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RIGIDITY FOR RIGID ANALYTIC MOTIVES

FEDERICO BAMBOZZI, ALBERTO VEZZANI

ABSTRACT. In this paper we prove the Rigidity Theorem for motives of rigid analytic varieties

over a non-Archimedean valued field K . We prove this theorem both for motives with trans-

fers and without transfers in a relative setting. Applications include the construction of étale

realization functors, an upgrade of the known comparison between motives with and without

transfers and an upgrade of the rigid analytic motivic tilting equivalence, extending them to

Zr1{ps-coefficients.
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INTRODUCTION

The history of the Rigidity Theorem for motives traces back (at least) to the computations

of algebraic K-theory groups made by Suslin in the eighties to prove the Quillen-Lichtenbaum

Conjecture [25, 26]. In the subsequent decade, Suslin and Voevodsky realized that those compu-

tations were special cases of a general phenomenon common to all homotopy-invariant sheaves

with finite coefficients over the big étale site over a scheme [32]. In modern terms these results

are referred to as “Rigidity Theorems” and can be rephrased using the language of motives by

saying that the category DAétpS,Λq of derived étale stable motives without transfers over a

scheme S is equivalent to the derived category DpSét,Λq of Λ-sheaves on the small étale site

over S, if Λ is an N-torsion ring with N P N invertible in S (under some hypotheses on the

cohomological dimension of S, see [2]).

Other instances of “Rigidity” are known. For example, the one for motives with trans-

fers [13], or for K-theory and Chow groups (see [9, 16]). This paper treats the Rigidity

Theorem in the context of motives of rigid analytic varieties over non-Archimedean valued
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fields, introduced in [5] by Ayoub, both in their version with and without transfers. More pre-

cisely, given any normal rigid analytic variety S over K, we denote by RigDAétpS,Λq (resp.

RigDMétpS,Λq) the category of étale motives without transfers (resp. with transfers) over S

with coefficients in the ring Λ. The precise definition of these categories is recalled in the first

section of the paper. Our main result is the following theorem.

Theorem (2.1). Let S be a normal rigid analytic variety over a non-Archimedean field K with

ℓ-finite cohomological dimension, for all primes ℓ invertible in the residue field k of K, and let

Λ be a N-torsion ring, where N is a positive integer invertible in k. The functors:

Lι˚ : DpSét,Λq Ñ RigDAétpS,Λq

Lι˚ : DpSét,Λq Ñ RigDMétpS,Λq

are equivalences of monoidal DG-categories.

As in the algebraic situation, DpSét,Λq denotes the derived category of unbounded com-

plexes of étale sheaves of Λ-modules over the small étale site and the functors Lι˚ arise natu-

rally from the inclusion of the small étale topos into the big one.

We remark that the theorem above is a generalization of the usual Rigidity Theorem, corre-

sponding to the case in which K is trivially valued. Nonetheless, to our knowledge the original

algebraic proofs can not be adapted easily to the non-Archimedean context. Our strategy is

rather to use algebraic Rigidity to deduce the rigid one, by means of the analytification functors

and the relation between rigid varieties and formal schemes. We also remark that, even for

proving our statement over a field S “ SpaK for motives without transfers, the full relative

Rigidity Theorem for schemes is used. Indeed, the six functors formalism plays a crucial role

in our proof (see Section 2.2). This is no longer true for motives with transfers, as we show in

the appendix, for which a more direct and geometric proof is possible in the absolute case.

Just like its algebraic versions, the theorem above has some interesting immediate conse-

quences, discussed in the last section of the paper. They constitute our main motivation for

proving the Rigidity Theorem in the non-Archimedean setting.

(1) We can construct the ℓ-adic realization functor for analytic motives, following the ap-

proach of Ayoub [2].

(2) We can prove an equivalence between rigid analytic motives with and without transfers

with coefficients over Zr1{ps where p is the residue exponential characteristic of K.

(3) Over a perfectoid field, the motivic tilting equivalence (cf. [27]) can be promoted to

Zr1{ps-coefficients, and the ℓ-adic realization functors can be shown to be compatible

with it.

We remark that, due to the intricate definition of the rigid motivic tilting equivalence, the proof

of the last application is more convoluted that the first two.

The paper is structured as follows. In Section 1 we recall the basic definitions of the theory

of motives of non-Archimedean analytic spaces and we fix the notation used throughout the

rest of the paper. The core of the paper is Section 2 where the Rigidity Theorem is stated and

proved. The proof is divided in two main steps: the first one, shown in Section 2.1 consists

in proving that the functors Lι˚ are fully faithful and the second one, shown in Section 2.2,

consists in checking that they are essentially surjective. The applications of the main theorem

listed above are discussed in Section 3. Finally, in the Appendix we present a more “geometric”

proof of the Rigidity Theorem for RigDMétpK,Λq for which we use as ingredients the main

ideas of the proof of [5, Théorème 2.5.34], algebraic rigidity over fields, and Temkin’s results

on alterations.
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1. NON-ARCHIMEDEAN ÉTALE MOTIVES

The following notation is fixed throughout the paper. We will use the language of rigid

analytic varieties following Tate, see [10]. On the other hand, we recall that the (topos theoretic)

underlying topological space of a rigid analytic variety is described by the adic spectrum (see

[20]) and we will typically use notations and results written in the language of adic spaces,

following Huber. In particular, we will use the notation Spa to denote the analytic spectrum.

‚ With K we always denote a field which is complete with respect to a (fixed) non-trivial

non-Archimedean valuation || ¨ || : K Ñ Rě0 with a finite ℓ-cohomological dimension,

for any prime ℓ which is invertible in its residue field.

‚ A Tate algebra over K is a topological ring A obtained as a quotient of the completion

Kxx1, . . . , xny of the polynomial ring Krx1, . . . , xns with respect to the Gauß norm. Its

analytic spectrum is denoted by SpaA.

‚ An affinoid rigid analytic variety [resp. a rigid analytic variety] is a locally ringed space

which is [resp. locally] isomorphic to the analytic spectrum SpaA of a Tate algebra A.

‚ We denote with B1
K the closed unit ball. This is the affinoid space SpaKxT y. For any

analytic space S we denote by B1
S “ B1

K ˆK S the (closed) unit disc over S.

‚ Let A be a Tate algebra. The analytification functor from schemes of finite type over

SpecA to analytic varieties over SpaA is denoted p.qan . It is defined by means of the

following universal property:

Hom SpaApSpaB,Xan q – Hom SpecApSpecB,Xq

for any Tate algebra B over A.

‚ If Λ is a (commutative, unital) ring, and C is a category [resp. a site] we let PshpC,Λq
[resp. ShvpC,Λq] be the category of presheaves [resp. sheaves] on C with values in

Λ-modules.

‚ Let S be a rigid analytic variety overK. We denote by Sét the small étale site overS and

by SmS the site of smooth analytic varieties over S equipped with the étale topology.

‚ For any scheme or rigid analytic variety S, DpSét,Λq denotes the (unbounded) derived

category of the category of sheaves of Λ-modules over the small étale site over S.

We also recall the definitions of the (unbounded, derived, étale) motivic categories of alge-

braic and rigid analytic varieties as defined by Ayoub [5]. We will make use of the language

of model categories (even though everything can be restated in terms of DG-categories or 8-

categories) for which we refer to [18]. Categories of complexes of presheaves ChpPshpC,Λqq
will be endowed with the projective model structure (see [14]).

Definition 1.1. Let S be a normal rigid analytic variety over K. The category RigDAeff
ét pS,Λq

(the category of effective étale rigid motives over S) is the homotopy category of the Bousfield

localization of ChpPshpSmS,Λqq over the étale weak equivalences (that is, morphisms induc-

ing quasi-isomorphisms of the induced complexes of étale sheaves) and over B1-homotopies

(shifts of the maps of representable presheaves induced by the projection morphisms B1
Y Ñ Y

with Y P SmS). If Y is in SmS we denote by ΛSpY q the object in RigDAeff
ét pS,Λq associated

to the presheaf represented by Y .

We refer to Section 2 of [28] for more details about RigDAeff
ét pS,Λq (in its Nisnevich

form). We only point out that this DG-category can be defined as a Verdier quotient of

DpPshpSmS,Λqq with respect to étale descent and B1-invariance. It therefore enjoys the
3



following universal property: any functor F from SmS to a Λ-enriched model category

M satisfying étale descent and B1-invariance admits an extension to a Quillen adjunction

LF ˚ : RigDAeff
ét pS,Λq Õ HopMq : RF˚. See [12, 14] for details.

Remark 1.2. The category RigDAeff
ét pS,Λq is endowed with a monoidal structure, for which

ΛSpY qbΛSpY 1q – ΛSpY ˆS Y
1q for any Y, Y 1 in SmS (see [4, Propositions 4.2.76 and 4.4.63]).

The same is true for the category DpSét,Λq.

Definition 1.3. We denote with T “ TS P DpPshpSmS,Λqq the complex of sheaves

Cofib pΛrHom p´,Gan
m,Sqs Ñ ΛrHom p´,Aan

S qsq.

The object ΛSp1q :“ TSr´2s P RigDAeff
ét pS,Λq is called the Tate (twisting) motive. The cat-

egory RigDAétpS,Λq (the category of étale rigid motives without transfers over S) is defined

to be the monoidal TS-stabilization of RigDAeff
ét pS,Λq. Also in this category, we denote by

ΛSpY q the motive associated to the presheaf represented by Y . The endofunctorM ÞÑ MbTbn

will be written as M ÞÑ Mpnq and its quasi-inverse by M ÞÑ Mp´nq for any n P N. The mo-

tives Mpnq are called the twists of M .

