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EFFECTIVE MOTIVES WITH AND WITHOUT TRANSFERS IN
CHARACTERISTIC p

ALBERTO VEZZANI

ABSTRACT. We prove the equivalence between the cated@igDMS (K, Q) of effective
motives of rigid analytic varieties over a perfect complets-archimedean field and the
categonRigDAL . (K, Q) which is obtained by localizing the category of motives wiih
transfersRigDAEff(K, Q) over purely inseparable maps. In particular, we obtain ariveq
alence betweeligDM:! (K, Q) andRigDAST (K, Q) in the characteristi® case and an
equivalence betweedM:T (K, Q) andDAST | . (K, Q) of motives of algebraic varieties over
a perfect field'. We also show a relative and a stable version of the mainmseate
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1. INTRODUCTION

Morel and Voevodsky in[[22] introduced the derived categoineffective motives over a
baseB which, in the abelian context with coefficients in a rihgand with respect to the étale
topology, is denoted bPAST (B, A). It is obtained as the homotopy category of the model
categoryCh Psh(Sm /B, A) of complexes of presheaves &fmodules over the category of
smooth varieties oveB, after a localization with respect to étale-local mapsi(wj rise to étale
descent in homology) and projection map$ — X (giving rise to the homotopy-invariance
of homology). Voevodsky in[[28], [20] also defined the catggof motives with transfers
DM¢T (B, A) using analogous constructions starting from the categarfST(Sm /B, A) of
complexes of presheavesith transfersoverSm /B i.e. with extra functoriality with respect to
maps which are finite and surjective. Both categories ofvestcan be stabilized, by formally
inverting the Tate twist functak (1) in a model-categorical sense, giving rise to the categories
of stable motives with and without transfdpdV (B, A) andDA (B, A) respectively.

There exists a natural adjoint pair between the categoryodizes without and with transfers
which is induced by the functar;, of “adjoining transfers” and its right adjoimt, of “forget-
ting transfers”. Different authors have proved interegtiesults on the comparison between
the two categorieD AT (B, A) andDMST (B, A) induced by this adjunction. Morel in [21]
proved the equivalence between the stable categbues(B, A) andDM, (B, A) in case\ is
aQ-algebra and is the spectrum of a perfect field, by means of algebkaitheory. Cisinski
and Deglise in[9] generalized this fact to the case QfalgebraA\ and a basés that is of finite
dimension, noetherian, excellent and geometrically wmbh. Later, Ayoub (see![4, Theorem

B.1]) gave a simplified proof of this equivalence for a noripasisB in characteristic¢) and
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a coefficient ringA over@Q that also works for the effective categories. [Ih [3] the sauthor
proved the equivalence between the stable categories ofenatith and without transfers for
a more general ring of coefficients under some technical assumptions on the Bagsee[[3,
Theorem B.1]).

The purpose of this paper is to give a generalization of tfecg¥e result of Ayoubl[4, The-
orem B.1]. We prove an equivalence between the effectivgoates of motives with rational
coefficients for a normal bage over a perfect field< of arbitrary characteristic. Admittedly,
in order to reach this equivalence in characterigtige need to consider a perfect bage!
and invert extra maps BDAST (B Q) namely the purely inseparable morphisms, or equiva-
lently the relative Frobenius maps. This procedure cantadsoterpreted as a localization with
respect to a finer topology, that we will call tReobét-topology. The associated homotopy cat-
egory will be denoted b A . (BPef Q).

We remark that the approaetithout transferas much more convenient when computing
morphisms, and it is the most natural over a general base. h®wther hand, Voevodsky
proved a series of useful theorems for the category of motiveh transfersover a field (say,
the Cancellation theorem [29] or the homotopy invarianceaiomology [[28, Proposition
3.1.11]) which are fundamental for developing the theorging able to switch between the
two definitions via a canonical equivalence is then usefugnvtiealing with motives, and has
been used intensively in the literature (se€e [5] for an aesvy. This article shows that one can
finally do so also for effective motives in positive charaistic.

All our statements will be given in the setting of rigid antyarieties instead of algebraic
varieties. The reason is twofold: on the one hand one cancaedumediately the statements
on algebraic motives by considering a trivially valued fjetosh the other hand comparison
theorems for motives of rigid analytic varieti®&igDAST (B, A) and RigDMS (B, A) are
equally useful for some purposes. For example, the reschanacteristi® is mentioned and
used in[[7, Section 2.2]. Also, this equivalence in cases the spectrum of a perfect field of
arbitrary characteristic plays a crucial role(in|[26] antuadly constitutes the main motivation
of this work. For the theory of rigid analytic spaces over amchimedean fields, we refer to
[8].

The main theorem of the paper is the following (Theotem 4.1):

Theorem. Let A be aQQ-algebra and letB be a normal rigid variety over a perfect, complete
non-archimedean fiel&. The functom,, induces an equivalence of triangulated categories:

Lay, : RigDA%ijobét(BPerf7 A) = RigDMgf (BYA).

The article is organized as follows. In Section 2 we intragtheFrobét-topology on normal
varieties and we prove some general properties it satisficectiorl B we define the categories
of motives that we are interested in, as well as other caieg@f motives which play an
auxiliary role in the proof of the main result. In Sectign 4 fieally outline the proof of the
equivalence above.

2. THE FROB-TOPOLOGY

We first define a topology on normal rigid analytic varietie@sioa field K. Along our work,
we will always assume the following hypothesis.

Assumption2.1 We let K be a perfect field which is complete with respect to a non-
archimedean norm.

Unless otherwise stated, we will use the term “variety” Wicate a separated rigid analytic

variety overK (seel[8, Chapter 9]).
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Definition 2.2. Amap f: Y — X of varieties overK is called aFrob-coverif it is finite,
surjective and for every affinoitf in X the affinoid inverse image” = f~!(U) is such that
the induced map of ring®(U) — O(V) is radicial.

Remark2.3. By [12, Corollary 1V.18.12.11] a morphism of schemes is &nisurjective and
radicial if and only if it is a finite universal homeomorphisite can remark that the same
holds true for rigid analytic varieties. That said, we wilitruse this characterization in this
text.

If char K = p and X is a variety overK then the absolute-th Frobenius mapy — X
given by the elevation to thg*-th power, factors over a maj§ — X where we denote by
X ™ the base change of by the absolute:-th Frobenius mage — K. We denote byb(™)
the mapX — X and we call it therelative n-th Frobenius Since K is perfect, X ™ is

isomorphic taX endowed with the structure map — Spa K 2y Spa K and the relativei-th
Frobenius is isomorphic to the absoluteh Frobenius ofY overF,. We can also defing
for negativen to be the base change &fover the maph™: K — K which is again isomorphic

to X endowed with the structure map — Spa K o Spa K. The Frobenius map induces a
morphismX (-1 — X and the collection of mapgX ! — X} defines a coverage (see for
example([18, Definition C.2.1.1]).

In casechar K = 0 we also defineX ™ to be X and the map®: X1 — X to be the
identity maps for alh € Z.

Proposition 2.4.LetY — X be aFrob-cover between normal quasi-compact varieties aver
There exists an integerand a mapX (- — Y such that the composite mag—" — Y — X
coincides withd” and the composite map — X — Y (™ coincides withd".

Proof. Let f: Y — X aFrob-cover of affinoid normal schemes ovir. We can consider the
induced map of{-algebras and apply [19, Proposition 6.6] to conclude tratists an integer
nand a maph: X — Y™ such that the composite map — X — Y™ coincides with the
relativen-th Frobenius. This factorization is also canonical, areté¢fore can be generalized
to the situation in whichX andY” are not necessarily affinoid.

