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A B S T R A C T
Nowadays, breast and cervical cancers are respectively the first and fourth most common causes of cancer death in females. It is believed that, 
automated systems based on artificial intelligence would allow the early diagnostic which increases significantly the chances of proper 
treatment and survival. Although Convolutional Neural Networks (CNNs) have achieved human-level performance in object classification tasks, 
the regular growing of the amount of medical data and the continuous increase of the number of classes make them difficult to learn new tasks 
without being re-trained from scratch. Nevertheless, fine tuning and transfer learning in deep models are techniques that lead to the well-known 
catastrophic forgetting problem. In this paper, an Incremental Deep Tree (IDT) framework for biological image classification is proposed to 
address the catastrophic forgetting of CNNs allowing them to learn new classes while maintaining acceptable accuracies on the previously learnt 
ones. To evaluate the performance of our approach, the IDT framework is compared against with three popular in-cremental methods, namely 
iCaRL, LwF and SupportNet. The experimental results on MNIST dataset achieved 87 % of accuracy and the obtained values on the BreakHis, 
the LBC and the SIPaKMeD datasets are promising with 92 %, 98 % and 93 % respectively.   

1. Introduction

According to the World Health Organisation, breast cancer is the first
most common leading cause of cancer death in women. It is reported 
that 2.3 million women [1] were diagnosed with breast cancer and 
685,000 deaths. In addition, at the end of 2020, there were 7.8 million 
women alive who were diagnosed with breast cancer in the past 5 years, 
making it the world’s most prevalent cancer. Likewise, cervical cancer is 
a real health problem; it is the fourth cancer causing death in females 
with an estimated 604,000 new cases and 342,000 deaths in 2020 [2]. 

Unlike the cervix cancer which is caused by infection with human 
papillomaviruses (HPV), the breast cancer is due to other factors such as 
patient’s age, family history and previous benign breast lump. Even if 
effective primary HPV vaccination prevents most cervical cancer cases, 
the screening and treating precancerous lesions remain the best pre
vention approaches for both breast and cervical cancers. According to 
the International Agency for Research on Cancer (IARC-2020), breast 

cancer has overtaken lung cancer as the world’s most commonly diag
nosed cancer. Early diagnosis significantly increases the chances of 
correct treatment and survival, but this process is tedious and often leads 
to a disagreement among pathologists [3]. Computer-Aided-Diagnosis 
(CAD) systems showed potential improvement of the diagnosis 
accuracy. 

Data mining and machine learning techniques are transforming the 
decision-making process in the medical world [4] and extensive research 
efforts have been carried out in the area of accurate and early diagnosis 
of cancers. The reinforcement learning, as a branch of machine learning, 
has been used with supervised learning in an adaptive online learning 
framework to support the breast cancer clinical diagnosis [5]. Likewise, 
the reinforcement learning has been used to identify breast lesions from 
magnetic resonance images [6], and in the automatic inverse treatment 
planning for cervical cancer High Dose-Rate brachytherapy [7]. In 
addition, the reinforcement learning allows the localisation of any organ 
in a Computed Tomography scan [8] and shows thus, an accurate breast 
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identity is not available at test time. In such a situation, the models are 
not required to infer which task it is and, need however, to solve the task 
at hand. The Class-IL scenario is considered in the situation where 
models have to incrementally learn new classes of objects. They must be 
able to both solve each task seen so far and infer which task they are 
presented with. Even if the number of new strategies is increasing in 
each category, few techniques are explored at the intersection of the 
three categories. 

Based on how task specific information is stored and used throughout 
the sequential learning process, the proposed strategies to tackle the 
catastrophic forgetting while learning incrementally a CNN are divided 
into three families [19,21,22] namely the Replay-based, Regularization- 
based and Parameter isolation-based methods. In the first, catastrophic 
forgetting is mitigated by relying on storing previous experience 
explicitly or implicitly. The Regularization-based methods are used when 
no storage of raw input is possible, mainly motivated by privacy reasons, 
as in the case of medical applications. These methods are memory effi
cient and propose, in general, an extra regularization term in the loss 
function to consolidate previous knowledge when learning new data. 
Last, the Parameter isolation-based methods are used when optimal per
formance is a priority and the model’s capacity is not constrained on the 
architecture’s size. These methods are better suited for learning a long 
sequence of tasks and perform by freezing the set of parameters learned 
after each task and growing new branches dedicated for new tasks. 