For the general theory of stabilization of categories the reader is referred to [19] and [4]. We

only remark that RigDAétpS,Λq is once again the homotopy category of the model category

of symmetric TS-spectra of (the pB1, étq-localization of) ChpPshpSmS,Λqq and that there is a

natural (left Quillen) functor

RigDAeff
ét pS,Λq Ñ RigDAétpS,Λq

which is a monoidal functor also enjoying a universal property, with respect to making the

endo-functor p´q bTS invertible. We will typically use spectra (rather than symmetric spectra)

as a model of RigDAétpS,Λq in proofs, which is allowed by means of [4, Théorème 4.3.79].

Remark 1.4. In the case when K has is equipped with the trivial valuation, the theory of

rigid analytic varieties collapses to the usual theory of algebraic varieties. The motivic cate-

gories defined above coincide then with the classical categories of étale motives, denoted by

DAeff
ét pS,Λq and DAétpS,Λq (see [2]).

In this work we also deal with motives with transfers, whose definition we now recall (see

also [5] and [29]).

Definition 1.5. Let S be a normal variety over K. We let NorS be the category of quasi-

compact normal varieties over S and we let the fh-topology be the one generated by those cov-

ering families tfi : Xi Ñ XuiPI such that I is finite, and the induced map
Ů

fi :
Ů
iPI

Xi Ñ X is fi-

nite and surjective. We define the category CorS as the category whose objects are those of SmS

and whose morphisms Hom pX, Y q are computed in ShvfhpNorSq. We let RigDMeff
ét pS,Λq

(the category of effective étale rigid motives with transfers over S) be the homotopy category

of the Bousfield localization of ChPshpCorS,Λq over those morphisms f which are étale weak

equivalences as morphisms in ChPshpSmS,Λq, and over B1-homotopies (shifts of the maps of

representable presheaves induced by the projection morphisms B1
Y Ñ Y with Y P SmS). If

Y is in SmS we denote by Λtr
S pY q the object in RigDMeff

ét pS,Λq associated to the presheaf

represented by Y .

Definition 1.6. We consider the object T tr P DpShpCorS,Λqq given by the complex

Cofib pHom CorSp´,Gan
m,Sq b Λ Ñ Hom CorSp´,Aan

S q b Λq.

The category RigDMétpS,Λq (briefly, étale rigid motives with transfers over S) is defined to

be the T tr
S -stabilization of RigDMeff

ét pS,Λq. If Y is in SmS we denote by Λtr
S pY q the motive

4



in RigDMétpS,Λq associated to the presheaf represented by Y . The endofunctor M ÞÑ M b
pT trqbn will be written as M ÞÑ Mpnq and its quasi-inverse as M ÞÑ Mp´nq for any n P N.

The motives Mpnq are called the twists of M .

Remark 1.7. Once again, whenever K is endowed with the trivial valuation, the definitions

above recover the usual categories of (derived, étale) motives with transfers over S, denoted by

DMeff
ét pS,Λq and DMétpS,Λq (see [13]).

Remark 1.8. There is a more down-to-earth description of the category CorS in terms of multi-

valued functions (or rather, Zariski closed subvarieties of the product which are finite over the

first component) see [5, Remarque 2.2.21].

We recall that in a triangulated category, an object S is compact if the functor Hom pS,´q
commutes with direct colimits. A triangulated category is compactly generated if there is

a set of compact objects S for which the smallest triangulated subcategory with small sums

containing them is the whole category. This property is technically very convenient, and the

following fact will be used several times throughout the paper.

Proposition 1.9. Let S be a normal rigid analytic variety over K. The motivic categories

RigDAeff
ét pS,Λq [resp. RigDMeff

ét pS,Λq] are compactly generated by shifts of motives of the

form ΛSpAq [resp. Λtr
S pAq] with A smooth affinoid over S. Similarly, the motivic categories

RigDAétpS,Λq [resp. RigDMétpS,Λq] are compactly generated by shifts and twists of mo-

tives of the form ΛSpAq [resp. Λtr
S pAq] with A smooth affinoid over S.

Proof. It suffices to adapt [2, Proposition 3.19] to the rigid setting. We remark that a bound on

the cohomological dimension of affinoid rigid analytic varieties can be found in [20, Proposi-

tion 0.5.7]. �

We now summarize the basic functors between the various motivic categories introduced so

far.

Proposition 1.10. Let S be a normal rigid analytic variety and Λ be a ring.

(1) The map of sites Sét Ñ SmS induces a monoidal Quillen adjunction

Lι˚ : DpSét,Λq Õ RigDAeff
ét pS,Λq :Rι˚.

(2) The map of sites SmS Ñ CorS induces a monoidal Quillen adjunction

Latr : RigDAeff
ét pS,Λq Õ RigDMeff

ét pS,Λq :Rotr .

(3) The T -stabilization and T tr -stabilization functors induce monoidal Quillen adjunctions

L Sus: RigDAeff
ét pS,Λq Õ RigDAétpS,Λq :REv

L Sus: RigDMeff
ét pS,Λq Õ RigDMétpS,Λq :REv .

(4) Let S be an affinoid rigid analytic variety S “ SpaA. The analytification functor

induces monoidal Quillen adjunctions

LAn ˚ : DAeff
ét pSpecA,Λq Õ RigDAeff

ét pS,Λq :RAn ˚

LAn ˚ : DMeff
ét pSpecA,Λq Õ RigDMeff

ét pS,Λq :RAn ˚.

(5) There is a canonical isomorphism

LatrTS – T tr
S

in RigDMeff
ét pS,Λq and in case S “ SpaA is affinoid, there are canonical isomor-

phisms

LAn ˚pTSpecAq – TS LAn ˚pT tr
SpecAq – T tr

S

in RigDAeff
ét pS,Λq and RigDMeff

ét pS,Λq respectively.
5



Proof. For the proof of (2) one can easily adapt the argument of [13, Paragraph 2.1.7] to the

rigid setting. For the other points, the existence of the Quillen pairs follows at once from the

universal property of the categories of motives, stabilizations and localizations (to see that the

analytification functor preserves A1-homotopies we refer to [5, Proposition 1.3.6 and Theoréme

2.5.24]). For the last isomorphisms, see [5, Lemme 2.5.18] and [5, Proposition 1.4.17]. �

We now introduce the canonical functors that we will be mostly interested in.

Definition 1.11. By composing the functors of the previous proposition, we obtain the following

monoidal Quillen adjunctions (all denoted by Lι˚ and Rι˚ by abuse of notation)

Lι˚ : DpSét,Λq Õ RigDAeff
ét pS,Λq :Rι˚

Lι˚ : DpSét,Λq Õ RigDAétpS,Λq :Rι˚

Lι˚ : DpSét,Λq Õ RigDMeff
ét pS,Λq :Rι˚

and

Lι˚ : DpSét,Λq Õ RigDMétpS,Λq :Rι˚

The full triangulated subcategory with small sums ofRigDAétpS,Λq [resp. of RigDMétpS,Λq]

generated by the essential image of Lι˚ will be called the category of rigid analytic Artin mo-

tives over S [with transfers].

Take Λ to be N-torsion with N invertible in K. The classic Rigidity Theorem can be restated

by saying that algebraic Artin motives (i.e. Artin motives with respect to a trivial valuation of

K) are equivalent to DpSét,Λq as well as to the categories of stable motives DAétpS,Λq and

DMétpS,Λq, under mild hypotheses on S (see [2]).

Also in this paper, we will focus on the case of N-torsion coefficients, with N coprime to

the residual (exponential) characteristic. Also in this setting, algebraic Artin motives are easily

seen to embed in the effective categories of motives.

Proposition 1.12. If Λ is a N-torsion ring with N coprime to the residual (exponential) char-

acteristic of K, then the functors

Lι˚ : DpSét,Λq Õ RigDAeff
ét pS,Λq :Rι˚

and

Lι˚ : DpSét,Λq Õ RigDMeff
ét pS,Λq :Rι˚

are fully faithful.

Proof. We remark that DpSét,Λq can be seen as a full subcategory of DpShvpSmSq,Λq and

RigDAeff
ét pS,Λq can be described as the full subcategory of DpShvpSmSq,Λq of B1

S-homotopy

invariant objects. In order to prove the first claim, it then suffices to check that the objects of

DpSét,Λq are B1
S-homotopy invariant. In order to do so, one can adapt the proof of [2, Sous-

lemme 4.7] using the analytic version of the acyclicity theorem [20, Example 0.1.1(ii)]. For the

case with transfers, one can similarly adapt the proof of [13, Theorem 3.1.7]. �

2. THE RIGIDITY THEOREM

From now on, we fix a normal rigid analytic variety S over K. Once again, we recall that

K is assumed to have finite ℓ-cohomological dimension, for any prime ℓ which is invertible in

its residue field. The main aim of this section is the proof of the Rigidity Theorem, for motives

with and without transfers. We state it here.
6



Theorem 2.1. Let S be a normal rigid analytic variety over K and let Λ be a N-torsion ring,

where N is invertible in the residue field of K. The functors:

Lι˚ : DpSét,Λq Ñ RigDAétpS,Λq

Lι˚ : DpSét,Λq Ñ RigDMétpS,Λq

are equivalences of monoidal DG-categories. Moreover the canonical functor between

RigDMeff
ét pS,Λq and RigDMétpS,Λq is an equivalence.