We also remark that the map — X is an epimorphism (in the categorical sense) of normal
varieties. From the equalitigg, /™ = &\ f™ = &) we then conclude that the composite
mapX — Y™ — X™ coincides with the:-relative Frobenius. This proves the claim. [

Definition 2.5. Let B be a normal variety ovek’. We defineRigSm /B to be the category of
guasi-compact varieties which are smooth a#eie denote by, the étale topology.

Definition 2.6. Let B be a normal variety ovell'. We defineRigNor /B to be the category of
guasi-compact normal varieties over

e We denote by, the topology oRigNor /B induced byFrob-covers.

¢ We denote by, the étale topology.

e We denote by.¢; the topology generated by, and ;.

e We denote by, the topology generated by covering familigg: X; — X};c; such
that/ is finite, and the induced mdg f;: | |,.; X; — X is finite and surjective.

e We denote by, the topology generated by, andy;.

Remark2.7. The Frobét topology is denoted byuiet (quasi-etale) in[[10, Section 5] and the
fhét-topology is often denoted byfh (see[[27]). We stick to the notatidhét in order to be
consistent with([4].

We are not imposing any additivity condition on theb-topology, i.e. the familie$ X; —

| |;c; Xi}ier are notkrob-covers. This does not interfere much with our theory sineenil
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mostly be interested in thirobét-topology, with respect to which such families are covering
families.

Remark2.8. We are ultimately interested in considering thebét-topology onRigNor /B.

As any objectX € RigNor /B is locally affinoid, we can restrict to considering the fullbs
categoryAffNor /B of RigNor /B made ofaffinoid varieties that are smooth ovér since it
induces an equivalent étale (aRtbbét) topos. In proofs we will then, sometimes tacitly, as-
sume that the objects &figNor /B andRigSm /B are affinoid, without loss of generality. For
the same reason, one can harmlessly drop the condition @icompactness for objects in
RigNor /B andRigSm /B without changing the associated topoi.

Remark2.9. The th-topology is obviously finer that th&rob-topology, which is the trivial
topology in casehar K = 0.

Remark2.1Q The category of normal affinoid varieties is not closed uriber products, and
thefh-coverings do not define a Grothendieck pretopology. Naledis, they define a coverage
which is enough to have a convenient description of the tmpolhey generate (see for example
[18, Section C.2.1]).

Remark2.11 A particular example ofh-covers is given byseudo-Galois coverghich are
finite, surjective mapg: Y — X of normal integral affinoid varieties such that the field
extensionK (Y) — K(X) is obtained as a composition of a Galois extension and a finite
purely inseparable extension. The Galois gréupssociated to the extension coincides with
Aut(Y/X). As shown in[[6, Corollary 2.2.5], a presheafon AffNor /B with values in a
complete and cocomplete category isfarsheaf if and only if the two following conditions
are satisfied.
(1) Forevery finite sef X; }ic; of objects inRigNor /Bitholds F(| |,.; X;) = [[,c; F(Xi).
(2) For every pseudo-Galois covering — X with associated Galois grou@ the map
F(X) — F(Y)%isinvertible.
Definition 2.12. Let B be a normal variety ovek .

e We denote bRigSm /B" the 2-limit categorg —lim _RigSm /B~ with respect to
the functorsRigSm /B"~Y — RigSm /B~ induced by the pullback along the map
BG"=Y — B More explicitly, it is equivalent to the catego/z[S~!] whereCp
is the category whose objects are p&ik§ —n) with n» € N andX € RigSm /B

and morphism€z((X, —n), (X', —n')) are mapsf: X — X' forming commutative
squares

x—L oy

L

Bn) _®_ p=n)

and wheresS is the class of canonical mapx’ x 5., B, —n) — (X', —n’) for
eachX < RigSm /B(") andn > n’ (see[11, Definition VI.6.3]).

e We say that a mapX, —n) — (X', —n’) of RigSm /BY*! is aFrob-coverif the map
X — X'is aFrob-cover. We denote by, the topology orRigSm / BY*! induced
by Frob-covers.

e We denote byr; the topology onRigSm /B! generated by the étale coverings on
each categorRigSm /B~ It defines the “inverse limit” topology oRigSm / BY**
according tol[, Definition VI1.8.2.5].

e We denote byr1¢: the topology generated by, andry;.
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We now investigate some properties of theb-topology.

Proposition 2.13. Let B be a normal variety ovek..

e A presheafF on RigNor /B is a Frob-sheaf if and only itF (X (V) = F(X) for all
objectsX in RigNor /B.

e A presheafF on RigSm /BY*! is a Frob-sheaf if and only itF(X(=) —n — 1) =
F (X, —n) for all objects(X, —n) in RigSm /B,

Proof. The two statements are analogous and we only prove the ctaimi§Nor /B. By
means of[18, Lemma C.2.1.6 and Lemma C.2.1.7] the topolegg@ted by maps: ¥ — X
which factor a power of Frobenius(—™ — X is the same as the one generated by the coverage
XD 5 X, Using Propositiofi. 214, we conclude that theb-topology coincides with the
one generated by the coverag&(~!) — X}. Since the Frobenius map is a monomorphism of
normal varieties, the sheaf condition associated to theregeX (- — X is simply the one

of the statement by [18, Lemma 2.1.3]. O

Corollary 2.14. Let B be a normal variety oveK.

e The classb of maps{ X" — X},cn xerignor /5 admits calculus of fractions, and its
saturation consists dfrob-covers. In particular, the continuous map

(RigNor /B, Frob) — RigNor /B[® ]

defines an equivalence of topoi.

e The classp of maps{(X "), —n—r) = (X, —n)},en,(xn)cRigsm /pret @DMIts calculus
of fractions, and its saturation consists Bfob-covers. In particular, the continuous
map

(RigSm /B Frob) — RigSm /B ™ [®!]
defines an equivalence of topoi.

Proof. We only prove the first claim. The fact thétadmits calculus of fractions is an easy
check, and the characterization of its saturation folloresf Proposition 2]4. The sheaf con-
dition for a presheafF with respect to thérob-topology is simplyF (X (1) =~ F(X) by
Corollary(2.18 hence the last claim. O

Remark2.15 We follow the notations introduced in Definitian 2112. Anylipack of a fi-
nite, surjective radicial map between normal algebraiceti@s is also finite, surjective and
radicial. This can be generalized to rigid analytic vaestigiven the explicit description
of the pull-back of a finite map (see for examplel[16, Lemma5])4 In particular, if B

is a normal variety, the maps in the claSsare invertible inRigNor /B[®~!]. The func-
tor Cp — RigNor /B[®~!] defined by mappindX, —n) to X factors through a functor
RigSm /Bt — RigNor /B[®~!]. In particular, there is a functdRigSm /B [d~1] —
RigNor /B[®~!] defined by sendingX, —n) to X hence, by Corollary2.14, there is a functor
Shpyop (RigSm / BYe) — Shp,.p, (RigNor /B).

Remark2.16 If e: B' — B is a finite map of normal varieties, any étale hypercafer>

B’ has a refinement by a hypercovét obtained by pullback from an étale hypercover
of B (see for example_[24, Tag 04DL]). In particular, the functor Psh(RigSm /B’) —
Psh(RigSm /B) commutes with the functar, of ét-sheafification. The same holds true for
the functore, : Psh(RigSm /B'P*t) — Psh(RigSm /BYe).

From now on, we fix a commutative riny and work withA-enriched categories. In partic-
ular, the term “presheaf” should be understood as “prestieAfmodules” and similarly for
the term “sheaf”. It follows that the preshe&fX') represented by an objedt of a category
C sends an objedt of C to the freeA-moduleA Hom(Y, X).
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Assumptior2.17. Unless otherwise stated, we assume from now onAhata Q-algebra and
we omit it from the notations.

