
HAL Id: hal-03895740
https://hal.science/hal-03895740

Submitted on 13 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Necessary and possibly optimal items in selecting
problems

Sébastien Destercke, Romain Guillaume

To cite this version:
Sébastien Destercke, Romain Guillaume. Necessary and possibly optimal items in selecting prob-
lems. 19th International Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems (IPMU 2022), Jul 2022, Milan, Italy. pp.494-503, �10.1007/978-3-031-
08971-8_41�. �hal-03895740�

https://hal.science/hal-03895740
https://hal.archives-ouvertes.fr

Necessary and possibly optimal items in selecting
problems.

Sébastien Destercke1 and Romain Guillaume2

1 UMR CNRS 7253 Heudiasyc, Sorbonne Université, Université de Technologie de Compiègne
CS 60319 - 60203 Compiègne cedex, France

{surname.name}@hds.utc.fr
2 University of Toulouse 2, IRIT,France

Abstract. In this paper, we consider the classical and basic optimisation problem
consisting in selecting a set of p items among n with minimal costs, but where
the costs are ill-known or uncertain. As the optimal solution in such a case is no
longer uniquely nor well-defined, we consider the issue of characterizing the set
of optimal solutions, as well as those items that are necessarily or possibly in the
final selection.

Keywords: Combinatorial optimisation · Interval uncertainty · Credal sets · Pos-
sibly optimal solutions.

1 Introduction

As one of the most basic problem in combinatorial optimisation, item selection consti-
tute a special case of many other well-known combinatorial optimisation problems. For
instance, it corresponds to a knapsack problem with items of equal weights, or to spe-
cific one-job scheduling or assignment problems. As such, its study as a basic building
block remains of interest.

This problem goes as follows: given a set Ω = {x1, . . . ,xn} of n objects, each asso-
ciated with a cost ci, find amongst those n objects the p objects that minimize the cost.
In other words, if we denote by F(X) = ∑xi∈X ci the accumulated cost for the subset
X ⊆ Ω of objects, then the selecting items problem consists in finding

X∗ = arg min
X⊆Ω ,|X |=p

F(X). (1)

One can see that the optimal solution is obtained by taking the p objects with the small-
est costs, which can be achieved in O(n) time. We will denote by Φ = {X ⊆Ω : |X |= p}
the set of feasible solutions of the problem.

However, previous studies have shown that this simplicity of the problem may not
last when adding some uncertainty to the problem. For instance, it has been shown
that computing min-max regret solutions when costs can take values in a discrete space
makes the problem NP-hard [6].

It can also be argued that using min-max, regret min-max or other criterion that
makes the optimal solution well-defined but unique again amounts to making a sub-

jective choice. An alternative, notably explored in decision making (both in multi-
criteria [5] and uncertain situations [8]) and computational social choice [9], is to con-
sider and characterize the set of possibly optimal solutions rather than searching for a
unique one. While some work exists in this line for combinatorial optimisation prob-
lems [4, 1], it is much less investigated.

In this paper, we discuss what happens when costs become uncertain, and when we
want to characterise sets of possibly optimal solutions given this uncertainty. Such a
characterization may be helpful to know on which items one should focus its investiga-
tion, or to provide a decision maker with robust and guaranteed information about the
solution.

We first look at the problem when costs are known to belong to intervals, and then
proceed to a more general framework where the uncertainty about costs is described
by convex sets of probabilities, a model that includes as specific case most uncertainty
theories, such as belief functions, probabilities or possibilities.

Section 2 discusses the problem we consider in the interval case, and notably what
we mean by set of possibly optimal solutions, as well as by necessary and possibly
optimal items. Section 3 then proposes a compact representation of all the possibly
optimal solution by using the previously established notion, showing that this set can
be obtained in polynomial time. Section 4 discusses the case where the uncertainty is
described by a set of probability.

2 The interval case

This section introduces the simple idea of sets of possibly optimal solution (which in
practice reduces to define a Pareto front), as well as the idea of necessarily and possibly
optimal item, in the case where uncertainty is described by an interval.