We will divide the proof in two steps: we first show that the two functors are fully faithful,

and we then prove that they are essentially surjective.

2.1. The Embedding Theorems. We now show that the functors above are fully faithful. As

in the algebraic proofs (see [2] and [13]) one of the key points is the equivalence between the

Tate twisting motive and the sheaf of N-th roots of unity.

Proposition 2.2. Let Λ be a N-torsion ring, where N is invertible in the residue field of K.

There is a natural morphism

ΛSp1q – TSr´2sÑµS,N

in RigDAeff
ét pS,Λq where the motive on the right is the one induced by the locally constant

sheaf of N-th roots of unity. It becomes invertible in RigDAétpS,Λq after applying L Sus.

Proof. We first produce the natural morphism between the two motives. The presheaf of abelian

groups Oˆ is represented by Gan
m,S . There is an obvious map of presheaves

ΛSpGan
m,Sq “ Hom p´,Gan

m,Sq b Λ Ñ O
ˆ bZ Λ

where the first tensor is the free Λ-module over the set, while the second is a base change

over Z Ñ Λ. The induced map on the associated sheaves factors over TSr´1s. On the other

hand, we remark that by the Kummer exact sequence, we can write µS,N r1s – Oˆ bZ Λ in

RigDAeff
ét pS,Λq. By shifting on both sides, we therefore obtain a morphism TSr´2sÑµS,N in

RigDAeff
ét pS,Λq as wanted.

We now pass to the stable categories and we prove that this morphism becomes invertible.

Using (the obvious rigid analogue of) [2, Lemma 3.4] it suffices to prove the statement in the

case when S is affinoid, equal to SpaA. We remark that Tate algebras are excellent (see [15,

Remarks 3.5.2]) and therefore (see the paragraph after [2, Theorem 4.1]) one can apply [2,

Proposition 4.10] and claim that there is an isomorphism

(2.2.1) µS,N – ΛSpecAp1q

in DAétpSpecA,Λq induced by the analogous natural morphism between the two motives.

Applying the analytification functor LAn ˚ : DAétpSpecA,Λq Ñ RigDAétpS,Λq to the iso-

morphism (2.2.1) we obtain the statement (using Proposition 1.10, (5)). �

There is a stronger statement for motives with transfers.

Proposition 2.3. Let Λ be a N-torsion ring, where N is invertible in the residue field of K.

There is a natural isomorphism

Λtr
S p1q – T tr

S r´2sÑµS,N

in RigDMeff
ét pS,Λq where the motive on the right is the one induced by the locally constant

sheaf of N-th roots of unity.
7



Proof. The natural morphism between the two motives is deduced by the morphism of Propo-

sition 2.2. In order to prove that it is invertible, using (the obvious rigid analogue of) [13,

Proposition 3.2.8], one can assume S is affinoid, equal to SpaA. We remark that Tate alge-

bras are Noetherian (see [15, Remarks 3.5.2]). One can then apply [13, Proposition 3.2.3] and

obtain an isomorphism

(2.3.1) µS,N – Λtr
SpecAp1q

in DMeff
ét pSpecA,Λq induced by the analogous natural morphism. Applying the analytification

functor LAn ˚ : DMeff
ét pSpecA,Λq Ñ RigDMeff

ét pS,Λq to the isomorphism (2.3.1) we obtain

the statement (using Proposition 1.10, (5)). �

From now on, we will adopt the usual notation for Tate twists in DpSét,Λq, hence, for

any object K in it, we will write Kpnq for the object K b µbn
N . The previous proposition

can be rephrased by saying that Lι˚ : DpSét,Λq Ñ RigDAétpS,Λq and Lι˚ : DpSét,Λq Ñ
RigDMeff

ét pS,Λq preserve the twists.

For the case of motives with transfers, the previous proposition easily shows that the functor

Lι˚ is fully faithful, and proves the last claim of Theorem 2.1.

Theorem 2.4 (Embedding Theorem for RigDM). Let Λ be a N-torsion ring, where N is

invertible in the residue field of K. The categories RigDMeff
ét pS,Λq and RigDMétpS,Λq are

canonically equivalent. In particular, the functor

Lι˚ : DpSét,Λq Ñ RigDMétpS,Λq

is fully faithful.

Proof. The sheaf µS,N is invertible in DpSét,Λq (étale locally, it is isomorphic to Λ) and hence

(as the functor Lι˚ is monoidal) the functor p´qbµS,N is already invertible in RigDMeff
ét pS,Λq.

We conclude the first claim using Proposition 2.3. The second claim follows at once from

Proposition 1.12. �

The case of motives without transfers is more complicated. On the other hand, the proof

of the next theorem is the straightforward rigid analytic analogue of [2, Corollaire 4.11]. We

reproduce here its proof for the convenience of the reader.

Theorem 2.5 (Embedding Theorem for RigDA). Let Λ be a N-torsion ring, where N is

invertible in the residue field of K. The functor

Lι˚ : DpSét,Λq Ñ RigDAétpS,Λq

is fully faithful.

Proof. We divide the proof in several steps.

Step 1: The functor Lι˚ is obtained as the composition of the functor

(2.5.1) Lι˚ : DpSét,Λq Ñ RigDAeff
ét pS,Λq

and the left adjoint of the adjunction

L Sus: RigDAeff
ét pS,Λq Õ RigDAétpS,Λq :REv .

As the functor (2.5.1) is fully faithful (cf. Proposition 1.10), it is enough to show that

REv ˝L Sus ˝Lι˚ – Lι˚. Since RigDAeff
ét pS,Λq is compactly generated, it is enough to

check that for each compact object M P RigDAeff
ét pS,Λq one has that

Hom pM,Lι˚Kq – Hom pM,REv ˝L Sus ˝Lι˚pKqq
8



for all K P DpSét,Λq. By [4, Théoreme 4.3.61] we know that

Hom pM,REv ˝L Sus ˝Lι˚pKqq – Hom pL SusM,L Sus ˝Lι˚pKqq

– colim
nPN

Hom pM b Tbn,Lι˚pKq b Tbnq

– colim
nPN

Hom pM,RHom pTbn,Lι˚pKq b Tbnqq.

As M is compact, it is enough to show that the map

Lι˚K Ñ hocolim
nPN

RHom pTbn,Lι˚pKq b Tbnq

is invertible. We make a variable change and we swap RHom with homotopy colimits (see

Lemma 2.6) and we rewrite the second term above as:

(2.5.2)

hocolim
nPN

RHom pTbn,Lι˚pKq b Tbnq

– hocolim
n,mPN

RHom pTbn`m,Lι˚pKq b Tbn`mq

– hocolim
nPN

RHom pTbn, hocolim
mPN

RHom pTbm,Lι˚pKq b Tbn`mq.

Step 2: We now prove that

hocolim
mPN

RHom pTbm,Lι˚pKq b Tbn`mq

appearing in (2.5.2) is isomorphic to

hocolim
mPN

RHom pTbm,Lι˚pKpnqr2nsqq b Tbmq.

By [4, Théoreme 4.3.61] we know that we can compute morphisms between two spectra pSnq
and pYnq in the (derived) category of N-sequences by taking level-wise the Hom -groups

Hom pSn, hocolim
kPN

RHom pTbk, Yk`nqq.

In particular, an equivalence of spectra pYnq and pY 1
nq induces equivalences in the effective

category

(2.5.3) hocolim
kPN

RHom pTbk, Yk`nq – hocolim
kPN

RHom pTbk, Y 1
k`nq.

We deduce that the isomorphism of the claim follows from the equivalence of spectra

Lι˚pKq b Tbn – Lι˚pKpnqr2nsqq

which is a consequence of Proposition 2.2.

Step 3: We now prove that for any m the object

hocolim
nPN

RHom pTbn,Lι˚pKpnqqr2ns b Tbmq

is canonically equivalent (in the effective category) to:

hocolim
nPN

RHom pTbn,Lι˚pKpn ` mqqr2n ` 2msq.

Using again the line of reasoning of the previous step, and more specifically the equation (2.5.3)

with k “ 0, we see that it suffices to give to L :“ pLι˚pKpnqqr2nsqnPN a structure of a spectrum,

and prove the existence of a compatible equivalence

L b Tbm – L b ι˚pKpmqr2msq

for any m. This second fact follows from Proposition 2.2 while for the first fact one can use

the transition maps induced by the following equivalence in RigDAétpS,Λq (Poincaré duality

in étale cohomology, see [20, Section 7.5]):

Lι˚pKpnqqr2ns – RHom pT,Lι˚pKpn ` 1qqr2n ` 2sq
9



and eventually replacing Lι˚pKpnqqr2ns with a cofibrant-fibrant replacement in order to have

genuine maps between complexes of presheaves.

Step 4: We now finish the proof. We take again (2.5.2) and we replace using Step 2:

hocolim
nPN

RHom pTbn, hocolim
mPN

RHom pTbm,Lι˚pKq b Tbn`mq

– hocolim
nPN

RHom pTbn, hocolim
mPN

RHom pTbm,Lι˚pKpnqr2nsqq b Tbmqq.

