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ABSTRACT
Honeycomb structures are widely used in energy absorption, and more recently auxetic honeycombs
have been studied in order to improve absorption capabilities of such structures. The hexagonal re-
entrant (HR) honeycomb is foreseen to be a promising structure under impact velocities. An experi-
mental analysis of the re-entrant honeycomb under impact velocity has led to a finite elements model
validation at scale one, i.e. scale of current car crash cushions. A new objective function based on the
European Standard has been developed in order to improve crash cushions capabilities while avoiding
peak deceleration by using a meta-heuristic optimization algorithm. The global optimization process
has been performed using Inverse-PageRank-PSO algorithm. The algorithm has led to an optimal geo-
metrical configuration of HR honeycomb improving the performance of current road safety devices.
The optimal structure presents a quasi-linear absorption curve, as recommended by
European standards.
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1. Introduction

Honeycomb structures are widely used, solicited in-plane, in
energy absorption [1–4] and constitute crash cushion sys-
tems used along roads. The aim of these devices is to effi-
ciently absorb kinetic energy, while preserving the vehicle
occupants integrity. European and French standards [5,6]
give the impact conditions and the absorption capabilities of
the structure to be validated and installed along roads. To
do so, optimization methodologies can be used, to develop
the most adapted structure, while considering the manufac-
turing capabilities of the road safety devices industry.
Usually, simple folded metal sheets are assembled [7]. In
this paper, a parametric optimization algorithm is used, to
find the best geometric parameters of the structure, to
improve the structural absorption capabilities, while meeting
the European standards and guaranteeing manufacturing
constraints.

Cellular materials, such as honeycombs, have been used
as new engineered materials because of their very efficient
energy absorption capabilities [3,8–10]. In the last few years,
many works have been conducted on auxetic materials
[11–13], which exhibit a negative Poisson’s ratio, since they
have been introduced by Lakes et al. [14]. Usually manufac-
tured as foams [15,16], they can also be manufactured at
bigger scales, and are then called cellular materials [17].
However, if honeycomb structures can not be considered as
a Representative Volume Element, because the scale ratio
conditions [18] are not met, the structure has to be entirely
considered and no homogenization method is needed [19].

In this paper, the total structure will be studied and opti-
mized. Numerous shapes of auxetic microstructures have
been proposed in the literature, such as star honeycomb,
arrow-head honeycomb, chiral honeycomb and hexagonal
re-entrant honeycomb [13]. Optimization methodologies are
sometimes used to design new microstructures exhibiting
high negative Poisson’s ratio effects [20,21].

The hexagonal re-entrant (HR) honeycomb has shown
high efficient capabilities in energy absorption under impact
compared to conventional honeycomb [8,10,19,22]. Under
quasi-static conditions, many studies have been conducted
to predict either the elastic constants [23], or the depend-
ence of hexagonal re-entrant honeycombs’ Poisson’s ratio
and Young’s modulus on the cell geometric parameters,
using Finite Elements Method (FEM) analysis [17,22]. A
theoretical approach to predict negative Poisson’s ratios of
auxetic honeycombs has been developed, which is based on
the large deflection model [2]. Experimental and numerical
studies have been performed on the hexagonal re-entrant
honeycomb under quasi-static loading to study its crushing
behavior. They have investigated the negative Poisson ratio
effects on the crushing stress and energy absorption effi-
ciency [19]. If the elastic and quasi-static behaviors of hex-
agonal re-entrant honeycombs have been largely studied, the
dynamic behavior under impact velocities is less studied.
Hou et al. [8] and Hu et al. [9] have worked on the
dynamic response of re-entrant honeycombs under high vel-
ocity crush [8,9]. In these works, the energy absorption effi-
ciency of the structure is computed by using the
propagation waves theory. The studied velocities are over
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100m/s and thus, do not correspond to car limitation
speeds which are limited to 30m/s on highways in France
[5]. In fact, European standards impose a certain structural
volume and geometry adapted to the impact velocity, which
will then be studied in this paper.

In the literature, some studies have been conducted on
the optimization of HR honeycomb structures subjected to
crash. Wang et al. [24] have optimized a crash-box with 3D
re-entrant auxetic core under 15 and 40 km/h crash condi-
tions. However, the studied volume is limited to the
imposed crash-box size, i.e. (130� 133� 73mm) and does
not correspond to crash cushion device volumes
(1200� 800� 700mm under 50 km/h) usually used by car
cushion manufacturers [7]. On another hand, Qi et al. [25]
have achieved a multi-scale optimization of the hexagonal
re-entrant honeycomb under blast impact. In order to
improve honeycomb capabilities, a multi-objective function
have been designed, to investigate the optimal thickness
value of a cell-wall material as an independent variable of
the problem. The obtained HR honeycomb structure exhib-
its an improvement about 5% of the energy absorption com-
pared to conventional honeycomb.