2.1 Setting

We now consider that costs are defined by intervals, that is for object xi we only know
that its cost belong to Ci := [ci,ci]. In practice, this means that F(X) ∈ F (X) :=
[F(X),F(X)], and that the optimal solution is not unique any more.

A regular way to solve this issue is by considering a min-max or a regret min-max
criterion, where one tries to find the best solution in the worst case scenario. Let us
denote by Γ = ×n

i=1[ci,ci] the hyper-cube representing the set of possible scenarios,
and by γ ∈ Γ one possible scenario. We will denote by X∗

γ the optimal solution for a
scenario γ . The min-max solution is

X∗
mM = arg min

X⊆Ω ,|X |=p
max
γ∈Γ

F(X)

In the interval-valued case, such a solution is actually very easy to find, as we just have
to solve Equation (1) for ci = ci.

However, as said in the introduction, we will be interested in this paper in charac-
terising the whole set O of possibly optimal solutions. This set is defined as follows

O = {X ∈ Φ : ∃γ ∈ Γ s.t. X ∈ arg min
X∈Φ

F(X)} (2)

and includes all the solutions that, for what we know, could be optimal. In general,
such a set is not obtainable through simple enumeration, nor is very practical to handle:
any end-user confronted to a long list of solutions would simply not find it useful. It
should however be noted that checking whether a given set X ∈ Φ is within O is very
easy: simply set ci = ci for all xi ∈ X and ci = ci for all xi ̸∈ X , and check that X is the
solution to Equation (1). However, the number of subsets to check would still remain
exponential.

For this reason, it is useful to easy to compute representations of O , possibly ap-
proximate. This is what we do next, starting with the notion of necessary and optimal
items.

2.2 Possibly and necessarily optimal items

An item xi is said possibly optimal if it is in at least one solution of O , and necessarily
optimal if it is in all the solutions of O . For the selecting item problem, we have the
following propositions:

Proposition 1. xi is necessarily optimal if and only if ci > c j for at least n− p items x j,
i.e.

|{x j : ci < c j, i ̸= j}| ≥ n− p

Proof. If part: assume |{x j : ci < c j, i ̸= j}| ≥ n− p, meaning that |{x j : ci ≥ c j, i ̸=
j}| < p and take a solution X of p items where xi is not present. Among the items of
this solution is at least one item x j such that ci ≤ c j, hence replacing this item with x j
can only improve the solution.

Only if part: let us show, by contradiction, that when |{x j : ci ≥ c j, i ̸= j}| ≥ p, xi
cannot be necessarily optimal. If xi was necessarily optimal, then every solution X ∈ O
would contain it and include p items. This means that at least one item within {x j :
ci ≥ c j, i ̸= j} is not included in X , say x j. Clearly, since ci ≥ c j, by picking ci = ci
(since xi is necessarily optimal, any replacement would lead to include xi in an optimal
solution) and c j = c j, we could improve the solution while excluding xi, thus xi cannot
be necessarily optimal.

Note that Proposition 1 tells us that checking whether xi is necessarily optimal is
computationally straightforward, as one can just compare ci to all c j. We will denote by
ν ⊆ Ω the set of necessarily optimal items.

Proposition 2. xi is possibly optimal if and only if ci ≤ c j for at least n− p items x j,
i.e.

|{x j : ci ≤ c j, i ̸= j}| ≥ n− p

Proof. If part: assume |{x j : ci ≤ c j, i ̸= j}| ≥ n− p, meaning that |{x j : ci > c j, i ̸=
j}| < p. Now, consider the scenario γ where ci = ci and c j = c j for all other items x j.
Then xi ∈ X∗

γ , as strictly less than p items will have a higher score than xi in scenario γ

Only if part: again, assume by contradiction that |{x j : ci > c j, i ̸= j}| ≥ p, then
clearly any solution including xi does not include at least one item within {x j : ci >
c j, i ̸= j}, and replacing xi with such an item would improve the solution, whatever the
scenario γ . Therefore, xi is not in any possible optimal solution, and is not a possibly
optimal item.

