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THE MONSKY-WASHNITZER AND THE OVERCONVERGENT REALIZATIONS

ALBERTO VEZZANI

ABSTRACT. We construct the dagger realization functor for analytic motives over non-

archimedean fields of mixed characteristic, as well as the Monsky-Washnitzer realization

functor for algebraic motives over a discrete field of positive characteristic. In particular, the

motivic language on the classic étale site provides a new direct definition of the overconvergent

de Rham cohomology and rigid cohomology and shows that their finite dimensionality follows

formally from one of Betti cohomology for smooth projective complex varieties.

CONTENTS

1. Introduction 1

2. Overconvergent Rigid Varieties 3

3. Approximation Results 7

4. Dagger Rigid Motives 11

5. The Monsky-Washnitzer Realization Functor 17

Appendix A. Dagger Spaces and Inverse Limits of Adic Spaces 23

Acknowledgements 29

References 29

1. INTRODUCTION

The problem of the definition of a well-behaved cohomology theory “à la de Rham” for ana-

lytic varieties over a non-archimedean field lies on the pathological properties of the de Rham

complex in this context. Even though it behaves as expected when applied to proper varieties,

or analytifications of algebraic varieties, its (hyper)cohomology computed on very basic affi-

noid smooth rigid varieties (such as the closed disc B1) is oddly infinite dimensional. This is

related to the impossibility to integrate general holomorphic rigid forms while preserving their

radius of convergence.

This classical problem has been studied and positively resolved by different authors (see

[22], [25], [42]). The common strategy is to consider the (hyper)cohomology of an alteration

of the de Rham complex, namely the overconvergent complex Ω† that is, the subcomplex of

those forms which can be extended on a “strict neighborhood” of the variety. In order to

give sense to this definition one needs first to consider an affinoid variety and endow it with

an overconvergent structure, which amounts to embedding it in the interior of a bigger one.

Secondly, one has to prove than two different choices would induce two canonically equivalent

cohomology groups, and that this definition can be extended functorially to arbitrary varieties.

The technical tool which is behind these facts is the rigid version of Artin’s approximation

theorem proved by Bosch [14] stating that any map of varieties can be approximated with a new

one preserving two given overconvergent structures, combined with a homotopic argument. In

this article, we follow the approach of Große-Klönne [23] and [25] and we give a motivic

version of this procedure which can be stated as follows (see Theorem 4.23):
1

http://arxiv.org/abs/1509.01718v2


Theorem. For any ring of coefficients Λ the canonical functor l : RigSm†/K → RigSm /K
from smooth rigid varieties with an overconvergent structure to rigid varieties induces a

monoidal, triangulated equivalence of the associated categories of motives:

Ll∗ : RigDA
† eff
ét (K,Λ) ∼= RigDAeff

ét (K,Λ): Rl∗.

We will actually prove a relative statement, where the base dagger variety is not necessarily

the spectrum of the field K. We remark that, in particular, it is possible to define the spectrum

of the overconvergent de Rham cohomology as the motive Ll∗Ω†.

The main technical ingredient for the proof is Proposition 3.10 which provides a way to

approximate maps of rigid analytic varieties having an overconvergent structure, with maps

that preserve such structures. It is reminiscent of (a cubical version of) Artin’s approximation

lemma, but completely independent of it.

We can apply the previous theorem to give a new definition of rigid cohomology, which is

a good cohomological theory “à la de Rham” for algebraic varieties X over a discrete field k
of positive characteristic. The idea, due to Monsky and Washnitzer [42] is to find (whenever

possible) a smooth formal model X of X over the ring of integers K◦ of a mixed-characteristic

valued field K with residue k, and then consider the overconvergent de Rham cohomology of

the associated generic fiberXη. Also in this case, the major task which is solved in the literature

consists in proving that this definition does not depend on the various choices made at each step,

as well as in generalizing it to arbitrary varieties. Classically, the tools which are used include

the convergent site of Ogus [46] and the crystalline site of Berthelot [11] for proper varieties,

or the overconvergent site developed by Le Stum [37].
Using the motivic language, these problems are alternatively solved by the following

remark: a theorem of Ayoub [2, Corollary 1.4.24] states that the special-fiber functor
(·)σ : FormSm /K◦ → Sm /k from the category of smooth formal schemes over K◦ to the
category of smooth varieties over the residue field k induces an equivalence of motives. In
particular, by letting (·)η : FormSm /K◦ → RigSm /K be the generic-fiber functor, there is a
motivic triangulated monoidal functor:

MW∗ : DAeff
ét (k,Λ)

R(·)σ∗−−−−→
∼

FormDAeff
ét (K

◦,Λ)
L(·)∗η−−−→ RigDAeff

ét (K,Λ)
Rl∗−−→
∼

RigDA
† eff
ét (K,Λ).

As a whole, by considering the functorMW∗ and the complex Ω† we therefore obtain auto-

matically a functorial cohomology theory on algebraic varieties over k satisfying étale descent

and homotopy invariance, which coincides with the one of Monsky-Washnitzer whenever this

one is defined. It is formal to show thatMW∗ has a right adjointMW∗ and that the motive

MW∗Ω
† represents the “classic” rigid cohomology, providing an alternative to its usual defi-

nition and to the rigid spectrum considered by Deglise-Mazzari [20] and Milne-Ramachandran

[41] following Besser [13]. Our construction only uses canonical, explicit functors, the classic

étale sites on algebraic and analytic varieties and no hypothesis on the valuation of K.

Another crucial fact which is proved in the literature concerns the finite dimensionality of

the cohomological theories mentioned above (the most general statements are in [35]), as well

as their compatibility with base extensions. The classic proofs rely on several reduction proce-

dures, involving resolutions of singularities, localizations and homotopy. They decompose the

general statement into direct, computable checks on varieties of a special kind, such as the ones

which are projective and smooth. We remark that these ad hoc constructions are encapsulated

in a fundamental theorem of Ayoub [2, Theorem 2.5.35]. When combined with the results

of [52], it states that the category of rigid analytic motives with rational coefficients over a

base field RigDAeff
ét (K,Q) is generated, in a suitable sense, by the motives M(X) associated

with smooth projective algebraic varieties X over K. Admittedly, the proof of the theorem
2



consists in an elaborated composition of the standard reduction procedures, enhanced with the

triangulated language allowed by the motivic setting.

As shown above, the main outcome of this article is proving that the overconvergent de Rham

cohomology and rigid cohomology factor over the triangulated category RigDAeff
ét (K,Q).

In particular, using the theorem of Ayoub, we deduce (see Corollary 5.24) their finite-

dimensionality as well as their compatibility with base change by reducing to the motives

M(X) of the aforementioned form, and hence to well-known facts related to the classic

de Rham cohomology of complex smooth projective varieties X(C). Our proof makes no

distinction between the discrete-valuation case and the general case, and is independent on the

classic proofs (see [10], and partial results in [12], [24], [40]).

In the Appendix, we prove that an overconvergent structure of a variety corresponds to a

presentation of its (adic) compactification as an inverse limit (in a weak sense defined by Huber)

of strict inclusions of rigid varieties. This connects the theory of dagger spaces of Große-

Klönne [23] to the theory of adic spaces of Huber [32] and strengthens the parallel between

the techniques used in this paper and the ones of [53] where smooth perfectoid spaces arise as

inverse limits of finite maps of rigid varieties.

2. OVERCONVERGENT RIGID VARIETIES

From now on we fix a complete valued field K endowed with a non-archimedean valuation

of rank 1 and residue characteristic p > 0. We denote by π a pseudo-uniformizer of K that is,

an invertible, topologically nilpotent element. We also denote by K◦ the ring of integers and

by k the residue field. We consider rigid analytic varieties as adic spaces, using the language

of Huber [32]. In particular, when we consider a point x ∈ X for a variety X we mean a point

in the sense of Huber (or, equivalently, a point of the G-topos of X). We only consider rigid

analytic varieties over K which are separated and taut (that is, the closure of a quasi-compact

subset is quasi-compact, see [33, Definition 5.1.2]). IfR is a Tate algebra, we sometimes denote

by SpaR the associated affinoid space Spa(R,R◦).
The starting point to define overconvergent, or dagger varieties are the so-called dagger al-

gebras. For the sake of completeness, we report here their definition and some basic properties,

proved in [23] and [42]. We refer to the Appendix for a link between these definitions and the

language of adic spaces of Huber.

Definition 2.1 ([42], [23]). For c ∈ K and m, d ∈ N>0 we denote by K〈cm/dτ1, . . . , c
m/dτn〉

or simply by K〈cm/dτ 〉 the subring of K〈τ1, . . . , τn〉 of those power series
∑
aατ

α such that

lim |aα|λ|α| = 0 for λ = |c|m/d. We denote by K〈τ〉† = K〈τ1, . . . , τn〉† the following topologi-

cal subring of K〈τ1 . . . , τn〉
lim−→
h

K〈π1/hτ 〉 = lim−→
h

K〈π1/hτ1, . . . , π
1/hτn〉

that is, the ring of those power series
∑
aατ

α such that lim |aα|λ|α| = 0 for some λ ∈ R>1. A

dagger algebra is a topological K-algebra R isomorphic to a quotient K〈τ〉†/I of K〈τ〉†. Its

completion R̂ is the Tate algebraK〈τ〉/I . A morphism of dagger algebrasR→ S is aK-linear

(hence continuous) morphism. The category Aff† of affinoid dagger spaces is the opposite

category of dagger algebras. We denote by Spa†R the object on Aff† associated with R. We

say that its limit is Spa R̂ where R̂ is the completion of R and vice-versa we say that Spa†R
is a dagger structure of Spa R̂. We say that Spa†R [resp. a morphism Spa†R′ → Spa†R]

has the property P if Spa R̂ [resp. the induced morphism of affinoid spaces Spa R̂′ → Spa R̂]

has the property P. The category of smooth morphisms of affinoid dagger spaces X → S to

a fixed affinoid dagger space S = Spa†R is denoted by AffSm†/S. Similarly, a collection of
3



morphisms {Spa†Ri → Spa†R} in AffSm /S is a cover if the induced collection {Spa R̂i →
Spa R̂} is a topological cover, that is, if

⊔
Spa R̂i → Spa R̂ is surjective.

Remark 2.2. The functor Spa†R 7→ Spa R̂ is faithful, and Hom(Spa†R′, Spa†R) corresponds

to those maps in Hom(Spa R̂′, Spa R̂) such that the image of R ⊂ R̂ lies in R′ ⊂ R̂′.

Example 2.3. We denote by Bn† the smooth affinoid dagger space Spa†K〈τ1, . . . , τn〉†.
Proposition 2.4 ([23, Paragraph 1.4]). The dagger algebra K〈τ 〉† is a Noetherian fac-

torial Jacobson ring. In particular, any dagger algebra is isomorphic to a quotient

K〈τ1, . . . , τn〉†/(f1, . . . , fk) with fi ∈ K〈π1/Nτ〉 for a sufficiently big N .

Definition 2.5. Choose a presentation of a dagger algebra R ∼= K〈τ1, . . . , τn〉†/(f1, . . . , fk)
with completion R̂. We denote by R̂h the Tate algebra K〈π1/(H+h)τ〉/(fi). It is well defined

for all h ≥ 1 for a sufficiently big H . The ring R is the union lim−→h
R̂h. If we denote by X the

space Spa†R we also denote by Xh the space Spa R̂h and by X̂ the space Spa R̂.

Remark 2.6. The definition of the algebras R̂h above depend on the presentation of the dagger

algebra R. Whenever we use this notation, we consider a possible choice of presentation of R.

If we let R+ be lim−→ R̂◦
h then the affinoid Huber space Spa(R,R+) is the compactification of X̂

over K and is a (weak) inverse limit of adic spaces lim←−Xh following Huber’s definition [33,

Definition 2.4.2]. We refer to the Appendix for the details (see Proposition A.22).

Remark 2.7. Let U and V be two open subvarieties ofX . We write U ⋐X V if the closure of U
lies in V (see [2, Proposition 2.1.13]). By [2, Proposition 2.1.16] we have that X̂ ⋐X1

Xh ⋐X1

X1. Moreover, the sequence {Xh} is coinitial with respect to ⋐ among rational subspaces of

X1 with this property.

We now recall some basic facts about the category of dagger spaces. In particular, we isolate

in the following proposition the fundamental Artin’s approximation lemma. It will not be used

under this general form, but rather in a smooth “cubical” fashion (see 3.10).

Proposition 2.8 ([22, Corollary 7.5.10]). Suppose charK = 0 or charK = p > 0 and

[K : Kp] < ∞. Let X and Y be two affinoid dagger spaces with limit X̂ and Ŷ respectively.

We fix a Banach norm || · || on O(X̂) and O(Ŷ ). For any [iso-]morphism φ : X̂ → Ŷ and any

ε > 0 there exists a [iso-]morphism ψ : X → Y such that ||O(φ)(f)− O(ψ̂)(f)|| ≤ ǫ for all

f ∈ O(Ŷ ) with ||f || ≤ 1

Remark 2.9. Following the notations of the previous proposition, the property ||O(φ)(f) −
O(ψ̂)(f)|| ≤ ǫ for all f ∈ O(Ŷ ) with ||f || ≤ 1 is typically denoted by ||φ− ψ̂|| ≤ ǫ. We will

also follow this convention in what follows.