Despite the availability of such continual learning techniques in 
computer vision in general, applying them for biological data sets does 
not provide such precise results, particularly with the increase of the 
number of classes, where updating the models requires the presence of 
both new and old datasets. Furthermore, the limited amount of labelled 
data for training presents problems in biomedical domains. Paradoxi
cally, this amount of data is regularly growing and the number of classes 
is continuously increasing. Thus, training deep models from scratch 
based on both old and new data is highly computationally costly, in 
addition to legal and privacy constraints on work with sensitive health 
records [23]. 

In this paper, we present an Incremental Deep Tree framework for 
biological image classification named the IDT framework. This framework 
is built in a tree-like manner, where in order to learn a new class, a new 
model is constructed by adding a branch linked to each previously 
learned task. These branches are used to regularise previously acquired 
capabilities based on a set of replay-data to alleviate and overcome 
catastrophic forgetting. Thus, knowledge is updated, and the root model 
can predict new classes without forgetting old ones by maintaining 
acceptable accuracies for each one of them. 

The main contributions of the IDT are the fact that firstly the model 
does not need all previously learned data. Hence, it is able to update its 
knowledge without being trained from scratch. Another novelty regards 
the hierarchical classification which guides the model to predict image 
labels based on the selected branch of the tree. Finally, the proposed 
approach combines the three continual learning strategies as shown in 
Fig. 1, where some of the most popular continual learning strategies are 
presented. The IDT is situated in the intersection of the red, the green 
and the blue circles for the Replay, the Regularization and the 
Parameter-isolation based methods respectively. 

In the second section of the paper, we present a review of related 
works to the incremental learning of CNNs, with particular focus on 
bioinformatics. We devoted the next sections to the problem formula
tion, the description of different components of the proposed frame
work, the experimented datasets, the compared methods and metrics, 
and a discussion of the obtained results respectively. Finally, we 
conclude with the significance of this work and suggest the promising 
perspectives in this domain. 

2. Related works

Replay-based methods: Rehearsal methods are referred to when a

cancer risk assessment [9]. Further, the histopathology classification 
and the microarray technology have been proven to be effective in 
breast cancer [10]. 

Despite the amount of study which use traditional machine learning 
techniques for predicting cancer survival, researchers are now moving 
towards deep learning and hybrid approaches to gain some insights into 
survival prediction [4]. 

In recent years, deep learning methods in general and Convolutional 
Neural Networks (CNNs) in particular have been used in many fields: 
pattern recognition, computer vision, natural language processing and 
speech recognition [11]. Due to the exponential increase of data, CNNs 
produce results similar, if not better than human expert performance not 
only in the above domains but also in bioinformatics, drug design and 
others [12]. 

In medical image analysis, deep learning has been used for the 
automated nuclei segmentation and classification in cervical cells from 
pap smear images [13]. Likewise, the CNNs allow the intelligent diag-
nosis of cervical pre-cancerous lesions [14] using automated feature 
extraction. More recently, combining the colposcopy based deep 
learning model, the cytology test results, and the HPV test results, im-
proves significantly the cervical screening accuracy [15]. Further, the 
performance of deep learning algorithms is evaluated to detect breast 
cancers on chest CT [16]. In addition, the application of deep learning in 
breast cancer imaging has been overviewed in [17] where, it has been 
stated that histopathological imaging is the most common approach 
used to detect breast cancer. 

However, the success of CNNs in computer vision applied on bioin-
formatics especially for CAD relies on the fact that they operate on entire 
datasets at once without considering the situation where the dataset 
dynamically grows over time [11]. 

Currently, most biological datasets are difficult to access due to the 
patient’s data privacy on one hand. On the other, the amount of these 
datasets is regularly growing and the number of classes is continuously 
increasing. Retraining a CNN from scratch using old and new data is 
highly computationally costly. Building powerful models is no longer a 
difficult task, but updating their knowledge is a challenging one [18]. 
Combining deep learning techniques with incremental learning methods 
allows the resulting models to learn continuously, accumulate the 
knowledge learned in previous tasks, while using it to help future 
learning. 

Incremental Learning, sometimes also called Continual Learning or 
Lifelong Learning, is considered as a training procedure where the 
objective is to train a model, previously built to perform a set of tasks, to 
learn new tasks and allow it to get high performances on both new and 
old tasks [19]. However, incremental algorithms are prone to forget 
previously learned knowledge when adapted to a new task, known as 
catastrophic interference or forgetting [20]. Besides this issue, many 
challenges face an incremental learning algorithm such as online model 
parameter adaptation caused by the fact that datasets are not available 
initially, but arrive over time as for biomedical data. Another challenge 
is known as the stability-plasticity dilemma where learning new tasks re-
quires plasticity for the integration of new knowledge, but also stability 
in order to prevent the forgetting of previous knowledge. Concept drift 
and model benchmarking remain also challenging issues for incremental 
learning. 