Most of the road networks are lined with many advanced
road safety systems. These devices absorb the kinetic energy
of crashing cars mostly by plastic deformation. The volume
of these safety systems varies as a function of the limitation
speed. Currently, these types of cushions are made of con-
ventional honeycomb structures, which absorb kinetic
energy essentially by in-plane plastic deformation [7,26]. In
this paper, the hexagonal re-entrant honeycomb deform-
ation under car crash impact velocities is investigated to
improve the performance of current cushions. The major
criterion in car cushion design is about the deceleration felt
by the crashed-car-user and is called the Acceleration
Sensitivity Index (ASI) [5]. The European standard estimates
at 9:8� g ½m=s�2� the deceleration that can be sustained
during 50ms by a human being before severe injuries [5],
where g is the gravity acceleration. Indeed, in crashworthi-
ness optimization, many works have investigated the
Specific Energy Absorption (SEA) based on the stress-strain
curve optimization [25,27–29]. SEA optimization consists of
maximizing the integral of the impact force, over the dis-
placement under quasi-static loading while minimizing the
mass of the structure. Here, according to the ASI criterion,
the striker limit force is defined, allowing to characterize the
capability of a cushion to absorb kinetic energy. In this
paper, this criterion is used to define a new appropriate
objective function based on the force-time curve, to
be optimized.

The remaining part of this paper is organized as follows.
Section 2 presents the experimental study conducted on the
HR honeycomb under impact conditions. The experimental
work allows to validate the FE model presented in Section
3. The new objective function is defined in Section 4.1,
which depends on the design variables defined in Section
4.2. Then, an optimization methodology is performed and
presented in Section 5. Finally, the discussion and conclu-
sion of this paper are outlined in Section 6.

2. Experimental analysis of the hexagonal re-
entrant honeycomb absorbing cushion device

2.1. Experimental setup

In order to study the mechanical behavior of HR honey-
combs under impact conditions, an experimental campaign
has been conducted at the LBMC-crash-track [30]. The
device is composed of a track propelling a vehicle into a
car-cushion-specimen fixed on a concrete wall, as shown in
Figure 1. The tested vehicle is a 4-wheel-rigid vehicle with a
mass m of 690 kg. The vehicle is freed from the propeller
7m before the concrete wall, and thus is guided neither dur-
ing nor after the impact. The 4-wheel-rigid vehicle is pro-
pelled at 14m=s corresponding to the speed limitation of
50km=h defined in the European standards [5,6].

The tested vehicle is instrumented with front and rear
accelerometers recording the acceleration of the vehicle in
X, Y and Z directions, defined in Figure 1. Acceleration sig-
nals are filtered with a Butterworth filter with 4 poles at
180Hz (BW 4p 180Hz) in conformity with European stand-
ard ISO6487 [31]. The front sensor is able to measure an
acceleration up to 500 g whereas the rear sensor has a cap-
acity of 100 g, where g is the gravity acceleration. The sam-
pling interval is 10�5s�1 for all the accelerometers.

Three high speed video cameras are installed to film dif-
ferent shots. Their corresponding resolutions are described
in Table 1. The sampling interval is set to 3000 images/sec
for all cameras. Cameras are connected to the trigger identi-
fying the beginning of the contact between the vehicle and
the specimen. This allows to record 500 images on the cam-
eras before the contact.

Three test patterns are installed on the vehicle in order
to automatically track the displacement. The Tracker 5.1.3
software is used with the automated object tracking position
functionality to fit the displacements of the test patterns.

2.2. Geometric configuration and manufacturing
process of the absorbing cushion device

The unit cell configuration adopted in this study is a re-
entrant honeycomb which can be described with three geo-
metric parameters l, h and h as shown in Figure 2. The cell
wall thickness is set to t. By duplicating the unit cell in both
X and Y directions, the complete structure is constituted of
n and m cells in the X and Y directions respectively. The
total lengths of the structure are called LX, LY and LZ in the
X, Y and Z directions respectively.

The specimen dimensions are selected among a set of
parameters leading to an absorbing crash-cushion design
preserving the experimental devices during impact tests, and
are described in Table 2.