Proposition 2.10 ([23, Paragraph 1.16]). The category of dagger algebras has coproducts ⊗†.

The categories Aff† and AffSm /S have fibered products.

We recall how coproducts of dagger algebras are formed. Suppose given three dagger alge-

bras T , R = K〈τ 〉†/I and S = K〈σ〉†/J and two maps T → R, T → S. The dagger algebra

R⊗†
T S is the image of K〈τ , σ〉† under the canonical map to the Tate algebra R̂⊗̂T̂ Ŝ.

Definition 2.11. Let R be a dagger algebra. We denote by R〈τ1 . . . , τn〉† the dagger algebra

R⊗† K〈τ1 . . . , τn〉†.
Whenever f1, . . . , fn, g are elements of a Tate algebra R generating the unit ideal, we denote

by U(f1, . . . , fn/g) the rational space of the affinoid variety SpaR defined by the conditions

|fi(x)| ≤ |g(x)|.
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Proposition 2.12 ([23, Proposition 2.6, Paragraph 2.11]). Let X = Spa†R be an affinoid

dagger space. Any rational open subset U of Spa R̂ can be written as U(f1, . . . , fn/g) with

fi, g ∈ R generating the unit ideal. The dagger space U = Spa†O†(U) with

O†(U) = R〈τ1, . . . , τn〉†/(gτi − fi)
is an open rational subspace of Spa†R canonically independent on the choice of fi, g. More-

over O† is a sheaf of topological K-algebras on Spa R̂.

Definition 2.13. Let X be an affinoid dagger space with limit X̂ . We denote by O†
X or sim-

ply by O† the sheaf of topological algebras on the rational site of X as well as the sheaf of

topological algebras on X̂ introduced in Proposition 2.12.

In the category of affinoid rigid analytic spaces, the functor SpaR 7→ R◦ is represented by

B1. The next proposition shows the role of the dagger disc B1† introduced above.

Proposition 2.14. The affinoid dagger space B1† represents the functor Spa†R 7→ R̂◦ ∩ R.

Proof. Let X = Spa†R be an affinoid dagger space. A continuous map K〈τ〉 → R̂ amounts

to the choice of an element s ∈ R̂◦ and it preserves the dagger structures if and only if for any

n the induced map K〈π1/nτ〉 → R̂ factors over a map K〈π1/nτ〉 → R̂h for some h, that is,

if and only if πsn ∈ lim−→ R̂◦
h for all n. Since R is a K-algebra, integrally closed in R̂ (see [15,

Theorem 2]) we deduce that such an s lies in R̂◦ ∩R.

Vice-versa, we claim that any element s ∈ R̂◦ ∩ R† satisfies the condition. If f ∈ R̂1 ∩ R◦

then we deduce from [2, Proposition 2.1.16] the following inclusions in X1 = Spa R̂1:

X̂ ⊂ U(f/1) ⋐X1
U(πf/1).

Since {Xh} is coinitial among the rational subvarieties W of X1 such that X̂ ⋐X1
W we

deduce in particular that Xh ⊂ U(πf/1) for some h that is, πf ∈ lim−→ R̂◦
h. This proves the

inclusions

π(R ∩ R̂◦) ⊂ lim−→ R̂◦
h ⊂ R ∩ R̂◦

and therefore our claim. �

The following proposition already appears in [21, Theorem 2.3]. We present here an alterna-

tive proof based on the methods developed in the Appendix.

Proposition 2.15. Let X be an affinoid dagger space with limit X̂.

(1) The functor U 7→ Û defines an equivalence between the categories of inclusions of

rational subspaces in X and in X̂ .

(2) The functor U 7→ Û defines an equivalence between the categories of finite étale affi-

noid spaces over X and over X̂.

Proof. The first claim follows from Proposition 2.12. For the second claim, by [48, Lemma

7.5] we know that, up to shifting indices, any map Û → V̂ of finite étale affinoid spaces over

X̂ is induced by a map U1 → V1 of finite étale spaces over X1 with Û = U1 ×X1
X̂ and

V = V1 ×X1
X̂. Let Uh be U1 ×X1

Xh. We are left to prove that lim−→O(Uh) is a dagger algebra.

We now use the equivalence between dagger affinoid spaces and their presentations, proved

in the Appendix (see Proposition A.22). In particular, we can alternatively prove that the se-

quence Uh is a presentation of Û . It suffices to show that Û lies in Int(U1) (see the notations

of Definition A.7). Since f : U1 → X1 is finite, by [9, Corollary 2.5.13(i)] and Corollary A.8

we deduce that Int(U1/X1) = U1 and hence by Corollary A.11 we get Int(U1) = f−1 Int(X1).

We then need to prove that the image of Û lies in the interior of X1 and this is clear as it factors

over X̂ lying in Int(X1). �
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Remark 2.16. If Y → X is a finite étale morphism of affinoid dagger spaces, the dagger algebra

O†(Y ) associated with Y is of the form lim−→(Ŝ1⊗R̂1
R̂h) = Ŝ1⊗R̂1

O†(X) for some finite étale

algebra Ŝ1 over R̂1 (up to shifting indices). In particular, it is finite étale over O†(X).

Corollary 2.17. Let X be an affinoid dagger variety with limit X̂ . If V is an étale cover of X̂ ,

then it can be refined into another cover Û induced by an étale cover U of X .

Proof. By Proposition 2.15 and the fact that any étale cover can be refined into a new one which

is a composition of rational embeddings and finite étale maps, we can find a refinement Û of

the cover which is the limit of a family U of maps of dagger spaces. This is also a cover of X
by definition. �

Corollary 2.18. Let X be an affinoid dagger variety with limit X̂. The maps of the small

rational and étale sites X̂ → X induces equivalences on the associated topoi.

Proof. It suffices to use the criteria of [33, Appendix A]. �

Definition 2.19. Let X = Spa†R be an affinoid dagger space and M be a finiteR-module. We

define M̃ to be the sheaf M̃ = M ⊗R O† on X̂ . A coherent O†-module over a dagger space

X is a O†-module in the category of sheaves of K-algebras over X̂ isomorphic to M̃ for some

finite R-module M .

Remark 2.20. In [23, Theorem 2.16] it is proved that the notion of coherent sheaves over Spa†R
coincides with the notion of coherent modules over the ringed space (Spa R̂,O†) of [26, Chap-

ter 0, Section 5.3].

Proposition 2.21. Let X be an affinoid dagger space and F be a coherent O†-module over it.

(1) ([23, Proposition 3.1]) H i
an(X,F) = 0 if i > 0.

(2) F extends to an étale sheaf over X defined by putting f ∗F = f−1F ⊗f−1O†
X
O†

Y for

each étale map Y → X .

(3) H i
ét(X,F) = 0 if i > 0.

Proof. Suppose F = M̃ and let R be the dagger algebra O†(X). By means of Corollary 2.18,

[22, Proposition 8.2.1] and the proof of [22, Proposition 8.2.3(2)] we are left to prove that or

each surjective finite étale map Ŷ → X̂ the following sequence is exact

0→M →M ⊗R S ⇒M ⊗R (S ⊗†
R S)

where we denote by S the dagger algebra associated with Y (see Proposition 2.15). By Remark

2.16 the map R → S is finite étale, and in particular the dagger tensor product coincides with

the usual one (see [23, Lemma 1.10]). The claim then follows from [27, Section I.3]. �

We now recall the definition of Große-Klönne of “global” dagger spaces

Definition 2.22. A dagger space is a pair X = (X̂,O†) where X̂ is a rigid analytic space, and

O† is a sheaf of topologicalK-algebras on X̂ such that for some affinoid open cover {Ûi → X̂}
there are dagger structures Ui on Ûi with O†|Ûi

∼= O†
Ui

(see Proposition 2.12). A morphism of

dagger spaces is a morphism of the underlying locally ringed spaces overK (see [23, Definition

2.12]) and the category they form is denoted by Rig†. We say that the rigid space X̂ is the limit

ofX and vice-versa we say thatX is a dagger structure of X̂ . We say thatX [resp. a morphism

X → X ′] has the property P if X̂ [resp. the induced morphism of rigid spaces X̂ → X̂ ′] has

the property P. Whenever S is a dagger space, we denote by Rig† the category of rigid spaces

over it. The category of smooth morphisms of dagger spaces X → S to a fixed dagger space S
is denoted by RigSm†/S and its full subcategory of affinoid objects by AffSm†/S. A collection

6



of morphisms {Xi → X} in RigSm /S is a cover if the induced collection {X̂i → X̂} is a

topological cover, that is, if
⊔
X̂i → X̂ is surjective.

Example 2.23. Any rigid variety without boundary has a dagger structure by [23, Theorem

2.27]. We denote by P1† a dagger variety having as limit the projective line P1.

The following proposition is straightforward.

Proposition 2.24. Let S be a dagger space. The functor

Aff† /S → Rig† /S

Spa†R 7→ (Spa R̂,O†)

is fully faithful and induces an equivalence of the associated open analytic and the étale topoi.

From now on, we will use the term affinoid dagger space also to indicate the objects in the

essential image of the functor above.

We easily obtain also the following version.

Corollary 2.25. Let S be a dagger space. The functor

AffSm†/S → RigSm†/S

Spa†R 7→ (Spa R̂,O†)

is fully faithful and induces an equivalence of the associated open analytic and the étale topoi.

3. APPROXIMATION RESULTS

From now on, we fix a dagger space S with limit Ŝ. In this section, we recall the analytic

version of the inverse function theorem and we use it as an alternative to Artin’s approximation

theorem for smooth dagger algebras [14]. As a matter of fact, it induces a weaker form of this

theorem (see Corollary 3.4) but also a cubical version of it that we will need in what follows

(see Propositions 3.9 and 3.10).

The reader who believes in Proposition 3.10 can safely skip this technical section.

Proposition 3.1. Let R be a dagger algebra with completion R̂. If an element ξ of R̂ is alge-

braic over FracR then it lies in R.

Proof. We denote by X the space Spa†R. Since R is algebraically closed in R̂ (see [15,

Theorem 2]) we conclude that FracR is algebraically closed in (R \ {0})−1R̂ and therefore

ξ ∈ FracR. We can also assume ξ ∈ Frac R̂1 up to shifting indices.

Let Iξ = (d1, . . . , dn) be the ideal of denominators of R̂1 associated with the meromorphic

function ξ (see [22, Lemma 4.6.5]) and let V (Iξ) be the induced (Zariski) closed subvariety of

X1 = Spa R̂1. From now on, we denote by T c the closure of a subset T in X1. We recall that

ξ is analytic around a point x if and only if (Iξ)x = Ox. Since Ox is local with maximal ideal

equal to the support of the valuation at x (see [32, Lemma 1.6(i)]) we deduce that ξ is regular

around x if and only if x /∈ V (Iξ) that is, if |di(x)| 6= 0 for some i. By [33, Lemma 1.1.10]

if x ∈ {y}c for some point y then |di(x)| = 0 if and only if |di(y)| = 0. Using [31, Remark

2.1(iii)] and the regularity of ξ on X̂ we then deduce that X̂c ∩ V (Iξ) = ∅. On the other hand,

by [33, Lemma 1.5.10(1a)] this set X̂c ∩ V (Iξ) coincides with the intersection of the nested

closed subsets {Xc
h ∩ V (Iξ)}h inside the quasi-compact space X1. From Cantor’s intersection

theorem (see e.g. [44, Theorem 3-5.9]) we conclude Xh ∩ V (Iξ) = ∅ for h large enough and

hence ξ is regular on Xh, as wanted. �

We obtain in particular the following fact.
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Corollary 3.2. Let R be a dagger algebra with completion R̂. If f ∈ R is invertible in R̂ then

it is invertible in R.

We recall the following version of the inverse mapping theorem in the analytic context.

Proposition 3.3 ([53, Corollary A.2]). Let R̂ be a non-archimedean Banach K-algebra, let

σ = (σ1, . . . , σn) and τ = (τ1, . . . , τm) be two systems of coordinates, let σ̄ = (σ̄1, . . . , σ̄n)

and τ̄ = (τ̄1, . . . , τ̄m) two sequences of elements of R̂ and let P = (P1, . . . , Pm) be a collection

of polynomials in R̂[σ, τ ] such that P (σ = σ̄, τ = τ̄) = 0 and det(∂Pi

∂τj
)(σ = σ̄, τ = τ̄ ) ∈ R̂×.

There exists a unique collection F = (F1, . . . , Fm) of m formal power series in R̂[[σ − σ̄]]
such that F (σ = σ̄) = τ̄ and P (σ, F (σ)) = 0 in R̂[[σ − σ̄]] and they have a positive radius of

convergence around σ̄.

Corollary 3.4. Suppose that S is affinoid. LetX and Y be two affinoid dagger algebras smooth

over S such that Ŷ is étale over a poly-disc Bm × Ŝ. For any [iso-]morphism φ : X̂ → Ŷ over

Ŝ and any ε > 0 there exists a [iso-]morphism ψ : X → Y over S such that ||φ− ψ̂|| ≤ ǫ.

