon_\delta(x) = \varepsilon_1 + i \frac{\varepsilon_2}{\delta^2} \quad \text{if} \quad x \in \Omega_\delta^1, \quad \varepsilon_\delta(x) = \varepsilon_3 \quad \text{if} \quad x \in \Omega \setminus \overline{\Omega}_\delta^3.
\] (2.6)

The \( \varepsilon_i \)'s are strictly positive constants.

The weak form of the above problem is given by
\[
\begin{aligned}
\text{Find} \ u_\delta \in H^1_0(\Omega, \mathbb{C}) \text{ such that }
\int_{\Omega} A \nabla u_\delta \cdot \nabla \psi dx - \omega^2 \int_{\Omega} \varepsilon_\delta u_\delta \cdot \psi dx = i \omega \int_{\Omega} f \cdot \psi dx, \quad \forall \psi \in H^1_0(\Omega, \mathbb{C}).
\end{aligned}
\] (2.7)

The following lemma recalls a classical result which will be used in the upcoming sections.

**Lemma 2.2.** For every \( v \in H^1(\Omega, \mathbb{C}) \) one has
\[
\|v\|_{L^2(\Omega, \mathbb{C})} \leq C \left( \|v\|_{L^2(\Omega, \mathbb{C})} + \|\nabla v\|_{L^2(\Omega, \mathbb{C})} \right),
\]
\[
\delta \|v\|_{L^2(\Gamma, \mathbb{C})}^2 \leq C \left( \|v\|_{L^2(\Omega, \mathbb{C})}^2 + \|\nabla v\|_{L^2(\Omega, \mathbb{C})}^2 \right).
\] (2.8)

The constant does not depend on \( \delta \).

**Proof.** Note that for \( \phi \in H^1(Y, \mathbb{C}) \)
\[
\|\phi\|_{L^2(Y, \mathbb{C})} \leq C \left( \|\phi\|_{L^2(Y_\delta, \mathbb{C})} + \|\nabla \phi\|_{L^2(Y, \mathbb{C})} \right).
\] (2.9)

This is a classical inequality, one can proceed by contradiction and use the compact embedding of \( L^2(Y, \mathbb{C}) \) in \( H^1(Y, \mathbb{C}) \) for a simple proof. Then, use a change of variables to give the estimates in the \( \delta \)-cells, add the obtained inequalities to get (2.8)_1, then prove (2.8)_2.

\[
\therefore
\]

### 3 Existence of the solution to the Helmholtz problem

We endow \( L^2(\Omega, \mathbb{C}) \) with the scalar product
\[
\langle u, v \rangle = \int_{\Omega} u \overline{v} \, dx.
\]

Denote
\[
\langle A \nabla u, \nabla v \rangle = \int_{\Omega} A \nabla u \cdot \nabla v \, dx \quad \text{for} \ u, v \in H^1(\Omega, \mathbb{C})
\]
and
\[
\varepsilon_\delta = \varepsilon_1 \quad \text{a.e. in} \ \Omega_\delta^3, \quad \varepsilon_\delta = \varepsilon_3 \quad \text{a.e. in} \ \Omega \setminus \overline{\Omega}_\delta^3.
\]

The wellposedness of the Helmholtz problem (2.7) is proved in the following theorem.

**Theorem 3.1.** Assume that \( \omega^2 \varepsilon_3 \) is not an eigenvalue of \( -\text{div} (A \nabla) \) in \( H^1_0(\Omega^+, \mathbb{C}) \). Then, there exist two strictly positive constants \( \delta_0 \) and \( C \) such that for every \( \delta \in (0, \delta_0] \) and every \( f \in L^2(\Omega, \mathbb{C}) \), problem (2.7) admits a unique solution \( u_\delta \in H^1_0(\Omega, \mathbb{C}) \) satisfying
\[
\|u_\delta\|_{H^1(\Omega, \mathbb{C})} \leq C \|f\|_{L^2(\Omega, \mathbb{C})}. \] (3.1)

We remark about the constant in the appendix.

**Proof. Step 1.** In this step we prove that there exists \( \delta_0 > 0 \) such that: if \( u_\delta \in H^1_0(\Omega, \mathbb{C}) \), \( \delta \in (0, \delta_0] \), satisfies
\[
\langle A \nabla u_\delta, \nabla \phi \rangle - \omega^2 \langle \varepsilon_\delta u_\delta, \phi \rangle - i \omega^2 \int_{\Omega_\delta^3} \frac{\varepsilon_2}{\delta^2} u_\delta \overline{\phi} \, dx = 0, \quad \forall \phi \in H^1_0(\Omega, \mathbb{C})
\] (3.2)
then \( u_\delta = 0 \).

First observe that \( u_\delta \) satisfying (3.2) also satisfies \( u_\delta = 0 \) a.e. in \( \Omega_\delta^3 \).

We proceed by contradiction. Suppose that for every \( n \in \mathbb{N} \setminus \{0\} \) there exist \( \delta_n \in (0, 1/n] \) and \( u_{\delta_n} \in H^1_0(\Omega, \mathbb{C}) \) such that
\[
\|u_{\delta_n}\|_{L^2(\Omega, \mathbb{C})} = 1, \quad u_{\delta_n} = 0 \quad \text{a.e. in} \ \Omega_\delta^3, \quad \langle A \nabla u_{\delta_n}, \nabla \phi \rangle = \omega^2 \langle \varepsilon_{\delta_n} u_{\delta_n}, \phi \rangle, \quad \forall \phi \in H^1_0(\Omega, \mathbb{C}).
\]
Set 
\[ v_{\delta_n} = \frac{u_{\delta_n}}{\|u_{\delta_n}\|_{L^2(\Omega, \mathbb{C})}}. \]

By (3.2), we have (as \( A \in M(\alpha, \beta, \Omega) \))
\[ \|\nabla v_{\delta_n}\|_{L^2(\Omega, \mathbb{C})}^2 \leq C \]
where \( C = \omega^2 \frac{\max\{\varepsilon_1, \varepsilon_3\}}{\alpha} \) is independent of \( \delta_n \). Then, up to a subsequence one has
\[ v_{\delta_n} \rightharpoonup v \text{ weakly in } H_0^1(\Omega, \mathbb{C}), \quad v_{\delta_n} \rightarrow v \text{ strongly in } L^2(\Omega, \mathbb{C}). \]
The strong convergence in \( L^2(\Omega, \mathbb{C}) \) implies \( \|v\|_{L^2(\Omega, \mathbb{C})} = 1 \). Using (2.8.1, 2.2), we obtain that \( v = 0 \) a.e. on \( \Gamma \) (since \( \|v_{\delta_n}\|_{L^2(\Gamma)} \leq C \sqrt{\delta_n} \)) and thus
\[ (A\nabla v, \nabla \phi) = \omega^2 \varepsilon_3 \langle v, \phi \rangle \quad \forall \phi \in H_0^1(\Omega^\pm, \mathbb{C}). \quad (3.3) \]
This means that \( \omega^2 \varepsilon_3 \) is an eigenvalue and \( v \) an eigenfunction of \(-\text{div}(A\nabla)\) in \( H_0^1(\Omega^\pm, \mathbb{C}) \).
This contradicts the assumption of the theorem. Hence, the claim of this step is proved.

In the following steps we assume \( \delta \in (0, \delta_0] \).