The following facts are immediate, and will also be useftéafards.

Proposition 2.18. Let B be a normal variety ovek .

o If Fis anétale sheaf oRigSm /B! [resp. onRigNor / B] then ag,.,F is a Frobét-
sheatf.

o If F is a Frob-sheaf onRigSm /BY*! [resp. onRigNor /B] then ax.F is a Frobét-
sheaf.

Proof. We only prove the claims foRigNor /B. First, suppose thaf is an étale sheaf. By
Propositior 24, we obtain thag,q, (X) = ling F(X™). Whenevell — X is étale, then
Uxx X2y andU™ x yn U™ 22 (U x5 U)™ so that the following diagram
is exact
0— F(XE) = FUT) - F(U xx U)).

The first claim the follows by taking the limit over.

We now prove the second claim. Suppdse akrob-sheaf. For any étale coverigg— X
we indicate withi/’ the associated covering &f(—!) obtained by pullback. From Remdrk 2116
one can compute the sectionsagfF (X V) with the formula

ag F(X V) = ling ker (F(Ug) — F(Uy))
U—X
wherel/ — X varies amongech covers o . SinceF is aFrob-sheaf, thew (U}) = F(U,)
andF(U;) = F(U,). The formula above then implies

aét]:(X(*l)) — hﬂ ker (F(Up) — F(Uy)) = agF (X)
U—X
proving the claim. O

Proposition 2.19. Let B be a normal variety oveK. If F is a fth-sheaf onRigNor /B then
ag F is afhét-sheaf.

Proof. Let f: X’ — X be a pseudo-Galois cover iffNor /B with associated grou@. In
light of Remark 2111, we need to show thatF(X) = asF(X')“. For any étale covering
U — X we indicate with/’ the associated covering af’ obtained by pullback. From Remark
[2.16 one can compute the sections.gfF (X’) with the formula

as F(X') = lin ker (F(Uy) = F(U))

whereld — X varies amon@ech covers oK. Taking theG-invariants is an exact functor as
A is aQQ-algebra and when applied to the formula above it yields

ag F(X')¢ = lim ker (FUy)® — FU)©) = lim ker (F(Uo) — F(Uh)) = aaF (X)
U—X U—X
as wanted. O
Proposition 2.20. Let B be a normal variety oveKk’. The canonical inclusions
OFrob: Shpon(RigNor /B) — Psh(RigNor /B)
OFrob: Shpop(RigSm /BY) — Psh(RigSm /BY™)
om: Shg(RigNor /B) — Psh(RigNor /B)

are exact.
6



Proof. In light of Proposition 2.13 the statements abot,, are obvious. Sincé is a Q-
algebra, the functor af-invariants fromA[G]-modules ta\-modules is exact. The third claim
then follows from Remark Z.11. O

We now investigate the functors of the topoi introduced &ioduced by a map of varieties
B — B.

Proposition 2.21.Let f: B’ — B be a map of normal varieties ové¥.

e Composition withf defines a functoy; from normal varieties oveB’ to normal vari-
eties overB which induces the following adjoint pair

fﬁl Ch Shpmbét(RigNOI' /B/) = Ch Shpmbét(RigNOI' /B) If*

e The base change ovef defines functorst~™* from smooth varieties oveB™ to
smooth varieties oveB’™ which induce the following adjoint pair

f*: Ch Shg,epet(RigSm /BY™) = Ch Shpyoper (RigSm /B : f,

e If fis aFrob-cover, the functors above are equivalences of categories.

e If f is a smooth map, the composition withdefines functors‘ﬁ(’”) from smooth va-
rieties overB’(=™ to smooth varieties oveB(~™ which induce the following adjoint
pair

f+: Ch Shpyope (RigSm /B'P") = Ch Shpgps (RigSm /BT : f*

Proof. We initially remark that the functorg(-"* induce a functorf*: Cz — Cpg where
Cjp is the fibered category introduced in Definition 2.12 wherednap the condition of being
quasi-compact (see Remark]2.8). As cartesian squares @mecthéo cartesian squares, they
also induce a functor from smooth varieties of#f*! to smooth varieties oves’ e,

The existence of the first two adjoint pairs is then a formalsemuence of the continuity of
the functorsf; and f*.

Let now f be aFrob-cover. The functorg*: RigSm /BY[®~!] — RigSm /B'Fei[d—1]
and f;: RigNor /B'[®"'] — RigNor /B[®~!] are equivalences, and we conclude the third
claim by what proved above and Corollary 2.14.

For the fourth claim, we use a different model for thebét-topos onRigSm /B, The
fibered categoryCy can be endowed with thErob-topology and thérobét-topology. Fol-
lowing the proof of Corollary 2.14, the mgiCs, Frob) — Cp[® '] induces an equivalence
of topoi. Moreover, the canonical funct@tz[®~!] — RigSm /BY*[®~1] induces an equiva-
lence of categories.

The existence of the last Quillen functor is therefore a froonsequence of the continuity
of the functorf;: (Cp/ [P ], ét) — (Cp[® ], ét). O

Remark2.22 Let f: B’ — B be a map of normal varieties. The image yiaof the presheaf
represented byX, —n) is the presheaf represented 0¥ x z B'~™, —n) and if f is smooth,
the image viaf; of the presheaf represented @Y', —n) is the sheaf represented b¥’, —n).

3. RIGID MOTIVES AND FROB-MOTIVES

We recall that the ring of coefficients is assumed to be @-algebra, and that presheaves
and sheaves take values in the category-ofodules.

We make extensive use of the theory of model categories aradization, following the
approach of Ayoub in[2] and [6]. Fix a sit&, 7). The category of complexes of presheaves
Ch(Psh(C)) can be endowed with th@ojective model structur®r which weak equivalences

are quasi-isomorphisms (maps inducing isomorphisms ofthagy presheaves) and fibrations
7



are mapsF — F’ such thatF(X) — F'(X) is a surjection for allX in C (cfr [14], Section
2.3] and[2, Proposition 4.4.16)).

Remark3.1 If we takeC = {x} we obtain in particular the usual projective model category
structure onCh(A) which is cellular and left proper (see for example [2, Exaerpi.24(2)]
and [14, Proposition 2.3.22]). For aty the categoryCh(Psh(C)) is equivalent to the cate-
gory of presheaves dd with values inCh(A). With this respect, the projective model structure
described above coincides with the one induced by definirakveguivalences and fibrations
point-wise, starting from the projective model structungth(A). One could alternatively con-
sider the (Quillen equivalenthjective model structuren Ch(Psh(C)) obtained by defining
weak-equivalences and cofibrations point-wise (see [2 niDiein 4.4.15]).

Also the category of complexes of shea¥d@s(Sh, (C)) can be endowed with thgojective
model structuredefined in [[2, Proposition 4.4.41]. In this structure, weakiealences are
guasi-isomorphisms of complexes of sheaves (maps indusorgorphisms on the sheaves
associated to the homology presheaves).

Just as in[17],[20],122] o [23], we consider the left Boeddilocalization ofCh(Psh(C))
with respect to the topology we select, and a chosen “caittta®bject”. We recall that left
Bousfield localizations with respect to a class of mégdsee [13, Chapter 3]) is the universal
model categories in which the mapsS$nbecome weak equivalences. The existence of such
structures is granted only under some technical hypothasishown in[13, Theorem 4.1.1]
and [2, Theorem 4.2.71].

Proposition 3.2. Let (C, 7) be a site with finite direct products and et be a full subcategory
of C such that every object @ has a covering by objects @f'. Let alsol be an object ofC’.

(1) The projective model categor¢h Psh(C) admits a left Bousfield localization
Ch; Psh(C) with respect to the sef; of all mapsA(I x X)[i] - A(X)[i] as X
varies inC and: varies inZ.