Proof. We suppose S = Spa†A, X = Spa†R and we denote their limits by Ŝ = Spa Â,

X̂ = Spa R̂. Note that Ŷ is isomorphic to Spa Â〈σ1, . . . , σm, τ1, . . . , τn〉/(P1, . . . , Pn) such

that each Pi is a polynomial in A[σ, τ ] and det
(
∂P
∂τ

)
is invertible in O(Ŷ ) by means of [2,

Lemma 1.1.51].

We first assume that Y = Spa†A〈σ, τ〉†/(P (σ, τ)). We also remark that det
(
∂P
∂τ

)
is invert-

ible in O†(Y ) by Corollary 3.2.

The map φ is uniquely determined by the association (σ, τ) 7→ (s, t) from Â〈σ, τ〉/(P ) to

R̂ for an m-tuple s and an n-tuple t in R̂. By Corollary 3.3 there exists power series F =

(F1, . . . , Fm) in R̂[[σ − σ̄]] such that

(σ, τ) 7→ (s̃, F (s̃)) ∈ R̂
defines a new map ψ from X̂ to Ŷ for any choice of s̃ ∈ R̂◦∩R such that s̃ is in the convergence

radius of F and F (s̃) is in R̂◦. The field Frac(R)(F (s̃)) is finite étale over Frac(R). By

Proposition 3.1 we deduce that F (s̃) is in R and therefore ψ is a map from X to Y . By the

density of R in R̂ and the continuity of F we can also assume that the m-tuple s̃ induces a map

ψ such that ||φ− ψ|| ≤ ǫ.

If we take X̂ = Ŷ we can find an endomorphism ψ of X̂ inducing a map X → Y such that

|| id−ψ|| ≤ ǫ. If we take ǫ sufficiently small, we deduce that ψ is an automorphism of X̂ and

hence any two dagger structures on it are isomorphic. In particular, we obtain the general case

of the proposition. �

In the previous proof, we also showed the following structure theorem.

Corollary 3.5. Suppose S affinoid. Let Ŷ be an affinoid rigid space which is étale over the

poly-disc Bm × Ŝ. Then it admits a dagger structure Y isomorphic to SpaR with

R = O†(Ŝ)〈σ1, . . . , σm, τ1, . . . , τn〉†/(P1, . . . , Pn)

where each Pi lies in O†(Ŝ)[σ, τ ] and det(∂Pi

∂τj
) is invertible in R.

Proposition 3.6. Any rigid dagger space smooth over S is locally étale over a dagger poly-disc

Bn† × V for some affinoid rational open subset V ⊂ S.

Proof. The claim is local on S so we can assume it is affinoid. Let X be a smooth dagger

variety over it. By Proposition 2.15 and [2] we can find a rational covering {Ui → X} such
8



that each limit Ûi is étale over some poly-disc Bn
V̂i

where V̂i is rational inside Ŝ. The claim then

follows from Corollary 3.5. �

We recall (see [16, Definition 1.1.9/1]) that a morphism of normed groups φ : G → H is

strict if the homomorphism G/ kerφ → φ(G) is a homeomorphism, where the former group

is endowed with the quotient topology and the latter with the topology inherited from H . In

particular, we say that a sequence of normed K-vector spaces

R
f→ R′ g→ R′′

is strict and exact at R′ if it exact at R′ and if f is strict that is, the quotient norm and the norm

induced by R′ on R/ ker(f) ∼= ker(g) are equivalent.

Lemma 3.7. For any map σ : Tσ → {0, 1} defined on a subset Tσ of {1, . . . , n} we denote by

Iσ the ideal generated by θi − σ(i) as i varies in Tσ. For any finite set Σ of such maps and any

dagger algebra R with limit R̂ the following diagram of topological K-algebras has vertical

inclusions and strict and exact lines

0 // R̂〈θ〉/
⋂

σ∈Σ

Iσ //
∏

σ∈Σ

R̂〈θ〉/Iσ //
∏

σ,σ′∈Σ

R̂〈θ〉/(Iσ + Iσ′)

0 // R〈θ〉†/
⋂

σ∈Σ

Iσ //
?�

OO

∏

σ∈Σ

R〈θ〉†/Iσ //
?�

OO

∏

σ,σ′∈Σ

R〈θ〉†/(Iσ + Iσ′)
?�

OO

Moreover, the ideal
⋂

σ∈Σ Iσ is generated by a finite set of polynomials with coefficients in Z.

Proof. The fact that the first line is strict and exact as well as the description of the generators

of
⋂
Iσ is proved in [53]. The same statement applied to the rings R̂h〈π1/hθ〉 and a direct limit

argument show that also the second line is exact. We now prove that the vertical maps are

inclusions. This can be proved only for the last two columns, where the statement is clear. As

the second line is isometrically contained in the first, we also deduce that it is strict as well. �

Let σ and σ′ be maps defined from two subsets Tσ resp. Tσ′ of {1, . . . , n} to {0, 1}. We say

that they are compatible if σ(i) = σ′(i) for all i ∈ Tσ ∩Tσ′ and in this case we denote by (σ, σ′)
the map from Tσ ∪ Tσ′ extending them.

Lemma 3.8. Let R be a dagger algebra with completion R̂ and Σ a set as in Lemma 3.7.

For any σ ∈ Σ let f̄σ be an element of R̂〈θ〉/Iσ such that f̄σ|(σ,σ′) = f̄σ′ |(σ,σ′) for any couple

σ, σ′ ∈ Σ of compatible maps.

(1) There exists an element f ∈ R̂〈θ〉 such that f |σ = f̄σ.

(2) There exists a constantC = C(Σ) such that if for some g ∈ R̂〈θ〉 one has |f̄σ−g|σ| < ε
for all σ then the element f can be chosen so that |f − g| < Cε. Moreover, if f̄σ ∈
R〈θ〉†/Iσ for all σ then the element f can be chosen inside R〈θ〉†.

Proof. The first claim and the first part of the second are simply a restatement of Lemma 3.7,

where C = C(Σ) is the constant defining the compatibility || · ||1 ≤ C|| · ||2 between the norm

|| · ||1 on R̂〈θ〉/⋂ Iσ induced by the quotient and the norm || · ||2 induced by the embedding in∏
R̂〈θ〉/Iσ. We now turn to the last sentence of the second claim.

By Lemma 3.7 and what proved above there exist two lifts of {f̄σ}: an element f1 of R〈θ〉†
and an element f2 of R̂〈θ〉 such that |f2− g| < Cε and their difference lies in

⋂
Iσ. Hence, we

can find elements γi ∈ R̂〈θ〉 such that f1 = f2 +
∑

i γipi where {p1, . . . , pM} are generators of⋂
Iσ which have coefficients in Z. Let now γ̃i be elements of R〈θ〉† with |γ̃i−γi| < Cε/M |pi|.
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The element f3 := f1 −
∑

i γ̃ipi lying in R〈θ〉† is another lift of {f̄σ} and satisfies |f3 − g| ≤
max{|f2 − g|, |f2 − f3|} < Cε proving the claim. �

Proposition 3.9. Let R be a dagger algebra with completion R̂. Let s1, . . . , sN be elements of

R̂〈θ1, . . . , θn〉◦. For any ε > 0 there exist elements s̃1, . . . , s̃N of R̂〈θ〉◦ ∩ R〈θ〉† satisfying the

following conditions.

(1) |sα − s̃α| < ε for each α.

(2) For any α, β ∈ {1, . . . , N} and any k ∈ {1, . . . , n} such that sα|θk=0 = sβ|θk=0 we

also have s̃α|θk=0 = s̃β|θk=0.

(3) For any α, β ∈ {1, . . . , N} and any k ∈ {1, . . . , n} such that sα|θk=1 = sβ|θk=1 we

also have s̃α|θk=1 = s̃β|θk=1.

(4) For any α ∈ {1, . . . , N} if sα|θ1=1 ∈ R〈θ〉† then s̃α|θ1=1 = sα|θ1=1.

Proof. We will actually prove a stronger statement, namely that we can reinforce the previous

conditions with the following:

(5) For any α, β ∈ {1, . . . , N} any subset T of {1, . . . , n} and any map σ : T → {0, 1}
such that sα|σ = sβ|σ then s̃α|σ = s̃β|σ.

(6) For any α ∈ {1, . . . , N} any subset T of {1, . . . , n} containing 1 and any map σ : T →
{0, 1} such that sα|σ ∈ R〈θ〉† then s̃α|σ = sα|σ.

Above we denote by s|σ the image of s via the substitution (θt = σ(t))t∈T . We proceed by

induction on N , the case N = 0 being trivial. We remark that if ǫ is sufficiently small, any

element a such that |a− sk| < ε lie in R̂〈θ〉◦ as this ring is open. We are left to prove that we

can pick elements s̃k in R〈θ〉†.
Consider the conditions we want to preserve that involve the index N . They are of the form

si|σ = sN |σ
and are indexed by some pairs (σ, i) where i is an index and σ varies in a set of maps Σ. Our

procedure consists in determining by induction the elements s̃1, . . . , s̃N−1 first, and then deduce

the existence of s̃N by means of Lemma 3.8 by lifting the elements {s̃i|σ}(σ,i). Therefore, we

first define ε′ := 1
C
ε where C = C(Σ) is the constant introduced in Lemma 3.8 and then apply

the induction hypothesis to the first N − 1 elements with respect to ε′.
By the induction hypothesis, the elements s̃i|σ satisfy the compatibility condition of Lemma

3.8 and lie in R〈θ〉†. By Lemma 3.8 we can find an element s̃N of R〈θ〉† lifting them such that

|s̃N − sN | < Cε′ = ε as wanted. �

We now restate Proposition 3.9 in more geometric terms.

Proposition 3.10. Suppose that S is affinoid. Let X be an affinoid dagger space smooth over S
and let Y be an affinoid dagger algebra such that Ŷ is étale over Bm× Ŝ. For a given finite set

of maps {f1, . . . , fN} in HomŜ(X̂ ×Bn, Ŷ ) we can find corresponding maps {H1, . . . , HN} in

HomŜ(X̂ × Bn × B1, Ŷ ) such that:

(1) For all 1 ≤ k ≤ N it holds i∗0Hk = fk and i∗1Hk lies in HomS(X × Bn†, Y ).
(2) If fk ◦ dr,ǫ = fk′ ◦ dr,ǫ for some 1 ≤ k, k′ ≤ N and some (r, ǫ) ∈ {1, . . . , n} × {0, 1}

then Hk ◦ dr,ǫ = Hk′ ◦ dr,ǫ.
(3) If for some 1 ≤ k ≤ N and some h ∈ N the map fk ◦ d1,1 ∈ HomŜ(X̂ × Bn−1, Ŷ ) lies

in HomS(X × B(n−1)†, Y ) then the element Hk ◦ d1,1 of HomŜ(X̂ × Bn−1 × B1, Ŷ ) is

constant on B1 equal to fk ◦ d1,1.
Proof. We let S be SpaA with limit Ŝ = Spa Â. By Corollary 3.5 we can assume that Y =
SpaA〈σ1, . . . , σn, τ1, . . . , τm〉†/(Pi(σ, τ)) for m polynomials Pi ∈ A[σ, τ ] such that det

(
∂P
∂τ

)

is invertible in O†(Ŷ ).
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For any h ∈ Z we denote by R the dagger algebra O†(X̂)〈θ〉† and by R〈χ〉† the dagger

algebra associated with X × Bn† × B1†. Each fk is induced by maps (σ, τ) 7→ (sk, tk) from

K〈σ, τ〉/(P ) to R̂ for some m-tuples sk and n-tuples tk in R. By Corollary 3.3 there exists a

sequence of power series Fk = (Fk1, . . . , Fkm) associated with each fk such that

(σ, τ) 7→ (sk + (s̃k − sk)χ, Fk(sk + (s̃k − sk)χ)) ∈ R̂〈χ〉 ∼= O(X̂ × Bn × B1)

defines a map Hk from X̂ × Bn × B1 to Ŷ for any choice of s̃k ∈ R̂◦ ∩R such that s̃k is in the

convergence radius of Fk and Fk(s̃k) is in R̂◦.

We prove that any such map satisfies the first claim. By Proposition 2.14 this amounts to

prove that the elements t̃k := Fk(s̃) lie in R̂◦ ∩ R. By our choice of s̃k we already know that

they lie in R̂◦. We remark that the field (FracR)(t̃k) is finite étale over FracR. By Lemma 3.1

we deduce that each t̃k lies in R as wanted.

Let now ε be a positive real number, smaller than all radii of convergence of the series Fkj

and such that F (a) ∈ R for all |a− s| < ε. Denote by s̃ki the elements associated with ski by

applying Proposition 3.9 with respect to the chosen ε. In particular, they induce a well-defined

map Hk and the elements s̃ki lie in R̂◦ ∩ R. We show that the maps Hk induced by this choice

also satisfy the second, third and fourth claims of the proposition.