The constitutive material used to manufacture the speci-
men is a certificated (EN 485-2) aluminum (SHEET EN
AW 5754 H111) exhibiting a linear elastic isotrope behavior.
The Young modulus E, the offset yield point Rp0:2, the fail-
ure stress Rm and the maximal elongation A% are given in
Table 3. The specimen is composed of two major parts. The
first one is called wavy sheet and is LX long and LZ high.
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Wavy sheets are bent with a metal press using a V16mm
vee. The second part is the joint (as shown in Figure 3 and
illustrated by the blue line) allowing the assembling of the
wavy sheets together. The whole specimen is composed of
16 wavy sheets and 67 joints. Joints and wavy sheets are

bolted together with 8 bolts per joint. Each bolt is composed
of 1 hexagonal head screw M6x16 ISO4017 class 10.9, 1
hexagonal nut M6 (DIN934) class 10 and 2 plain washers
normal type (DIN125-1A) 140HV made of stainless steel.
Bolt are tighten at a torque of 11N:m: On the front side of
the HR honeycomb specimen, 3 metal sheets are riveted to
the specimen in order to avoid expansion in the Y direction
of the front cells during impact (see Figure 3).

The experimental deformation of the HR honeycomb
structure under v ¼ 13:89m=s impact velocity is shown in
Figure 5. Before t ¼ 0:02s the Negative Poisson Ratio (NPR)
effect is highlighted in the deformation process where the
upper layers are crushed. Then, the structure wears down in
the Y direction from t ¼ 0:05s to the end of the crash at
t ¼ 0:15s: The manufacturing process allows to keep the HR
honeycomb in one piece all over the impact crashing. The
specimen can be considered as a one piece honeycomb
without failure or wrenching. These experimental results
will then be used to validate the numerical model presented
in next Section.

3. Hexagonal re-entrant honeycomb
numerical study

3.1. Finite elements analysis

A numerical model of the impacted hexagonal re-entrant
honeycomb crash-cushion has been computed, using LS-
DYNA explicit solver. In a step of validation, a crashed car
of mass m ¼ 690kg is modelled by a rigid plate with an
equivalent mass, impacting the HR structure with an initial
velocity set to v ¼ 13:89m=s, as presented in Figure 2 to
match with the measured velocity in the experimental study
previously presented in Section 2.

The acceleration cx in the X direction on the rigid wall is
computed as the ratio of (i) the force (FX) in the X direction
computed in the rigid wall during the crash and (ii) the
mass (m) of the wall, as follow:
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Figure 1. LBMC-crash-track experimental device and the car-crash-cushion specimen.Q4

Table 1. Cameras setup.

Camera Resolution (pixels) Shot

1 1024� 576 (X, Y) plan
2 768� 768 (X, Y) plan
3 1024� 576 (X, Z) plan

Figure 2. Hexagonal re-entrant honeycomb specimen: (a) whole structure and
(b) unit cell detailed with geometric parameters.

Table 2. Geometrical parameters of HR honeycomb specimen.

LX (mm) LY (mm) LZ (mm) t (mm) l (mm) h (mm) h (
�
)

1240 810 690 2 130 90 73

Table 3. Mechanical properties of aluminum AW5754H111.

E (MPa) Rp0:2 (MPa) Rm (MPa) A%

AW5754H111 69 000 118 211 26.5
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Figure 3. Zoom in on unit HR cell and a joint in the HR honeycomb specimen.

Figure 4. Global view of the HR honeycomb specimen.

Figure 5. Global deformation of the experimental HR honeycomb specimen over time under crashed condition v ¼ 13:89m=s:
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cx ¼
FX
m

(1)

The acceleration signal is filtered according to European
standard (ISO6487 [31]) with a butterworth filter 4 poles at
180Hz. The honeycomb cell walls are meshed using 4-nodes
fully-integrated shell elements (Shell 163 in LS-DYNA).
Whatever the value of l and h (see Figure 3), the element
size is set to h=4 to insure a constant number of elements
in each cell. An automatic single-self contact
(AUTOMATIC_SINGLE_SURFACE) is applied on the
whole model by considering a friction coefficient of 0.35.
The contact between the rigid plate and the honeycomb
structure is considered frictionless. The constitutive material
(aluminum alloy) of the cell-wall honeycomb is assumed to
be elastic-linear-plastic (MAT_PIECEWISE_
LINEAR_PLASTICITY) with Young’s modulus E, yield
stress rys, modulus tangent Etan and constitutive material
density q given in Table 4, equivalent to the AW 5754 H111
aluminum used for the experimental study presented in
Section 2. The mass of the numerical honeycomb structure
is equal to the whole structure mass of the experimental
specimen, including bolts. As presented before, the failure
does not occur during experimental tests, and thus is not
considered in the numerical model.

The material of the rigid plate is assumed to be steel and
not deformable and thus, neither yield stress nor tangent
modulus are needed, as summed up in Table 4.

3.2. Model validation

The experimental and computed results are compared in
order to validate the finite elements model presented in
Section 3.1. As explained in previous Section 3.1, the
numerical rigid wall and experimental vehicle accelerations
are compared. Both experimental and numerical signals are
filtered using a Butterworth filter with 4 poles at 180Hz as
recommended in the European standard ISO6487 [31].