We now swap RHom with hocolim (using again Lemma 2.6) and Step 3 to obtain

hocolim
nPN

RHom pTbn, hocolim
mPN

RHom pTbm,Lι˚pKpnqr2nsqq b Tbmqq

–hocolim
mPN

RHom pTbm, hocolim
nPN

RHom pTbn,Lι˚pKpnqr2nsqq b Tbmqq

–hocolim
mPN

RHom pTbm, hocolim
nPN

RHom pTbn,Lι˚pKpn ` mqqr2n ` 2msqq

–hocolim
nPN

RHom pTbn,Lι˚pKpnqqr2nsq

which is in turn canonically isomorphic to Lι˚K (by Poincaré duality). �

The following technical lemma was used in the previous proof.

Lemma 2.6. The functor

RHomRigDAeff

ét
pS,ΛqpT

bn
S ,´q

commutes with homotopy colimits.

Proof. As RigDAeff
ét pS,Λq is compactly generated (see Proposition 1.9) it suffices to test that

for any compact object M attached to an affinoid variety X “ SpaA smooth over S, the natural

map

Hom pM b Tbn, hocolimUiq // Hom pM, hocolimRHom pTbn, Uiqq
„
��

colimHom pM b Tbn, Uiq

is invertible. It suffices then to prove that X b T is also compact. In order to do this, we can

prove (see [5, Page 54]) that the motive attached to SpaAxT˘y is compact, which follows again

from Proposition 1.9. �

We pin down the following consequence of Theorems 2.4 and 2.5.

Corollary 2.7. Under the hypotheses of Theorem 2.1, the subcategory of rigid analytic Artin

motives in RigDAétpS,Λq [resp. RigDMétpS,Λq] (see Definition 1.11) is equivalent to the

category DpSét,Λq. �

By abuse of notation, under the hypotheses of the previous Corollary, we will refer to rigid

analytic Artin motives as well as to the objects of DpSét,Λq simply as Artin motives.

2.2. The proof of Rigidity. We can finally achieve the proof of Theorem 2.1. To this aim, we

will use a (limited) version of the six functor formalism for rigid analytic motives, which is

already present in [5]. We recall here the main properties that we will use.

Remark 2.8. For the sake of readability, we will drop L and R for derived functors, whenever

the context allows it. In particular, we will write ι˚ for the functors introduced in Definition

1.11.

Theorem 2.9. Fix an affinoid algebra A. Let S be SpaA.
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(1) Any morphism f : Y Ñ Z between rigid analytic varieties over S induces a (Quillen)

adjunction

f˚ : RigDAétpZ,Λq Õ RigDAétpY,Λq : f˚

such that f˚ΛZpUq “ ΛY pU ˆZ Y q for any U P SmZ .

(2) If the morphism f : Y Ñ Z is smooth, then f˚ has left adjoint

f7 : RigDAétpY,Λq Õ RigDAétpZ,Λq : f˚

such that f7ΛY pUq “ ΛZpUq for any U P SmY .

(3) If i : Z Ñ S is a Zariski closed immersion of varieties over S with open complement

j : U Ñ S, then the pair pi˚, j˚q is conservative. More precisely, there is an exact

triangle

j7j
˚ Ñ Id Ñ i˚i

˚ Ñ r1s

and canonical equivalences j˚i˚ – 0, i˚i˚ – Id .

(4) The functor from quasi-projective schemes over SpecA to DG-categories defined as

follows Y ÞÑ RigDAétpY
an ,Λq has the structure of a stable homotopic 2-functor in

the sense of [3, Définition 1.4.1]. In particular, any morphism f : Y Ñ Z between

quasi-projective schemes over SpecA induces an adjoint pair

f an
! : RigDAétpY

an ,Λq Õ RigDAétpZ
an ,Λq : f an !

with the following properties.

(i) If f : W Ñ Y is smooth of relative dimension d then, locally on W , we have

f an
! p´q – f an

7 p´ b Λp´dqr´2dsq.

(ii) There is a natural transformation f an
! ñ f an

˚ which is invertible if f is proper.

Proof. See (the étale versions of) [5, Proposition 1.4.9, Corollaire 1.4.28, Théorème 1.4.33]

and [3, Scholie 1.4.2]. �

Remark 2.10. According to the structure of a stable homotopic 2-functor in the sense of [3,

Définition 1.4.1], any morphism f : Y Ñ Z between quasi-projective schemes over SpecA

also induces an adjoint pair

f an˚ : RigDAétpZ
an ,Λq Õ RigDAétpY

an ,Λq : f an
˚ .

These functors coincide with those induced by the map of analytic varieties f an according to

Theorem 2.9(1). We can therefore use the notation pf an˚, f an
˚ q unambiguously.

On the other hand we point out that the full six functor formalism for rigid analytic varieties

is not yet available in the literature (progress in this direction is being done by Ayoub, Gallauer

and the second named author). For this paper the limited version stated above will be enough.

More precisely, we will need the following corollary:

Corollary 2.11. Let f : W Ñ S be a smooth map of affinoid rigid analytic varieties and let

p : P Ñ S be a composition of a Zariski closed embedding and the canonical projection

P
N,an
S Ñ S for some N P N. Consider the following cartesian diagram

P 1 p1

//

f 1

��

W

f
��

P
p

// S

The natural transformation

f˚p˚ ñ p1
˚f

1˚

is invertible.
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Proof. It suffices to consider separately the case when p is a Zariski closed immersion and when

it is the projection PN
S Ñ S over an affinoid variety. In the latter case, we have (see Theorem 2.9

p˚ – p̃an! – p7p´ b Λp´Nqr´2Nsq where p̃ is the projection of schemes PN
S̃

Ñ S̃ and where

S̃ is SpecOpSq. The commutation between this functor and f˚ follows from the commutation

of p7 and f˚ as shown below:

p1
˚f

1˚M – p1
7pf

1˚Mp´Nqr´2Nsq – f˚p7pMp´Nqr´2Nsq – f˚p˚M.

We now suppose that p is a Zariski closed embedding with complement j : U Ñ S. By

means of (3) of Theorem 2.9 it suffices to show that the two natural transformations

p1˚f˚p˚ ñ p1˚p1
˚f

1˚ j1˚f˚p˚ ñ j1˚p1
˚f

1˚

are invertible, where j1 : U 1 Ñ W is the open complement of P 1. Using the commutation of

f˚ with p1˚ and j1˚ and the equivalences p˚p˚ – Id , p1˚p1
˚ – Id , j˚p˚ – 0 and j1˚p1

˚ – 0 the

result is immediate. �

The following result is an adaptation of [13, Proposition 4.4.3] to the rigid setting and follows

formally from the previous versions of the proper base change. We recall that we write simply

ι˚ for the derived functor that was previously denoted by Lι˚.

Proposition 2.12. Let S be an affinoid rigid analytic variety and let p : P Ñ S be a map which

is a composition of a Zariski closed immersion and the canonical projection P
N,an
S Ñ S. The

natural transformation

ι˚ ˝ p˚ ñ p˚ ˝ ι˚

is invertible.

Proof. We first prove an auxiliary result, namely that for any complex L in DpPét,Λq, we have

Hom pΛ, p˚ι
˚Lq – Hom pΛ, ι˚p˚Lq.

By the fully faithfulness of ι˚ the second term can be re-written as

Hom pΛ, ι˚p˚Lq – Hom pΛ, p˚Lq.

On the other hand, the first term can be re-written as

Hom pΛ, p˚ι
˚Lq – Hom pp˚Λ, ι˚Lq – Hom pp˚ι˚Λ, ι˚Lq

– Hom pι˚p˚Λ, ι˚Lq – Hom pp˚Λ, Lq – Hom pΛ, p˚Lq

where we used the adjunction pp˚, p˚q, the fact that ι˚ is fully faithful and the fact that p˚ι˚Λ –
ι˚p˚Λ because both sheaves are isomorphic to the constant sheaf on P . Moreover, the natural

transformation induces the identity on these groups, as wanted.

We now prove the general statement. By Proposition 1.9 the category RigDAétpS,Λq is

generated by the motives of smooth affinoid varieties over S. It suffices then to prove that for

each f : W Ñ S smooth and each L P DpPét,Λq the natural transformation of the statement

induces an isomorphism between the group Hom pf7Λ, p˚ι˚Lq and Hom pf7Λ, ι˚p˚Lq. We let

L1 be f 1˚L where the map f 1 (resp. p1) can be introduced as the base change of f over p (resp.

of p over f ). By means of the projective base change for rigid motives (see Corollary 2.11) we

know that the former is canonically isomorphic to

Hom pf7Λ, p˚ι
˚Lq – Hom pΛ, f˚p˚ι

˚Lq – Hom pΛ, p1
˚f

1˚ι˚Lq – Hom pΛ, p1
˚ι

˚L1q.

On the other hand, by means of the proper base change for Artin motives (see [20, Proposi-

tion 4.4.1]) we see that the latter is isomorphic to

Hom pf7Λ, ι
˚p˚Lq – Hom pΛ, f˚ι˚p˚Lq – Hom pΛ, ι˚f˚p˚Lq – Hom pΛ, ι˚p1

˚L
1q.

The two are therefore canonically isomorphic by what we proved in the first part. �
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We end our list of preliminary statements with the following algebraic approximation result.

Proposition 2.13. Let X “ SpaA be a (rig-)smooth affinoid space over SpaR, then there exist

finite coverings tXiu of X and tSpaRiu of SpaR by admissible open affinoid subdomains such

that each Xi admits an embedding ji : Xi Ñ Zi where Zi is the analytification of a smooth

algebraic variety over Ri.