(2) The projective model categori€sh Psh(C) and Ch Psh(C’) admit left Bousfield
localizationsCh, Psh(C) andCh, Psh(C’) with respect to the class, of mapsF —
F’ inducing isomorphisms on thie-sheaves associated #6,(.F) and H;(F’) for all
i € Z. Moreover, the two localized model categories are Quillgniealent and the
sheafification functor induces a Quillen equivalence to tlogegtive model category
Ch Sh,(C).

(3) The model categorie€h. Psh(C) and Ch, Psh(C’) admit left Bousfield localiza-
tionsCh, ; Psh(C) andCh. ; Psh(C’) with respect to the set; defined above. More-
over, the two localized model categories are Quillen egeiva

Proof. By [2, Proposition 4.4.16] and Remdrk 3.1 the projective eiatiructures in the state-
ment are left proper and cellular. Any such model categonyitsta left Bousfield localization
with respect to a set of maps ([13, Theorem 4.1.1]) hencerttecfaim.

For the first part of second claim, it suffices to apply [2, Prgipon 4.4.32, Lemma 4.4.35]
showing that the localization ovét, is equivalent to a localization over a set of maps. The
second part is a restatement|af [2, Corollary 4.4.43, Pitpost.4.56].

Since by [[2, Proposition 4.4.32] thelocalization coincides with the Bousfield localization
with respect to a set, we conclude by [2, Theorem 4.2.71}teatodel categor¢h, Psh(C)
is still left proper and cellular. The last statement thelfofes from [13, Theorem 4.1.1] and
the second claim. O

In the situation above, we will denote I8y, ;) the union of the clasS and the seb;.

Remark3.3. A geometrically relevant situation is induced whéms endowed with a multi-

plication mapu: I x I — I and maps, andi;, from the terminal object td satisfying the
8



relations of a monoidal object withas in the definition of an interval object (seel[22, Section
2.3]). Under these hypotheses, we say that the t(iBler, /) is asite with an interval

Example3.4. The affinoid rigid varietyB! = Spa K (x) is an interval object with respect to
the natural multiplicationn and maps, andi; induced by the substitution — 0 andy — 1
respectively.

Definition 3.5. Let B be a normal variety ovek .

e The triangulated homotopy category Gh,; 5: Psh(RigSm /B) will be denoted by
RigDAST (B, A).

e The triangulated homotopy category®@hy, z: Psh(Rig Sm / BY") will be denoted by
RigDAST(BPf A) and the one 0€hg,ope 51 Psh(Rig Sm /BY") will be denoted by
RigDA%ifobét (B, A).

e The triangulated homotopy category Ghy,.¢ 51 Psh(RigNor /B) will be denoted
bY Dgyobet 5 (RigNor /B, A) and the one 0o€hy, z: Psh(RigNor /B) will be denoted
by Dfél;]w (RigNor /B, A).

e If C is one of the categorieRigSm /B, RigSm /BY*! and RigNor /B andn €
{ét, Frob, fh, Frobét, fhét, B!, (ét, B'), (Frobét, B'), (fhét, B!)} we say that a map in
Ch Psh(C) is an-weak equivalenc# it is a weak equivalence in the model structure
Ch,, Psh(C) whenever this makes sense.

e We will omit A from the notation whenever the context allows it. The image\ariety
X in one of these categories will be denotedAX).

We now want to introduce the analogue of the previous defimstfor motives with transfers.
By Remark2.1b the mappin@X, —n) — X induces a functoShp,,(RigSm /BY*t) —
Shg.,(RigNor /B). If we compose it with the Yoneda embedding and the funetoof fh-
sheafification we obtain a functor

RigSm /B" — Shg,,,(RigSm /BY") — Shy,(RigNor /B).

Definition 3.6. Let B be a normal variety ovek .
e We define the categorRigCor /B as the category whose objects are those of
RigSm /B and whose morphismEom(X,Y) are computed irShg,(RigNor /B).
The categoryPsh(RigCor /B) will be denoted byPST (RigSm /B).
e We define the categorRigCor /BF! as the category whose objects are those of
RigSm /BF*f and whose morphismidom(X,Y’) are computed it8hg, (RigNor /B).
The categoryPsh(RigCor / BY*r) will be denoted byPST (RigSm / BYe ).

We remark that, ad is aQ-algebra, morphism& — Y of RigCor admit a more concrete
description in terms oforrespondencedefined in[[6, Noltation 2.2.22] and denoted|in [6] by
Cor(X,Y). We also remark that the inclusions of categofiégSm /B — RigCor /B and
RigSm /BYef — RigCor / BY*f induce the following adjunctions:

ay,: Ch Psh(RigSm /B) = ChPST(RigSm /B) :o,.
ay: Ch Psh(RigSm /BY") = Ch PST(RigSm /B'™™) :0,,.
We now define the category of motives with transfers.

Proposition 3.7. Let B be a normal variety an@ be eitherRigSm /B or RigSm /BY*. The
projective model categoigh PST(C) admits a left Bousfield localizatiddh,, PST(C) with
respect taS;, the class of of mapg such thato,(f) is a ét-weak equivalence. It also admits
a further Bousfield localizatio®hg, z: PST(C) with respect to the set formed by all maps
A(BY)[i] — A(X)[¢] by letting X vary in C andi vary inZ.
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Proof. The proof of [6, Theorem 2.5.7] also applies in our situatibar the second statement,
it suffices to applyl[13, Theorem 4.1.1]. O

Remark3.8. By means of an étale version 0f [6, Corollary 2.5.3]Fifis a presheaf with trans-
fers then the associated étale sheaf can be endowed with a unique structure of presheaf
with transfers such tha — ag F is a map of presheaves with transfers. The classan then

be defined intrinsically, as the class of maps— F’ inducing isomorphisms of étale sheaves
with transfersug H; F — ag H; F .

Definition 3.9. Let B be a normal variety ovek'.

e The triangulated homotopy category Ghg; z: PST(RigSm /B) will be denoted by
RigDMS (B, A).

e The triangulated homotopy category Ghy; s PST(RigSm /B"*f) will be denoted
by RigDMST(BPef A).

e We will omit A from the notation whenever the context allows it. The image\ariety
X in one of these categories will be denotedqy( X).

We remark that ithar K = 0 the two definitions above coincide. Also /¥ is the spectrum
of the perfect fieldk the categonRigDMST ( BPef) coincides withRigDMST (K). In this

case, the definition oRigDA . (B also coincides with the one ®igDAST . (K)
given in the introduction as the following fact shows.

Proposition 3.10. Let B be a normal variety ovek. The categoryChy, e (RigSm /Brert)
is Quillen equivalent to the left Bousfield localization(@f, Psh(RigSm / BY*f) over the set
of all shifts of mapg\ (XY, —n — 1) — A(X, —n) as(X, —n) varies inRigSm / BF.

Proof. From Lemmag 2,18, 2.20 aifd 3/11 we conclude thabét-local objects are those
which areFrob-local andét-local. We can then conclude using Lemma 3.12. O

Lemma 3.11. Let C be a category endowed with two Grothendieck topologies, and letr;

be the topology generated by and .. We denote by, the associated sheafification functor
and witho,, their right adjoint functors. Ifo,, is exact antu,, = a,,a,, then the following
categories are canonically equivalent:

(1) The homotopy category @fh,, Psh(C).

(2) The full triangulated subcategory Bf(Psh(C)) formed by objects which arg-local.

(3) The full triangulated subcategory Bf(Psh(C)) formed by objects which arg-local
and,-local.

Proof. The equivalence between the first and the second categdow#oby definition of the
Bousfield localization. We are left to prove the equivalebeaveen the second and the third.
We remark thats-local objects are in particuldr , 7»)-local.