**Step 2.** In this step we fix \( \delta \in (0, \delta_0] \) and we prove that problem (2.7) admits solutions.

Set
\[ \varepsilon_0^\delta = \frac{\varepsilon_2}{\delta^2} \text{ a.e. in } \Omega_3, \quad \varepsilon_0^\delta = \theta \text{ a.e. in } \Omega \setminus \overline{\Omega_3}, \]
where \( \theta \) is a strictly positive constant less than \( \varepsilon_2 / \delta^2 \).

We consider the following variational problem:

\[
\begin{cases}
\text{Find } u_0^\delta \in H_0^1(\Omega, \mathbb{C}) \text{ such that } \\
(A\nabla u_0^\delta, \nabla \phi) - \omega^2 \langle \varepsilon_0^\delta u_0^\delta, \phi \rangle - i\omega^2 \int_{\Omega} \varepsilon_0^\delta u_0^\delta \phi \, dx = i\omega \int_{\Omega} f \phi \, dx, \\
\quad \forall \phi \in H_0^1(\Omega, \mathbb{C}).
\end{cases}
\]

(3.4)

Define \( B_0^\delta : H_0^1(\Omega, \mathbb{C}) \times H_0^1(\Omega, \mathbb{C}) \rightarrow \mathbb{C} \) by
\[ B_0^\delta(u, v) = (A\nabla u, \nabla v) - \omega^2 \langle \varepsilon_0^\delta u, v \rangle - i\omega^2 \int_{\Omega} \varepsilon_0^\delta u \tau \, dx. \]

Note that
\[ |\Re(B_0^\delta(u, u))| \geq \omega^2 \theta \|u\|_{L^2(\Omega, \mathbb{C})}^2, \quad |\Re(B_0^\delta(u, u))| \geq \alpha \|u\|_{H^1(\Omega, \mathbb{C})}^2 - \tau \omega^2 \|u\|_{L^2(\Omega, \mathbb{C})}^2. \]
where the constant \( \tau = \max\{\varepsilon_1, \varepsilon_3\} \). Besides, we have
\[ |B_0^\delta(u, \phi)| \leq \beta |\langle u, \phi \rangle_H| + \omega^2 |\langle \varepsilon_0^\delta u, \phi \rangle| + \omega^2 \int_{\Omega} |\varepsilon_0^\delta u| \phi \, dx \leq C(\delta) \|u\|_{H^1} \|\phi\|_{H^1}. \]

Hence by Lemma 2.1 \((H = H_0^1(\Omega, \mathbb{C}), L = L^2(\Omega, \mathbb{C}))\), we have that \( B_0^\delta \) is elliptic and bounded, that is
\[ |B_0^\delta(u, u)| \geq C'(\delta, \theta) \|u\|_{H^1}^2. \quad (3.5) \]

The explicit value of \( C'(\delta, \theta) \) is remarked in Section 5, therefore for \( \theta \) small enough (less than a strictly positive constant \( C(\alpha, \tau, \omega) \)) one has \( C'(\delta, \theta) = \frac{\alpha \theta}{\tau} \). Hence, for \( \theta \) small enough, by Lax-Milgram, we have a unique solution \( u_0^\delta \) of the problem (3.4) and
\[ \|\nabla u_0^\delta\|_{L^2(\Omega, \mathbb{C})} \leq \frac{\tau \omega}{\alpha \theta \delta^2} \|f\|_{L^2(\Omega, \mathbb{C})}, \quad \|u_0^\delta\|_{H^1(\Omega, \mathbb{C})} \leq \frac{\tau \omega \text{diam}(\Omega)}{\alpha \theta} \|f\|_{L^2(\Omega, \mathbb{C})}, \]
where \( \text{diam}(\Omega) \) comes from the Poincaré inequality.

**Claim 1:** There exists a constant \( C(\delta, f) \) such that for \( \theta \) small enough (less than \( \varepsilon_2 / \delta^2 \) and \( C(\alpha, \tau, \omega) \))
\[ \|u_0^\delta\|_{L^2(\Omega, \mathbb{C})} \leq C(\delta, f). \]
First, let us replace the test function \( \phi \) in (3.2) with the solution to get
\[
\langle A\nabla u_\delta^0, \nabla u_\delta^0 \rangle - i\omega^2 \int_\Omega \epsilon^0_\delta |u_\delta^0|^2 \, dx = i\omega \int_\Omega f \bar{u}_\delta^0 \, dx + \omega^2 \int_\Omega \epsilon^0_\delta |u_\delta^0|^2 \, dx. \tag{3.6}
\]
By equating the real part one arrives at
\[
\langle A\nabla u_\delta^0, \nabla u_\delta^0 \rangle = -\omega \int_\Omega \Im(f \bar{u}_\delta^0) \, dx + \omega^2 \int_\Omega \epsilon^0_\delta |u_\delta^0|^2 \, dx
\]
and then
\[
\alpha \|
abla u_\delta^0 \|^2_{L^2(\Omega, \mathbb{C})} \leq |\langle A\nabla u_\delta^0, \nabla u_\delta^0 \rangle| \leq \omega \int_\Omega |f \bar{u}_\delta^0| \, dx + \omega^2 \int_\Omega \epsilon^0_\delta |u_\delta^0|^2 \, dx
\]
\[
\leq \omega \|f\|_{L^\infty(\Omega, \mathbb{C})} \|u_\delta^0\|_{L^2(\Omega, \mathbb{C})} + \omega^2 \tau \|u_\delta^0\|^2_{L^2(\Omega, \mathbb{C})}. \tag{3.7}
\]
Now, \( f \) and \( \delta \in [0, \delta_0] \) being fixed, we prove the claim by contradiction. If there exists a sequence \( \{\theta_k\}_k \) converging to 0 such that \( \|u_\delta^0\|_{L^2(\Omega, \mathbb{C})} \to +\infty \). Set
\[
v_\delta^{\theta_k} = \frac{u_\delta^{\theta_k}}{\|u_\delta^{\theta_k}\|_{L^2(\Omega, \mathbb{C})}}.
\]
By (3.7), we have
\[
\|
abla v_\delta^{\theta_k} \|^2_{L^2(\Omega, \mathbb{C})} = \frac{\|
abla u_\delta^{\theta_k} \|^2_{L^2(\Omega, \mathbb{C})}}{\|u_\delta^{\theta_k}\|^2_{L^2(\Omega, \mathbb{C})}} \leq C
\]
where \( C = \frac{\omega}{\alpha} (1 + \omega \tau) \) is independent of \( \theta_k \) (as \( \|f\|_{L^\infty(\Omega, \mathbb{C})} \ll 1 \)). Thus \( v_\delta^{\theta_k} \) is bounded in \( H_0^1(\Omega, \mathbb{C}) \) independent of \( \theta_k \). Then, up to a subsequence one has
\[
v_\delta^{\theta_k} \to v_\delta \text{ weakly in } H_0^1(\Omega, \mathbb{C}), \quad v_\delta^{\theta_k} \to v_\delta \text{ strongly in } L^2(\Omega, \mathbb{C}).
\]
Let us divide the equation (3.4) by \( \|u_\delta^{\theta_k}\|_{L^2(\Omega, \mathbb{C})} \) to get
\[
\langle A\nabla v_\delta^{\theta_k}, \nabla \phi \rangle - \omega^2 \langle \epsilon^0_\delta v_\delta^{\theta_k}, \phi \rangle - i\omega^2 \int_\Omega \frac{\epsilon^0_\delta}{\delta^2} v_\delta^{\theta_k} \bar{\phi} \, dx = \frac{i\omega}{\|u_\delta^{\theta_k}\|_{L^2(\Omega, \mathbb{C})}} \int_\Omega f \bar{\phi} \, dx, \quad \forall \phi \in H_0^1(\Omega, \mathbb{C}).
\]
Now, pass to the limit as \( \theta_k \to 0 \) to get
\[
\langle A\nabla v_\delta, \nabla \phi \rangle - \omega^2 \langle \epsilon^0 v_\delta, \phi \rangle - i\omega^2 \int_\Omega \frac{\epsilon^0}{\delta^2} v_\delta \bar{\phi} \, dx = 0 \quad \forall \phi \in H_0^1(\Omega, \mathbb{C}). \tag{3.8}
\]
As \( \|v_\delta\|_{L^2(\Omega, \mathbb{C})} = 1 \) and the strong convergence in \( L^2(\Omega, \mathbb{C}) \), we have \( \|v_\delta\|_{L^2(\Omega, \mathbb{C})} = 1 \). So by Step 1, \( v_\delta = 0 \) which is a contradiction.
As a consequence one has
\[
\forall \theta \in (0, \min\{\epsilon_2/\delta^2, C(\alpha, \tau, \omega)\}], \quad \|u_\delta^0\|_{L^2(\Omega, \mathbb{C})} \leq C(\delta, f).
\]
This proves the **Claim 1**. Thus \( \|\nabla u_\delta^0\|_{L^2(\Omega, \mathbb{C})} \leq C(\delta, f) \).
Now, let \( \theta_k \) be a sequence converging to 0, such that \( u_\delta^{\theta_k} \to u_\delta \) weakly in \( H_0^1(\Omega, \mathbb{C}) \). Hence, passing to the limit, the equation (3.4) becomes
\[
\langle A\nabla u_\delta, \nabla \phi \rangle - \omega^2 \langle \epsilon^0 u_\delta, \phi \rangle - i\omega^2 \int_\Omega \frac{\epsilon^0}{\delta^2} u_\delta \bar{\phi} \, dx = i\omega \int_\Omega f \bar{\phi} \, dx, \quad \forall \phi \in H_0^1(\Omega, \mathbb{C}). \tag{3.9}
\]
which proves that (2.7) admits solutions. Then, Step 1 ensures that (2.7) admits a unique solution.
**Step 3.** In this step we prove that the unique solution of problem (2.7) satisfies
\[
\|u_\delta\|_{H^1(\Omega, \mathbb{C})} \leq C \|f\|_{L^2(\Omega, \mathbb{C})}.
\]
**Claim 2:** There exists a constant \( C > 0 \) such that
\[
\sup_{\delta \in (0, \delta_0), \|f\|_{L^2(\Omega, \mathbb{C})} = 1} \|u_\delta(f)\|_{L^2(\Omega, \mathbb{C})} \leq C. \tag{3.10}
\]
Here, $u_s(f)$ denote the unique solution to (2.7).