As for the necessary optimal items, the procedure to detect possibly optimal items
is pretty straightforward computationally speaking. We will denote by π ⊆ Ω the set of
possibly optimal items. It should be noted that by construction, we have ν ⊆ π , with
the two being equal if and only if the set O is reduced to a singleton. It is also easy
to see that O ⊆ {X ∈ Φ : ν ⊆ X ⊆ π}, as all necessary items must be in all possibly
optimal solutions, and any non-possibly optimal items never appears in such solutions.
A natural next question is then to wonder whether we have O = {X ∈ Φ : ν ⊆ X ⊆ π}?
The next simple example indicates that this is not the case in general.

Example 1. Consider the following example, with 5 objects x1, . . . ,x5 and their associ-
ated interval costs:

c1 ∈ [1,10], c2 ∈ [2,5], c3 ∈ [3,6]

c4 ∈ [4,8], c5 ∈ [7,9].

We now consider the problem of selecting 3 items among those, so that n = 5 and
p = 3. One can easily check that none of those item is necessarily optimal, and that
all are possibly optimal. However, the subset {x1,x4,x5} is not within O . To see this,
simply consider the scenario c1 = 1,c2 = 5,c3 = 6,c4 = 4,c5 = 7, whose solution is the
subset {x1,x2,x4} and not {x1,x4,x5}.

3 Compact representation of possible optimal solution

In this section we present a polynomial representation of all possible optimal solutions
O , together with an algorithm to build it. Before focusing on the possible optimal so-
lutions we present how to represent all feasible solutions by a directed layered graph
G = (V,E) of which one example is given by Figure 1.

The vertices of the graph are such that V =∪i=0,...,nVi with V0 = {00}, Vi = {ai,(a+
1)i, ...,(b − 1)i,bi} ∀i = 1, ...n − 1 with ai and bi respectively the smaller (the big-
ger) number of selected items at layer i indexed by the layer i i.e.ai = max(0, p− (n−
i)),bi = min(i, p) and Vn = {pn}. ai correspond to the minimal number of selected item
after considering whether to select the ith item, and bi the maximal number of selected
items. Each value i defines a vertical layer corresponding to object xi, while each hori-
zontal layer (corresponding to the values going from 0 to p) correspond to the number
of objects added in the selection.

The edges E = ∪i=1,...,nEi with (u,v) ∈ Ei if u ∈Vi−1,v ∈Vi and u = v or u = v+1
which means respectively The object i is not selected or The object i is selected. Each
path from 00 to pn is a feasible solution of the problem. We can see that the number of
nodes as well as the number of edge is in O(np). Figure 1 provides an illustration for
the case of n = 5 objects among which p = 3 must be retained.

However, what we are aiming for is not to list all feasible solutions, but to get the
set O of possible optimal solutions, or to trim the graph from its unecessary edges and
vertices. To do this, we shall denote by ν p(I) the set of necessary optimal objects for a
given value p with given subset I ⊆ Ω of objects and π p(I) the set of possibly optimal
objects for a given value p with given set of object I.

When a node ui is reached in the graph, we know that we have considered the i−1
first objects, and selected u of them. We therefore know that we still need to select p−u

objects in the remaining set I = {i, ..n}. From this situation, we will see which edges
must be added (if we start from the empty graph), or which edge should be removed
from the complete graph, depending on the situation of object i in I when p−u objects
must be selected. More precisely:

– if xi ∈ ν p−u(I), only the edge object is selected is added to the graph, as it is nec-
essarily selected;

– if xi ∈ π p−u(I)\ν p−u(I), both edges are added to the graph, as it is a possibly but
not necessarily optimal selection;

– and if xi /∈ π p−u(I), only the edge object is not selected is added to the graph.

The procedure to compute the graph of all possible optimal solutions is described in
algorithm.1.