Suppose that fk ◦ dr,ǫ = fk′ ◦ dr,ǫ for some r ∈ {1, . . . , n} and ǫ ∈ {0, 1}. This means that

s̄ := sk|θr=ǫ = sk′|θr=ǫ and t̄ := tk|θr=ǫ = tk′|θr=ǫ. This implies that both Fk|θr=ǫ and Fk′|θr=ǫ

are twom-tuples of formal power series F̄ with coefficients inO(X̂×Bn−1) converging around

s̄ and such that P (σ, F̄ (σ)) = 0, F̄ (s̄) = t̄. By the uniqueness of such power series stated in

Corollary 3.3, we conclude that they coincide.

Moreover, by our choice of the elements s̃k it follows that ¯̃s := s̃k|θr=ǫ = s̃k′|θr=ǫ. In

particular one has

Fk((s̃k − sk)χ)|θr=ǫ = F̄ ((¯̃s− s̄)χ) = Fk′((s̃k′ − sk′)χ)|θr=ǫ

and therefore Hk ◦ dr,ǫ = Hk′ ◦ dr,ǫ proving the second claim.

The third claim follows from the fact that the elements s̃ki satisfy the condition (4) of Propo-

sition 3.9. �

4. DAGGER RIGID MOTIVES

Motives (here, a short form for mixed, derived, effective motives with coefficients in a ring

Λ) can be defined out of an arbitrary site with products (C, τ) and a choice of a “contractible

object” I inside it. The underlying idea is to construct the universal category with respect

to derived Λ-functors defined on C, which satisfy τ -descent and invariance with respect to

the contractible object I . Typically, such functors are related to (co-)homology theories. Not

surprisingly, the category of motives is simply a Verdier quotient of the derived category of

τ -sheaves with values in Λ-modules D(Shτ (C,Λ)) obtained by imposing the condition that

all projections X × I → X are invertible. For the reader familiar with the theory of Voevod-

sky’s motives, we remark that we make no (explicit) use of correspondences, and hence our

categories of motives are without transfers (but see Remark 5.22).

Hereunder, we introduce the category of motives RigDA
† eff
ét (S,Λ) associated with the

étale site on smooth dagger varieties over S, inspired by the construction of the motives

RigDAeff
ét (Ŝ,Λ) associated with the étale site on smooth rigid analytic varieties (see [2]). In

the dagger case, the “contractible object” is the dagger disc B1† while in the rigid analytic

setting it is the closed disc B1.
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For computations, and more crucially to invert the Tate twist, the description of motives as

Verdier quotients is sometimes unsatisfactory, and specific “models” of these triangulated cate-

gories are needed to have control on Hom-sets. This is why the language of model categories

is used, applied to the categories of complexes of presheaves. We borrow all the notations from

Ayoub (see [2] and [4]) and we refer to his survey [1] for a gentle explanation of these con-

structions in the algebraic context. We also refer to [53] for a brief collection of some standard

results about the change of models, which are based on the results of [4] and inspired by the

classic papers [34], [39] and [43].

The reader who is not interested in these formal constructions can skip the technical state-

ments of the section, focusing only on its main result which is Theorem 4.23. It is formally

obtained from Proposition 3.10, proved in the previous section.

From now on, we fix a commutative ring Λ and work with Λ-enriched categories. In particu-

lar, the term “presheaf” should be understood as “presheaf of Λ-modules” and similarly for the

tem “sheaf”. The presheaf Λ(X) represented by an object X of a category C sends an object

Y of C to the free Λ-module ΛHomC(Y,X).
The category Ch(Psh(C)) of complexes of presheaves over a category C can be endowed

with the projective model structure for which weak equivalences are quasi-isomorphisms and

fibrations are maps F → F ′ such that F(X) → F ′(X) is a surjection for all X in C (cfr

[29, Section 2.3] and [4, Proposition 4.4.16]). Its homotopy category is the usual (unbounded)

derived category D(Psh(C)).

Definition 4.1. We denote by Sét the class of maps F → F ′ in ChPsh(RigSm†/S) inducing

isomorphisms on the ét-sheaves associated with Hi(F) and Hi(F ′) for all i ∈ Z. We denote

by SB1† the set of all maps Λ(B1† ×X)[i]→ Λ(X)[i] as X varies in RigSm†/S and i varies in

Z. We denote by S(ét,B1†) the union of these two classes. For each η ∈ {ét,B1†, (ét,B1†)} we

let Chη Psh(RigSm†/S) be the left Bousfield localization of the projective model category on

ChPsh(RigSm†/S) with respect to the class Sη.

The homotopy category of Chét,B1† Psh(RigSm†/S) will be denoted by RigDA† eff(S,Λ)
and its element Λ(X) will be called the motive of X for any dagger space X in RigSm /S. In

case S = SpaK then we simply write RigDA† eff(K,Λ).

Proposition 4.2 ([53, Proposition 3.3]). The localizations introduced above are well defined.

Moreover, the category of ChétPsh(RigSm†/S) is Quillen-equivalent to the (unbounded) de-

rived category of ét-sheaves D(Sh(RigSm†/S)). It is also Quillen-equivalent to the localiza-

tion over Sét of the projective structure on ChPsh(C) for any full subcategory C generating

the same étale topos.

Remark 4.3. In particular Chét,B1† Psh(RigSm†/S) is Quillen equivalent to the localization

over S(ét,B1†) of ChPsh(AffSm†/S).

In [2] the category RigDAeff
ét (Ŝ,Λ) is introduced. It can be defined as the homotopy category

of the localization of ChPsh(RigSm /Ŝ) over the class Sét defined before (in the context of

rigid analytic spaces) and over the class SB1 containing all maps Λ(X×B1)[i]→ Λ(X)[i]. It is

a monoidal category such that the tensor product Λ(X)⊗Λ(Y ) of two motives associated with

varieties X and Y coincides with Λ(X ×Ŝ Y ) and the unit object is Λ(Ŝ). The same is true for

the dagger counterpart.

Proposition 4.4 ([4, Propositions 4.2.76 and 4.4.63]). The category RigDA
† eff
ét (S,Λ) is

monoidal. The tensor product Λ(X)⊗Λ(Y ) of two motives associated with varieties X and Y
coincides with Λ(X ×S Y ) and the unit object is Λ(S).
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Motives have been introduced as quotients of the derived categories of presheaves. On

the other hand, the canonical quotient functor admits a fully faithful right adjoint. There-

fore, motives can equally be defined as triangulated subcategories of the derived categories

of presheaves, which is particularly useful for computing their Hom-sets. We now investigate

better this point of view (see [8]).

Definition 4.5. For η ∈ {ét,B1†, (ét,B1†)} we say that a map in ChPsh(RigSm†/S) is a

η-weak equivalence if it is a weak equivalence in the model structure Chη Psh(RigSm†/S).
We say that an object F of the derived category D = D(Psh(RigSm†/S)) is η-local if the

functor HomD(·,F) sends maps in Sη to isomorphisms. This amounts to say that F is quasi-

isomorphic to a η-fibrant object. We use the same terminology for the model categories on

ChPsh(C) for any full subcategory C generating the same étale topos.

Remark 4.6. The existence of these localizations at the level of model categories is granted

by the results of Hirschhorn [28] used in the references above. At the level of the homo-

topy categories, using the language of [8], these localizations induce endofunctors Cη of

D(Psh(RigSm†/S)) such that CηF is η-local for all F and there is a natural transformation

Cη → id which is a pointwise η-weak equivalence. The functor Cη restricts to a triangulated

equivalence on the objects F that are η-local and one can compute the Hom set Hom(F ,F ′) in

the homotopy category of the η-localization as D(F , CηF ′). The same is true for the category

D(Psh(C)) for any subcategory C generating the same étale topos.

Remark 4.7. By means of [4, Proposition 4.4.59] the complex C étF is such that

D(Λ(X)[−i], C étF) = Hi
ét(X,F)

for all X in RigSm†/S and all integers i. This property characterizes C étF up to quasi-

isomorphisms. We remark that there is an explicit construction of C étF using the Godement

resolution (see [8, Paragraph 1.11]).

There is also a characterization of the B1-localization, as described in [2] and [53]. Such

descriptions admit a natural dagger analogue, that we now describe. This is based on the fact

that B1† is an interval object (see [47]).

Remark 4.8. Let B1
h be the open U(πχk/1) = U((πχ)k/πk−1) in SpaK〈πχ〉. The dagger

variety B1† is an interval object with respect to the maps i0 and i1 induced by the points χ 7→ 0
and χ 7→ 1 respectively, and the multiplication induced by the multiplication on the limit B1.

Indeed, the map B1 × B1 → B1 → B1
h factors over B1

2h × B1
2h.

In the following part, we have opted for the cubical rather than the simplicial approach in

order to have clearer computations, and a stronger parallel with the perfectoid case [53].

Definition 4.9. We denote by �† the Σ-enriched cocubical object (see [6, Appendix A]) defined

by putting �†n = Bn† × S = SpaK〈τ1, . . . , τn〉† × S and considering the morphisms dr,ǫ
induced by the maps Bn† → B(n+1)† corresponding to the substitution τr = ǫ for ǫ ∈ {0, 1}
and the morphisms pr induced by the projections Bn† → B(n−1)†. For any dagger variety X
and any presheaf F of dagger varieties [resp. rigid varieties] with values in an abelian category,

we can therefore consider the Σ-enriched cubical object F(X ×S �†) (see [6, Appendix A]).

Associated to any Σ-enriched cubical object F there are the following complexes: the complex

C♯
•F defined as C♯

nF = Fn and with differential
∑

(−1)r(d∗r,1−d∗r,0); the simple complex C•F
defined as CnF =

⋂n
r=1 ker d

∗
r,0 and with differential

∑
(−1)rd∗r,1; the normalized complex

N•F defined as NnF = Cn ∩ F
⋂n

r=2 ker d
∗
r,1 and with differential −d∗1,1. By [7, Lemma A.3,

Proposition A.8, Proposition A.11], the inclusion N•F →֒ C•F is a quasi-isomorphism and

both inclusions C•F →֒ C♯
•F and N•F →֒ C•F split. For any complex of presheaves F of

13



dagger varieties we let SingB
1† F be the total complex of the simple complex associated with

Hom(Λ(�†),F). It sends the object X to the total complex of the simple complex associated

with F(X ×S �†).

We now show that the complex SingB
1† F defined above gives rise to the “universal”

homotopy-invariant cohomology theory attached to F .

Proposition 4.10. Let F be a complex in ChPsh(AffSm†/S).

(1) SingB
1† F is B1†-local and B1†-weak equivalent to F .

(2) SingB
1†

C étF is (ét,B1†)-local and (ét,B1†)-weak equivalent to F .

Proof. From [2, Corollary 1.2.19] and Corollary 2.18 we obtain that the étale cohomological

dimension of any affinoid dagger variety X is finite. Following [53, Proposition 3.10] we can

then conclude that the ét-localization coincides with the localization over the set {Λ(U•)[i] →
Λ(X)[i]} as U• → X varies among bounded étale hypercoverings of the objectsX in AffSm /S
and i varies in Z. The result then follows in the same way as [53, Proposition 3.15 and Corollary

3.16]. �

Proposition 4.11. Let f : S → T be a morphism of dagger spaces.

(1) The Kan extension of the functor

f ∗ : RigSm†/T → RigSm†/S

(X → T ) 7→ (X ×T S → S)

induces a Quillen pair

f ∗ : Chét,B1† Psh(RigSm†/T ) ⇄ Chét,B1† Psh(RigSm†/S) :f∗

such that the functor Lf ∗ is monoidal.

(2) If f is smooth, the Kan extension of the functor

f♯ : RigSm†/S → RigSm†/T

(X → S) 7→ (X → T )

induces a Quillen pair

f♯ : Chét,B1† Psh(RigSm†/S) ⇄ Chét,B1† Psh(RigSm†/T ) :f ∗

Proof. The statement is a formal consequence of the continuity of the two functors, together

with [4, Proposition 4.4.61] and the formulas f ∗(X ×T Y ) ∼= f ∗(X) ×S f
∗(Y ) and f♯(B

1† ×
X) ∼= B1† ×X . �

We are now interested in finding a convenient set of compact objects which generate the cat-

egories above, as triangulated categories with small sums. This will simplify many definitions

and proofs in what follows. We first briefly recall the notion of compactness in triangulated

categories.

Definition 4.12. An object X of a triangulated category with small sums T is compact if for

any small collection {Yi} of objects in T one has

Hom(X,
⊕

Yi) ∼=
⊕

Hom(X, Yi).

Example 4.13. If R is a ring, compact objects in D(R) are complexes which are quasi isomor-

phic to bounded complexes of finite projective R-modules (see e.g. [49, Tag 07LT]).

Definition 4.14. A triangulated category T is compactly generated (as a triangulated category

with small sums) by a set S of objects if all objects in S are compact and if T coincides with

its smallest triangulated subcategory with small sums containing S.
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Proposition 4.15. The category RigDA
† eff
ét (S,Λ) is compactly generated (as a triangulated

category with small sums) by motives Λ(X) associated with affinoid dagger varieties X which

are étale over some dagger poly-disc Bm† × V for some open affinoid subspace V ⊂ S.