Sinceo,, is exact, the category of-local objects coincides with the category of complexes
quasi-isomorphic to complexes of-sheaves. Consider the model categ@iy., (Sh,, (C))
which is the Bousfield localization d®h(Sh,, (C)) over the class of maps of complexes in-
ducing isomorphisms on thg-sheaves associated to the homology presheaves, that e wil
call 3-equivalences. From the assumption = a.,a,, the class ofs;-equivalences coincides
with the class of maps§,, of complexes inducing isomorphisms on thesheaves associated
to the homologyr;-sheaves. Henc€h,,(Sh,, (C)) coincides withCh,,(Sh,, (C)) and its
derived category is equivalent to the categoryof 7,)-local complexes.

Because of the following Quillen adjunction

La,, = a,: Ho(Ch,, Psh(C) = Ho(Ch,, Sh,,(C)) :Ro,, = o,,.
10



we conclude that the image wa of a,-local complex of sheaves i.e(d.7)-local complex,
is 3-local, as wanted. O

Lemma 3.12. Let B be a normal variety ovek. A fibrant object ofCh Psh(RigSm /BFe)
is Frob-local if and only if it is local with respect to the set of alifts of maps\ (XY, —n —
1) — A(X, —n) as(X, —n) varies inRigSm /BYer,

Proof. We initially remark that a fibrant compleX is local with respect to the set of maps in the
claim if and only if (H;F)(X, —n) = (H;F)(X", —n — 1) for all X andi. By Proposition
[2.4, this amounts to say thak 7 is aFrob-sheaf for alki.

Suppose now thaf is fibrant andfrob-local. Since the map of presheavesX (-1, —n —

1) — A(X,—n) induces an isomorphism on the associafedb-sheaves, we deduce that
(H;F) (XY, —n — 1) = (HF)(X, —n). This implies thatid, F is aFrob-sheaf and henc&
is local with respect to the maps of the claim, as wanted.

Suppose now thaF is fibrant and local with respect to the maps of the claim. Eet>
C™°b F aFrob-weak equivalence to a fibraftob-local object. By definition, we deduce that
the Frob-sheaves associated ¥y F and to H;C*P F are isomorphic. On the other hand, we
know that these presheaves are alreBohb-sheaves, and hence the map— C™bF is a
guasi-isomorphism of presheaves afids Frob-local. O

We now want to find another model for the categmgg’w(RigNor /B). This is possible by
means of the model-categorical machinery developed above.

By RemarK 2.1l an objeck in Ch Psh(RigNor /B) is th-local if and only if it is additive
and

D Psh(RigNor /B)(A(X), F) — D Psh(RigNor / B)(A(X"), F)AutX/X)
is an isomorphism, for all pseudo-Galois coverings — X in AffNor /B. Therefore,
if we considerDg,q¢ 51 (RigNor /B) as the subcategory afB', Frobét)-local objects in
D Psh(RigNor /B) we say that an object of Dy 5: (RigNor /B) is fh-local if and only
if
Divobe 5t (RigNor /B)(A(X), F) — Dpyope st (RigNor /B)(A(X"), F)AwX/X)

is an isomorphism, for all pseudo-Galois coveridgs— X.

Proposition 3.13. Let B be a normal variety ovefl. The categoryDQ;Bl(RigNor /B) is
canonically isomorphic to the category fdflocal objects inDg,ope; 51 (RigNor /B).

Proof. It suffices to prove the claim before performing th&-localization on each category.
The statement then follows from Propositions 2.18 [and] 2og@ther with Lemmals 2.20 and
B.11. O

We now study some functoriality properties of the categojiist defined, and later prove a
fundamental fact: the locality axiom (see [22, TheoremZP.

Proposition 3.14.Let f: B’ — B be a map of normal varieties ovéf. The first two adjoint
pairs of Propositio 2.21 induce the following Quillen pair

L f¢: Divober 1 (RigNor /B") 2 Dyyober 5t (RigNor /B) (R f*
Lf*: RigDAD e (B™) 2 RigDAf . (B'7) R,

which are equivalences whenevgis a Frob-covering. Moreover, iff is a smooth map, the
third adjoint pair of Propositioi 2.21 induces a Quillen pai

Lf: RigDA%lrfobét(B/Perf> = RigDA%ir{obét(BPerf> Lf”
11



Proof. The statement is a formal consequence of Proposition 22Theorem 4.4.61] and the
formulasf*(By) = Bj. ) andf;(B) = BY. O

Proposition 3.15. Lete: B’ — B be afinite map of normal varieties ovar. The functor
e,: ChPsh(RigSm /B'"*") — ChPsh(RigSm /B")
preserves th€Frobét, B')-equivalences.

Proof. Lete: B’ — B be afinite map of normal varieties. The functgiis induced by the map
RigSm /B — RigSm /B’ sending(X, —n) to (X X g—m B'™, —n). From Remark
[2.18 it commutes witlét-sheafification. As the image ¢ (Y —n — 1) is isomorphic to
(X X gny B'EM)ED —n — 1) we deduce from Corollafy 2,14 that commutes withFrob-
sheafification. Therefore by Propositibn 2.18 we deduce ¢hatPsh(RigSm /B'Fef) —
Psh(RigSm /BF*t) commutes with the functarg,.,e; of Frobét-sheafification, hence it pre-
servedirobét-equivalences.

We now prove that it also preservBs-equivalences. By [2, Proposition 4.2.74] it suffices
to show that, (A(Bi,) — A(V)) is aB!-weak equivalence for anly in RigSm /X", This
follows from the explicit homotopy between the identity ahed zero map on.(A(B;,)) (see
the argument of [6, Theorem 2.5.24]). O

The following property is an extension of [6, Theorem 1.4 2t referred to as thecality
axiom.

Theorem 3.16.Let:: Z — B be a closed immersion of normal varieties ovérand let
j: U — B be the open complement. For every objgttin ngDAFrobet(BPerf) there is an
distinguished triangle

LjLj*M — M — Ri,ILi*M —
In particular, the pair(L;j*, Li*) is conservative.

Proof. First of all, we remark that by Propositibn 3115 one Ras = i,. In particular it suffices
to prove the claim before performing the localization over shifts of maps\ (XY, —n —
1) — A(X, —n) i.e. in the categorRigDAST ( BPerf),

The functorsLj; Lj* andLLi* commute with small sums because they admit right adjoint
functors. AlsoRi, does, since it hold®:, = i,. We conclude that the full subcategory of
RigDAS . (BT of objectsM such that

LjLj*M — M — Re, Li*M —
is an distinguished triangle is closed under cones, andrwisidall sums. We can then equiv-
alently prove the claim in the subcategdRigDAS (BY") of compact objects, since these
motives generatRigDAST ( BP) as a triangulated category with small sums.
By means of Lemma_3.17 and Proposition _3.15, it suffices towehe statement for
each categonRigDAST(B(-). It is then enough to prove the claim for the categories
RigDA (B(-) as defined in[[6, Definition 1.4.12] sindRigDAS! (B(-™) is a further

localization of RigDAST (B(-™). In this case, the statement is proved lin [6, Theorem
1.4.20]. O

Lemma 3.17. Let B be a normal variety ovek’. The canonical functor®igSm /B~ —
RigSm /BY*! induce a triangulated equivalence of categories

gﬂngDACt(B( n ) ~ ngDAct(BPerf)

where we denote bRigDACt(B(_")) [resp. withRigDAS (BF")] the subcategory of com-
pact objects oRigDAST (B(-")) [resp. olegDAeﬁ(BPeff)]



Proof. The functorRigDAS (B(-") — RigDAZ (BP") is triangulated and sends the ob-
jects A(X)[i] which are compact generators of the first category, to compgjects of the
second. It then induces an exact functor between the twoasedparies of compact objects.
Moreover, by letting: vary, the images of the objects RigDAS! (B(—)) generate the cate-
gory RigDA (BFe).