Example 2. The graph of all feasible solutions of Example 1 is represented on Fig-
ure 1. But each path of the current graph is not possibly optimal for instance the path

00 01

11

x1 = 0

x1 = 1

02

12

22

x2 = 0

x2 = 1

x2 = 0

x2 = 1

13

23

33

x3 = 1

x3 = 0

x3 = 1

x3 = 0

x3 = 1

24

34

x4 = 1

x4 = 0

x4 = 1

x4 = 0
35

x5 = 1

x5 = 0

Fig. 1. Set of feasible solutions

(00,11,12,13,24,35) which represent the solution x1 = 1,x4 = 1,x5 = 1. Let us illus-
trate the algorithm on this path. At node 00 the object 1 is possibly optimal, hence the
arc (00,11) is in the graph of possible optimal solution (we can add object x1 to the
solution). Since it is not necessarily optimal, we also add (00,01). At node 11 we check
if object 2 is possibly optimal for the updated constraint ∑

5
i=2 xi ≥ 2 (we still have to

select 2 objects). we can see that it is possibly optimal but not necessary. Hence the path
(11,12) is possible and added. At node 12 the constraint becomes ∑

5
i=3 xi ≥ 2 so object

3 is necessarily optimal since c3 < c5, and we still have 2 objects to select. So the edge
(12,13) is not in the graph of possible optimal solution. The set of all possible optimal
solutions is represented on Figure 2

Proposition 3. All paths of graph returned by Algorithm 1 represent all possible opti-
mal solution in space O(np).

Proof. We give a proof by induction on i = 1, ...,n.
Base case with i = 1: by definition if xi is possibly optimal but not necessary then

∃X∗ ∈ O with x1 = 1 and ∃X∗ ∈ O with x1 = 0, if it is necessary optimal then ∃X∗ ∈ O
with x1 = 1 and ∄X∗ ∈ O with x1 = 0 else ∃X∗ ∈ O with x1 = 0 and ∄X∗ ∈ O with

00 01

11

x1 = 0

x1 = 1
12

22

x2 = 1

x2 = 0

x2 = 1
23

33

x3 = 1

x3 = 0

x3 = 1

24

34

x4 = 0

x4 = 1

x4 = 0
35

x5 = 1

x5 = 0

Fig. 2. Set of feasible solutions

x1 = 1. So all paths form node 00 to node of the layer 1 are all the partial possibly
optimal solutions of x1.

Inductive step: We denote Pi−1 the set of paths form node 00 to each the nodes
of layer i− 1. Now we show that if all paths in Pi−1 are all the partial possibly op-
timal solution then all paths in Pi are all the partial possibly optimal solution. We
assume that is true for i− 1, more formally ∀path ∈ Pi−1,∃X∗ ∈ O such that X∗ =

(xpath
1 , ...,xpath

i−1 ,x∗i , ...x
∗
n) and ∄X ∈O such that (x1, ...,xi−1)∈∪path∈Pi−1(x

path
1 , ...,xpath

i−1).
Hence ∃γ∗ ∈ Γ such that X∗ is optimal. Since Γ is hyper-cube the set of scenarios form
all nodes of the layer i is ×i−1

j=1γ∗j ×n
j=i [c j,c j]. Using the Bellman’s principle of optimally

a X∗
i = (x∗i , ...x

∗
n) = argminXi⊆I,|Xi|=p−|X path| F(Xi). Since for each nodes of layer i, all

paths to it have the same value of |X path|= K and that the scenario set on the remaining
sub-set is a hyper-cube ×n

j=i[c j,c j] so what ever the path the possibly optimally of se-
lected item depend only on the restricted problem to I and |Xi| = p−K. We can apply
at each node of the layer i the propositions 2 and 1. So if xi is possibly optimal and not
necessary optimal for a given node then they exist for each path to it a X∗ ∈O such that
X∗ = (xpath

1 , ...,xpath
i−1 ,1,x∗i+1, ...x

∗
n) and if xi is necessary optimal for a given node then

they not exist for each path to it X∗ ∈O such that X∗ = (xpath
1 , ...,xpath

i−1 ,0,x∗i+1, ...x
∗
n). So

all paths form node 0 to node of the layer 1 are all the partial possibly optimal solution
of (x1, ...,xi). Since both the base case and the inductive step have been proved as true,
by mathematical induction All the paths of graph returned by algorithm.1 represent all
possible optimal solution. The graph returned by the algorithm has n+ 1 layers with
maximum p nodes and for each node maximal two edges.