Continual learning covers three scenarios: Task Incremental Learning, 
Domain Incremental Learning, and Class Incremental Learning. The differ-
ence consists mainly on whether at test time, information about the task 
identity is available, and if not, whether the model is also required to 
explicitly identify the task to solve [21]. The Task-IL is considered as the 
easiest scenario for incremental learning and relies on a typical network 
architecture shared for all the tasks and a target multi-headed output 
layer for each one of them. This scenario is used when the task identity is 
provided and models are informed about which task needs to be per-
formed. The Domain-IL scenario is considered when the task’s structure 
is always the same but the input distribution is changing, while the task 



subset of stored data is explicitly used to retrain the model while training 
on a new task such as iCaRL [24] and ER [25]. The former replays stored 
data as well as the current task input with a special form of distillation 
while training a feature extractor. The latter suggests the use of reservoir 
sampling to limit the number of stored samples to a fixed budget 
assuming an overall i.i.d. distributed data stream. Rehearsal methods are 
constrained to a fixed budget to accommodate new classes, hence might 
be prone to overfitting the subset of the stored samples. When previous 
samples are no longer available, pseudo-rehearsal methods could be used 
to generate high-quality samples as proposed in DGR [26], ACLSeg [27] 
and ACL [28], where in the latter, raw samples are used by the model’s 
parts (discriminator and shared-module) to prevent forgetting in the 
features found to be shared across tasks. The major drawback of these 
methods is the complexity of training the generative model continually. 
In fact, the methods that constraint the optimisation rely on backward/ 
forward transfer and the key idea is to only constrain the update of the 
new task not to interfere with the previous ones as proposed in GEM 
[29]. Moreover, selecting a subset of samples that maximally approxi
mate the feasible region of the historical data such as in GSS [30] leads 
to a pure online continual learning setting where no task boundaries are 
provided. In this work, we explicitly use a random-data-selector to store 
pre-processed samples for the replay, which constraint the updated 
model to recognise old classes when training on new ones. 

Regularization-based methods: are used when the replay of stored 
samples from previous tasks is not possible. The current family encom
passes data-focused and prior-focused methods. In the former, knowledge 
distillation from the old model to the new one is the base block such as in 
LwF [31] and DMC [32] where the output of the old model is used as soft 
labels for previous tasks to mitigate forgetting. In SupportNet [18], 
regularization parameters and support vectors are used to mitigate 
forgetting during the class incremental learning. These methods are 
prone to the concept drift when the domain shifts between tasks. 
However, when learning new data, the prior-focused methods relies on an 

estimated distribution over the model parameters to mitigate forgetting 
[19]. This is obtained by penalising the change of important parameters 
when training the model on new tasks such as in EWC [33]. As an 
extension to EWC, Laplace approximation is put forward to construct the 
parameter importance matrix in [34], and the use of unsupervised and 
online criterion for the modification of parameter importance matrix is 
proposed in MAS [35]. Recently, an inter-task synaptic mapping is 
proposed in [36]. Even if the regularization-based methods are compu
tationally efficient, these methods require the task boundaries and task 
IDs to be known. In this work we set up a branch for each previously 
learned task while learning new classes. This branch allows the updated 
framework to recognise images from old classes. 

Parameter isolation-based methods: are used when learning a 
long sequence of tasks in the Task-IL scenario, especially when the 
model’s capacity is not constrained and optimal performance is a pri
ority. While training the model on a new task, the fixed-network methods 
mask the model’s parts dedicated for previous tasks and mainly use a 
task oracle for predictions such as the learn-to-grow framework [37] 
where the neural architecture search is used to find a network structure 
that better handles each task. However, the dynamic-architecture methods 
are used when the size of the model’s architecture is not constrained and 
proceed by freezing the set of parameters learned after each previous 
task then grow new branches for new tasks, such as in Tree-CNN [38] 
which proposes a self-growth in a tree-like manner of the network based 
on features hierarchy reorganisation when new tasks arrive. The PNN 
[39] introduces a new column for every new task while freezing old
network parameters. KIERA [40] uses a flexible deep clustering
approach possessing an elastic network structure to cope with changing
environments in the timely manner. To overcome catastrophic forget
ting, the centroid based experience replay is put forward. The main
limitation of the parameter isolation-based methods are their high
computational and memory burdens. In this work, we implicitly use the
parameter-isolation by fixing the architecture and the parameters of the
old task’s networks, coupled with a tree-like dynamic-architecture to
generate and learn the updated framework.