Firstly, in order to verify the reproducibility of the
experimental setup, two experimental crash tests have been
conducted on two theoretically identical HR honeycomb
specimens called HR1 and HR2. Both experimentations are
compared regarding the filtered acceleration signals and the
striker displacement over time. The good match between
HR1 and HR2 specimen crash tests of the measured acceler-
ations and displacements of the striker are shown in Figures
6 and 7 respectively. These figures express the good repro-
ducibility of the experimental setup. Thus, the mean values
of the acceleration and the displacement of the HR1 and
HR2 specimens are computed and considered as the experi-
mental data used to validate the numerical model in follow-
ing sections.

Figure 8 compares the filtered deceleration computed by
the FE model, and measured on the rigid wall (red line) and
the measured filtered deceleration of the crashed vehicle
(blue line). The mean plateau deceleration cx is computed
as the mean deceleration between t ¼ 0:04s and t ¼ 0:12s
and values are summed up in Table 5 for both experimental
and numerical signals. Furthermore, the maximal deceler-
ation (i.e. the minimal acceleration) is identified as minðcxÞ

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

Table 4. Material properties of modelled aluminum alloy and rigid wall steel.

Material E (MPa) rys (MPa) Etan (MPa) q (kg=m3)

Specimen Aluminum alloy 69000 118 633 3080
Rigid plate Not deformable

steel
210000 – – 7800

Figure 6. Comparison of measured accelerations on the striker under 13.89m/s
crash conditions for both specimens and the corresponding mean acceleration.

Figure 7. Comparison of measured displacement on the striker under 14m/s
crash conditions for both specimens and the corresponding mean
displacement.

Figure 8. Comparison of the acceleration on the striker under 13.89m/s
crashed conditions computed by FE analysis and experimentally measured.
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and occurs at t ¼ 7:89E�5 seconds on both numerical and
experimental acceleration curves.

The displacements of the rigid wall and the crashed
vehicle in the X direction are compared in Figure 9. The
maximum displacement maxðDxÞ is defined as the maximal
crushing distance of the striker in the X direction during
the impact.

The relative errors re, � between the experimental and the
computed numerical values given in Table 5 are defined as:

re, � ¼
�expe��simu

�expe (2)

where �expe and �simu refer to the considered experimental
and numerical values respectively.

The behavior of the whole structure in the FE model is
similar to the experimental data given in Section 2. The
relative errors around 8% on the acceleration values and less
than 3% on the crushing displacement (see Table 5) are
acceptable and allow to validate the proposed FE model.
The errors can be explained because (i) bolts are not repre-
sented in the FE model and (ii) the tested vehicle is not
guided during the impact and thus touches the specimen
with a tilt angle. The developed and validated FE model will
then be used within a parametric optimization process, pre-
sented in the next Section.

4. Optimization setup

4.1. Objective function

The force-displacement curve resulting from the numerical
model is studied to evaluate the capability of the structure
to absorb kinetic energy. One of the crashworthiness criteria
is the energy absorption (EA) defined as EAðxÞ ¼ Ð l0 FðxÞdx
where l is the total crushing distance, x represents the
crushing displacement, and F is the corresponding impact

force as described in Section 3.1. The ideal force-displace-
ment curve to be observed over car crash should be a rect-
angular function (see Figure 10) [32]. However, focusing
only on the force-displacement curve is not safe enough to
prevent human being irreversible injuries. Indeed, the
European standard is a time-based criterion, due to human
tolerances [5]. The European standard uses the Acceleration
Index Severity (ASI) to classify the severity of a car crash
defined as follows:

ASI tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�cx
ĉx

� �2

þ �cy
ĉy

 !2

þ �cz
ĉz

� �2

vuut (3)

where ĉx, ĉy and ĉz are the thresholds defined in the
European standard [5] in the corresponding directions and
are equal to 7 g, 5 g and 6 g respectively. �cx, �cy and �cz are
the mean acceleration values of the crashed car over 50ms
in the corresponding directions. For a frontal crash test, the
value of ASI has to be lower than 1.4 over a time period of
0.05 s to avoid human irreversible damage. The impact dir-
ection being x in this study, the ASI criterion can be written
here as:

�cx<1:4ĉx (4)

where ĉx is set to 7 g [5] with g the gravity acceleration.
From Eq. (4), the striker limit force �FL can be expressed as:

�FL ¼ m�cx (5)

By replacing ĉx by 7 g in Eq. (4) it follows:

�FL<1:4mĉx
�FL<9:8mg

(6)

where m is the mass of the striker.
In this way, it is interesting to investigate the force-time

curve. The impact force F(t) should attempt to fit a rect-
angular function where the threshold corresponds to the
striker limit force FL inducing human severe injuries over a
period of 0.05 s [5]. Hence, the occupant of the damaged
vehicle avoids to suffer a force peak during the crash. Figure
10 illustrates the ideal and typical force-time curves
obtained during a car crash.
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Table 5. Comparison of numerical and experimental results.

minðcxÞ ðm=s2Þ �cx ðm=s2Þ maxðDxÞ (mm)
Experimental �487.89 �78.59 702.2
Numerical �447.74 �85.13 718.6
re (%) 8.41 8.32 2.3

Figure 9. Comparison of the computed and measured striker displacements
under 14m/s crashed conditions.