Proof. Since any smooth dagger variety is locally étale over a dagger poly-disc over a rational

open of S by Proposition 3.6, the set of functors HiHom•(Λ(X), ·) detect quasi-isomorphisms

between étale local objects, by letting X vary among spaces of the prescribed form and i vary

in Z. We are left to prove that the motive Λ(X) of any affinoid dagger smooth variety X is

compact. Since Λ(X) is compact in D(Psh(RigSm†/S)) and SingB
1†

commutes with direct

sums, it suffices to prove that if {Fi}i∈I is a family of ét-local complexes, then also
⊕

iFi

is ét-local. If I is finite, the claim follows from the isomorphisms H−nHom•(X,
⊕

iFi) ∼=⊕
iH

n(X,Fi) ∼= Hn(X,
⊕

iFi). A coproduct over an arbitrary family is a filtered colimit of

finite coproducts, hence the claim follows from [4, Proposition 4.5.62]. �

The previous proof can be generalized to the following result.

Proposition 4.16. The category RigDAeff
ét (Ŝ,Λ) is compactly generated (as a triangulated

category with small sums) by motives Λ(X) associated with affinoid dagger varieties X which

are étale over some dagger poly-disc Bm × V for some open affinoid subspace V ⊂ S.

Corollary 4.17. The category RigDAeff
ét (Ŝ,Λ) is compactly generated by motives Λ(X̂) asso-

ciated with affinoid varieties which admit a dagger structure.

Proof. This follows from the previous proposition and Corollary 3.5. �

The categories of motives have been introduced by imposing étale descent and homotopy

invariance on (co-)homological theories. If one wants to impose the extra condition that the

Tate twist is invertible, they are not yet enough. Nonetheless, there is a canonical way to do

so (by means of the language of model categories) via the introduction of spectra. We refer to

[30] and [4, Section 4.3] for the details of this construction, that we simply apply to our dagger

context.

Definition 4.18. Consider the cokernel L† in Psh(RigSm†/S) of the map Λ(S) →
Λ(P1† × S) induced by the inclusion of the point ∞ in P1† and let T † its shift L†[−2] in

ChPsh(RigSm†/S). It is a direct factor of a cofibrant object, hence cofibrant. We consider

the category of (non-symmetric) spectra SptT † Chét,B1† Psh(RigSm†/S) and we denote by

RigDA
†
ét(S,Λ) its homotopy category.

Remark 4.19. The category RigDA
†
ét(S,Λ) is canonically equivalent to the homotopy cate-

gory of symmetric spectra SptΦT † Chét,B1† Psh(RigSm†/S) (see [4, Proposition 4.3.47]) and

in particular inherits a monoidal structure, compatible with the canonical adjunction (see [4,

Lemma 4.3.24])

L Sus0 : RigDA
† eff
ét (S,Λ) ⇄ RigDA

†
ét(S,Λ) :REv0

The aim of the following part is to compare the categories of motives RigDA† and RigDA

introduced above. We start by defining the canonical adjunction pair between them. The com-

pletion functor SpaR 7→ Spa R̂ defined on affinoid dagger spaces can be extended (by glueing)

to a functor l from dagger spaces to rigid analytic spaces (see [23, Theorem 2.19]).

Proposition 4.20. The completion functor l : RigSm†/S → RigSm/Ŝ induces a Quillen ad-

junction

l∗ : Chét,B1† Psh(RigSm†/S) ⇄ Chét,B1 Psh(RigSm/Ŝ) :l∗
Moreover, the functor Ll∗ is monoidal and the functor Rl∗ coincides with l∗.
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Proof. The existence of the Quillen adjunction follows formally from the continuity of l and

the formula l(B1†) ∼= B1. Also, the fact that Ll∗ is monoidal follows from the formula l∗(X ×S

Y ) ∼= l∗(X)×Ŝ l
∗(Y ). We are left to prove that Rl∗ ∼= l∗.

By its very definition, l∗ preserves quasi-isomorphisms of complexes of presheaves. We

claim that l∗ preserves also ét-weak equivalences. Fix any affinoid dagger space X and any

presheaf F on AffSm. Let R(X) resp. R(X̂) be the class of covering families of X resp. X̂ .

By Corollary 2.17 we know that any covering of X̂ can be refined into one coming from a cov-

ering of X . This proves that the canonical map from (l∗F)+(X) := lim−→U∈R(X)
H0(U , l∗F) to

F+(X̂) := lim−→U∈R(X̂)
H0(U ,F) is invertible. By the explicit construction of the sheafification

functor as F 7→ F++ (see e.g. [49, Tag 00W1]) we then deduce that l∗ commutes with the

étale sheafification functor, and hence it also preserves ét-weak equivalences as claimed.

We also remark that for any complex F and any dagger variety X we obtain

(l∗ Sing
B1 F)(X) = TotC•Hom(Λ(X̂ ×�

•),F) = TotC•Hom(l∗Λ(X ×�
†•),F)

= TotC•Hom(Λ(X ×�
†•), l∗F) = (SingB

1†

l∗F)(X)

so that l∗ Sing
B1 ∼= SingB

1†

l∗. We then deduce by Proposition 4.10 that l∗ maps B1-weak

equivalences to B1†-weak equivalences, as wanted. �

Corollary 4.21. The natural functor l : RigSm† → RigSm induces a Quillen adjunction

l∗ : SptT † Chét,B1† Psh(RigSm†/S) ⇄ SptT Chét,B1 Psh(RigSm/Ŝ) :l∗

Moreover, the functor Ll∗ is monoidal and the functor Rl∗ coincides with l∗.

Proof. Since Ll∗ is monoidal and l∗T † ∼= T the result follows formally from [30, Proposition

5.3] and Proposition 4.20. �

We will see that the following technical proposition implies the the fully faithfulness of the

functor Ll∗. It relies heavily on the approximation result (Proposition 3.10) obtained in the

previous section.

Proposition 4.22. Suppose that S is affinoid. Let X be an affinoid dagger algebra smooth over

S with limit X̂ and Y be a dagger algebra, étale over a poly-disc Bm†. The canonical map

(SingB
1†

Λ(Y ))(X)→ (SingB
1

Λ(Ŷ ))(X̂)

is a quasi-isomorphism.

Proof. We need to prove that the natural map

φ : N•ΛHom(X ×�
†, Y )→ N•ΛHom(X̂ ×�, Ŷ )

defines bijections on homology groups.

We start by proving surjectivity. Suppose that β ∈ ΛHom(X̂ × �n, Ŷ ) defines a cycle in

Nn that is, β ◦ dr,ǫ = 0 for 1 ≤ r ≤ n and ǫ ∈ {0, 1}. This means that β =
∑
λkfk with

λk ∈ Λ, fk ∈ Hom(X̂ × �n, Ŷ ) and
∑
λkfk ◦ dr,ǫ = 0. This amounts to say that for every

k, r, ǫ the sum
∑
λk′ over the indices k′ such that fk′ ◦ dr,ǫ = fk ◦ dr,ǫ is zero. By Proposition

3.10, we can find maps Hk ∈ Hom(X̂ × �n × B1, Ŷ ) such that i∗0H = fk, i∗1H = φ(f̃k) with

f̃k ∈ Hom(X × �n†, Y ) and Hk ◦ dr,ǫ = Hk′ ◦ dr,ǫ whenever fk ◦ dr,ǫ = fk′ ◦ dr,ǫ. We denote

by H the cycle
∑
λkHk ∈ ΛHom(X̂ ×�n × B1, Ŷ ). By [53, Lemma 3.14] we conclude that

i∗1H and i∗0H define the same homology class, and therefore β defines the same class as i∗1H
which is the image of a class in ΛHom(X ×�n†, Y ) as wanted.
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We now turn to the injectivity. Consider an element α ∈ ΛHom(X × �n†, Y ) such that

α◦dr,ǫ = 0 for all r, ǫ and suppose there exists an element β =
∑
λifi ∈ ΛHom(X̂×�n+1, Ŷ )

such that β ◦ dr,0 = 0 for 1 ≤ r ≤ n + 1, β ◦ dr,1 = 0 for 2 ≤ r ≤ n + 1 and β ◦ d1,1 = φ(α).

Again, by Proposition 3.10, we can find maps Hk ∈ Hom(X̂ × �n+1 × B1, Ŷ ) such that

H :=
∑
λkHk satisfies i∗1H = φ(γ) for some γ ∈ ΛHom(X × �(n+1)†, Y ), H ◦ dr,0 = 0 for

1 ≤ r ≤ n + 1, H ◦ dr,1 = 0 for 2 ≤ r ≤ n + 1 and H ◦ d1,1 is constant on B1 and coincides

with φ(α). We conclude that γ ∈ Nn and dγ = α. In particular, α = 0 in the homology group,

as wanted. �

We are now ready to prove the main result of this section.

Theorem 4.23. The functors (Ll∗,Rl∗) define triangulated, monoidal equivalences

RigDA
† eff
ét (S,Λ)

∼→ RigDAeff
ét (Ŝ,Λ)

RigDA
†
ét(S,Λ)

∼→ RigDAét(Ŝ,Λ)

Proof. We start by proving the result on the effective categories. We already showed in

Remark 4.17 that the image by Ll∗ of the set of compact generators Λ(Y )[i] as Y varies

in RigSmAff†/S and i ∈ Z (see Proposition 4.15) is a set of compact generators of

RigDAeff
ét (Ŝ,Λ). By [2, Lemma 1.3.32] it then suffices to prove that the natural transforma-

tion id⇒ Rl∗Ll
∗ is invertible.

By Proposition 4.20 the functor Rl∗ is l∗. Fix now a dagger space Y smooth over S. We

claim that the motive l∗Ll
∗Λ(Y ) is isomorphic to Λ(Y ). By Proposition we can find a cover

{ji : Wi → S} by open affinoid subspaces of S such that each Yi := Y ×S W is étale over

some dagger poly-disc B
m†

Ŵi
. By the dagger, effective version of [5, Lemma 3.4] we obtain that

the collection of functors {Lj∗i }i is conservative. In particular, we can prove that Lj∗i Λ(Y )
∼=

Lj∗i l∗Ll
∗Λ(Y ). The functor Lj∗i obviously commutes with Ll∗. We claim that it also commutes

with l∗. We can alternatively prove that ji♯ commutes with l∗ (see Proposition 4.11) and this is

also straightforward. We are then left to prove that the canonical map

Lj∗i Λ(Y )
∼= Λ(Yi)→ l∗Λ(Ŷi) ∼= l∗Ll

∗Λ(Yi) ∼= Lj∗i l∗Ll
∗Λ(Y )

is invertible. Therefore, we assume from now on that the base dagger variety S is affinoid, and

that Y is étale over a poly-disc. We will equivalently show that l∗ Sing
B1

Λ(Ŷ ) ∼= SingB
1†

(Y ).

It is enough to show that for any affinoid dagger space X smooth over S and with limit X̂ , the

canonical map

(SingB
1†

Λ(Y ))(X)→ (SingB
1

Λ(Ŷ ))(X̂)

is a quasi-isomorphism, and this is true by means of Proposition 4.22.

We finally conclude that the triangulated subcategory of RigDA
† eff
ét (S,Λ) of those objects

F such that the canonical map F → l∗Ll
∗F is invertible contains Λ(Y )[i] for any Y smooth

over S. By Proposition 4.15 we deduce that this subcategory coincides with the whole

RigDA
† eff
ét (S,Λ) and therefore l∗Ll

∗ ∼= id as wanted.

We now turn to the assertion for the stable categories. From what we proved above we

conclude that the Quillen adjunction of Proposition 4.20 is a Quillen equivalences. By means

of [30, Theorem 5.5] the same is true also for the adjunction of Corollary 4.21, hence the

claim. �

5. THE MONSKY-WASHNITZER REALIZATION FUNCTOR

It is possible to use the equivalence obtained above to define some realization functors for

algebraic motives, as well to give an explicit description of the motives representing rigid co-

homology or the overconvergent de Rham cohomology. In this respect, motives will be used
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as a convenient formalism allowing choices modulo homotopy, localizations and reductions to

special cases. This language will provide extremely concise proofs of the functoriality and the

finite-dimensionality for both the overconvergent de Rham cohomology and rigid cohomology.

Assumption 5.1. From now on, we suppose that K is a complete valued filed of mixed charac-

teristic (0, p) with a valuation of rank 1 (we do not suppose that the valuation is discrete). We

recall that we denote by K◦ its ring of integers and by k its residue field of characteristic p.

Fix a formal scheme X of topological finite type over K◦. We can adapt Definition 4 to

the setting of algebraic varieties and define the category DAeff
ét (Xσ,Λ) of étale motives over

Xσ (see e.g. [5, Page 20]). Analogously, we can define the category FormDAeff
ét (X ,Λ) of

étale motives of formal varieties over X . If we let M be the model category Ch(Λ -Mod),
these constructions are denoted by SHeff

M
(Xσ) and FSHeff

M
(X ) in [2, Definition 1.4.12] respec-

tively, with the only difference that we are considering the (finer) étale topology rather than

the Nisnevich site. They are both monoidal categories with respect to the tensor product in-

herited by the direct product of varieties, and they also admit stable versions DAét(Xσ,Λ) and

FormDAét(X ,Λ) obtained by inverting the Tate twists. By [2, Corollaries 1.4.24 and 1.4.29]

the special fiber functor induces (triangulated, monoidal) equivalences:

L(·)∗σ : FormDAeff
ét (X ,Λ) ∼= DAeff

ét (Xσ,Λ): R(·)σ∗
L(·)∗σ : FormDAét(X ,Λ) ∼= DAét(Xσ,Λ): R(·)σ∗

On the other hand, the generic fiber functor induces Quillen adjunctions:

L(·)∗η : FormDAeff
ét (X ,Λ) ⇆ RigDAeff

ét (Xη,Λ): R(·)η∗
L(·)∗η : FormDAét(X ,Λ) ⇆ RigDAét(Xη,Λ): R(·)η∗.