Suppose not, then there exists a sequence $\{\delta_k\}_{k \in \mathbb{N}}$ converging to $\delta^* \in [0, \delta_0]$ and $f_k \in L^2(\Omega, \mathbb{C})$ with $\|f_k\|_{L^2(\Omega, \mathbb{C})} = 1$, such that $\lim_{k \to +\infty} \|u_{\delta_k}\|_{L^2(\Omega, \mathbb{C})} \to +\infty$.

**Case 1:** $\delta^* = 0$. Now, (2.7) gives

$$
\langle A\nabla u_{\delta_k}, \nabla u_{\delta_k} \rangle - \omega^2 \int_\Omega \varepsilon_\delta^2 |u_{\delta_k}|^2 \, dx - i\omega^2 \int_{\Omega_{\delta_k}} \frac{\varepsilon_\delta^2}{\delta_k^2} |u_{\delta_k}|^2 \, dx = i\omega \int_\Omega f_k u_{\delta_k} \, dx.
$$

(3.11)

By considering the imaginary parts, one gets

$$
\omega^2 \int_{\Omega_{\delta_k}} \frac{\varepsilon_\delta^2}{\delta_k^2} |u_{\delta_k}|^2 \, dx \leq \omega \int_\Omega |R(f_k u_{\delta_k})| \, dx \leq \omega \|f_k\|_{L^2(\Omega, \mathbb{C})} \|u_{\delta_k}\|_{L^2(\Omega, \mathbb{C})} \leq C \|u_{\delta_k}\|_{L^2(\Omega, \mathbb{C})}.
$$

(3.12)

Set

$$
v_{\delta_k} = \frac{u_{\delta_k}}{\|u_{\delta_k}\|_{L^2(\Omega, \mathbb{C})}}.
$$

Thus one gets

$$
\omega^2 \int_{\Omega_{\delta_k}} \frac{\varepsilon_\delta^2}{\delta_k^2} |v_{\delta_k}|^2 \, dx \leq \frac{C}{\|u_{\delta_k}\|_{L^2(\Omega, \mathbb{C})}},
$$

(3.13)

and hence the LHS converges to 0.

The real part gives

$$
\|\nabla v_{\delta_k}\|_{L^2(\Omega, \mathbb{C})} \leq C.
$$

(3.14)

Then, from Lemma 2.2 and the above estimates we get

$$
\|v_{\delta_k}\|_{L^2(\Gamma, \mathbb{C})} \leq C \sqrt{\delta_k}
$$

where $C$ is independent of $\delta_k$. So, up to a subsequence there exists $v \in H^1_0(\Omega, \mathbb{C})$ such that as $k \to \infty$

$$
v_{\delta_k} \rightharpoonup v \quad \text{weakly in } H^1(\Omega, \mathbb{C}), \quad v_{\delta_k} \to v \quad \text{strongly in } L^2(\Omega, \mathbb{C}).
$$

The strong convergence in $L^2(\Omega, \mathbb{C})$ implies $\|v\|_{L^2(\Omega, \mathbb{C})} = 1$. Moreover, we have $v = 0 \ a.e. \ on \ \Gamma$.

Let us divide the equation (2.7) by $\|u_{\delta_k}\|_{L^2(\Omega, \mathbb{C})}$ to get

$$
\langle A\nabla v_{\delta_k}, \nabla \phi \rangle - \omega^2 \varepsilon_\delta^2 \langle v_{\delta_k}, \phi \rangle - i\omega^2 \int_{\Omega_{\delta_k}} \frac{\varepsilon_\delta^2}{\delta_k} v_{\delta_k} \phi \, dx = \frac{i\omega}{\|u_{\delta_k}\|_{L^2(\Omega, \mathbb{C})}} \int_\Omega f_k \phi \, dx, \quad \forall \phi \in H^1_0(\Omega, \mathbb{C}).
$$

(3.15)

Let $\phi^+$ (resp. $\phi^-$) be in $D(\Omega^+, \mathbb{C})$ (resp. $D(\Omega^-, \mathbb{C})$). If $\delta_k$ is sufficiently small, one has

$$
\int_{\Omega^+} A\nabla v_{\delta_k} \cdot \nabla \phi^+ \, dx - \omega^2 \int_{\Omega^+} \varepsilon_\delta^2 v_{\delta_k} \phi^+ \, dx = i\omega \frac{1}{\|u_{\delta_k}\|_{L^2(\Omega, \mathbb{C})}} \int_{\Omega^+} f \phi^+ \, dx,
$$

(resp. \( \int_{\Omega^-} A\nabla v_{\delta_k} \cdot \nabla \phi^- \, dx - \omega^2 \int_{\Omega^-} \varepsilon_\delta^2 v_{\delta_k} \phi^- \, dx = 0 \)).