Figure 10. Force-time curve for a typical car crash (blue solid line) and the
ideal curve (red solid line) for a mass m ¼ 690kg:
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Commonly in optimization, problems are formulated as
follows:

minf ða1,a2, . . . , apÞ
giða1, a2, . . . , apÞ � 0 i ¼ 1, 2, . . . ,D

�
(7)

where ða1, a2, . . . , apÞ are the p design variables to be opti-
mized, f the objective function defined in a domain called
the research domain Df , gi the D inequality constraints to
be verified.

The newly proposed objective function f is based on the
force-time curve measured during the impact. This function
measures the difference between the ideal force-time curve
and the force-time curve computed in the finite elements
model. The objective function is calculated as follows:

f ða1, a2, . . . , apÞ ¼ ð�FL�meanðFsimuÞÞ2 (8)

where Fsimuða1, a2, . . . , apÞ is the value of the computed
force over time.

4.2. Input data and design variables

The optimization is performed under an impact velocity v
of 14m/s. The rigid plate striking the top of the structure in
the FE model has an initial kinetic energy Ksimu defined as
Kcar ¼ 1

2mv2: From European standard [6] the car mass for
light vehicles is set to m ¼ 900kg: The studied volume is
equal to the volume of actual car cushions located along
roads [7,26]. Thus, the volume of the re-entrant honeycomb
structure in the FE model is Vsimu ¼ LX � LY � LZ: LX and
LY can slightly fluctuate around the defined value to main-
tain a set of complete cells in the structure. The input data
are given in Table 6.

As previously presented in Section 4.1, the computation
of the objective function using Eq. (8) depends on the vari-
able set ða1,a2, . . . ,apÞ: ap are normalized design variables
defined in ½0; 1�: The normalized mathematical variables
used in Eq. (8) correspond to the HR honeycomb geomet-
rical parameters t, l, h and h respectively (see Table 7).

These variables, presented in Figure 2, are defined in
their definition domain Dbp and take into account manufac-
turing constraints. However, a constraint on variables con-
ducts to a research domain reduction. In the studied case a
geometrical constraint must be considered to preserve the
hexagonal geometry and is expressed in Eq. (9) according to
the geometrical variables previously defined in Figure 2.

h�2lcosðhÞ>0 (9)

Whatever the variable set, the FE model is automatically
generated and performed using LS-DYNA (see Section 3.1)
considering all the problem data input.

5. Optimization process: Inverse-PageRank-PSO

5.1. Methodology

The optimization method has to be carefully chosen
because of the potential non-linearities of the objective
function f and the potential interactions between the
design variables. The studied problem is intrinsically com-
plex and thus, leads to use a meta-heuristic optimization
method. Inverse-PageRank-PSO (I-PR-PSO) is an opti-
mization method particularly adapted to solve non-linear
problems [33,34]. This algorithm has shown great global
research abilities, that are interesting for solving non-linear
problems. The algorithm combines two well known meth-
ods by coupling (i) Particle Swarm Optimization (PSO)
and (ii) the PageRank (PR) algorithm used by the search
engine Google #.

PSO was first introduced by Kennedy and Eberhart [35],
and is inspired by the analysis of bird flock movements. In
this method, a population constituted of Npart particles,
investigates the research domain in order to converge
together to the global minimum of the considered objective
function. The particles move over the research domain and
communicate with each other about their position in the
research domain. The communication strategy inside the
swarm is called the population topology. Many works have
investigated population topologies and suggested improve-
ments such as PSO/ACO, PSO-SQP, PSO-GWO or I-PR-
PSO [33,36–38].

In I-PR-PSO, the particles connectivity can be seen as an
oriented graph. In this way, the influence of the particles on
the others is weighed regarding their respective fitness val-
ues. A particle which exhibits a low value of fitness influen-
ces more the next position of other particles than a particle
exhibiting a high value of fitness (for a minimization prob-
lem). The position Xkþ1

i of the particle i at the iteration
kþ 1 is calculated as follows:
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Vkþ1
i ¼ x� Vk

i þ c1 � rand1 � ðPkþ1
i, best�Xk

i Þ þ c2 � rand2 �
Xn
j¼1

Cij � ðPkþ1
j, best�Xk

i Þ

Xkþ1
i ¼ Xk

i þ Vkþ1
i

8>><
>>: (10)

Table 6. Input data for optimization.

v(m / s) Kcar (kJ) LX(mm) LY (mm) LZ(mm) �FL (N)

14 66.64 800 1200 690 65 373

Table 7. Geometrical correspondence and design domain of all design varia-
bles ap.