3. Problem formulation

In this paper, we propose a framework that learns incrementally
deep models for biological image classification. In our setup, the training 
data D is organised into B batches, with D = {B t}

1
nbr_batchs, where the 

number of batches is continuously growing. 
Each batch B t consists of I n labelled training data i.e., B t =

{(
xj, yj

)}Nt

j=1
, where xj ∈ ℝd, yj is a discrete label and N t is variable 

across sessions. This framework learns sessions sequentially starting by 
the first batch in the Learn mode (sec 4.2.1.1). However, the model can be 
evaluated on test data among sessions using the Predict mode (Section 
4.2.1). The class incremental learning scenario presented in Fig. 2 shows 
that at T0, on the left, the Base_Model learns the available dataset Batch0 
as described in the paragraph “Learning the first batch” (Section [par: 
Learning the first batch]). Sequentially, the framework generates a new 
model Model_Batchi for each new batch of data, using I n classes and 
additional branches to replay each previously learned task as detailed in 
the paragraph “Learning next batches” (Section [par: Learning next 
batches]). 

4. Method

Human brain seems to have the remarkable ability to learn a large
number of different tasks without getting any of them negatively 
interfering with the others [41]. A person needs only a part of previously 
acquired knowledge to learn new skills. These information (knowledge) 
guide it to search and check differences among old and new tasks. The 
common strategy for the human brain to overcome forgetting during 

Fig. 1. Venn diagram of the most popular continual learning strategies. Replay- 
based methods (red): GSS [30], ACL [28], ER [25], ACLSeg [27], Parameter 
isolation-based methods (blue): KIERA [40], Tree-CNN [38], PNN [39], 
Regularization-based methods (green): EWC [33], SupportNet [18], LwF [31], 
MAS [35]. 
iCaRL [24] and GEM [29] relies on both Replay based and Regularization-based 
methods. 
IDT(ours): combines the three continual learning strategies. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 



learning is to review the old knowledge frequently [18]. In practice, 
human usually does not learn from scratch and does not review all the 
details, but rather the important ones, which are often sufficient for him 
to grasp the knowledge [18]. Consequently, humans never learn in 
isolation. In contrast, they always retain the knowledge learned in the 
past and use it to help future learning and problem solving. For this 
reason, detecting the most important differences between old and new 
tasks helps considerably the learner and reduces the learning cost. 

Based on the above findings, the key idea of our method is biologi
cally inspired. The IDT framework relies on two modules namely the Pre- 
processing and the Incremental tree (IT) as shown in the Fig. 3. The former 
is responsible for image pre-processing including augmentations, feature 
extraction and data selection that allows the models to review the old 
knowledge while learning new classes. Whereas, the latter (IT) is 
devoted to generate and train new models on one hand, and growing the 
architecture in a tree-like manner on the other hand, allowing the 
models to differentiate old and new classes. 

4.1. Pre-processing module 

4.1.1. Augmentations 
Despite the fact the deep models have achieved state-of-the-art re

sults in many computer vision tasks, CNNs are still challenged by the 
limited size of the available databases at the learning phase, hindering 

the potential for generalisation of knowledge. Such a situation is known 
as overfitting. To overcome this challenge, we bring the microscopy 
images into a common space and enable improved quantitative analysis, 
using the unsupervised feature representation as proposed in [3] to 
obtain normalized images. 

The normalisation process includes the following sequence: a 
random colour augmentation is performed for each image, then the 
magnitude of every pixel is multiplied by two random uniform variables 
from the range(0.3, 1.7) see Fig. 17(b). Finally, the set of the obtained 
descriptors is combined through p-norm pooling into a single descriptor 
as shown in the Eq. 1, where dpool is the pooled descriptor of the image 
and N is the number of crops. It could be noted that di is the descriptor of 
the ith crop and p is set to 3 as suggested in [3]. The obtained images from 
the Augmentation submodule are used in the next phase. 

dpool =

(
1
N

*
∑N

i=1
(di)

p

)1
p

(1)  

4.1.2. Feature extraction 
The feature extraction is the second step of the pre-processing 

module. Commonly defined as the process of dimensionality reduction 
by which the initial set of raw data (image pixels) is reduced to more 
manageable groups for processing. For this purpose, we use the standard 

Fig. 2. Class incremental learning scenario. When a dataset Batchi is available, a new model 
Model Batchi is trained to learn the classes belonging to Batch0, …, Batchi. 