Passing to the limit yield

$$
\int_{\Omega^+} A\nabla v \cdot \nabla \phi^+ \, dx + \omega^2 \varepsilon_\delta \int_{\Omega^+} v \phi^+ \, dx = 0, \quad \forall \phi^+ \in D(\Omega^+, \mathbb{C})
$$

and

$$
\int_{\Omega^-} A\nabla v \cdot \nabla \phi^- \, dx + \omega^2 \varepsilon_\delta \int_{\Omega^-} v \phi^- \, dx = 0, \quad \forall \phi^- \in D(\Omega^-, \mathbb{C}).
$$

(3.16)

A density argument gives

$$
\langle A\nabla v, \nabla \phi \rangle - \omega^2 \varepsilon_\delta \langle v, \phi \rangle = 0 \quad \forall \phi \in H^1_0(\Omega^\pm, \mathbb{C})
$$

where $v \in H^1_0(\Omega^\pm, \mathbb{C})$ which, thanks to Step 1, contradicts the hypothesis of the theorem.
**Case 2:** \( \delta^* \neq 0 \). As above (see the estimate (3.14)) we show that the sequence \( \{v_{\delta_k}\}_k \) is uniformly bounded in \( H^1_0(\Omega, C) \). So, up to a subsequence there exists \( v_{\delta^*} \in H^1_0(\Omega, C) \) such that as \( k \to \infty \)

\[
v_{\delta_k} \to v_{\delta^*} \quad \text{weakly in } H^1_0(\Omega, C) \quad \text{and} \quad v_{\delta_k} \to v_{\delta^*} \quad \text{strongly in } L^2(\Omega, C).
\]

The second convergence is due to Rellich-Kondrasov Theorem. The imaginary part of the energy of (3.9) gives

\[
\int_{\Omega^\delta_k} |v_{\delta_k}|^2 \, dx \leq \frac{C \delta_k^2}{\|u_{\delta_k}\|_{L^2(\Omega, C)}}.
\]

Note that

\[
\chi_{\Omega^\delta_k}(x) \to \chi_{\Omega^\delta^*}(x) \quad \text{for a.e. } x \in \Omega
\]

where \( \chi_D \) denotes the characteristic function of the set \( D \). So, the above estimate and convergence imply that

\[
\chi_{\Omega^\delta_k} \, v_{\delta_k} \to 0 \quad \text{strongly in } L^2(\Omega, C).
\]

Since the sequence \( \{v_{\delta_k}\}_k \) converges to \( v_{\delta^*} \) strongly in \( L^2(\Omega, C) \), we obtain \( v_{\delta^*} = 0 \) a.e. in \( \Omega^\delta^* \).

Besides, we get that \( \|v_{\delta_k}\|_{L^2(\Omega, C)} = 1 \) for all \( k \) and hence \( \|v_{\delta^*}\|_{L^2(\Omega^\delta^*)} = 1 \) as \( v_{\delta_k} \) converges to \( v_{\delta^*} \) strongly in \( L^2(\Omega, C) \). Finally, passing to the limit in (3.15), we obtain that \( v_{\delta^*} \) satisfies

\[
(A \nabla v_{\delta^*}, \nabla \phi)_{L^2(\Omega^\delta^*, C)} - \omega^2 \varepsilon_3 (v_{\delta^*}, \phi)_{L^2(\Omega^\delta^*, C)} = 0 \quad \forall \phi \in H^1_0(\Omega^\delta^*, C). \quad (3.17)
\]

Due to the result of Step 1, we have \( v_{\delta^*} = 0 \) which is a contradiction. This completes the theorem.

**Corollary 3.1.** For every \( \delta \in (0, \delta_0] \) and every \( f \in L^2(\Omega, C) \), the solution \( u_\delta \in H^1_0(\Omega, C) \) to the problem (2.7) satisfies

\[
\|u_\delta\|_{H^1(\Omega, C)} + \delta^{-1} \|u_\delta\|_{L^2(\Omega, C)} \leq C \|f\|_{L^2(\Omega, C)} \quad \text{(3.18)}
\]

where \( C > 0 \) is independent of \( \delta \) and \( f \).

**Proof.** The imaginary part of the energy of (3.9) gives

\[
\frac{\varepsilon_3}{2} \int_{\Omega^\delta_k} |u_{\delta_k}|^2 \, dx - \omega \int_{\Omega} \text{Re}(f \overline{u_{\delta_k}}) \, dx \leq \delta^{-1} \|u_{\delta_k}\|_{L^2(\Omega, C)} \|u_{\delta_k}\|_{L^2(\Omega, C)}.
\]

Thus one gets

\[
\delta^{-2} \|u_{\delta_k}\|^2_{L^2(\Omega^\delta_k, C)} \leq \frac{1}{\delta \varepsilon_3} \|f\|^2_{L^2(\Omega, C)} \|u_{\delta_k}\|^2_{L^2(\Omega, C)} \leq C \|f\|^2_{L^2(\Omega, C)}. \quad (3.19)
\]

Lemma 2.2 and estimates (3.18) yield

\[
\|u_{\delta_k}\|_{L^2(\Omega^\delta_k, C)} \leq C \delta \|f\|_{L^2(\Omega, C)}, \quad \|\nabla u_{\delta_k}\|_{L^2(\Omega^\delta_k, C)} \leq C \|f\|_{L^2(\Omega, C)}, \quad \|u_{\delta_k}\|_{L^2(\Gamma^0, C)} \leq C \sqrt{\delta} \|f\|_{L^2(\Omega, C)}. \quad (3.20)
\]

**Proposition 3.1.** There exists \( u \in H^1_0(\Omega, C) \) such that

\[
u_{\delta^*} \to u \quad \text{weakly in } H^1_0(\Omega, C).
\]

Moreover, \( u = 0 \) a.e. in \( \Omega^- \) and \( u \) restricted to \( \Omega^+ \) belongs to \( H^1_0(\Omega^+, C) \) and is the unique solution of

\[
\int_{\Omega^+} A \nabla u \cdot \nabla \phi \, dx = \omega^2 \varepsilon_3 \int_{\Omega^+} u \phi \, dx = i \omega \int_{\Omega^+} f \phi \, dx, \quad \forall \phi \in H^1_0(\Omega^+, C). \quad (3.22)
\]

**Proof.** First, there exist a subsequence of \( \{\delta\} \), still denoted \( \{\delta\} \), and \( u \in H^1_0(\Omega, C) \) such that

\[
u_{\delta_k} \to u \quad \text{weakly in } H^1_0(\Omega, C).
\]

Observe that due to (3.20)\(_3\), one has \( u = 0 \) a.e. on \( \Gamma \).