Normalized variables ap Geometrical variables bp Dbp

a1 t ½0:5; 3:5� mm
a2 l ½30; 150� mm
a3 h ½30; 150� mm
a4 h ½15; 90½ �
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where Pi, best is the best personal position of the particle i,
Vk

i is the velocity1 of particle i at iteration k, x is the inertia
weight of the particle, rand1 and rand2 are random numbers
in ½0; 1�, c1 and c2 are coefficients representing the social
and individual behavior of the particle and C is the stochas-
tic connectivity matrix defined by the Inverse-PageRank
algorithm. Particle i is influenced by all the particles of the
swarm, and their respective influences are given by the com-
ponents of the jth line of C. The component Cij corresponds
to the influence of all particles on particle i. Indeed, the par-
ticle swarm can be seen as a Markov chain, in which each
link represents the influence of a particle on an other one.
In the same way as in the search engine Google, a
PageRank score is attributed to each particle according to its
own success, that allows to build the stochastic connectivity
matrix C. The reader can refer to [34] for more details
about I-PR-PSO.

I-PR-PSO is applied to the FE model of the HR honey-
comb crashing (see Section 3.1) in order to find the best
combination of the geometrical parameters to efficiently
absorb the kinetic energy in car-crashed conditions. In other
words, the algorithm is employed to find a parameter set
for which the objective function f defined in Section 4.1
reaches a minimum. In the considered problem, each par-
ticle i is represented by a vector Xk

i containing the position
of the particle in the research domain Df , at iteration k.
The particle coordinates correspond to normalized values of
the design variables in their respective domains as follows:

Xk
i ¼

ak1, i
ak2, i
ak3, i
ak4, i

0
BBB@

1
CCCA (11)

For each particle i, at each iteration k, a FE calculation is
launched, and the value of the objective function f ðXk

i Þ is
calculated by using Eq. (8).

As explained in Section 4.2, the problem is highly con-
strained because of the optimization constraint imposing
h�2lcosðhÞ>0: A simple penalty method is applied to a par-
ticle that does not respect the condition [39]. In the studied
case, if Eq. 9 is not verified, the fitness value is not com-
puted in order to save computational time and because the
structure might be unmanufacturable. A penalty value, set
to 10E30, is attributed to the considered particle to isolate it
from the swarm. Thus, the particle which does not verify
Eq. (9) has an insignificant influence on its pairs.

5.2. I-Pr-PSO parameters

As explained in the latter Section, I-PR-PSO parameters
have to be carefully chosen to ensure the algorithm conver-
gence. As for classical PSO, a large diversity of parameter

sets are discussed [40–45]. Indeed, the parameter set is
strongly problem-dependent as demonstrated in [46].

The values of I-PR-PSO parameters (x, c1 and c2) are
summed up in Table 8. The algorithm can be considered as
converged either when the number of iterations k reaches
the maximum number of iterations (set by the user)
itPSO, MAX or when the value of the best position does not
improve after itconv iterations.

Parameters can be considered as a good selection when
the algorithm presents an efficient convergence curve (i.e.
the evolution of the best fitness value found over iterations).
So, in the following optimization process, a convergence
study is presented, where I-PR-PSO parameters have been
empirically found.

The values of c1 and c2 gradually decrease while I-PR-
PSO process progresses. Dc is subtracted to c1 and c2, at
each iteration k.

5.3. Obtained results

5.3.1. Optimal structure
This section presents the results obtained by the optimiza-
tion process. The numerical model used within the opti-
mization has been previously presented in Section 3.1, and
validated based on experimental tests presented in Section
3.2. Four design variables have been optimized, correspond-
ing to the geometrical parameters of the HR honeycomb
structure. The optimization algorithm, Inverse-PageRank-
PSO, proposes optimized values of these parameters, effect-
ively minimizing the objective function defined in Section
4.1. The convergence curve, presenting the best values of
the objective function found so far during the optimization
process and the corresponding cell dimensions, is plotted in
Figure 11. Moreover, the tested values of the design varia-
bles, which are the positions of the particles during the pro-
cess, are scattered in Figure 12. As one can see in these
figures: (i) the research domain is explored until the 20th

iteration, where the swarm switches from exploration to
exploitation, the particles converging together, by following
each other, to promising zones of the research domain. (ii)
The objective function is optimized, switching from an
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Table 8. I-PR-PSO parameters used in Eq. (10).

x c1 c2 Dc Npart itPSO, MAX itconv
0.6 1.5 1.5 0.033 8 45 30

Figure 11. Convergence curve of the objective function for HR honeycomb
optimization and corresponding cell dimensions.
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initial value of Gbest ¼ 1:45Eþ 07, to a minimal value of
Gbest ¼ 68.94 at the end of the optimization process.