Proof. By [5, Corollaire 1.1.51] X admits a finite covering by admissible open affinoid subdo-

mains Xi each of which admits an étale map to B
ni

Ri
with Ri as in the statement. Then, applying

[5, Lemme 1.1.52] to the étale maps Xi Ñ B
ni

Ri
we obtain that Xi “ Spa pAiq with Ai a

K-affinoid algebra that admits a presentation of the form

Ai “
RixT1, . . . , Tn, U1, . . . , Umy

pP1, . . . , Pmq

with Pj P RirT1, . . . , Tn, U1, . . . , Ums polynomials and d :“ detp BPi

BUk
q invertible in Ai.

Therefore, we can embed Xi as an admissible open affinoid of the analytification of the

smooth affine Ri-variety

Spec

ˆ
RirT1, . . . , Tn, U1, . . . , Ums

pP1, . . . , Pmq

„
1

d

˙
.

�

We are finally able to prove our main result.

Proof of Theorem 2.1. In light of the Embedding Theorems 2.5 and 2.4 we are left to prove

that a set of generators (as triangulated category with infinite sums) for RigDAétpS,Λq [resp.

RigDMétpS,Λq] lies in the image of the functors Lι˚. Since the functor

Latr : RigDAétpS,Λq Ñ RigDMétpS,Λq

sends a set of compact generators to a set of compact generators, we deduce that it suffices to

prove the claim for RigDAétpS,Λq.

The category RigDAétpS,Λq is generated by motives of the form ΛSpY q with Y affinoid and

smooth over S. We can consider an arbitrary covering tSiuiPI of S (resp. an arbitrary covering

tYjujPJ of Y ) and write ΛSpY q as the homotopy colimit of the C̆ech hypercover induced by

the covering tSi ˆS Y uiPI (resp. tYjujPJ ). Since ΛSpSi ˆS Y q “ pjiq7ΛSi
pSi ˆS Y q, with

ji : Si Ñ S being the open inclusion, and pjiq7 sends Artin motives to Artin motives, it suffices

to prove that ΛSpY q is Artin, locally on S and Y .

According to Proposition 2.13, we can then suppose that

‚ S – SpaR is affinoid;

‚ that f : Y “ Spa pAq Ñ S is affinoid;

‚ Y can be embedded as an admissible open inside the analytification of a smooth affine

scheme f 1 : Y 1 Ñ SpecR over R of finite type, of pure dimension d.

From now on, all analytification functors are over SpecR. We can embed Y 1 into a closed

subvariety Z of PN
R by means of an open immersion j1 : Y 1 Ñ Z. We let p be the structural

morphism p : Z Ñ SpecR. The induced open immersion j : Y Ñ Zan has a formal model

j̃ : Y Ñ Z so that ΛZan pY q “ ξpj̃7ΛY pY qq, where we let FormDAétpZ ,Λq be the cate-

gory of étale motives over smooth formal schemes topologically of finite type over Z (see [5,

Section 1.4.2]) and

ξ : FormDAétpZ ,Λq Ñ RigDAétpZ
an ,Λq
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is induced by the generic fiber functor X ÞÑ Xη. We recall that by the algebraic Rigidity Theo-

rem [2] and [5, Corollary 1.4.23] the special fiber functor X ÞÑ Xσ determines an equivalence

FormDAétpZ ,Λq – DApZσ,Λq – DppZσqét,Λq

By the canonical equivalence (see [17, Théorème 18.1.2]) DpZét,Λq – DppZσqét,Λq we de-

duce that j̃7ΛY pY q is an Artin motive. Since ξ preserves Artin motives (the generic fiber of an

étale scheme over S is étale over Sη), we deduce that ΛZan pY q is Artin, equal, say, to ι˚N

with N P DpZan ,Λq.

Since the analytification of an étale extension is still étale, the functor An ˚ preserves Artin

motives. Also the functor j1
7 does by its explicit description (Theorem 2.9(2)). We deduce then

that An ˚pj1
7pΛY 1pY 1qpdqqr2dsq is ι˚M for some Artin motive M over Y 1an .

We let α be the immersion Y Ñ Y 1an . We now give an alternative description of the motive

ΛSpY q. By Theorem 2.9 (1) and (2) we have that f 1
!
an – pan! j1

!
an – pan˚ j1an

7 and up to consider-

ing coverings of S and Y , we can suppose that f 1an
7 pα7ΛY pY qq – f 1an

! pα7ΛY pY q b Λpdqr2dsq.

We then deduce

ΛSpY q – f7ΛY pY q – f 1an
7α7ΛY pY q – f 1an

! pα7ΛY pY q b ΛY 1an pY 1an qpdqr2dsq

– pan˚ j1an
7 pα7ΛY pY q b ΛY 1an pY 1an qpdqr2dsq

– pan˚ pj7ΛY pY q b j1an
7 pΛY 1an pY 1an qpdqqr2dsq

– pan˚ pι˚N b An ˚pj1
7pΛY 1pY 1qpdqqr2dsqq

– pan˚ ι˚pN b Mq

where we used the fact that the functor j1an
7 commutes with tensor products of effective motives

(see its definition - Theorem 2.9(2)) together with the equality j “ j1an ˝ α and, for the last

equality, the monoidality of the functor ι˚ (the product in Sét is the same as the one in SmS). In

order to prove that ΛSpY q is Artin it suffices then to show that pan˚ commutes with ι˚ which is

proven in Proposition 2.12. �

3. APPLICATIONS

In this concluding section we describe three applications of our main theorems. We keep

the hypothesis used so far, with the difference that now Λ is supposed to be any ring. We

keep the notation that K is a complete non-Archimedean non-trivially valued field with finite

ℓ-cohomological dimension, and S a normal rigid analytic variety over it.

3.1. The étale realization functor. We follow [2] and we show how to use the Rigidity The-

orem to produce étale realization functors. In particular, we can produce an ℓ-adic realization

functor for the category RigDAétpK,Qq completing the picture of “classical” realizations for

rigid analytic motives (for a p-adic realization for this category see [30] and for a Betti-like

realization see [28]).

We first introduce the target category, which is the derived category of ℓ-adic étale sheaves,

following Ekedhal. We refer to [2, Section 5] for details on this construction, which we simply

adapt to the rigid analytic situation.

Definition 3.1. Let J Ă Λ be an ideal. The objects of the category Λ{J˚ -Mod are diagrams

of Λ-modules

M‚ “ ¨ ¨ ¨ Ñ Ms`1 Ñ Ms Ñ ¨ ¨ ¨ Ñ M1 Ñ M0

such that Js ¨Ms “ 0 for all s P N. In particular, each Ms is canonically a Λ{Js-module. Mor-

phisms are defined level-wise. The category ChpΛ{J˚ -Modq can be endowed with a (projec-

tive) model structure, giving rise to the category DpSét,Λ{J˚q and RigDAétpS,Λ{J˚q defined
14



as in Definition 1.3. The functors M‚ ÞÑ Ms induce left Quillen functors

s˚ : RigDAétpS,Λ{J˚q Ñ RigDAétpS,Λ{Jsq

s˚ : DpSét,Λ{J˚q Ñ DpSét,Λ{Jsq

which are jointly conservative by (the obvious analogues of) [2, Lemme 5.3 and 5.4].

We define the category pDpSét,ΛJq to be the full triangulated subcategory of DpSét,Λ{J˚q
whose objects are complexes K such that the canonical map ps ` 1q˚K bΛ{Js`1 Λ{Js Ñ s˚K

is invertible for each s P N.

We define the category pDctpSét,ΛJq (where ct stands for constructible) to be the full triangu-

lated subcategory of pDpSét,ΛJq whose objects are complexes K such that for each s P N, the

étale sheaves associated to Hnps˚Kq are constructible in the sense of [20, Definition 2.7.2] for

all n P Z, and zero for |n| " 0.

We define the category pDctpSét,ΛJ b Qq to be the triangulated category obtained from
pDctpSét,ΛJq by tensoring all Hom -groups with Q (it is still a pseudo-abelian triangulated

category, see [13, Corollary B.2.3]).

We can make a direct-limit argument on coefficients and use Rigidity to produce ℓ-adic

realizations. For a triangulated category T we denote by Tcomp the full subcategory of compact

objects.

Theorem 3.2. Let J be an ideal of Λ for which Λ{J is N-torsion, with N invertible in the

residue field of K. For any normal rigid analytic variety S over K there are monoidal triangu-

lated functors

RS,J : RigDAétpS,Λq Ñ pDpSét,ΛJq

R
Q
S,J : RigDA

comp
ét pS,Λ b Qq Ñ pDctpSét,ΛJ b Qq

which have the following properties (for the six functors formalism, see Theorem 2.9 for the

motivic side, and [20] for the étale side).

(1) The composition of the first with pDpSét,ΛJq Ñ DpSét,Λ{Jsq gives the functor

RigDAétpS,Λq
p´qbLΛ{Js

ÝÑ RigDAétpS,Λ{Jsq
Rι˚

– DpSét,Λ{Jsq

where the second equivalence is the one from the Rigidity Theorem.

(2) They commute with the functors f˚ and f˚, for any morphism f of normal rigid-analytic

varieties.

(3) They commute with the functors f7 (left adjoint to f˚ in case f is smooth).

(4) They commute with the functors f an
! and f !

an for any morphism f of quasi-projective

schemes over a Tate algebra.

(5) They commute with the bi-functor RHom when restricted to compact objects in the first

variable.