Proposition 3 confirms that our algorithm return the expected set O , and that this
representation remains compact while listing all the elements of O , and only those
elements. Of course the number of possible paths remain exponential, but this becomes
a minor issue, as we can represent them compactly. Note that the necessity or possibility
of an object being in a solution can also be directly read from the graph: an object xi is
necessary if all edges from layer i−1 to i go upward, and impossible if all edges from
layer i−1 to i are horizontal. In Figure 2, for instance, one can check that it is not the
case for any of the object/layers.

The next proposition is a simple expression of the complexity of our algorithm,
which remains polynomial.

Proposition 4. The set of all possible optimal solutions can be computed in O(n2 p)
time.

Proof. We need to answer at each node of the graph (O(np) nodes) if the xi is possible
optimal, necessary optimal solution that takes O(n) times.

Algorithm 1: Set of all possible optimal solution
Input: cost intervals [ci,ci],∀i ∈ {1, ...,n}, minimal number p
Output: A graph G = (V,E)
V0 = {00}
a = max(0, p− (n− i))
b = min(i, p)
Vi = {ai, ...,bi}∀i = 1, ...n−1
Vn = {pi}
Ei = /0,∀i = 1, ...n
for i ∈ {1, ...,n} do

I = {i, ...,n}
for ji−1 ∈Vi−1 do

k=p-j
if xi ∈ πk(I)\νk(I) then

Ei = Ei ∪{(ji−1, j+1i)}
Ei = Ei ∪{(ji−1, ji)}

if xi ∈ νk(I) then
Ei = Ei ∪{(ji−1, j+1i)}

if xi /∈ πk(I) then
Ei = Ei ∪{(ji−1, ji)}

V = ∪i=0,...,nVi
E = ∪i=1,...,nEi

4 Extension to the credal set case

In this section, we no longer assume that ci uncertainty is described by an interval, but
by a convex set Pi of probabilities having for support a sub-interval of R, often re-
ferred to as credal sets. Although more general models of uncertainty do exist, convex
probability sets or credal sets are quite generic, as they include most uncertainty repre-
sentations commonly used in practice, such as intervals, possibility distributions, belief
functions, etc.

4.1 Precise probabilities

When the sets Pi reduce to singletons Pi, i.e., are equivalent to specify probabilities for
the costs ci, a common way justified axiomatically to estimate the quality of a solution
is by considering its expected cost. For a single item xi, this expected cost is EPi(ci) =∫
R ci pi(ci)dci, where p(ci) is the probability density.

For the item selection issue and given a set X ∈ Φ , this means that the solution
would be evaluated as

E[F(X)] = E

[
∑

xi∈X
ci

]
= ∑

xi∈X
EPi(ci),

as the expectation is a linear operator, not depending on any possible dependencies be-
tween the distributions Pi. The problem is therefore not more complicated than in the
case where costs are precisely known, and one can use all previous results on expecta-
tions, obtaining the optimal result as

X∗
P = argmin

X∈φ
E[F(X)] (3)

4.2 Generic credal sets

We now consider the case where each price is defined by a convex set of probability
distributions Pi. While precise probabilities are retrieved when those are singletons, the
interval case is recovered when Pi contains all probabilities whose support is included
in [ci,ci]. From a set Pi, one can define lower and upper expectations of the cost ci as

EPi
(ci) = inf

Pi∈Pi
EPi(ci), EPi(ci) = sup

Pi∈Pi

EPi(ci).

The question is then to know what becomes of E[F(X)], as in general lower and up-
per expectations are not additive any more3. However, we can easily show that, in the
case where we have marginal credal sets for each costs, then they remain additive, on
the proviso that the associated join model include every combinations of distributions
within Pi.

Proposition 5. Given two credal sets PX and PY defined for real-valued quantities X
and Y , we have

E(X +Y) = E(X)+E(Y)
for any joint credal set PX ,Y whose joints are built from all marginals within PX and
PY , i.e., ∀PX ∈ PX ,PY ∈ PY ,∃PX ,Y ∈ PX ,Y with those marginals.