Up to shifting indices, it therefore suffices to show thatforY in RigSm /B one has

lim RigDAg (BC™)(A(X x5 BT™), A(Y x5 BT™)) = RigDA (B™)(A(X), A(Y))

where we denote byX = (X,0) andY = (Y,0) the object ofRigSm /B! associated to(
resp.Y. To this aim, we simply follow the proof of [6, PropositiorAll]. For the convenience
of the reader, we reproduce it here.

Step 1 We consider the directed diagrafhformed the map3—"-1) — B" and we
let RigSm /B be the the category of rigid smooth varieties over it as défingl6, Section
1.4.2]. We can endow the categaBh Psh(RigSm /B) with the (ét, B')-local model struc-
ture, and consider the Quillen adjunctions induced by thp ofadiagramsy,,: B¢ — B,
fom: BE™ — BE™):

o : Ch Psh(RigSm /B) = ChPsh(RigSm /B"™") :a,,,
uy: Ch Psh(RigSm /B™™) = Ch Psh(RigSm /B) :a,
f* : ChPsh(RigSm /B"™) = ChPsh(RigSm /B"™) : fum.

We also remark that the canonical mBjgSm /B — RigSm /B induces a Quillen
adjunction

f%.: ChPsh(RigSm /BC™) = ChPsh(RigSm /B) : fo,...

Consider a trivial cofibration,A(Y) — R with targetR that is(ét, B')-fibrant. Sincen’ is
a left and right Quillen functor and;«,, = f, we deduce that the map(Y” xz B(™") =
5 A(Y) — i Ris also an(ét, B! )-trivial cofibration with an(ét, B!)-fibrant target.

Step 2 By applying the left Quillen functorg;,, and f*  we also obtain thaf,A(Y) =
FimFaoA(Y) = frnanRand fLoAY) = fo, faoh(Y) — fo,07R are (ét,B)-trivial

cofibrations. By the 2-out-of-3 property of weak equivakeshapplied to the composite map
froAY) — fr af R— o) R

we then deduce that the mgp, . R — o R is an(ét, B')-weak equivalence.
Step 3 We now claim that the natural map(Y') — R with R := colim, f% ;R is an

(ét, B')-weak equivalence i€h Psh(RigSm /BY*!). By what shown in Step 2, it suffices to
prove that the functor

colim: ChPsh(RigSm /BN — Ch Psh(RigSm /B")

preservesét, B!)-weak equivalences. First of all, we remark that it is a @uileft functor with
respect to the projective model structure on the diagramgeay Ch Psh(RigSm /BFer)N
induced by the point-wisét, B!)-structure. Hence, it preservé&, B')-weak equivalences
between cofibrant objects. On the other hand, as directéditbcommute with homology, it
also preserves weak equivalences of presheaves. Sincempjex is quasi-isomorphic to a
cofibrant one, we deduce the claim.

Step 4 We now prove thatk? is B!-local. Consider a varietyy smooth ove3(~"). From the
formula

R(U) = colimy,>, a, R(U X gy BT™)
and the fact that, R is B'-local, we deduce a quasi-isomorphigt(l/) = R(B},) as wanted.
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Step 5 We now prove thaf is ét-local. It suffices to show that for arly smooth over3(—")
one has® (U, R) = H_,R(U). The topos associated & /U is equivalent to the one of
lim Et /(U X g-» B&™) and all these sites have a bounded cohomological dimenisioa/s
is aQ-algebra. By applyind [1, Theorem VI.8.7.3] together withpectral sequence argument
given by [25, Theorem 0.3], we then deduce the formula

HE, (U, R) = colim,, HE, (U X gy BT™ o, R).
On the other hand, as;, R is ét-local, we conclude that

colim,, HE, (U X gy BT™, o' R) 2 colim,,, H_ (o, R)(U X gy B™™) = H_,R(U)
proving the claim.

Step 6 From Steps 3-5, we conclude that we can comRigD AT (BPeD)(A(X), A(Y))
as R(X) which coincides witheolim,, (o R)(X x5 B("™). By what is proved in Step 1, we
also deduce that’ R is a (ét, B')-fibrant replacement ok (Y x5 B(~™) and hence the last
group coincides witkolim,, RigDAS (BC)(A(X x g B"™), A(Y x BE™)) proving the

€

statement. 0

4. THE EQUIVALENCE BETWEEN MOTIVES WITH AND WITHOUT TRANSFERS

We can finally present the main result of this paper. We rehatithe ring of coefficientd
is assumed to be@-algebra.

Theorem 4.1. Let B be a normal variety ove. The functora,;, induces an equivalence of
triangulated categories:

Lay, : RigDAG . (B™) = RigDMg (B™).

(&)

As a corollary, we obtain the two following results, whicke andeed our main motivation.
Theorem 4.2. The functora,, induces an equivalence of triangulated categories:
Lay, : RigDAf . (K) = RigDMg! (K).

Theorem 4.3. Let B be a normal variety over a fiel& of characteristic). The functoray,
induces an equivalence of triangulated categories:

La,, : RigDAY (B) = RigDMY (B).

The proof of Theorern 411 is divided into the following steps.

(1) We first produce a functdta,, : RigDAS . (BP) — RigDMS (BP*f) commut-
ing with sums, triangulated, sending a set of compact géorsraf the first category
into a set of compact generators of the second.

(2) We define a fully faithful functok.i* : RigDAST . (BFef) — D e 51 (RigNor /B).

(3) We define a fully faithful functok.;* : RigDM¢ (BPef) — Dy e (RigNor /B).

(4) We check that.;* o Lay, is isomorphic tdL:i* proving thatLa;, is also fully faithful.

We now prove the first step.

Proposition 4.4. Let B be a normal variety ovefl. The functora,, induces a triangulated
functor

Lay : RigDAR (B"") — RigDMg{ (B™")
commuting with sums, sending a set of compact generatotgedirst category into a set of

compact generators of the second.
14



Proof. The functora,, induces a Quillen functor
Lay.: Chg Psh(RigSm /B"") — Chg PST(RigSm /BY*Y)

sendingA (X, —n) to A (X). We are left to prove that it factors over tiieob-localization,
i.e. that the map\,(X-V) — A (X) is an isomorphism iRigDMS! (BPef) for all X €
RigSm /B(—™. Actually, since the ma " — X induces an isomorphism éf-sheaves, we
deduce that itis an isomorphism in the categaiyCor / B™f hence also iRigDMS! ( BPerT),
O
We are now ready to prove the second step.

Proposition 4.5. Let B be a normal variety overk. The functorsRigSm /B —
RigNor /B induce a fully faithful functor

Li},: RigDAS | (BY) — Dggpen (RigNor /B).

Proof. We let Cy be the category introduced in Definitibn 2.12. As alreadyased in the
proof of Propositio 2.21 we can endow it with tRebét-topology and the topos associated
to it is equivalent to thérobét-topos onRigSm /BY*. In particular, the continuous functor
ig: Cp — RigNor /B induces an adjunction

Li%y: RigDAG | (B™™) 2 Dgopep (RigNor /B) :Rip..

As i, 1S iIsomorphic to the identity, it suffices to show tifts, = ip. SO thatRig,Li}; is
isomorphic to the identity as well.
The functorig, commutes withFrobét-sheafification, and hence it present@sbét-weak
equivalences, and sinég, (A(Bi,)) = A(BL) @ ig.(A(V)) is weakly equivalent tog. (A(V))
for everyV in RigNor /B we also conclude that it preserni@sweak equivalences, as wanted.
O

Remark4.6. As a corollary of the proof of Propositidn 4.5 we obtain thia¢ functorig,
preservegFrobét, B)-equivalences.