Proof. For the functor RS,J , it suffices to copy verbatim the arguments of [2, Théorème 6.9]. In-

deed, Rigidity gives rise to a canonical equivalence of tensor DG-categoriesRigDAétpS,Λ{J˚q –
DpSét,Λ{J˚q. The realization functor is then defined by means of

RigDAétpS,Λq Ñ RigDAétpS,Λ{J˚q – DpSét,Λ{J˚q

where the first functor is induced by the obvious functor M ÞÑ pM b Λ{J˚q from Λ -Mod to

Λ{J˚ -Mod. It is easily seen to take values in pDpSét,ΛJq and to commute with f7, f
˚. As for

f˚ one can use the proof of [2, Théorème 6.3] while for RHom one can use the proof of [2,

Théorème 6.4]. The point p4q deals with algebraic morphisms, so the statement for f an
! follows

at once from [5, Théorème 1.4.33] and [6, Théorème 3.4(b)] while for f !
an one can consider
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separately the case where f is smooth (in which [6, Théorème 3.4(c)] holds) and the case where

f is a closed immersion, which follows from the localization triangle [3, Proposition 1.4.9] and

point (2). We leave the details to the reader.

Following [2, Théorème 9.7], in order to extend the functor RS,J (and its properties) to the

functor RQ
S,J one needs to prove that RS,J sends compact objects to the category pDctpSét,ΛJq.

As already remarked in Proposition 2.13, a class of compact generators for RigDAétpS,Λq is

obtained by f7pΛqpnq with f : X Ñ SpaA Ă S is a smooth map of an affinoid variety X over

an affinoid open subvariety SpaA of S. We can also suppose that X is open in a smooth variety

j : X Ă Y an which is the analytification of a smooth A-scheme of finite type g : Y Ñ SpecA.

By the commutation of RS,J with the six operations and Theorem 2.9 we obtain RY an ,Jj7 –
j!RX,J and RSpaA,Jg

an
7 – gan! pRY an ,Jpnqr2nsq (the last isomorphism holding locally on X ,

see Theorem 2.9(4i)). It therefore suffices to show that for a smooth morphism f : X Ñ S of

rigid analytic varieties, the functor f! : pDpXét,Λ{Jsq Ñ pDpSét,Λ{Jsq preserves constructible

complexes, which follows from [20, Theorem 6.2.2]. �

Remark 3.3. Suppose Λ “ Z and J “ pℓq with ℓ a prime invertible in the residue field of K.

We point out that the realization functor R computes ℓ-adic (co-)homology. In order to do so

we first put Λ1 “ Z{ℓN and compute, for any p : X Ñ S in SmS using Rigidity:

Rnp˚Λ
1 – HnRHom pΛ1

SpXq,Lι˚Λ1q – HnRHom pRι˚Λ
1
SpXq,Λ1q

We deduce, by Theorem 3.2(1), that RHom pRS,ℓZSpXq,Zℓq – Rp˚Zℓ.

Remark 3.4. We point out that the ℓ-adic realization can alternatively be constructed using the

universal property of rigid motives and the pro-étale cohomology [8, 23]. This is particularly

convenient in order to define an infinity-category DpSproét ,Λ b Qq containing pDpSét,ΛJ b Qq

as a full subcategory, allowing one to extend the functor RQ
S,J to a functor

R
Q
S,J : RigDAétpS,Λ b Qq Ñ DpSproét ,Λ b Qq

by means of the universal property of RigDAétpS,Λ b Qq. To this aim, it suffices to define a

functor from the category SmS of smooth affinoid varieties over S to DpSproét ,Λ b Qq having

étale descent and homotopy invariance. One can then take the functor X ÞÑ R
Q
S,JpΛSpXqq

defined above.

Remark 3.5. In order to prove that RS,J sends compact objects to constructible complexes, one

could also argue by considering the composition with each s˚ which is canonically equivalent

to the change of coefficients RigDAétpS,Λq Ñ RigDAétpS,Λ{Jsq (see Theorem 3.2(1)).

This functor has a right adjoint which commutes with sums, hence it preserves compact objects.

The result then follows from the comparison between compact and constructible complexes see

[24, Proposition 20.17].

In case the base variety is the analytification of a quasi-projective scheme S over a Tate

algebra A, one can consider the analytification functor between algebraic and analytic motives.

It is known that the étale cohomology of S coincides with the one of San . We have the following

motivic strengthening of this fact.

Corollary 3.6. Let S be a normal scheme of finite presentation over a Tate algebra over K and

let Λ and J be as in Theorem 3.2. The analytification functor

LAn ˚ : DAétpS,Λq Ñ RigDAétpS
an ,Λq
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is compatible with the étale realization functors, i.e. there is a commutative diagram

DAétpS,Λq
LAn ˚

//

RS,J

��

RigDAétpS
an ,Λq

RSan ,J

��

pDpSét,ΛJq
LAn ˚

// pDpSan
ét ,ΛJq

Proof. By construction, it suffices to prove that the analytification functor is compatible with

the functors arising with the change of coefficients Λ Ñ Λ{ℓN which is obvious. �

Remark 3.7. By putting S “ SpaK the Rigidity Theorem gives equivalences

DpKét,Λq – DApK,Λq – RigDAétpK,Λq.

In particular, ℓ-adic étale cohomology is insensitive to analytification, which is already shown

in [20, Corollary 3.8.1].

3.2. Rigid motives with and without transfers. The Rigidity Theorem permits to improve

the known comparison results about the categories RigDAétpK,Λq and RigDMétpK,Λq, sim-

ilarly to the algebraic case (see [2, Annexe B]). The current state of the art in the setting of rigid

analytic motives is the following.

Theorem 3.8. Let Λ be a Q-algebra. The canonical functor

Latr : RigDAétpK,Λq Ñ RigDMétpK,Λq

is an equivalence of monoidal DG-categories.

Proof. By [29, Corollary 4.20] we can deduce the statement for the categories RigDMétpK,Λq
and RigDAFrobétpK,Λq the latter being the localization of RigDAétpK,Λq over the relative

Frobenius maps (see [29, Section 2.1] for the definition of the Frob-étale topology and its

relation with motives). We claim that the relative Frobenius maps are already equivalences in

RigDAétpK,Λq. Indeed, they induce an endofunctor Φ and a natural transformation Φ ñ Id

in RigDAétpK,Λq. We let T be the full triangulated subcategory of those objects where the

natural transformation is invertible. By the separatedness property of DAétpK,Λq (see [2,

Théorème 3.9]) the category T, which is obviously closed under sums and cones, contains the

motives of the form LAn ˚M with M P DAétpK,Λq. But such motives generate the whole

category (by [5, Théorème 2.5.35]) so that T “ RigDAétpK,Λq as wanted. �

Using the same strategy as in [2] we can promote the comparison above to motives with

Zr1{ps-coefficients using the Rigidity Theorem.

Theorem 3.9. Let Λ be a Zr1
p
s-algebra, where p is the exponential residual characteristic of

K. The canonical functor

Latr : RigDAétpK,Λq Ñ RigDMétpK,Λq

is an equivalence of monoidal DG-categories.

Proof. It suffices to adapt the proof of [2, Corollaire B.3] to rigid motives. We recall this

argument for the convenience of the reader.

We remark that the functor Latr : RigDAétpK,Λq Ñ RigDMétpK,Λq sends a generating

set of compact objects of the first category (motives of the form ΛpSqrnspkq with S affinoid,

étale over BN
K) to a generating set of compact objects of the second (motives Λtr pSqrnspkq with

S as before). By means of [5][Lemme 1.3.32] it then suffices to show that for any such M,N

compact in RigDAétpK,Λq the map

(3.9.1) HomRigDAétpK,ΛqpM,Nq Ñ HomRigDMétpK,ΛqpLatrM,LatrNq
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is bijective. We remark that for any map of rings Λ Ñ Λ1 and any object N of RigDAétpK,Λ1q
(resp. RigDMétpK,Λq) we have the following adjunctions

HomRigDAétpK,Λ1qpM bL
Λ Λ1, Nq – HomRigDAétpK,ΛqpM,Nq

HomRigDMétpK,Λ1qpM bL
Λ Λ1, Nq – HomRigDMétpK,ΛqpM,Nq

and since we may assume that M “ ΛpSqrnspkq – Zr1{pspSqrnspkqbLΛ it suffices to consider

the case Λ “ Zr1{ps.
We can consider the exact triangle

Zr1{ps Ñ Q Ñ Q{Zr1{ps – colimZ{ℓkZ Ñ pZr1{psqr1s

and tensor it with N , where the colimit ranges over primes ℓ ‰ p and natural numbers k. Since

M as well as LatrM are compact, we are reduced to proving the bijectivity of (3.9.1) for the

cases N “ N b Q and N “ N b Z{ℓk separately. Using the adjunctions above once more,

one can test the fully faithfulness of Latr in the cases Λ “ Q and Λ “ Z{ℓk which follow from

Theorem 3.8 and Theorem 2.1 respectively. �

Remark 3.10. Even though there is a version of Theorem 3.8 which holds also for effective

motives (see [29, Theorem 4.1]) there is no effective version of the Rigidity Theorem without

transfers, so that Theorem 3.9 cannot be stated for effective motives.

3.3. The motivic tilting equivalence with Zr1{ps-coefficients. In this section we focus on

rigid motives over perfectoid fields and we answer positively to the conjecture stated in [27,

Remark 7.28]. We recall that a perfectoid field K is a non-Archimedean field such that |p| ă 1

for a prime p and that the Frobenius morphism OK{p Ñ OK{p is surjective (classical examples

include Cp or the completion of Qppµp8q). The interest about these objects comes from the

tilting functor K ÞÑ K5 which associates to K a perfectoid field of characteristic p (in the

examples above, one obtains the complete algebraic closure of FpppT qq and the completion of

FpppT 1{p8

qq respectively).