Remark 5.2. The functor (·)η∗ as well as the étale and B1-localizations commute with direct

sums (see the proof of [53, Proposition 4.18]). Therefore, the functor R(·)η∗ also commutes

with direct sums.

Definition 5.3. The effective Monsky-Washnitzer realization functor is the monoidal triangu-
lated functor obtained as the following composition

MWeff ∗ :DAeff
ét (k,Λ)

R(·)σ∗−−−−→
∼

FormDAeff
ét (K

◦,Λ)
L(·)∗η−−−→ RigDAeff

ét (K,Λ)
Rl∗−−→
∼

RigDA
† eff
ét (K,Λ).

It has a right adjointMWeff
∗ induced by R(·)η∗ : RigDA(K,Λ)effét → FormDAeff

ét (K
◦,Λ).

This adjoint pair has also a stable version (MW∗,MW∗) whose left adjoint

MW∗ : DAét(k,Λ)
R(·)σ∗−−−−→

∼
FormDAét(K

◦,Λ)
L(·)∗η−−−→ RigDAét(K,Λ)

Rl∗−−→
∼

RigDA
†
ét(K,Λ)

is called the stable Monsky-Washnitzer realization functor.

Remark 5.4. Fix a formal scheme X of topological finite type over K◦ with special fiber X̄ =

Xσ and such that its generic rigid fiber X̂ = Xη has a dagger structure X . The previous

definition can be generalized to the following functor (also admitting a right adjoint and a

stable version):

DAeff
ét (X̄ ,Λ)

R(·)σ∗−−−→
∼

FormDAeff
ét (X ,Λ)

L(·)∗η−−−→ RigDAeff
ét (X̂,Λ)

Rl∗−−→
∼

RigDA
† eff
ét (X,Λ).

We now remark that our construction overlaps with the classic definition of Monsky-

Washnitzer.

Proposition 5.5. Let X be a smooth formal scheme of topological finite type over K◦ with

special fiber X̄ and generic fiber X̂ admitting a dagger structure X . Then MWeff ∗Λ(X̄ ) ∼=
Λ(X).
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Proof. This follows from the definition of MWeff ∗ and the formulas L(·)σ(Λ(X )) ∼= Λ(X̄ ),
L(·)∗η(Λ(X )) ∼= Λ(X̂) and Ll∗(Λ(X)) ∼= Λ(X̂). �

It is immediate to see that these functors can be used to define a cohomology theory for

varieties X̄ over k satisfying étale descent and homotopy invariance, and such that it coincides

with the de Rham cohomology of the generic fiber Xη whenever X̄ admits a smooth formal

model X over K◦. We now describe this construction and we will later show (Proposition

5.12) that this definition overlaps with the classical definition of rigid cohomology.

Definition 5.6. We denote by Ω1† the presheaf on smooth dagger spaces Ω1
O†/K and by Ωq†

its q-th exterior power. It associates to a smooth dagger space X the space of overconvergent

differential d-forms Ωd†
X/K(X). When restricted to the analytic site of a dagger space X it

defines a coherent O†-module. For any fixed map Λ → K, the overconvergent de Rham

complex is the object Ω† in ChPsh(RigSm†/K) concentrated in negative degrees with Ω†
−q =

Ωq† for q ≥ 0 and with the usual differential maps. It associates to a smooth dagger variety X
the complex 0 → O†

X/K(X) → Ω1†
X/K(X) → Ω2†

X/K(X) → . . . (see [22, Definition 7.5.11]).

We also denote with Ω† the associated motive in RigDA
† eff
ét (K,Λ). Similarly, we denote by Ω

de Rham complex in ChPsh(RigSm /K) [resp. ChPsh(Sm /K)] as well as the associated

motive in RigDAeff
ét (K,Λ) [resp. in DAeff

ét (K,Λ)].

Lemma 5.7. For any q the restriction of Ωq† to the small étale site of a smooth dagger space

X coincides with the sheaf induced by the coherent O†

X̂
-module Ωq†

X/K .

Proof. Fix an étale morphism f : Y → X . We want to prove that Ωq† is isomorphic to the sheaf

induced by Ωq†
X . Up to considering a rational cover, we can also assume that f is a composition

of rational embeddings and finite étale maps between affinoid dagger spaces. We are then left

to consider the case in which f is finite étale.

By Remark 2.16 the morphism O†(X) → O†(Y ) is finite étale, hence Ωq†(Y ) =
Ωq(O†(Y )) ∼= Ωq(O†(X))⊗O†(X) O†(Y ) ∼= f ∗Ωq†(Y ) as wanted. �

We recall that the analytification functor X 7→ Xan from algebraic varieties over K to rigid

analytic varieties over K induces the following adjunction:

LRig∗ : DAeff
ét (K,Λ) ⇄ RigDAeff

ét (K,Λ) :RRig∗ .

which also admits a stable version (see [2, Page 54]).

We will use the term “representing a cohomological theory” in the following sense.

Definition 5.8. Let H∗ be a functor on smooth varieties to graded Λ-modules (e.g. a coho-

mology theory). We say that an object M in an effective category of motives represents H∗

on smooth varieties if there is a canonical isomorphism Hom(Λ(X)[−i],M) ∼= H i(X) for all

smooth varieties X and integers i.

Remark 5.9. For any motive N the map N ⊗ Λ(I) → N is a I-weak equivalence whenever

I is the contractible object we are considering. Also, for any étale hypercover U• → X the

map Λ(U•) → Λ(X) is an étale-weak equivalence (for the notations, see e.g. [53, Proposition

3.10]). We deuce that Hom(Λ(U•)[i],M) ∼= Hom(Λ(X)[i],M) ∼= Hom(Λ(X × I)[i],M) and

therefore any cohomology theory represented by a motive has étale descent and is homotopy-

invariant with respect to I . Vice-versa, if H∗ has étale descent, then it is representable by a

motive M if and only if Hom(Λ(X)[−i],M) ∼= H i(X) holds for all i and all X varying in a

fixed full subcategory of smooth varieties which generates the étale topos (see Proposition 4.2).
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Remark 5.10. As soon as the functor H∗ as an extra structure or satisfies extra axioms, the

previous proposition can be reinforced. For example, one may impose an isomorphism between

the two δ-functor structures (if H∗ has one).

Remark 5.11. Any cohomology theory on smooth algebraic varieties represented by M can

be canonically generalized to arbitrary (not necessarily smooth) quasi-projective varieties

Π: Y → SpecK by putting H i(Y ) = Hom(Λ(Y )[−i],M) where Λ(Y ) := Π!Π
!Λ(K) is

defined using the extraordinary direct and inverse image functors (Π!,Π
!) which are part of the

six-operation formalism of algebraic motives (see [3] and [4]).

We compare the cohomology theories which naturally arise by considering Ω† and the func-

torsMW∗, LRig∗ and Rl∗ with some classical ones: the overconvergent de Rham cohomology,

which we will denote by H∗
odR, algebraic de Rham cohomology, which we will denote by H∗

dR,

and rigid cohomology, which we will denote by H∗
rig. For their definitions, we refer to the

survey in [22, Chapter 7].

Proposition 5.12. Suppose Λ ⊂ K.

(1) The complex Ω† is (ét,B1†)-local and represents overconvergent rigid cohomology

H∗
odR on smooth dagger varieties over K.

(2) The motive Ll∗Ω† represents overconvergent rigid cohomology H∗
odR on smooth rigid

analytic varieties over K.

(3) The motiveMWeff
∗ Ω† represents rigid cohomology H∗

rig on smooth varieties over k.

(4) The motive RRig∗ Ll
∗Ω† represents the de Rham cohomologyH∗

dR on smooth varieties

over K.

Proof. Fix an affinoid smooth dagger spaceX with limit X̂ . Each Ωq† is a sheaf of coherentO†-

modules, hence it is acyclic for the étale topology by Proposition 2.21 and Lemma 5.7. From

a spectral sequence argument, we conclude that Hi(Γ(X,Ω
†)) = Hi

ét(X,Ω
†) which shows that

Ω† is ét-local and that HiΓ(X,Ω
†) = H i

odR(X).
We now prove that Ω† is B1†-local. From the computations above, this amounts to prove

that H i
odR(X × B1†) ∼= H i

odR(X) which is classical (see [42, Theorem 5.4] or [23, Theorem

4.12] and [25, Example 1.8]) in caseK has a discrete valuation, and follows from [10, Corollary

5.5.2] in the general case, since any smooth affinoid space has a model over a discrete-valuation

complete sub-field of K.

We observe that for any smooth rigid affinoid space X̂ with a chosen associated dagger

structure X by Theorem 4.23 we see that:

RigDAeff
ét (K,Λ)(Λ(X̂)[−i],Ll∗Ω†) ∼= RigDA

† eff
ét (K,Λ)(Rj∗Λ(X̂)[−i],Rl∗Ll∗Ω†)

∼= RigDA
† eff
ét (K,Λ)(Λ(X)[−i],Ω†) ∼= H i

odR(X̂)

with the composite isomorphism canonical on X̂ . This is enough to show that Ll∗Ω† represents

the overconvergent de Rham cohomology on rigid varieties over K (see Remark 5.9).

Fix now a smooth scheme X̄ over k having a smooth formal model X . We have by Theorem

4.23

DAeff
ét (k,Λ)(Λ(X̄)[−i],MWeff

∗ Ω†) ∼= RigDA
† eff
ét (K,Λ)(L(·)∗ηR(·)σ∗Λ(X̄)[−i],Ll∗Ω†)

∼= H i
odR(Xη) ∼= H i

rig(X̄)

and the composite isomorphism is canonical on X̄ . Since rigid cohomology satisfies étale

descent [17], this implies that it is represented byMWeff
∗ Ω† (see Remark 5.9).
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Let now X be a smooth algebraic variety over K. By [25, Theorem 2.3] we obtain a canoni-

cal sequence of isomorphisms

DAeff
ét (K,Λ)(Λ(X)[−i],RRig∗ Ll

∗Ω†) ∼= RigDAeff
ét (K,Λ)(Λ(X

an)[−i],Ll∗Ω†)

∼= H i
odR(X

an) ∼= H i
dR(X)

which proves the last statement. �

Remark 5.13. The previous proof can easily be made independent on [10, Corollary 5.5.2].

Indeed, the proof of [42, Theorem 5.4] applied to K◦ and to π = p does not use the fact that

the p-adic norm is discrete.

Remark 5.14. As a whole, we have then provided new formulas computing rigid and overcon-

vergent de Rham cohomologies by using canonical functors on the categories of motives. The

usual formulas, involving colimits over the possible choices of lifting and dagger structures

(see [13]) are encoded in the description of the functors R(·)σ∗ and Rl∗ respectively.

Remark 5.15. Various authors have already given examples of complexes of presheaves repre-

senting rigid cohomology (see [13], [20] and [41]). By means of the previous proposition, one

can show that such complexes are isomorphic toMWeff
∗ Ω† in DAeff

ét (k,Λ).

By what proved above, the following definition is well posed.

Definition 5.16. Let Λ be K and i be in Z.

(1) For any M in RigDAét(K,Λ) we denote

H i
odR(M) := Hom(Rl∗M [−i],Ω†).

(2) For any N in DAét(k,Λ) we denote

H i
rig(N) := Hom(MW∗N [−i],Ω†) ∼= H i

odR((L(·)∗η ◦ R(·)σ∗)(N)).

Remark 5.17. The above definition of rigid cohomology is obviously functorial. Whenever k is

a finite field, we then obtain automatically an action of Frobenius on each cohomology group

H i
rig(N) since relative Frobenius maps are invertible in DAét(k,Q) (this category is equivalent

to the one with transfers, see e.g. [19, Section 16.2]).

We conclude by pointing out a straightforward consequence of our constructions, the

comparison theorems of Große-Klönne [23], [25] and a theorem of Ayoub [2, Theorem

2.5.35]. It can be summarized by saying that the finite dimensionality of the overconvergent

de Rham, Monsky-Washnitzer and rigid cohomology can be formally deduced by the finite-

dimensionality of the “classic” de Rham cohomology for projective algebraic varieties in

characteristic zero.

Definition 5.18. Suppose Q ⊂ Λ. We denote by DAét,gm(K,Λ) [resp. RigDAét,gm(K,Λ)]
the full triangulated subcategory of DAét(K,Λ) [resp. RigDAét(K,Λ)] formed by compact

objects (see Definition 4.12).