Let \( \psi^+ \) (resp. \( \psi^- \)) be in \( \mathcal{D}(\Omega^+, C) \) (resp. \( \mathcal{D}(\Omega^-, C) \)). For every \( \delta \) sufficiently small, one has

\[
\int_{\Omega^+} A \nabla u_{\delta_k} \cdot \nabla \psi^+ \, dx - \omega^2 \varepsilon_3 \int_{\Omega^+} u_{\delta_k} \psi^+ \, dx = i \omega \int_{\Omega^+} f \psi^+ \, dx,
\]

(resp.

\[
\int_{\Omega^-} A \nabla u_{\delta_k} \cdot \nabla \psi^- \, dx - \omega^2 \varepsilon_3 \int_{\Omega^-} u_{\delta_k} \psi^- \, dx = 0 \).
\]
Passing to the limit yield
\[
\int_{\Omega^+} A \nabla u \cdot \nabla \bar{\psi} \, dx - \omega^2 \varepsilon_3 \int_{\Omega^+} u \bar{\psi} \, dx = i \omega \int_{\Omega^+} f \bar{\psi} \, dx, \quad \forall \psi^+ \in \mathcal{D}(\Omega^+, \mathbb{C})
\]
and
\[
\int_{\Omega^-} A \nabla u \cdot \nabla \bar{\psi} \, dx - \omega^2 \varepsilon_3 \int_{\Omega^-} u \bar{\psi} \, dx = 0, \quad \forall \psi^- \in \mathcal{D}(\Omega^-, \mathbb{C}). \tag{3.23}
\]
A density argument gives (3.22). This gives the existence, the uniqueness is followed by a similar arguments in Step 1 of Theorem 3.1. \(\square\)

As the boundary of \(\mathcal{O}\) is \(C^{1,1}\), we have \(u|_{\partial \Omega}\) belongs to \(H^1_0(\Omega^+, \mathbb{C}) \cap H^2(\Omega^+, \mathbb{C})\) and
\[
\|u\|_{H^2(\Omega^+, \mathbb{C})} \leq C \|u\|_{H^1(\Omega^+, \mathbb{C})} \leq C \|f\|_{L^2(\Omega, \mathbb{C})}.
\]
We recall the following classical result: for every \(\phi \in H^1(\Omega^+)\) one has
\[
\|\nabla \phi\|_{L^2(\Omega^+, \mathbb{C})}^2 \leq \delta \|\phi\|_{L^2(\Omega^+, \mathbb{C})}^2 + \delta^2 \|\frac{\partial \phi}{\partial x_3}\|_{L^2(\Omega^+, \mathbb{C})}^2. \tag{3.24}
\]
As a consequence, the solution to problem (3.22) satisfies (remind that \(\nabla u \in H^1(\Omega^+, \mathbb{C}^3)\), \(\nabla u = 0\) in \(\Omega^-\) and \(u = 0\) a.e. on \(\Gamma\))
\[
\|\nabla u\|_{L^2(\Omega, \mathbb{C})} = \|\nabla u\|_{L^2(\Omega \times (0, \delta/2), \mathbb{C})} \leq C \delta^{1/2} \|u\|_{H^2(\Omega^+, \mathbb{C})}.
\rightarrow \quad \|u\|_{L^2(\Omega, \mathbb{C})} = \|u\|_{L^2(\Omega \times (0, \delta/2), \mathbb{C})} \leq C \delta \|\nabla u\|_{L^2(\Omega \times (0, \delta/2), \mathbb{C})} \leq C \delta^{3/2} \|u\|_{H^2(\Omega^+, \mathbb{C})}. \tag{3.25}
\]
The constant does not depend on \(\delta\).

**Lemma 3.1.** The solution \(u_\delta\) satisfies
\[
\|u_\delta - u\|_{L^2(\Omega, \mathbb{C})} \leq C \delta^{3/2} \|f\|_{L^2(\Omega, \mathbb{C})}, \quad \|u_\delta - u\|_{H^1(\Omega, \mathbb{C})} \leq C \delta^{1/2} \|f\|_{L^2(\Omega, \mathbb{C})}. \tag{3.26}
\]
The constant does not depend on \(\delta\).

**Proof.** Recall the weak formulations
\[
\int_{\Omega} A \nabla u_\delta \cdot \nabla \bar{\psi} \, dx - \omega^2 \int_{\Omega} \varepsilon_3 u_\delta \cdot \bar{\psi} \, dx = i \omega \int_{\Omega} f \cdot \bar{\psi} \, dx, \quad \forall \psi \in H^1_0(\Omega, \mathbb{C})
\]
\[
\int_{\Omega} A \nabla u \cdot \nabla \bar{\psi} \, dx - \omega^2 \int_{\Omega} \varepsilon_3 u \cdot \bar{\psi} \, dx = i \omega \int_{\Omega} f \cdot \bar{\psi} \, dx,
\]
 Subtracting we get
\[
\int_{\Omega} A \nabla (u_\delta - u) \cdot \nabla \bar{\psi} \, dx - \omega^2 \int_{\Omega} \varepsilon_3 (u_\delta - u) \cdot \bar{\psi} \, dx = \omega^2 \int_{\Omega_3} (\varepsilon_3 - \varepsilon_3) u \cdot \bar{\psi} \, dx
\]
Substitute \(\psi = u_\delta - u\)
\[
\int_{\Omega} A \nabla (u_\delta - u) \cdot \nabla (u_\delta - u) \, dx - \omega^2 \int_{\Omega} \varepsilon_3 |u_\delta - u|^2 \, dx = \omega^2 \int_{\Omega_3} (\varepsilon_3 - \varepsilon_3) u \cdot (u_\delta - u) \, dx. \tag{3.27}
\]
Let us look at the imaginary part. The above equality yields
\[
-\varepsilon_2 \int_{\Omega_3} |u_\delta - u|^2 \, dx = (\varepsilon_1 - \varepsilon_3) \delta^2 \int_{\Omega_3} \Im(u \cdot (u_\delta - u)) \, dx + \varepsilon_2 \int_{\Omega_3} \Re(u \cdot (u_\delta - u)) \, dx.
\]
So, we have
\[
\int_{\Omega_3} |u_\delta - u|^2 \, dx \leq (1 + C \delta^2) \|u\|_{L^2(\Omega_3, \mathbb{C})} \|u_\delta - u\|_{L^2(\Omega_3, \mathbb{C})}
\]
where \(C\) does not depend on \(\delta\). Then, from (3.25) we get
\[
\|u_\delta - u\|_{L^2(\Omega_3, \mathbb{C})} \leq C \|u\|_{L^2(\Omega_3, \mathbb{C})} \leq C \delta^{3/2} \|u\|_{H^2(\Omega^+, \mathbb{C})} \leq C \delta^{3/2} \|f\|_{L^2(\Omega, \mathbb{C})}. \tag{3.28}
\]
This estimate together with (2.8)1 leads \( \|u_\delta - u\|_{L^2(\Omega, \mathbb{C})} \leq C\delta \|f\|_{L^2(\Omega, \mathbb{C})} \). This estimate will be improved below.