Theorem 3.11 ([22, Theorem 1.3]). The tilting functor induces an equivalence between the

small étale site over K and the small étale site over K5.

It can be restated motivically as an equivalence between Artin motives over the two fields.

The main result of [27] is the extension of this result to a motivic tilting equivalence, where we

write RigDAétpK,Λq for RigDAétpSpaK,Λq.

Theorem 3.12. Let Λ be a Q-algebra. There is an equivalence

RigDAétpK,Λq – RigDAétpK
5,Λq,

Proof. cf. [27, Theorem 7.26] paired up with [29, Corollary 4.20]. See the proof Theorem 3.8

on how to avoid the Frob-localization. �

We refer to [27] for a thorough discussion of this result and its meaning. We summarize here

the construction of the connecting functor.

One can consider the category of perfectoid motives PerfDAétpKq which is obtained by

considering motives over the étale site of (geometrically) smooth perfectoid spaces over K

(homotopies are defined over the perfectoid disc pB1 “ SpaKxT 1{p8

y and the twist is defined

by considering the cokernel of the map of sheaves Λ Ñ ΛpSpaKxT˘1{p8

yq).

Scholze’s tilting equivalence [22, Theorems 1.9 and 1.11] straightforwardly implies that the

adjunction induced by the tilting functor

L5˚ : PerfDAétpK,Λq Ô PerfDAétpK
5,Λq : R5˚

is an equivalence (for any Λ).
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In the case when charK “ p, the perfection functor induces an adjunction

(3.12.1) LPerf˚ : RigDAétpK,Λq Ô PerfDAétpK,Λq : RPerf˚

which is shown to be invertible if Λ is a Q-algebra (see [27, Theorem 6.9] and the proof of

Theorem 3.8 to deduce the stable statement without Frob-localization).

Suppose now charK “ 0. As a further auxiliary category, one can also introduce

sPerfDAétpK,Λq which is the motivic category over the étale site of “semi-perfectoid

spaces”, that is: those adic spaces which are locally étale over Bn ˆ pBm (homotopies are

considered over pB1 and the twist is defined by considering the cokernel of the map of

sheaves Λ Ñ ΛpSpaKxT˘1yq (we follow here the notation of [31]. This category is de-

noted yRigDA
ét,pB1pK,Λq in [27]). The canonical inclusion of étale sites induces a Quillen

adjunction:

Lι˚ : RigDAétpK,Λq Ô sPerfDAétpK,Λq : Rι˚

and one can produce explicitly a functor (see [27, Proposition 7.22])

Rj˚ : sPerfDAétpK,Λq Ñ PerfDAétpK,Λq.

that can be described as follows: it maps a spectrum tMiuiPN to the spectrum tj˚MiuiPN where

pj˚, j˚q is the Quillen equivalence on effective motives induced by the inclusion of sites from

perfectoid spaces in semi-perfectoid spaces.

In particular, even in characteristic 0, one has a connecting functor

(3.12.2) Rj˚Lι
˚ : RigDAétpK,Λq Ñ PerfDAétpK,Λq

which is shown to be invertible if Λ is a Q-algebra (see [27]).

The contribution of this paper to this topic is the following theorem.

Theorem 3.13. Let Λ be a Zr1
p
s-algebra, where p is the residual exponential characteristic of

K. The functor RPerf˚ L5˚Rj˚Lι
˚ induces an equivalence

RigDAétpK,Λq – RigDAétpK
5,Λq.

Moreover, the equivalence above is compatible with the ℓ-adic étale realization functors of

Theorem 3.2.

Proof. The proof is divided in several steps.

Step 1. We first claim that the perfection functor (3.12.1) is an equivalence. Indeed, the

functor LPerf˚ sends a set of compact generators to a set of compact generators (see [27,

Proposition 3.30]). We can therefore argue like in the proof of Theorem 3.9 (see also [2, Corol-

laire B.3]) and consider separately the case Λ “ Q and Λ “ Z{ℓN with ℓ prime different from

p. The first case is known to be invertible (see [27, Theorem 6.9]). We can assume now that Λ

is a torsion ring. The isomorphism Λp1q – µS,ℓN holds in RigDAétpK
5,Λq – DpK5

ét,Λq and

LPerf˚ induces the analogue isomorphism in PerfDAétpK
5,Λq. As in the case of Theorem

2.5, one can show that DpK5
ét,Λq Ñ PerfDAétpK

5,Λq is fully faithful, proving the claim.

Step 2. We now assume charK “ 0 and we prove that F :“ Rj˚Lι
˚ is also an equivalence.

We cannot argue as in the previous step since it is not clear that the functor F sends compact

objects to compact objects. On the other hand, we remark that it commutes with small sums

(see [27, Remark 7.23]) so that, by Brown’s representability theorem, it has a triangulated right

adjoint G. As in the proof of Theorem 3.9 we may and do suppose that Λ “ Zr1{ps. We use

the same letters F and G to indicate these functors defined when Λ “ Q and Λ “ Z{ℓ in which

cases we know they are equivalences of categories (by [27, Theorem 7.10] and by Rigidity

together with Step 1, respectively).
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Step 3. By (the obvious analogues of) [13, Proposition 5.4.3, Paragraph 5.4.4, Proposition

5.4.12] we know the following facts:

(1) Each (Quillen) functor induced by change of coefficients ρ˚
Q : RigDAétpK,Zr1{psq Ñ

RigDAétpK,Qq and ρ˚
ℓ : RigDAétpK,Zr1{psq Ñ RigDAétpK,Z{ℓq with ℓ ‰ p

prime has a conservative right adjoint ρQ˚ resp. ρℓ˚ and the set tρ˚
Q, ρ

˚
ℓ uℓ‰p is a conser-

vative family.

(2) ρℓ˚ρ
˚
ℓM – M bZ Z{l and ρQ˚ρ

˚
QM – M bZ Q.

(3) M bZ Z{l – ConepM
ˆℓ
Ñ Mq.

(4) If A is compact, then Hom pA,M b Qq – Hom pA,Mq b Q.

We now prove that F and G commute with the functors of change of coefficients ρ˚ (in both

cases Q or Z{ℓ). From the conservativity stated in (1) one deduces the following: if G com-

mutes with ρ˚ (which amounts to say that F commutes with ρ˚) then it commutes with ρ˚ if

and only if it commutes with ρ˚ρ
˚ which is ´bQ or ´bZ{ℓ respectively (property (2)). From

the property (3) any triangulated additive functor (like G) commutes with ´ b Z{ℓ. Also, in

order to show GpS b Qq – GS b Q it suffices to check that for any compact object A one has

Hom pA,GpS b Qqq – Hom pA,GS b Qq and this follows from adjunction and the property

(4). It then suffices to show that F commutes with ρ˚. We recall that F is the composition

of Lι˚ (which obviously commutes with ρ˚) and Rj˚ which is termwise defined by means of

j˚ which is the effective Quillen right adjoint induced by the inclusion of perfectoid spaces in

semi-perfectoid ones. We are left to prove that this functor commutes with ρ˚. Since its left

adjoint obviously does, we deduce the claim by the adjunction arguments above.

Step 4. We can finally prove the statement of the theorem. Fix S in RigDAétpK,Zr1{psq.

We want to prove that FGS – S – GFS. By the property (1) it suffices to show this after

applying ρ˚
Q and ρ˚

ℓ . Since F and G commute with them as shown in Step 3, the claim follows

from [27, Theorem 7.10] and Rigidity paired up with Step 1. We remark that along the proof

we have shown the compatibility of F with the functor ρ˚ over Z{ℓN . By construction, this is

enough to prove that F is compatible with the ℓ-adic realization functors. �

Remark 3.14. Let Λ be a Zr1
p
s-algebra, where p is the residual exponential characteristic of

K. We remark that there is also an effective version of the motivic tilting equivalence with

transfers (see [27]). Once it is paired up with the Cancellation Theorem [5, Théorème 2.5.38]

and Rigidity, it enables one to prove that the equivalence of Theorem 3.13 (which can also be

stated for RigDM using Theorem 3.9) restricts to an equivalence:

RigDMeff
ét pK,Λq – RigDMeff

ét pK5,Λq

which is the effective version of the previous theorem (with transfers).

We recall that the fields K and K5 have the same residue field k. In particular, for both of

them we have a canonical Quillen adjunction

ξ : DAétpk,Λq Ô RigDAétpK,Λq : χ

ξ5 : DAétpk,Λq Ô RigDAétpK
5,Λq : χ5

It is obtained in the following way: first, we can consider the following equivalence, induced

by the special fiber functor X ÞÑ Xk (see [5, Corollaire 1.4.24]):

DAétpk,Λq – FormDAétpOK ,Λq

where we let FormDAétpK,Λq be the category of étale motives of smooth formal schemes

topologically of finite type over OK . Then, we can consider the (Quillen) adjunction

Lp´q˚
η : FormDAétpOK ,Λq Ô RigDAétpK,Λq : Rp´qη˚
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induced by generic fiber functor X ÞÑ Xη. In particular ξpΛpXkqq – ΛpXηq for any smooth

formal scheme topologically of finite type X over OK .