Remark 5.19. The category DAét,gm(K,Λ) is denoted by DAct
ét(K,Λ) in [3] and [4] where ct

stands for ”constructible” and gm for ”geometric”. The equivalence of all these notions follows

from [3, Proposition 2.1.24] (see also [2, Theorem 1.4.40]).

Example 5.20. For any quasi-projective variety of finite type Π: X → Spec k the motive

Λ(X) = Π!Π
!Λ(K) is compact (see [3, Scholium 2.2.34]). For any smooth quasi-compact

rigid analytic variety X over K the motive Λ(X) is compact (see [2, Proposition 1.2.34]).

We can now recall the theorem of Ayoub on a generating set for rigid analytic motives with

rational coefficients.
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Theorem 5.21 ([2, Theorem 2.5.35],[39, Definition 14.1]). Suppose Q ⊂ Λ. The category

DAeff
ét (K,Λ) [resp. RigDAeff

ét (K,Λ)] is compactly generated (as a triangulated category with

small sums) by the motives Λ(X) where X runs among [analytifications of] smooth projective

varieties over K.

Remark 5.22. The original version of the previous result considers the categories of motives

with transfers (defined in [39] and [2]). We can state it also for motives without transfers by

means of the equivalences proved in[52] (see also [5, Appendix B]). The proof of the state-

ment above is highly non-trivial, and uses the whole equipment of resolution of singularities,

induction on dimension and localization.

Corollary 5.23. Suppose Q ⊂ Λ. The category DAét,gm(K,Λ) [resp. RigDAét,gm(K,Λ)]
coincides with the triangulated subcategory of DAét(K,Λ) [resp. RigDAét(K,Λ)] closed

under direct summands generated by the motives Λ(X)(d) where X runs among [analytifi-

cations of] smooth projective varieties over K and d runs in Z. All its objects are strongly

dualizable.

Proof. From the previous theorem, we deduce that the motivesΛ(X)(d) with d ∈ Z and withX
[analytification of] a smooth projective variety are generators of the stable category DAét(K,Λ)
[resp. RigDAét(K,Λ)]. The first statement follows then from [3, Proposition 2.1.24] (some-

times referred to as the theorem of Neeman and Ravenel, see [45]). Since LRig∗ is monoidal

and the motive Λ(X)(d) is strongly dualizable in DAét,gm(K,Λ) for any smooth projective

variety X (see [2, Lemma 1.3.29]), we also deduce the final claim. �

Corollary 5.24. Suppose Λ = K and let M be in RigDAét,gm(K,Λ). Then H i
odR(M) is finite

dimensional for all i and equal to 0 for |i| ≫ 0. In particular, if N is in DAét,gm(k,Λ) then

H i
rig(N) is finite dimensional for all i and equal to 0 for |i| ≫ 0.

Proof. In order to prove the statement, it suffices to prove that the triangulated functor M 7→
Hom•(M

∨,Ll∗Ω†) from RigDAét,gm(K,Λ) to D(Λ) takes values in the triangulated subcat-

egory of compact objects in D(Λ). By what showed above, it suffices to show that for any

smooth projective variety X the complex Hom•(Λ(X
an),Ll∗Ω†) is compact. But this complex

is, by Theorem 4.23 and [23, Theorem 2.26] canonically isomorphic to Ω(Xan) which is in turn

quasi-isomorphic, by [25, Theorem 2.3] to the complex Ω(X) which is manifestly compact.

For the last assertion, by Definition 5.16 it suffices to remark that both the functor L(·)∗η and

the functor R(·)σ∗ preserve compact objects: the former has a sum-preserving right adjoint (see

Remark 5.2) and the latter is a triangulated equivalence. �

Remark 5.25. When we apply the previous corollary to the motives M = Λ(X) for a quasi-

projective variety X over k of finite type [resp. a smooth quasi-compact rigid analytic variety

X over K] (see Example 5.20) we obtain the finite dimensionality and the boundedness of the

rigid [resp. overconvergent de Rham] cohomology groups of X .

Remark 5.26. The proof consists in a big “formal” step, which reduces the assertion to the

study of Ω(X) for a smooth projective variety X over K. We can therefore conclude that the

finite dimensionality of the overconvergent and rigid cohomologies follows formally from the

finite dimensionality of the cohomology of Ω(X) aka the Betti cohomology of X(C) (fixing a

map of abstract fields K → C to an algebraically closed complete archimedean field C).

Remark 5.27. We point out that we do not require that the valuation of K is discrete, and

that the previous proof easily generalizes to arbitrary cohomology theories represented in

RigDA(K,Q) which are finite dimensional on analytifications of projective smooth algebraic

varieties over K.
22



Similarly, we obtain an alternative proof of a result of Gabber [10, Corollary 5.5.2]. We now

indicate with Ω†
K the complex Ω† to emphasize its dependence on the base field K.

Corollary 5.28. Let L/K be an extension of complete valued fields and suppose Λ = L. Let f

be the induced map SpaL→ SpaK. The canonical map in RigDA
† eff
ét (K,Λ)

Ω†
K ⊗K L→ Rf∗Ω

†
L

is an isomorphism.

Proof. We can prove that the cone of the map C is zero, which by Theorem 5.21 amounts to
prove that Hom(Rl∗Λ(X

an)[−i], C) = 0 for all smooth projective varietiesX/K and all i. This
follows from the following isomorphisms

Hom(Rl∗Λ(X
an)[−i],Ω†

K ⊗K L) ∼= H i
dR(X)⊗K L ∼= H i

dR(XL) ∼= Hom(Rl∗Λ(X
an)[−i],Rf∗Ω†

L).

�

In the same spirit, inspired by the work of Cisinski-Déglise [18], we can also obtain the

Künneth formula, generalizing [24, Section 9.4] where the discrete-valuation case is consid-

ered.

Corollary 5.29. Suppose Λ = K. For any two motives M,N in RigDAét,gm(K,Λ) we have

Hn
odR(M ⊗N) ∼=

⊕

p+q=n

Hp
odR(M)⊗Hq

odR(N)

Proof. It suffices to prove that the cohomological realization functorM 7→ Hom•(M,Ll∗Ω†) is

monoidal. The wedge product induces a multiplication of complexes of presheaves Ω†⊗Ω† →
Ω† and therefore it induces a multiplication also on Ω† as a motive. We then obtain a composed

natural transformation of bi-functors

Hom•(−,Ll∗Ω†)⊗Hom•(−,Ll∗Ω†)⇒ Hom•(−⊗−,Ll∗Ω†⊗Ll∗Ω†)⇒ Hom•(−⊗−,Ll∗Ω†)

and we can prove it is invertible by checking this on the set of generators of RigDAét,gm(K,Λ)
formed by analytifications of smooth projective algebraic varieties. The result then follows

from the usual Künneth formula for algebraic de Rham cohomology [36]. �

APPENDIX A. DAGGER SPACES AND INVERSE LIMITS OF ADIC SPACES

In this section, we study the connection between the language of dagger algebras with the

theory of adic spaces developed by Huber [32]. Our aim is to show that a dagger algebra is a

presentation of the compactification of Spa(A,A◦) as an inverse limit of strict inclusions. We

do not claim much originality here, as the results are straightforward reformulations of [9], [23]

and [33].

We start by recalling the notion of compactification of Huber. In order to state it, it is crucial

to use the language of adic spaces, which allows more flexibility for the choice of the ring of

integral functions associated with a Banach algebra.

In this Appendix, K is any complete non-archimedean field with respect to a valuation of

rank 1 having a pseudo-uniformizer π and ring of valuation K◦. We recall that all our rigid

analytic varieties over the base field K (and hence morphisms between them) are separated and

taut, and that we denote by SpaR the rigid analytic space Spa(R,R◦) whenever R is a Banach

K-algebra.
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Definition A.1 ([33, Lemma 1.3.10]). A map f : X → Y of quasi-separated adic spaces over

K locally (topologically) of finite type (see [33, Paragraph 1.1.13 and Definition 1.2.1]) is

partially proper if for any valuation ring L+ in a field L and any commutative diagram

Spa(L, L◦) //

��

X

f

��
Spa(L, L+)

y // Y

there exists a unique lift Spa(L, L+)→ X of y.

Example A.2. The space B1 is not partially proper overK. Consider the total order in R>0×δZ
induced by putting 1 < δ < R>1 and let ||·|| be the Gauss norm onK[τ ]. Consider the valuation

ring K(τ)+ in K(τ) induced by the following valuation, taking values in R>0 × δZ ∪ {0}:

| · |∞ : f =
∑

aiτ
i 7→ ||f || · δmax{i : |ai|=||f ||}.

The associated valuation of rank 1 is the Gauss norm on K(τ) which defines a point in B1.

Nonetheless, there is no lift of Spa(K(τ), K(τ)+)→ SpaK to B1 since |τ |∞ = δ > 1.

Definition A.3 ([33, Theorem 5.1.5]). The universal compactification of a map of rigid ana-

lytic varieties f : X → S is a factorization X
j→ Xcp

f

f ′

→ S of adic spaces such that j is

locally closed, f ′ is partially proper and such that for any other factorization X
h→ Y

g→ S
with g partially proper, there exists a unique map i : Xcp

f → Y making the following diagram

commute:

Xcp
f

f ′

  ❆
❆❆

❆❆
❆❆

i

��

X

j
>>⑤⑤⑤⑤⑤⑤⑤

h

!!❉
❉❉

❉❉
❉❉

❉ S

Y

g
==④④④④④④④④

The universal compactification of X → SpaK will be simply called the compactification of X
and denoted by Xcp.

Example A.4. The universal compactification of a map of affinoid rigid analytic varieties

SpaS → SpaR induced by a map φ : R → S is given by the affinoid (yet not rigid analytic!)

space Spa(S, S+) where S+ is the integral closure in S of the ring φ(R◦) + S◦◦. In particular,

the compactification of SpaR is the space Spa(R,R+) where R+ is the minimal choice among

rings of integral elements in R over K, namely the integral closure of K◦ + R◦◦ in R. It

contains SpaR as an open dense subset.

Definition A.5. Let X ⊂ Y be an open immersion of rigid analytic varieties over a variety S.

We write X ⋐S Y if the inclusion factors over the adic compactification of X over S (see [33,

Theorem 5.1.5]). In case S = SpaK we simply write X ⋐ Y .

Remark A.6. Let Y → X be an open immersion of rigid varieties over S. Then Y ⋐S X if and

only if the compactification of Y over S coincides with the compactification of Y over X .

Definition A.7. Let f : X → S be a morphism of rigid analytic varieties over a field K. The

interior Int(X/S) [resp. the border ∂(X/S)] of f is [the complementary of] the union of its

open supsbaces U such that U ⋐S X . If S = SpaK we simply write Int(X) [resp. ∂(X)].
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We recall that the Berkovich space XBerk associated with a rigid analytic (taut) variety X
is the universal Hausdorff quotient of the topological space underlying X (see [48, Theorem

2.24]). In particular, there is a continuous quotient morphismBerk : X → XBerk. Our notations

coincide with the one of [2] by means of the following interpretation in terms of Tate and

Berkovich spaces.

Proposition A.8. Let X ⊂ Y be an open immersion of rigid analytic varieties over a variety

S. Then X ⋐S Y if and only if XBerk lies in the Berkovich interior of Y Berk over SBerk.

Proof. By [9, Proposition 2.5.17] we can assume that all varieties are affinoidX = Spa(B,B◦),
Y = Spa(A,A◦), S = Spa(C,C◦). By [9, Proposition 2.5.2(d) and Proposition 2.5.9] X lies

in Int(Y/S) if and only if the image of A◦ in B◦/B◦◦ is integral over the image of C◦. This

amounts to say thatA◦ is mapped in the integral closureB+ ofC◦+B◦◦ inB which is precisely

the ring of integers of the compactification Spa(B,B+) of X over S. �

We then immediately obtain the following result.

Corollary A.9. Let f : X → S be a morphism of rigid analytic varieties over a field K. The

space Int(X/S) is the inverse image via X → XBerk of the Berkovich interior of XBerk over

SBerk.

We also recall the following fundamental formula of Berkovich.

Definition A.10. A rigid analytic variety X is good if for any point x ∈ X there exists an open

subaffinoid of X containing the closure of {x} in X (see [33, Proposition 8.3.7]).

Corollary A.11 ([9, Proposition 2.5.8(iii)]). Let f : X → Y and g : Y → S be two morphisms

of good rigid analytic varieties over a field K. It holds

Int(X/S) = Int(X/Y ) ∩ f−1 Int(Y/S).

Remark A.12. We recall that a morphism X → Y of rigid analytic spaces is partially proper

if its border is empty, and it is proper if it is partially proper and quasi-compact. Thanks to

the properties above, these definitions coincide with Berkovich’s and with Huber’s. The results

of [50] and [51] also show that the notion of properness coincides with Kiehl’s (see also [33,

Remark 1.3.19] for the discrete-valuation case).

Proposition A.13 ([2, Proposition 2.1.16]). Let X = U(fi/g) be a rational subvariety of

the affinoid space X1. The sequence Xh = U(πfh
i /g

h) of rational subspaces of X1 satisfies

X ⋐X1
Xh+1 ⋐X1

Xh and is coinitial with respect to ⋐X1
among rational subspaces greater

than X .