Now, let us look at the real part. We have

\[
\int_{\Omega} A\nabla (u_\delta - u) \cdot \nabla (u_\delta - u) \, dx = -\omega^2 \frac{\varepsilon_2}{\delta^2} \int_{\Omega_\delta} \Im(u \cdot (u_\delta - u)) \, dx + \omega^2 \int_{\Omega} \Re(\varepsilon_\delta)|u_\delta - u|^2 \, dx + \omega^2 \int_{\Omega_\delta} (\varepsilon_1 - \varepsilon_3)\Re(u \cdot (u_\delta - u)) \, dx.
\]

Then, the above estimate of \( \|u_\delta - u\|_{L^2(\Omega_\delta)} \) together with (3.28)-(3.25)2 give

\[
\alpha \int_{\Omega} |\nabla (u_\delta - u)|^2 \, dx \leq \omega^2 \int_{\Omega} \Re(\varepsilon_\delta)|u_\delta - u|^2 \, dx + \omega^2 \left( \frac{\varepsilon_2}{\delta^2} + |\varepsilon_1 - \varepsilon_3| \right) \|u\|_{L^2(\Omega_\delta)} \|u_\delta - u\|_{L^2(\Omega_\delta)} \leq C\delta^2 \|f\|_{L^2(\Omega, \mathbb{C})} \|
\]

where \( C \) is independent of \( \delta \). This proves (3.26). Now, (3.28)-(3.26)2 together with (2.8)1 yield (3.26). \( \square \)

4 Asymptotic behaviour of the the sequence \( \{u_\delta - u\}_\delta \).

Set

\[
v_\delta = u_\delta - u.
\]

This function belongs to \( H^1_0(\mathcal{O}, \mathbb{C}) \) and is the solution to

\[
\int_{\Omega} A\nabla v_\delta \cdot \nabla \psi \, dx = \omega^2 \int_{\Omega} \varepsilon_\delta v_\delta \cdot \psi \, dx = \omega^2 \int_{\Omega_\delta} (\varepsilon_\delta - \varepsilon_3)u \cdot \psi \, dx, \quad \forall \psi \in H^1_0(\Omega, \mathbb{C}).
\]

4.1 The unfolding operator \( \mathcal{T}_\delta^\# \)

We use the method described in [9, Subsection 13.7.2]. Denote

\[
\mathcal{Y} \equiv (0, 1)^2 \times \mathbb{R} \quad \text{and} \quad \mathcal{Y}' \equiv (0, 1)^2 \times (-1/2, 1/2)
\]

and \( x' = (x_1, x_2) \).

Definition 4.1. For \( \varphi \) Lebesgue-measurable on \( \mathcal{O} \times \mathbb{R} \), the unfolding operator \( \mathcal{T}_\delta^\# \) is defined by

\[
\mathcal{T}_\delta^\#(\varphi)(x', z) = \begin{cases} 
\varphi \left( \frac{x'}{\delta}, \frac{z}{\delta} \right)_{\mathcal{Y}'}, & \text{for a.e. } (x', z) \in \tilde{\mathcal{O}}_\delta \times \mathcal{Y} \\
0, & \text{for a.e. } (x', z) \in \Lambda_\delta \times \mathcal{Y}.
\end{cases}
\]

Proposition 4.1 (Properties of the operator \( \mathcal{T}_\delta^\# \)).

1. For any \( \varphi \in L^1(\mathcal{O} \times \mathbb{R}) \),

\[
\int_{\mathcal{O} \times \mathcal{Y}} \mathcal{T}_\delta^\#(\varphi)(x', z) \, dx' \, dz = \frac{1}{\delta} \int_{\mathcal{O} \times \mathcal{Y}} \varphi \, dx - \frac{1}{\delta^2} \int_{\Lambda_\delta \times \mathbb{R}} \varphi \, dx = \frac{1}{\delta} \int_{\tilde{\mathcal{O}}_\delta \times \mathbb{R}} \varphi \, dx.
\]

2. For any \( \varphi \in L^2(\mathcal{O} \times \mathbb{R}) \),

\[
\|\mathcal{T}_\delta^\#(\varphi)\|_{L^2(\mathcal{O} \times \mathcal{Y})} \leq \frac{1}{\sqrt{\delta}} \|\varphi\|_{L^2(\mathcal{O} \times \mathbb{R})}.
\]

3. Let \( \varphi \in H^1(\mathcal{O} \times \mathbb{R}) \), then

\[
\delta^{-1} \nabla_x (\mathcal{T}_\delta^\#(\varphi)) = \mathcal{T}_\delta^\#(\nabla \varphi) \quad \text{a.e. in } \tilde{\mathcal{O}}_\delta \times \mathcal{Y}.
\]

The proofs are omitted here as it can be proved following the similar lines of arguments in [7] and [9, Subsection 13.7.2].
Now, estimates (3.26) yield
\[
\|T_\delta^\#(v_3)\|_{L^2(\Omega \times \mathcal{Y})} \leq C\|f\|_{L^2(\Omega)},
\]
\[
\|T_\delta^\#(v_3)\|_{L^2(\Omega \times \mathcal{Y})} \leq C\delta\|f\|_{L^2(\Omega)},
\]
and
\[
\|\nabla_\gamma(T_\delta^\#(v_3))\|_{L^2(\Omega \times \mathcal{Y})} \leq C\delta\|f\|_{L^2(\Omega)}.
\]

Denote $\mathbb{H}^1(\mathcal{Y})$ the closure of $H^1_{per}(\mathcal{Y}) \equiv \{ \Phi \in H^1(\mathcal{Y}) \mid \Phi \text{ is } e_1 \text{ and } e_2 \text{ periodic} \}$ for the norm
\[
\|v\|_\mathcal{Y} \doteq \sqrt{\int_\mathcal{Y} |v|^2 \, dz + \int_\mathcal{Y} |\nabla_\gamma v|^2 \, dz}, \quad v \in H^1(\mathcal{Y}).
\]

Remind that for every $\zeta > 1/2$ and every $\Phi \in H^1(\mathcal{Y})$ one has
\[
\|\Phi\|^2_{L^2((0,1)^2 \times (-\zeta,\zeta))} \leq 4\zeta\|\Phi\|^2_{L^2(\mathcal{Y})} + \zeta^2\|\nabla_\gamma \Phi\|^2_{L^2((0,1)^2 \times (-\zeta,\zeta))}.
\]
As a consequence, we get for every $\Phi \in H(\mathcal{Y})$
\[
\forall \zeta > \frac{1}{2}, \quad \|\Phi\|_{H^1((0,1)^2 \times (-\zeta,\zeta))} \leq 2\zeta^2\|\Phi\|_\mathcal{Y}.
\]
From the estimates (4.1), there exists a subsequence of $\{\delta\}$, still denoted $\{\delta\}$ and $v \in L^2(\Omega; \mathbb{H}(\mathcal{Y}))$ such that
\[
\frac{1}{\delta} T_\delta^\#(v_3) \to 0 \quad \text{weakly in } L^2(\Omega \times \mathcal{Y}),
\]
\[
\frac{1}{\delta} T_\delta^\#(v_3) \to v \quad \text{weakly in } L^2(\Omega; \mathcal{H}^1_{loc}(\mathcal{Y})),
\]
\[
\forall \zeta > \frac{1}{2}, \quad \frac{1}{\delta} T_\delta^\#(v_3) \to v \quad \text{weakly in } L^2(\Omega; H^1((0,1)^2 \times (-\zeta,\zeta))),
\]
\[
\frac{1}{\delta} \nabla_\gamma(T_\delta^\#(v_3)) \to \nabla_\gamma v \quad \text{weakly in } L^2(\Omega \times \mathcal{Y})^3.
\]

**Lemma 4.1.** We have
\[
\frac{1}{\delta} T_\delta^\#(u) \rightharpoonup u_1 \quad \text{strongly in } L^2(\Omega \times \mathcal{Y})
\]
where $u_1 = z_1 \frac{\partial u}{\partial x_3} |_\Gamma$ a.e. in $\Omega \times (0,1)^2 \times (0,1/2)$ and $u_1 = 0$ a.e. in $\Omega \times (0,1)^2 \times (1/2,0)$.