The optimal values of the design variables are given in
Table 9, corresponding to the best values of the geometrical
parameters of the HR honeycomb.

A FE analysis is carried out on the optimal structure.
The evolution of the force computed on the striker over
time FoptðtÞ is presented in Figure 13. As one can see, due
to the fitting process induced by the using of the objective
function presented in Section 4.1, the force actually fits the
limit force �FL, and remains at this plateau value during the
whole crash. Therefore, the optimization process, by mini-
mizing the objective function, permits to smooth the force
suffered by the vehicle occupant, limiting the human dam-
age. The plateau force obtained in Figure 13 induces a
quasi-linear decreasing of the striker kinetic energy, with a
slope of 6:46Eþ 08, as presented in Figure 14. As one can
see, at the crushing beginning, the kinetic energy slope is
steeper (1:17Eþ 11), due to the force FoptðtÞ exhibiting a
peak at the crushing instant. However, the acceleration cri-
terion, previously defined in Eq. (3) and being proportional
to FoptðtÞ, is equal to 9:79g, which is inferior to the limit of
9:8g imposed by European standards [5]. The optimal HR
honeycomb behavior is then smoothly absorbing kinetic
energy as a cushion device. The optimal HR honeycomb
structure absorbs 79% of the initial energy. The optimiza-
tion of the mean force over time, as presented in Eq. (8),
allows the kinetic energy absorption to be spread over a suf-
ficiently long time to minimize the damage to the vehicle
occupants, as well as verifying the European standard

criterion. As one can see in Figure 15 presenting the struc-
ture deformation over time, the negative Poisson ratio effect
occurs. At t¼ 0.018s, a V-mode deformation is observed on
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Figure 12. Evolution of particles position in the research domain for HR honeycomb optimization.

Table 9. HR honeycomb optimal geometrical parameters for
energy absorption.

t(mm) l(mm) h(mm) h(
�
)

1.95 77.90 109.27 60.705

Figure 13. Force curve F(t) and limit force �FL of the optimal HR honeycomb.

Figure 14. Kinetic energy absorption over the time for optimal HR honeycomb.
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the top of the structure, while a double horizontal V-mode
deformation occurs at t¼ 0.06s. This behavior induces the
efficient kinetic energy absorption, as it was demonstrated
in [47]

5.3.2. Off-centered and titled crash test on the opti-
mal structure
The optimal structure presents a good efficiency under
frontal impact conditions as presented in Section 5.3.1. In
road safety area, the probability to crash a car-cushion
device in a perfectly frontal impact condition is very low
and thus, the behavior of the HR honeycomb structure
under off-centered and titled impact conditions must be
verified. In this Section, two impact configurations described
in the European Standard EN1317-3 [6] are considered on
the optimal HR honeycomb structure obtained in the previ-
ous Section 5.3.1. The impact configurations can be
described with two parameters, the titled angle and the off-
set distance applied to the rigid wall in the FE model
defined in Section 3.1. The off-set distance is defined as 1

4 �
LY in EN1317-3 leading to the impact parameters given in
Table 10. The trajectories of the center of gravity of the
rigid wall in the three configurations are described in
Figure 16.

Two new FE computations are added to the FE analysis
carried out on the optimal HR honeycomb structure
(Section 5.3.1) in the N

�
1 and N

�
2 impact configurations

given in Table 10. Energy absorption curves and force
curves are presented and compared in Figures 17 and 18
respectively. These figures demonstrate that the global
behavior of the optimal HR honeycomb is not sensitive to
the impact conditions. Indeed, whatever the impact config-
uration considered, the kinetic energy absorbed after 0.08 s
is in a range of 70 to 79% of the initial kinetic energy.
Moreover, the energy absorption curves remain quasi-linear
for all impact configurations. For both frontal impacts, the
curves are similar in the first 0.03 s of the crash, with a
steeper slope at the beginning. The tilted impact presents no
steeper slope at the beginning, and thus is much smoother
than the two other impact conditions. The soft decreasing
of energy absorption is also noticeable on the not-filtered
force-time curve given in Figure 18. The part of kinetic
energy absorbed by the HR honeycomb structure after
t¼ 0.08s are given in Table 11 for the three configurations.
The tilted-force is a quasi-linear plateau. The centered and
off-centered force curves present a plateau that reflects the
quasi-linear behavior of the energy absorption curve while
there is a peak force at the beginning of the contact. The
plateau force under tilted configuration is lower than the
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Figure 15. Finite elements simulation performed on the optimal HR honeycomb structure.