We remark that the category of adic spaces doesn’t have all inverse limits. Nonetheless, there

is a notion of being similar to the inverse limit for an object X having maps towards a directed

system {Xi+1→Xi} given by Huber (see [33, Section 2.4]) and denoted byX ∼ lim←−Xh. In this

case, the étale topos ofX is the filtered limit topos of those associated withXi ([33, Proposition

2.4.4]).

Proposition A.14. Let X = Spa R̂ be a rational subspace of X1 = Spa R̂1 and let Xh =
Spa R̂h be a sequence of rational affinoids in X1 totally ordered with respect to ⋐X1

and coini-

tial among the opens W with X ⋐X1
W . Let R [resp. R+] be lim−→ R̂h [resp. lim−→ R̂◦

h]. If we

endowR with the topology induced by R̂ then Spa(R,R+) is an affinoid adic space with global

sections equal to R̂ and

Spa(R,R+) ∼ lim←−
h

Spa R̂h.
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Moreover if Spa(S, S+) is an affinoid adic space over K with S+ bounded is S then

Hom(Spa(S, S+), Spa(R,R+)) ∼= lim←−
h

Hom(Spa(S, S+), Spa R̂h).

Proof. By Proposition A.13 we can assume that X = U(fi/g) and Xh = U(π(fh
i /g

h)) as

subspaces of X1. We first observe that R is dense in R̂. Indeed, elements in R̂1〈υ〉/(gυ − f)
having a polynomial as representative are dense, so that in particular the image of R̂1〈πυ〉
which is included in R is also dense.

We now claim that the ring R+ is open and bounded in R. Since R̂ is reduced, then R̂◦ is

bounded and the topology on R is induced by the ring of definition R∩ R̂◦. We already proved

in Proposition 2.14 the chain of inclusions

π(R ∩ R̂◦) ⊂ R+ ⊂ R ∩ R̂◦

and therefore our claim.

Since R+ is open and integrally closed in R the pair (R,R+) is an affinoid pair. By what we

proved above and [22, Lemma 7.5.3] its completion coincides with the pair (R̂, R̂+) where R̂+

is the π-adic completion of R+. As Spa R̂ is adic (that is, the structure presheaf is a sheaf) then

also Spa(R̂, R̂+) = Spa(R,R+) is adic (see [32, Theorem 2.2]).

Maps of affinoid spaces Spa(T, T+) → Spa(S, S+) over K for which S+ and T+ are

bounded are uniquely determined by the maps of abstract K◦-algebras S+ → T+. The last

isomorphism follows then from our definitions and [32, Proposition 2.1(i)]. If we apply it to

spectra of valued fields Spa(L, L+) we deduce in particular | Spa(R,R+)| ∼= lim←−h
| Spa R̂h|

and therefore Spa(R,R+) ∼ lim←−h
Spa R̂h. �

We warn the reader that the completion ofR+ may vary among the rings of integral elements

of R, as the next examples show.

Example A.15. If we take X = Xh = X1 we obtain Spa(R,R+) = Spa(R̂, R̂◦).

Example A.16. Suppose that X2 ⋐ X1. By Proposition A.11 we deduce Xh+1 ⋐ Xh and

therefore O◦(Xh) ⊂ K◦ +O◦◦(Xh+1) so that R+ is contained in the algebraic closure of

K◦ + R̂◦◦ in R̂. We conclude that Spa(R,R+) is the compactification of X over K.

We now make specific examples of this last situation.

Example A.17. Consider the rational inclusion X = Bn = SpaK〈τ 〉 → SpaK〈πτ〉 = X1
∼=

Bn and let Xh be the rational space U(π1/hτ) := U
(
(πτ)h/πh−1

)
of X1. The sequence

Xh+1 ⋐X1
Xh is coinitial among opens W such that X ⋐X1

W and Xh+1 ⋐ Xh. Moreover, R
coincides with K〈τ 〉†.

We remark that Proposition A.14 applied to the example A.17 generalizes the claim at the

end of [54, Example 7.58]. This last example can be extended to the following situation.

Example A.18. Consider a rational inclusion X = X1(f1, . . . , fm/g) ⋐ X1 of affinoid rigid

spaces. By the proofs of [9, Proposition 2.5.2, Proposition 2.5.9] we can suppose that there are

presentations

O(X1) = K〈ρ−1
1 τ1, . . . , ρ

−n
n τn〉/I

O(X) = K〈π−1ρ−1
1 τ1, . . . , π

−1ρ−1
n τn, υ1, . . . , υm〉/((υig − fi) + I)

with ρi ∈
√
K×. We then define Xh to be the rational subset of X1 with

O(Xh) = K〈π 1

h
−1ρ−1

1 τ1, . . . , π
1

h
−1ρ−1

n τn, π
1

hυ1, . . . , π
1

hυm〉/((υig − fi) + I).
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The sequence Xh+1 ⋐ Xh is coinitial among opens W such that X ⋐X1
W . We also obtain

R = K〈(πρ1)−1τ1, . . . , (πρn)
−1τn, υ1, . . . , υm〉†/((υig − fi) + I)

which is a dagger algebra.

We are then inclined to make the following definition.

Definition A.19. Fix an affinoid rigid space X . A presentation of a dagger structure on X
is a pro-affinoid variety lim←−Xh where X and all Xh are rational subspaces of X1, such that

X ⋐ Xh+1 ⋐ Xh and the system is coinitial among rational subsets of X1 containing X
in their interior. A morphism of presentations between lim←−Xh and lim←−Yk is a morphism of

pro-objects, that is, an element of lim←−k
lim−→h

Hom(Xh, Yk).

Example A.20. The dagger poly-disc Bn† has the presentation lim←−Xh described in Example

A.17.

Remark A.21. The system Xh of A.15 is not a presentation of a dagger structure on X since

Xh+1 is not contained in the interior ofXh.

We summarize the previous discussion in the following proposition, drawing the link be-

tween the definition of dagger algebras and the language of (weak) inverse limits of adic spaces

due to Huber.

Proposition A.22. Let X̂ = Spa(R̂, R̂◦), be an affinoid space and let lim←−Xh be a presentation

of a dagger structure on X̂ .

(1) lim−→O(Xh) is a dagger algebra R dense in R̂.

(2) The functor lim←−Xh 7→ Spa†R induces an equivalence of categories between dagger

affinoid spaces Aff† as introduced in Definition 2.1 and their presentations.

(3) X̂cp = Spa(R̂, R̂+) ∼= Spa(R,R+) ∼ lim←− X̂h where R̂+ is the integral closure of

K◦ + R̂◦◦ in R̂ and R+ is lim−→ R̂◦
h.

(4) If Spa(T, T+) is an affinoid adic space with T+ bounded then

Hom(Spa(T, T+), Spa(R,R+)) ∼= lim←−
h

Hom(Spa(T, T+), Spa R̂h).

Proof. The first claim follows from Example A.18. The fully faithfulness of the functor in the

second claim follows from Remark 2.14. Its essential surjectivity is immediate: fix a dagger

algebra R and an integer H such that R = K〈τ 〉†/(ai) with ai ∈ K〈π1/Hτ〉. Then R is the

image of the sequence Xh+1 ⋐ Xh with Xh = SpaK〈π1/(H+h)τ〉/(ai). The last two claims

follow from Proposition A.14. �

Remark A.23. Even though X̂cp is a (weak) inverse limit of the spaces Xh as adic space, mor-

phisms between two presentations of dagger spaces X and Y do not coincide in general with

morphisms between X̂cp and Ŷ cp as the latter coincide with morphisms from X̂ to Ŷ .

We can also promote the equivalence of categories between dagger spaces and their presen-

tations to an equivalence of topoi, using the following definitions.

Definition A.24. Let P be a property of morphisms of rigid spaces. We say that a morphism of

pro-rigid spaces φ : X → Y has the property P if X ∼= lim←−Xh, Y † ∼= lim←−Yh and φ = lim←−φh

with φh : Xh → Yh having the property P. We say that a collection of open morphisms of

pro-rigid spaces {φi : lim←−h
Uih → X}i∈I is a cover if X ⋐

⋃
i Im(Uih) for all h.
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Remark A.25. In particular, we have defined open immersions, smooth and étale morphisms

of presentations of affinoid dagger spaces. In that case, as the morphisms X̂ ⊂ Xh are open

immersions (hence étale) we deduce that if a morphism X → Y is an open immersion [resp.

smooth resp. étale] then the associated morphism X̂ → Ŷ also is.

Remark A.26. The topology induced by covers of open immersions is generated by covers of

rational embeddings.

Proposition A.27. Any family of étale maps of presentations of affinoid dagger spaces

{lim←−h
Uih → lim←−h

Xh}i∈I inducing a covering of X̂ is a covering.

Proof. It suffices to show that if U ⋐ U1 and f : U1 → X1 is an étale map, then f(U) ⋐ f(U1).
By [9, Proposition 2.5.17] we can consider only the case in which f is an open immersion,

which is clear, and the case in which f is finite étale, which we now examine.

SinceU1 → f(U1) is finite, we deduce from [9, Proposition 2.5.8(iii) and Corollary 2.5.13(i)]

that Int(U1) = f−1 Int(X1). Therefore sinceU ⋐ U1 we deduce f(U) ⋐ f(U1) as wanted. �

Corollary A.28. Let X be an affinoid dagger variety with a presentation lim←−Xh and limit X̂ .

The maps of the small rational and étale sites X̂ → X → lim←−Xh induces equivalences on the

associated topoi.

Proof. It suffices to use the criteria of [33, Appendix A]. �

Remark A.29. The content of the previous proposition may seem to clash with the result of

Huber [33, Proposition 2.4.4] giving an equivalence between the étale topos of X̂cp and the

direct limit topos lim←−Shét(Xh). The point is that the étale site lim−→Xh,ét giving rise to the direct

limit topos lim←−Shét(Xh) is not equivalent to the étale site of the presentation. As a hint of this

fact, consider for example the constant system Uh = X̂ which is not a presentation of a dagger

structure and hence does not define an open of X̂ .

In order to be consistent with the “pro-objects” approach, we also introduce dagger spaces

with a functorial perspective. We recall that the rational topology on dagger affinoid spaces is

sub-canonical, that is, the presheaf FX over Aff† represented by an affinoid dagger variety X
is a sheaf (this follows from Proposition 2.12). By abuse of notation, we sometimes denote it

by X .

Definition A.30. A morphism F → G of sheaves of sets over Aff† with the rational topology

has the property P if for any morphism X → G from a representable one, the pull-back is

representable and the morphism F ×G X → X has the property P. A collection of morphisms

{Fi → G} is a cover if
⊔Fi → G is an epimorphism of sheaves. A [smooth] functorial dagger

space is a sheaf F over Aff† with a cover of open immersions {Ui → F} where each Ui is

represented by a [smooth] affine dagger space.

Remark A.31. The category of functorial dagger spaces has fiber products, generalizing fiber

products of affinoid dagger spaces.

Remark A.32. Étale and open covers define a topology on functorial dagger spaces.

The functor l : Aff† → Aff induced by X 7→ X̂ is continuous. If we embed the category

of affinoid varieties in the category of locally ringed spaces LRS, we therefore obtain a left

adjoint Kan extension functor:

| · | : Sh(Aff†) ⇄ LRS

such that |X| = (|X̂|,OX̂) for any X ∈ Aff† (we denote by X also the sheaf represented by

X).
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Proposition A.33. Let F be a [smooth] functorial dagger space with an open cover by dagger

affinoid spaces {Ui → F}. The ringed space |F| is a [smooth] rigid analytic space covered by

Ûi and endowed with an extra sheafO† such thatO†|Ûi
is the sheafO†

Ui
introduced in Definition

2.13.

Proof. By [38, IV.7.3 and A.1.1] we can write a coequalizing diagram of sheaves
⊔

(Ui ×F Uj) ⇒
⊔

Ui → F → 0

whose arrows on the left are open immersions of representable sheaves. By applying the left

adjoint functor | · | we deduce that |F| is obtained by gluing the analytic spaces Ûi over open

immersions and therefore is an analytic space. The sheaf O† can be defined using the formula

in the statement. �

Remark A.34. In particular, we proved that a morphism of affine dagger spaces U → X is open

or rational if an only if the associated map of representable sheaves is, and that a collection

{Ui → X} of morphisms of affine dagger spaces is an open cover if and only if the induced

collection of morphisms of sheaves is.

We conclude that the functor | · | factors over the category of dagger spaces defined by Große-

Klönne [23].

Corollary A.35. The category of functorial dagger spaces is equivalent to the category of

dagger spaces of Definition 2.22, and this equivalence preserves rational/open immersions and

covers.

Proof. If X is a dagger space with a dagger affinoid covering {Ui → X} we can consider the

sheaf FX it represents on the category of affinoid dagger spaces. Since the functor X 7→ FX

is a right adjoint, it preserves intersections. We then conclude by Yoneda Lemma and Remark

A.34 that {⊔Ui → FX} is an epimorphism of open immersions so that FX is a functorial

dagger space. It is immediate to see that X 7→ FX and F 7→ |F| are quasi-inverse functors.

The second part of the statement follows from Remark A.34. �
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