**Proof.** From (3.25) and Proposition 4.1, one has
\[
\|T_\delta^\#(\delta^{-1}u)\|_{L^2(\Omega \times (0,1)^2 \times (0,1/2))} \leq \delta^{-1/2}\|\delta^{-1}u\|_{L^2(\Omega)}, \quad C\|f\|_{L^2(\Omega,\mathfrak{C})},
\]
\[
\|\nabla_\gamma T_\delta^\#(\delta^{-1}u)\|_{L^2(\Omega \times (0,1)^2 \times (0,1/2))} \leq \delta^{-1/2}\|\nabla u\|_{L^2(\Omega)}, \quad C\|f\|_{L^2(\Omega,\mathfrak{C})}.
\]
One also has $(i, j) \in \{1, 2, 3\}^2$
\[
\left\| \frac{\partial^2}{\partial x_i \partial x_j} T_\delta^\#(\delta^{-1}u) \right\|_{L^2(\Omega \times (0,1)^2 \times (0,1/2))} = \delta \left\| T_\delta^\# \left( \frac{\partial^2 u}{\partial x_i \partial x_j} \right) \right\|_{L^2(\Omega \times (0,1)^2 \times (0,1/2))} \leq \delta^{1/2}\|u\|_{H^2(\Omega,\mathfrak{C})}
\]
\[
\leq C\delta^{1/2}\|f\|_{L^2(\Omega,\mathfrak{C})}.
\]
Thus, there exists $u_1 \in L^2(\Omega; H^2((0,1)^2 \times (0,1/2)))$ such that for a subsequence
\[
T_\delta^\#(\delta^{-1}u) \rightharpoonup u_1 \quad \text{weakly in } L^2(\Omega; H^2((0,1)^2 \times (0,1/2))),
\]
\[
\frac{\partial^2}{\partial x_i \partial x_j} T_\delta^\#(\delta^{-1}u) \rightharpoonup 0 \quad \text{strongly in } L^2(\Omega \times (0,1)^2 \times (0,1/2)).
\]

Since $u(x',0) = 0$, we have $\frac{\partial u}{\partial x_i}(x',0) = 0$ for $i = 1, 2$ and $T_\delta^\#(\delta^{-1}u) = 0$ a.e. on $\Omega \times (0,1)^2 \times \{0\}$ and due to the above convergences, one has
\[
u_1(x',z) = z_3 u_{1,3}(x') \quad \text{for a.e. } (x',z) \in \Omega \times (0,1)^2 \times (0,1/2).
\]

By [9, Lemma 13.24(iii)], we have for any $\Phi \in H^1(\Omega^+)$
\[
T_\delta^\#(\Phi) \rightarrow \Phi|_\Gamma \quad \text{strongly in } L^2(\Omega \times (0,1)^2 \times (0,1/2)).
\]
It also holds for $\Phi = A$. Thus
\[
\frac{\partial}{\partial x_3} T_\delta^\# (\delta^{-1} u) = T_\delta^\# \left( \frac{\partial u}{\partial x_3} \right) \rightarrow \frac{\partial u}{\partial x_3} \text{ strongly in } L^2(O \times (0, 1)^2 \times (0, 1/2)).
\]
Hence $u_1 = z_3 \frac{\partial u}{\partial x_3} \text{ a.e. in } O \times (0, 1)^2 \times (0, 1/2)$ and $u_1 = 0 \text{ a.e. in } O \times (0, 1)^2 \times (-1/2, 0)$.
\[\square\]

Now, we will identify $v$. Let us consider the test function $\Psi^\delta(x) = \psi(x') \Psi_\zeta \left( \frac{x'}{\delta} ; \frac{x_3}{\delta} \right)$ where $\psi \in C_0^\infty(O)$, $\Psi_\zeta \in H^1_{per, e}(Y)$, satisfying $\Psi_\zeta(\cdot, z_3) = 0$ for all $|z_3| > \zeta > 1$.

If $\delta$ is small enough, one has $\delta \zeta < L$, so $\psi^\delta$ is an admissible test function. Then
\[
T_\delta^\# (\Psi^\delta_\zeta) \rightarrow \psi \Psi_\zeta \text{ strongly in } L^2(O; \mathbb{H}(Y)),
\]
\[
\delta T_\delta^\# (\nabla \Psi^\delta_\zeta) \rightarrow \psi \nabla \psi_\zeta \text{ strongly in } L^2(O \times Y).
\]

Now, let us consider the weak form with the test function $\psi^\delta$
\[
\delta \int_{O \times Y} T_\delta^\# A T_\delta^\# \nabla v_\delta \cdot T_\delta^\# \nabla \psi_\delta \, dx'dz - \omega^2 \delta \int_{O \times Y} T_\delta^\# (\delta v_\delta) T_\delta^\# v_\delta \cdot T_\delta^\# \psi_\delta \, dx'dz
\]
\[
- \omega^2 \delta \int_{O \times Y} \delta \nabla v_\delta \cdot \delta v_\delta \, dx'dz = \omega^2 \delta \int_{O \times Y} T_\delta^\# (\delta v_\delta - \delta \zeta) T_\delta^\# (\delta \psi_\delta) \, dx'dz. \tag{4.3}
\]

Due to convergences (4.2), one has
\[
\delta \int_{O \times Y} T_\delta^\# A T_\delta^\# \nabla v_\delta \cdot T_\delta^\# \nabla \psi_\delta \, dx'dz - \omega^2 \delta \int_{O \times Y} T_\delta^\# (\delta v_\delta) T_\delta^\# \psi_\delta \, dx'dz - \delta \omega^2 \delta \int_{O \times (Y \setminus \zeta)} \delta v_\delta \cdot T_\delta^\# \psi_\delta \, dx'dz
\]
\[
= \int_{O \times \zeta} A T_\delta^\# \nabla v_\delta \cdot T_\delta^\# (\delta^{-1} v_\delta) \, dx'dz - \omega^2 \delta \int_{O \times Y} T_\delta^\# (\delta v_\delta) T_\delta^\# \psi_\delta \, dx'dz
\]
\[
- \omega^2 \delta \int_{O \times (Y \setminus \zeta)} \delta v_\delta \cdot T_\delta^\# \psi_\delta \, dx'dz
\]
\[
\rightarrow \int_{O \times \zeta} A(x', 0) \nabla v \cdot \nabla \psi \, dx'dz - i \omega^2 \delta \int_{O \times \zeta} v \cdot \psi \, dx'dz.
\]

Lemma 4.1 gives
\[
T_\delta^\# (\delta^{-1} u) \rightarrow du_3 \text{ and } T_\delta^\# (\delta v_\delta u) \rightarrow i \varepsilon_2 u_1 \text{ weakly in } L^2(O \times Y).
\]

Moreover
\[
\delta \int_{O \times Y} T_\delta^\# (\delta v_\delta - \delta \zeta) T_\delta^\# (\delta \psi_\delta) \, dx'dz = \int_{O \times Y} (T_\delta^\# (\delta \varepsilon_2 u_1) - \delta (\varepsilon_2 u_1) T_\delta^\# (\delta \psi_\delta) \, dx'dz
\]
\[
\rightarrow i \varepsilon_2 \int_{O \times Y} du_3 \psi \, dz.
\]

Thus, passing to the limit ($\delta \rightarrow 0$) gives
\[
\int_{O \times Y} (A(x', 0) \nabla v \cdot \nabla \psi_\zeta) \psi \, dx'dz - i \omega^2 \delta \int_{O \times \zeta} (v \cdot \nabla \psi_\zeta) \psi \, dx'dz = i \omega^2 \delta \int_{O \times Y} du_3 \nabla \psi \cdot \nabla \psi_\zeta \, dx'dz \tag{4.4}
\]
for all $\psi \in C_0^\infty(O)$, $\Psi_\zeta \in H^1_{per}(Y)$, satisfying $\Psi_\zeta(\cdot, z_3) = 0$, $\forall |z_3| > \zeta > 1$.