We remark that the previous result does not yet prove oumclarhis is reached by the
following crucial fact. Its proof will demand a series of kedcal lemmas that are proven right
below it.

Proposition 4.7. Let B be a normal variety ovefl. The image of.:}; is contained in the
subcategory ofh-local objects.

Proof. Let M be an object oRigDAS . (BYf) let f: X — B be a normal irreducible
variety overB and letr: X’ — X be a pseudo-Galois covering iffNor /B with G =
Aut(X'/X). We are left to prove that

DFrobét,Bl (RIgNOI' /B) (A(X), LZ*M) — DFrobét,Bl (RIgNOI' /B) (A(X/)7 ]LZ*M)G
is an isomorphism. Using Lemrha 4.8 we can equally prove that
RigDA 6 (X7 (A, Lf* M) — RigDAR e (X7 (A, L Lf* M)

is an isomorphism. Using the notation of Lemma 4.11, it seffito prove that the natural
transformatiorid — (Rr,Lr*)¢ is invertible.

Using Lemmd 4.12, we can define a stratificat{df})o<;<, of X made of locally closed
connected normal subvarieties 8fsuch that-;: X! — X, is a composition of an étale cover
and aFrob-cover of normal varieties, by letting! be the reduction of the subvariely; x x
X' C X'. Using the locality axiom (Theorem 3116) figDAS | . applied to the inclusions

u;: X; — X we can then restrict to proving that each transformatiop — L} (Rr,Lr*)¢ =2
15



(Rr;, Lr})“Lu} is invertible, where the last isomorphism follows from Leaif11. It suffices
then to prove thaid — (Rr;,LLr;)¢ is invertible. Ifs: Z — T is aFrob-cover, the functors
(Ls*,Rs,) define an equivalence of categoriBsgDAST  (TPef) = RigDAZ . (ZFe)
by Prop03|t|orE3]]4 hence we can assume that the mag® étale covers. Moreover, since
Lr}: RigDAST . (XPof) - RigDASE . (X!Pef) is conservative by Lemnia4l10, we can
equwalently prove thakr; — L} (Rr,Lr;)¢ = (Rrl,Lri*)¢Le} is invertible, where, is the
base change of over itself (see Lemnfa 4.111). By the assumptions,ame conclude that; is
aprojectior] | X/ — X! with G acting transitively on the fibers, so that the fundt&r’, Lr/*)

is the identity, proving the claim. O

The following lemmas were used in the proof of the previouwppsition.

Lemma 4.8. Let f: B — B be a map of normal rigid varieties ovex. For any M €
RigDA, 1« (B) there is a canonical isomorphism
Drvober,n1 (RigNor /B)(A(B'), Lip M) = RigDAp,qpe (B') (A, Lf*M).

Proof. Consider the following diagram of functors:

Psh(Cy[d!]) —2~ Psh(RigNor /B[d~1])

| |

Psh(Cp[0]) —2~ Psh(RigNor /B/[®"1])
Let F be inPsh(Cg[®~!]) and X’ be inRigNor /B’. One hagi%, f*)(F)(X’) = colim F (V)
where the colimit is taken over the mags — V' x g, B'™ in RigNor /B’'[®~!] by let-
ting V vary among varieties which are smooth over soRie™. On the other hand, one
has (f*i5)(F)(X’) = colim F(V) where the colimit is taken over the maps8 — V in
RigNor /B[®~!] by lettingV vary among varieties which are smooth over sdiie”. Since
V X geny B'T™ 2 (V xp B').eq in RigSm /B'[®~!] we deduce that the indexing categories
are equivalent, hence the diagram above is commutativehamndfore by Corollary 2.14 and
what shown in the proof of Propositidn 2121 also the follogvame is:

Ch Shyyope(RigSm /BFeT) —2~ Ch Shpyepe (RigNor /B)

|- |-

Ch Shpg; e (RigSm /B’Perf) Ch Shp e (RigNor /B')

This fact together with Lemna4.9 impligsLLit, = Li%, Lf*. By Proposition§3.14 arid 4.5
we then deduce

Drvobst, st (RigNor /B)(A(B'), Lip M) = Dgyober,m (RigNor / B)(ILf3(A), Lip M) =
= Dryober,t (RigNor /B') (A, f*Lip M) = Diyoper st (RigNor / B') (A, Lig, Lf* M) =2
= Diyonerst (RigNor /B') (Lig A, Li Lf*M) = RigDAp,qpe (B') (A, Lf*M)
as claimed. 0
Lemma 4.9.Let f: B’ — B be a map of normal varieties ovéf. The functor
f*: ChPsh(RigNor /B) — ChPsh(RigNor /B’)

preserves th€Frobét, B!)-equivalences.
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Proof. Since f* commutes withErobét-sheafification and with colimits, it preservesobét-
equivalences. Sincg*(A(B},)) = BL ® f*(A(V)) is weakly equivalent tof*(A(V)) for
everyV in RigNor /B we also conclude that* preserve®'-weak equivalences, hence the
claim. 0

Lemma 4.10. Let B be a normal variety ovek and letf: X — Y be a composition of
Frob-coverings andit-coverings inRigNor /B. The functorLf*: RigDA (vPel) —
RigDA . (XTf) is conservative.

Proof. If f is aFrob-cover, thenL f* is an equivalence by Proposition 3.14. We are left to
prove the claim in casg is anét-covering. In this case, we can use the proof of the analogous
statement in algebraic geometry [3, Lemma 3.4]. O

Lemma 4.11.Lete: X’ — X be a finite morphism of normal varieties ovkrand letG be
a finite group acting ofiRe,LLe*. There exists a subfunctfRe,Le* )¢ of Re,LLe* such that for
all M, N in RigDAS (XTf) one has

RigDA . (XP) (M, (Re.Le )9 N) = RigDAG . (X)) (M, Re, Le” V).

Moreover for any mag: Y — X of normal rigid varieties factoring into a closed embedding
followed by a smooth map, and any diagram of normal varieties

’

(V % x X' )red —— X

Y X

there is an induced action 6f onRRe’ Le’™* and an invertible transformatioh f*(Re,Le*)¢ =
(Re,Le™) L f*.

Proof. We define(Re,LLe*)“ to be subfunctor obtained as the image of the projeét‘ozg
acting onRe,Le*.

In order to prove the second claim, it suffices to prove IhitRe,Le* = Re Le*Lf*. As
the latter term coincides witRe,IL( fe')* = Re,L(ef’)* = Re, L f"*ILe* it suffices to show that
the base change transformatibfi*Re, — Re.IL f* is invertible. We can consider individually
the case in whiclf is smooth, and the case in whi¢hs a closed embedding.

Step 1 Suppose thaf is smooth. Therf* has a left adjoiny,;. We can equally prove that the
natural transformatioh. f;.e™ — LLe*LL f; is invertible. This follows from the isomorphism be-
tween the functorgje’™* ande* f; from Psh(RigSm /X'"*) to Psh(RigSm /Y"") obtained
by direct inspection.

Step 2 Suppose thaf is a closed immersion. Let: U — X be the open immersion
complementary tg' andj’ be the open immersion complementaryftoBy the locality axiom
(Theoreni 3.16) we can equally prove thigtRe, — Re,Lj; is invertible.

Step 3 It is easy to prove that the transformatiby;Re, — Re.lLj; is invertible once
we know thate., €., j; andj; preserve théFrobét, B')-equivalences. Indeed, if this is the
case, the functors derive trivially and it suffices to pravattfor anyFrobét-sheafF the map
(Js€l)(F) — (e.ji)(F) is invertible. This follows from the very definitions.