Table 10. Impact configuration.

Configuration Titled angle (
�
) Off-set (mm)

N
�
0 0 0

N
�
1 0 205

N
�
2 15 0
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frontal off-centered and the centered configurations. Indeed,
the frontal centered configuration is the most critical human
being configuration and thus presents a higher value of the
plateau force. To illustrate these curves, the ASI (defined in
Section 4.1) are computed for the three configurations and
given in Table 11. For all the configurations, the ASI value
is lower than the limit set to 1.4 by the European stand-
ard [5].

The numerical deformation of the optimal HR honeycomb
under off-centered and tilted impact configurations are illus-
trated in Figures 19 and 20 respectively. Around t ¼ 0:02s, the
negative Poisson ratio effect allows a densification of the struc-
ture at the centre of the honeycomb while the upper part of
the structure is also crushed. The quasi-linear energy decreasing
described in Section 5.3.1 is allowed thanks to the deformation
occurring in the whole structure at the same time. Indeed, the
optimization process carried out on the FE model has led to
the design of a structure able to absorb energy mostly by plas-
tic deformation spread on the whole structure at the same
time. Around 74% of the initial kinetic energy is absorbed by
plastic deformation as illustrated in Figure 21 in which the
internal energy in the HR honeycomb over time is plotted for
the three different impact configurations.

Whatever the impact conditions, the optimal HR honey-
comb structure obtained in this optimization study is effi-
cient in car crash energy absorption, and meets the
European standard criterion defined in Section 4.1.

6. Discussion and conclusion

The hexagonal re-entrant honeycomb is a promising struc-
ture in energy absorption partly because of its auxetic
behavior. This study investigates an optimal geometry of
HR honeycomb structure under car-crashed impact velocity
which corresponds to speed limitations in the European
standard [5].

An experimental study is conducted on a HR honeycomb
specimen which is impacted by a rigid vehicle launched at
v ¼ 14m=s: The specimen, made of aluminum and
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Figure 16. Center of gravity trajectories of the three impact configurations.

Figure 17. Energy absorption curves computed on the optimal HR honeycomb
structure under i) frontal ii) off-centered frontal and iii) tilted impact
configurations.

Figure 18. Force-time curves computed on the optimal HR honeycomb struc-
ture under i) frontal ii) off-centered frontal and iii) tilted impact configurations.

Table 11. Results on the optimal HR structure under different impact
configurations.

Configuration Kinetic energy absorbed (%) ASI

N
�
0 79.0 1.311

N
�
1 75.9 1.232

N
�
2 70.5 0.804

Figure 19. Finite elements simulation performed on the optimal HR honey-
comb structure in the tilted impact configuration.
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conventionally assembled, is on the scale of car-cushion
devices. The experimental analysis led to the FE model val-
idation by comparing measured and computed signals of
displacement and acceleration. The relative differences

around 8% are considered as acceptable and can be due to
assembly simplifications in the FEM.

The objective function proposed shows a good efficiency
to measure the absorbing capabilities of the considered
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Figure 20. Internal energy curves computed on the optimal HR honeycomb structure under i) frontal ii) off-centered frontal and iii) tilted impact configurations.

Figure 21. Finite elements simulation performed on the optimal HR honeycomb structure in the off-centered impact configuration.
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structure to be optimized. This new objective function is
based on the European standard criteria [6], and conducts
to optimize the force-time curve, by trying to fit an ideal
rectangular force-time curve. This objective function is com-
puted with the validated FE model, and depends on the HR
honeycomb geometry. Four parameters, t, l, h and h are
defined to describe the honeycomb structure. Moreover, a
geometrical constraint is modeled and corresponds to man-
ufacturing considerations.

A global optimization process is applied to the HR
honeycomb structure and performed with the Inverse-
PageRank-PSO (I-PR-PSO) algorithm. This meta-heuristic
method has shown high efficiency in complex real-problem
optimization. A penalty method is applied to I-PR-PSO in
order to apprehend the geometrical constraint of the HR
honeycomb structure. The optimal structure found presents
a quasi-linear energy absorption curve, that can be consid-
ered as ideal, with 80% of the initial kinetic energy
absorbed. This performance will be increased in real-world
application because the crashed car also absorbs energy due
to its own deformation not considered in this study. Finally,
the optimal HR honeycomb structure obtained in the opti-
mization process is tested under three different impact con-
figurations as defined in the European standard EN1317-3.
The optimal HR structure presents high performance in
energy absorption whatever the impact configuration con-
sidered. This study gives an optimization process with a
validated objective function to design new car crash cushion
devices, and could be used in other crash contexts such as
different materials and impact velocities, or to design truck-
cushion devices by adjusting the mass of the striker.

Note

1. Called” velocity” in the literature, V is actually a
displacement imposed to particles.
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