In [31] it is shown that these functors commute with the motivic tilting equivalence, when-

ever Q Ă Λ. With Rigidity, we can now complement this result for any Λ where p is invertible.

Corollary 3.15. Let K be a perfectoid field of residual characteristic p and let Λ be a Zr1{ps-
algebra. Up to a natural transformation, the following diagram of monoidal DG-categories is

commutative.

DAétpk,Λq
ξ

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

ξ5

((P
PP

PP
PP

PP
PP

P

RigDAétpK,Λq oo
„

// RigDAétpK
5q

Proof. We can assume charK “ 0 and we follow the notation and the proof of [31, Theorem

3.6]. In particular we use the notion of perfectoid space over k introduced in Section 2 of

[31] and the relative category of motives. With no hypotheses on Λ, one can define a natural

transformation ξ ˝ Rj˚ ˝ Lι˚ ñ Rj˚ ˝ Lι˚ ˝ ξ between the two sides of the following square

DAétpk,Λq

ξ

��

Rj˚Lι
˚

// PerfDApk,Λq

ξ

��

RigDAétpK,Λq
Rj˚Lι

˚

// PerfDApK,Λq

and an invertible natural transformation ξ ˝LPerf˚ – R5˚ ˝LPerf˚ ˝ξ5 between the two sides

of the following square

DAétpk,Λq

ξ5

��

LPerf˚

// PerfDApk,Λq

ξ

��

RigDAétpK
5,Λq

LPerf˚

// PerfDApK5,Λq
R5˚

„
// PerfDApK,Λq

inducing a natural transformation

ξ5 ˝ RPerf˚ ñ RPerf˚ ˝L5˚ ˝ ξ.

We therefore obtain a natural transformation

α : ξ5 ˝ RPerf˚ ˝Rj˚ ˝ Lι˚ ñ RPerf˚ ˝L5˚ ˝ Rj˚ ˝ Lι˚ ˝ ξ.

It can be pre-composed with the natural transformation

β : ξ5 ñ ξ5 ˝ RPerf˚ ˝Rj˚ ˝ Lι˚

obtained from Lj˚ ˝ LPerf˚ ñ Lι˚ (which is induced by the canonical projection to X from

the perfection XPerf). We recall that the tilting equivalence is given from left to right by the

functor RPerf˚ ˝L5˚ ˝ Rj˚ ˝ Lι˚. It suffices then to show that

α ˝ β : ξ5 ñ RPerf˚ ˝L5˚ ˝ Rj˚ ˝ Lι˚ ˝ ξ

is invertible. Using the same strategy as the proof of Theorem 3.13 we can consider separately

the case Λ “ Q and the case Λ “ Z{ℓ. The first case is dealt with in [31] while for the second

we can invoke the Rigidity Theorem, and the fact that in this case RPerf˚ ˝L5˚ ˝ Rj˚ ˝ Lι˚ is

just the tilting of Artin motives DpKét,Λq – DpK5
ét,Λq. �
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APPENDIX A. RIGIDITY FOR RIGID MOTIVES WITH TRANSFERS OVER K

In this appendix, we present an alternative, more “geometric” proof of the Rigidity The-

orem for RigDMétpK,Λq with Λ “ Z{ℓN , where we write as usual RigDMétpK,Λq for

RigDMétpSpaK,Λq. This proof has the advantage of being independent on the full algebraic

Rigidity Theorem in its relative form, but relies only on its version over fields for DMétpK,Λq
[21, Corollary 4.8, Theorem 9.35] and for DAétpK,Λq [2, Lemme 4.6].

We remark that the following proof is just an adaptation of a proof by Ayoub [5, Théorème

2.5.34] mixed with the results on ℓ1-alterations of Gabber and Temkin. We will heavily refer to

[5, Théorème 2.5.34] and only explain the points where the argument needs to be adapted to

our situation.

As usual, we let K be a complete non-Archimedean valued field, we suppose that ℓ is a prime

which is invertible in the residue field of K and that K has a finite ℓ-cohomological dimension.

From now on, we let Λ be Z{ℓN for some N P Ną0.

Theorem A.1. The functor Lι˚ : DpKét,Λq Ñ RigDMétpK,Λq is an equivalence of cate-

gories.

Proof. Rigidity for DMétpK,Λq implies Proposition 2.3 in the case S “ SpaK using the

derived analytification functor LAn ˚. We then know that Lι˚ is fully faithful (cf. Theorem

2.4). In order to conclude the theorem, it suffices to show that a motive of the form ΛtrpXq is

Artin, for any given smooth rigid variety X over K.

We remark that motives which are potentially of good reduction (see the definition before

[5, Théorème 2.5.34]) are Artin: this follows by combining Lemma A.4 with Lemma A.2. It

then suffices to show that ΛtrpXq is in the triangulated category with small sums generated by

motives which are potentially of good reduction.

To this aim, it suffices to follow verbatim the proof of [5, Théorème 2.5.34] with the follow-

ing slight changes.

- By Lemmas A.3 and A.4 a motive is Artin if and only if its base change over a finite

extension K 1{K is. This replaces the first step of [5, Théorème 2.5.34].

- The category RigDMétpK,Λq is a Verdier localization of RigDMNispK,Λq. In particular,

Nisnevich weak equivalences are étale weak equivalences and Nisnevich squares give rise to

exact triangles also in RigDMétpK,Λq (see [5, Théorème 2.5.12]).

- Artin motives are closed under tensor products, as Lι˚ is a monoidal functor.

- In the third step of the proof of loc.cit. one can require that the alteration e : Y Ñ X

(following the notation in loc.cit. ) has degree d which is coprime to ℓ on the dense open sets

where it is finite, using [1, Theorem 5.2.18] in place of the alteration proved in [7] and using

Lemma A.4. We remark that if e1 : Y Ñ X is a finite morphism of analytic varieties of degree

d coprime to ℓ, then the motive ΛtrpXq is a direct summand of ΛtrpY q since e1 ˝ e1 tr “ d ¨ Id
and d P Λ˚, where e1 tr is the transpose of e1 lying in CorpX, Y q. In particular, ΛtrpXq is Artin

if ΛtrpY q is. Then, the fact that ΛtrpY q is an Artin motive when Y has poly-stable reduction

can be proved in the same way as it is proved in the third step of the proof of [5, Théorème

2.5.34]. �

The following lemmas were used in the previous proof.

Lemma A.2. Let X be the generic fiber of a smooth formal scheme over OK . The motive

ΛtrpXq P RigDMétpK,Λq is an Artin motive.

Proof. We follow the notation introduced before Corollary 3.15. By hypothesis the motive

ΛpXq P RigDAétpK,Λq lies in the image of the functor Lp´q˚
η : FormDAétpOK ,Λq Ñ

RigDAétpK,Λq. We remark that the category FormDAétpOK ,Λq – DAétpk,Λq is gener-

ated by Artin motives as a consequence of [2, Lemme 4.6]. Therefore, by the commutativity of
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the diagram

Dpkét,Λq DAétpk,Λq

DpOK ét,Λq FormDAétpOK ,Λq

RigDAart pK,Λq RigDAétpK,Λq

Lι˚

ξ ξ

Lι˚

Lp´qη Lp´qη
Lι˚

it follows that ΛpXq lies in the category generated by the image of Lι˚ ˝ Lp´qη ˝ ξ which is

contained in Artin motives. This shows in particular that ΛtrpXq is an Artin motive. �

Lemma A.3. Let L{K be a finite purely inseparable extension of fields, then there is a commu-

tative diagram of functors

DpKét,Λq RigDMétpK,Λq

DpLét,Λq RigDMétpL,Λq

where the vertical maps are equivalences and the horizontal are fully faithful functors.

Proof. The fact that the horizontal functors are fully faithful can be shown by means of Propo-

sition 2.3 (see the proof of Theorem 2.4). By Proposition 2.2.22 of [5] there is an equivalence

of categories

CorpK,Λq
„
Ñ CorpL,Λq.

This equivalence induces the equivalence RigDMétpK,Λq Ñ RigDMétpL,Λq of the claim,

which obviously preserves Artin motives. �

Lemma A.4. Let S be a smooth rigid variety over K, L{K a finite separable extension and

SL the base change of S to L. Then Λtr
L pSLq is an Artin motive if and only if Λtr

KpSq is an Artin

motive.

Proof. We can consider the adjoint pair

e7 : RigDMétpL,Λq Õ RigDMétpK,Λq : e˚

induced by the smooth map SpecL Ñ SpecK and observe that it restricts to Artin motives.

In particular, if Λtr pSq is Artin then also Λtr pSLq is. Vice-versa, we can assume that L{K is

a normal extension and we suppose that Λtr pSLq is Artin over L. Then, also e#pΛtr pSLqq “

Λtr
KpSLq is Artin. We can then consider the C̆ech hypercover U‚ of S induced by SL Ñ S

and remark that at each stage it is isomorphic to a disjoint union of copies of SL. In particular

the simplicial motive ΛtrpU‚q is lewel-wise Artin, and hence also ΛpSq – hocolimΛtrpU‚q is,

since Artin motives are closed under sums and cones. �
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[13] Denis-Charles Cisinski and Frédéric Déglise, Étale motives. Compos. Math., 152(3):556–666, 2016.

[14] Daniel Dugger, Universal homotopy theories. Adv. Math., 164(1):144–176, 2001.

[15] Jean Fresnel and Marius van der Put, Rigid analytic geometry and its applications, volume 218 of Progress
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