Proof. Given a joint credal set PX ,Y , we want to find

E(X +Y) = inf
PX ,Y∈PX ,Y

∫
x

∫
y
x+ yp(x,y)dxdy

= inf
PX ,Y∈PX ,Y

∫
x

∫
y
xp(x,y)dxdy+

∫
x

∫
y
yp(x,y)dxdy

= inf
PX ,Y∈PX ,Y

∫
x
xp(x)dx+

∫
y
yp(y)dy

= inf
PX∈PX

∫
x
xp(x)dx+ inf

PY∈PY

∫
y
yp(y)dy

3 They are usually super- and sub-additive, i.e., E(X +Y)≥ E(X)+E(Y)

with the last inequality being true because PX ,Y is convex and has PX and PY for
marginals, hence there is a joint within PX ,Y reaching simultaneously E(X) and E(Y)

This includes most of the ways used to build to joint credal sets, i.e., from indepen-
dence statements [2, 3] or by using sets of copulas to model dependencies [7]. As the
same holds true for upper expectations, we have that for a given solution X ∈ Φ , we
have

E(F(X)) = ∑
xi∈X

EPi
(ci), E(F(X)) = ∑

xi∈X
EPi(ci).

Given Equation (3), the set of possibly optimal solution readily becomes

O = {X ∈ Φ : ∃Pi ∈ Pi s.t. X∗
P ∈ argmin

X∈φ
E[F(X)]}

The transposition of all results obtained for the interval case is then direct, simply re-
placing the interval bounds by their lower/upper expectation counterparts.

5 Conclusion

In this paper, we investigated the problem of characterising possibly optimal solutions,
and reducing them, for the simple problem of selecting optimal items when costs were
interval-valued. We have also extended this analysis to much more generic uncertainty
models, showing that in this case those more generic uncertainty models did not induce
an increased complexity.

One obvious extension of the current work is to look for problems directly extending
the selecting item problem, such as the knapsack or the assignment problem. We could
also look at other simple problems issued from combinatorial optimisation where the
objective function has an additive form, such as the minimum spanning tree problem.
In this latter case, some existing results [10] in the vein of those of Section 2 could help
us to obtain an efficient compact representation of possibly optimal solutions.

Bibliography

[1] N. Benabbou and P. Perny. Interactive resolution of multiobjective combinato-
rial optimization problems by incremental elicitation of criteria weights. EURO
journal on decision processes, 6(3):283–319, 2018.

[2] I. Couso, S. Moral, and P. Walley. A survey of concepts of independence for
imprecise probabilities. Risk, Decision and Policy, 5(2):165–181, 2000.

[3] S. Destercke. Independence and 2-monotonicity: Nice to have, hard to keep. In-
ternational Journal of Approximate Reasoning, 54(4):478–490, 2013.

[4] J. Fortin, P. Zieliński, D. Dubois, and H. Fargier. Interval analysis in scheduling. In
International Conference on Principles and Practice of Constraint Programming,
pages 226–240. Springer, 2005.

[5] M. Kadziński, T. Tervonen, and J. R. Figueira. Robust multi-criteria sorting with
the outranking preference model and characteristic profiles. Omega, 55:126–140,
2015.

[6] A. Kasperski, A. Kurpisz, and P. Zieliński. Approximating the min–max (regret)
selecting items problem. Information Processing Letters, 113(1-2):23–29, 2013.

[7] I. Montes, E. Miranda, R. Pelessoni, and P. Vicig. Sklar’s theorem in an imprecise
setting. Fuzzy Sets and Systems, 278:48–66, 2015.

[8] M. C. Troffaes. Decision making under uncertainty using imprecise probabilities.
International journal of approximate reasoning, 45(1):17–29, 2007.

[9] L. Xia and V. Conitzer. Determining possible and necessary winners given partial
orders. Journal of Artificial Intelligence Research, 41:25–67, 2011.

[10] H. Yaman, O. E. Karaşan, and M. Ç. Pınar. The robust spanning tree problem with
interval data. Operations research letters, 29(1):31–40, 2001.

	Necessary and possibly optimal items in selecting problems.