\[
\int_{O} \left( \int_{Y} A(x', 0) \nabla v \cdot \nabla \psi_\zeta \, dz - i \omega^2 \delta \int_{Y} v \cdot \nabla \psi_\zeta \, dz - i \omega^2 \delta \int_{Y} du_3 \nabla \psi_\zeta \, dz \right) \psi \, dx' = 0 \tag{4.5}
\]
for all $\psi \in C_0^\infty(O)$. Hence,
\[
\int_{Y} A(x', 0) \nabla v \cdot \nabla \psi_\zeta \, dz - i \omega^2 \delta \int_{Y} v \cdot \nabla \psi_\zeta \, dz = i \omega^2 \delta \int_{Y} du_3 \nabla \psi_\zeta \, dz \text{ a.e. } x' \in O. \tag{4.6}
\]
By a density argument, we finally get that \( v \) satisfies 
\[
\int_Y A(x',0) \nabla_z v \cdot \nabla_z \bar{v} \, dz - i \omega^2 \varepsilon_2 \int_{Y_0} v \, \bar{v} \, dz = i \varepsilon_2 \int_{Y_0} u_1 \, \bar{v} \, dz, \quad \forall \psi \in \mathbb{H}(Y), \text{ a.e. in } O. \tag{4.7}
\]
Now, let \( v_1 \) and \( v_2 \) be two solutions of (4.7). Then, \( \hat{v} = v_1 - v_2 \) satisfies 
\[
\int_Y A(x',0) \nabla_z \hat{v} \cdot \nabla_z \bar{v} \, dz - i \omega^2 \varepsilon_2 \int_{Y_0} |\hat{v}|^2 \, dz = 0. \tag{4.8}
\]
By equating the real and imaginary parts we get \( \|\nabla_z \hat{v}\| = 0 \) in \( Y \) and \( ||\hat{v}|| = 0 \) in \( Y_0 \). Hence \( \hat{v} = 0 \) in \( Y \). Thus (4.7) admits a unique solution.

Let \( V \in \mathbb{H}(Y) \) be the solution to 
\[
\int_Y A(x',0) \nabla_z V(z) \cdot \nabla_z \bar{v}(z) \, dz - i \omega^2 \varepsilon_2 \int_{Y_0} V(z) \, \bar{v}(z) \, dz = i \varepsilon_2 \int_{Y_0^+} z_3 \bar{v}(z) \, dz, \quad \forall \psi \in \mathbb{H}(Y),
\]
where \( Y_0^+ = Y_0 \cap (0,1)^3 \). Then, we have 
\[
\hat{v}(x',z) = V(z) \frac{\partial u}{\partial x_3}(x',0) \quad \text{a.e. in } O \times Y.
\]

**Lemma 4.2.** There exists two positive constants \( C \) and \( c \) independent of \( \zeta \) such that
\[
\int_{(0,1)^2 \times (\zeta, \infty)} |\nabla_z V|^2 \, dz \leq C e^{-c \zeta}, \quad \forall \zeta \geq 0, \quad \text{and} \quad \int_Y z_3 |\nabla_z V|^2 \, dz \leq C.
\]
Moreover, \( \nabla_z V \in L^1(Y)^3 \) and there exist two complex numbers \( V(+\infty), V(-\infty) \) such that as \( \zeta \to +\infty \)
\[
V(\cdot, \zeta) \to V(+\infty) \quad \text{strongly in } L^2((0,1)^2),
\]
\[
V(\cdot, -\zeta) \to V(-\infty) \quad \text{strongly in } L^2((0,1)^2).
\]

**Proof.** The proof is similar to that of [9, Lemma 13.26] with the test function \( \phi(z_3) \) where \( \phi \in C_0^\infty(1, \infty) \).

## 5 Appendix

This section is devoted to give some explicit constants involved in the estimates which are of numerical importance. The proof of Lemma 2.1 is provided below.

**Proof of Lemma 2.1.** First, for every \( v \in H \) such that \( k_2\|v\|^2_H - k_3\|v\|^2_L \leq 0 \) and accounting for the first condition of the lemma,
\[
|a(v,v)| \geq |\Im(a(v,v))| \geq \frac{k_2 k_2}{k_3} \|v\|^2_H, \quad \forall v \in H \quad \text{such that} \quad k_2\|v\|^2_H - k_3\|v\|^2_L \leq 0.
\]
Now, if \( k_2\|v\|^2_H - k_3\|v\|^2_L \geq 0 \) then
\[
|a(v,v)|^2 = |\Re(a(v,v))|^2 + |\Im(a(v,v))|^2 \geq (k_2\|v\|^2_H - k_3\|v\|^2_L)^2 + k_2^2\|v\|^4_L. \tag{5.1}
\]
Let us introduce the quadratic form \( Q \) defined for every \( (x_1,x_2) \in \mathbb{R}^2 \) by 
\[
Q(x_1,x_2) = (k_2 x_1 - k_3 x_2)^2 + k_2^2 x_2^2 = X^T A X,
\]
with 
\[
X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad A = \begin{pmatrix} k_2^2 & -k_2 k_3 \\ -k_2 k_3 & k_3^2 + k_4^2 \end{pmatrix}.
\]
The eigenvalues of the matrix \( A \) are 
\[
\mu^\pm = \frac{k_2^2 + k_3^2 + k_4^2 \pm \sqrt{\Delta}}{2} > 0,
\]
where \( \Delta = ((k_2 - k_1)^2 + k_3^2)((k_2 + k_1)^2 + k_4^2) > 0 \). In this case the Rayleigh quotient is bounded so that,
\[
0 < \mu^- \leq \frac{X^T A X}{X^T X} \leq \mu^+.
\]
It follows that
\[ Q(x_1, x_2) = X^T A X \geq \mu - (x_1^2 + x_2^2) \geq \mu - x_1^2. \]
Then, using the inequality (5.1) and the above inequalities, the form \( a(\cdot, \cdot) \) satisfies
\[ |a(v, v)|^2 \geq Q(\|v\|_H^2, \|v\|_L^2) \geq \mu - \|v\|_H^2, \quad \forall v \in H \]
such that \( k_2 \|v\|_H^2 - k_3 \|v\|_L^2 \geq 0 \).
Taking \( \beta_1 = \min \left\{ \frac{k_2}{k_3}, \sqrt{\mu} \right\} > 0 \), one obtains finally
\[ |a(v, v)| \geq \beta_1 \|v\|_H^2, \quad \forall v \in H, \]
which implies that the sesquilinear form \( a(\cdot, \cdot) \) is coercive w.r.t. \( \| \cdot \|_H \).

**Remark 5.1.** The exact constant in the estimate (3.5) is
\[
C'(\delta, \theta) = \min \left\{ \frac{\alpha \theta}{\tau}, \sqrt{\frac{\alpha^2 + (\omega^2 \tau)^2 + (\omega^2 \theta)^2 - \sqrt{((\alpha - \omega^2 \theta)^2 + (\omega^2 \theta)^2)((\alpha + \omega^2 \theta)^2 + (\omega^2 \theta)^2)}}}{2} \right\} > 0.
\]

**References**