Step 4 The fact thaj; (and similarlyj;) preserves théFrobét)-weak equivalences follows
from the fact that it respects quasi-isomorphisms of corgdefFrobét-sheaves, since it is
the functor of extension by. In order to prove that it preserves tié-equivalences, by [2,

Proposition 4.2.74] we can prove thatA(Bi,) — A(V)) is aB'-weak equivalence for alf
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in RigSm /UY! and this is clear. The fact that (and similarlye’) preserves théFrobét, B!)-
equivalences is proved in Proposition 3.15. We then corcthd claim in cas¢ is a closed
immersion. O

Lemma 4.12.Let f: X’ — X be a pseudo-Galois map of normal varieties over There
exists a finite stratificatio(lX;),<;<,, of locally closed normal subvarieties &f such that each
induced mapy;: (X’ xx X;)ea — X; is a composition of aitale cover and &rob-cover of
normal rigid varieties.

Proof. For every affinoid rigid varietypa R there is a map of ringed spacgsa R — Spec R
which is surjective on points, and such that the pullbackfofite étale mappec S — Spec R
[resp. of an open inclusioli — Spec R] over Spa R — Spec R exists (following the notation
of [15, Lemma 3.8]) and is finite étale [resp. an open incdoki The claim then follows from
the analogous statement valid for schemes éver O

Remark4.13 In the proof of Proposition 417, we made use of the fact thet aQ-algebra in
a crucial way, for instance, in order to define the fun¢ie.Le* ).

The following result proves the second step.
Corollary 4.14. Let B be a normal variety ovek’. The composite functor
RigDA{ .. (B™") = Dpyoper s (RigNor /B) — D i (RigNor /B)
is fully faithful.
Proof. This follows at once from Proposition 3]13 and Proposifiofh 4 O

We now move to the third step. We recall that the catedtigCor(B"*) is a subcategory
of Shy, (RigNor /B). We denote by this inclusion of categories.

Proposition 4.15. Let B be a normal variety ove. The functorj induces a fully faithful
functorLL;j*: RigDM*"(B**f) — D, (RigNor /B).

Proof. The functor; extends to a functoPST(RigSm /BF*"!) — Shg,(RigNor /B) and in-
duces a Quillen paif*: Ch PST(RigSm /BY*f) = Ch Shy,(RigNor /B) :j, with respect
to the projective model structures. We prove that it is a I@miadjunction also with respect to
the (ét, B')-model structure on the two categories by showing jhatreservegét, B!)-local
objects.

From the following commutative diagram

RigSm /B! — Psh(RigSm /BP*") —~ Shp,;,(RigNor /B)

RigCor /BPf —~ PST(RigSm /BP) —— Shy, (RigNor /B)

we deduce that,,j, = i.0n Which is a right Quillen functor. It therefore suffices to shihat
if o, F is (ét,B!)-local then alsaF is, for every fibrant objecF. Let F — F' be a(ét, B')-
weak equivalence to &t, B')-fibrant object of Ch PST(RigSm /BF*). By Lemmal4.1b,
we deduce that,, F — o, F' is a(ét, B')-weak equivalence betweéat, B')-fibrant objects,
hence it is a quasi-isomorphism. Ag reflects quasi-isomorphisms, we conclude thais
quasi-isomorphic t¢F" hence(ét, B!)-local.

We now prove thakL;* is fully faithful by proving thatR;,IL;* is isomorphic to the identity.
As j,j* is isomorphic to the identity, it suffices to show th&f, = ;.. We start by proving
that j, preservegrobét-weak equivalences. As shown in Remark 4.6, the fungtpreserves

Frobét-equivalences. It is also clear thagt does. Sincey, reflectskrobét-weak equivalences,
18



the claim follows from the equality,,j. = i.om. Sincej.(A(B})) = A(BL) ® 7.(A(V)) is
weakly equivalent tg,.(A(V)) for everyV in RigNor /B, we also conclude that preserves
B!-weak equivalences, hence the claim. O

Lemma 4.16. Let B be a normal variety oveK'. The functor
0: ChPST(RigSm /BY") — ChPsh(RigSm /B"")
preservegét, B!)-weak equivalences.

Proof. The argument of [4, Lemma 2.111] easily generalizes to outextt. \We point out
that in the proof, the the class wijectivetrivial cofibrations in the category of complexes of
presheaves is used (see Renark 3.1). O

The fourth step is just an easy check, as the next proposkiows.

Proposition 4.17. Let B be a normal variety ovef. The composite functdt;* o Lay, is
isomorphic tali*. In particular Lay, is fully faithful.

Proof. It suffices to check that the following square is quasi-coratine.

Psh(RigSm /BPf) -~ PST(RigSm /B"*T)

li lf

Shyyob(RigNor / B) —2— Shg,(RigNor /B)

This can be done by inspecting the two composite right atjomwhich are canonically
isomorphic. O

This also ends the proof of Theoréml4.1.

We remark that in cask is endowed with the trivial norm, we obtain a result on thegaty
of motives constructed from schemes o¥eér It is the natural generalization ofl[4, Theorem
B.1] in positive characteristic. We recall that the ring okefficientsA is assumed to be a
Q-algebra.

Theorem 4.18.Let B be a normal algebraic variety over a perfect figkd The functora,,
induces an equivalence of triangulated categories:

Lay, DA%ifobét(BPerf) = DME?(BPerf)-

We now define the stable version of the categories of motivesduced so far, and remark
that Theorem 413 extends formally to the stable case pmyidigeneralization of the result [9,
Theorem 15.2.16].

Definition 4.19. We denote byRigDA, ... (B ") [resp. byRigDM,, (BY*)] the homo-
topy category associated to the model category of symmsbectra (see [2, Section 4.3.2])
Sp7 Chpyenes st Psh(RigSm / BPeT) [resp. Sp7 Chy st PST(RigSm /BY*f)] whereT is the
cokernel of the unit map(B) — A(T}) [respAy(B) — A (TE)].

Corollary 4.20. Let B be a normal variety oveK. The functor,, induces an equivalence of
triangulated categories:

Lay, : RigDAp, .4 (B™) 2 RigDM,, (BY™).
Proof. Theoreni 4.8 states that the adjunction

st Chpope st Psh(RigSm /BY) 2 Chygyopee pt PST(RigSm /BT 20y,
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is a Quillen equivalence. It therefore induces a Quilleniegjance on the categories of sym-
metric spectra

Ay - Sp’% ChFrobét,IB%1 PSh(ngsm /BPerf) = Sp% ChFrobét,IB%1 PST(ngsm /BPerf) :Otr
by means ofl[2, Proposition 4.3.35]. O

We now assume that equalsZ if char K = 0 and equalZ[1/p] if char K = p. In analogy
with the statemenDA (B, A) = DM (B, A) proved for motives associated to schemes (see
[3, Appendix B]) it is expected that the following result@alsolds.

Conjecture 4.21.Let B be a normal variety oveK'. The functorga,,, o) induce an equiva-
lence of triangulated categories:

Lay, : RigDA,, (B, A) = RigDM,, (B, A).

We remark that in the above statement differs from CorolaP@ for two main reasons: the
ring of coefficients is no longer assumed to b@-algebra, and the class of maps with respect
to which we localize are th&-local maps and no longer th&obét-local maps.

In order to reach this twofold generalization, using thétegues developed in|[3], it would
suffice to show the two following formal properties of theutitorRigDA ,:

e Separatenesdgor anyFrob-coverB’ — B the functor
RigDA (B, A) — RigDA, (B, A)

is an equivalence of categories.
e Rigidity: if char K 1 N the functor

D She(Et /B,Z/NZ) — RigDA,(B,Z/NZ)
is an equivalence of categories, whélte/ B is the small étale site ovés.
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