Fig. 3. The architecture of the proposed framework. It consists of a pre-processing module (red) which is used for data augmentation, feature extraction and data 
selection the incremental tree module (blue) which is an extensible fully connected layer classifier with an output node for each previously learnt Task. The Data 
selection provides a part of old data to train the new Model Batch on old Tasks. 



nbr images old classes =
mean

(
nbr images current Batch

)

nbr classes in old Batch
(2)  

where 

mean
(
nbr images current Batch

)
=

nbr images current Batch
nbr classes current Batch

(3) 

Except the first iteration, the normal process for pre-processing 
module awaits the completion of both augmentation and feature 
extraction before running the data selection module. At iteration 01, the 
new dataset is considered as a replay-data. In the next iterations, the 
data-selector reduces the memory size of old classes as described by the 
equation above. 

4.2. Incremental tree module 

The main contribution of this paper is the generation of a predictive 
model in a tree-like manner. For each learning session (round), a new 
fully connected classifier is built with outputs related to the class labels 
available in the new batch. However, for each old batch, a linked label 
(Task_i) is included in the output layer as presented in Fig. 5. Then, the 
additional branches, related to Tasks, are trained using the images ob
tained from the data selection module. Actually, the Model_Batch_n out
puts are all the classes available in the batch_n and also Task labels 
related to each old batch, allowing the predictive model to prevent 
catastrophic forgetting. 

Further, since the CNNs architecture and hyper-parameters is out of 
the scope of the proposed method, the IDT acts only on the output layers 
of deep classifiers and does not focus on their inner architecture. This 
gives flexibility and modularity in terms of the CNN architecture used 
for different Tasks and opens avenues for the IDT application in other 
fields. 

In practice, the IDT can operate in two different modes namely the 
Learn mode and the Predict mode. In the former, the framework is used to 
update knowledge and to extend the classes that the root model is able to 
recognise. In the latter, the IDT relies on the models for the class label 
prediction of test images. Consequently, depending on the mode variable 
content, the framework is used as presented in Algorithm 1.     

The structure of the incremental tree module. Model_batch_n is a fully 
connected classifier. Label_i is a class name. A branch corresponds to an 
output neuron and the blue arrows refer to old classifiers. 

4.2.1. Learn mode 
When the algorithm is used in Learn mode, the last configuration of 

the tree and the replay-data are loaded. At the end of the first iteration, 
in Algorithm 2, the root of the tree is a fully connected classifier which 
recognizes images belonging to Batch_1. However, if the tree is not 
empty, a new classifier for the current batch of images is built and fitted 

Fig. 4. Feature extraction using the pre-trained model ResNet50.  

pre-trained ResNet50 from Keras distribution [42] where fully con-
nected layers are removed from the model as presented in [43] and 
channels of the last convolutional layer are converted into a one- 
dimensional feature vector of 2048 size as shown in Fig. 4. 

4.1.3. Data selection 
An incremental deep model requires plasticity for the new knowl-

edge integration and stability to prevent knowledge forgetting [44]. In 
the field of continual learning this is a well-known challenge faced by 
deep models “the stability-plasticity dilemma”. In fact, too much plasticity 
leads to a constant gradual loss of previously acquired knowledge “the 
catastrophic forgetting”, whereas too much stability will bias or bound 
learning new abilities. 

To address the above challenges, various methods have been pro-
posed such as the iCaRL [24], the ACL [28] and the SupportNet [18], 
where the focus was mainly the representative quality of the selected 
images, which is out of the scope of this paper. 

In the IDT framework data selection, the old images used when 
training new models on next batches were randomly chosen by the use of 
a random data-selector which manages a replay-data memory from each 
previously learnt class. Given that the total memory size is not 
expandable, the required number of images from old classes should 
decrease when new batches are added. The data-selector in the IDT 
framework uses the Formula Fig. 5 to compute the required size of 
memory to be allocated to each class when learning the current batch. 



using pre-processed data (Section 4.1). This model has in the last fully 
connected layer neurons related to previously learnt batches, allowing it 
to distinguish images belonging to the current batch from those of old 
batches. 

Moreover, if the number of available batches is greater than one, 
then the Learn mode, loops over these batches and uses pre-processed 
data (Section 4.1) jointly with replay-data to train the new classifier. 
Finally, the tree structure is updated, and the IDT can accordingly be 
used in either Learn or Predict mode. The architecture of the fully con
nected layer model is presented in Section 5.3.    

4.2.1.1. Learning the first batch. The IDT starts learning the first batch of 
data Batch_1 which must contain at least two classes, i.e.: len 

(Batch_1) ≥ 2. Therefore, the tree structure is generated when a dataset 
of at least one batch is available as presented in the Figure 5 where, a 
Batch refers to a set of labelled images belonging to distinct classes, and 
the Model_batch_n is a fully connected classifier trained on images 
belonging to the Batch_n and the replayed data from Batch_(n − 1), . . , 
Batch_(1). In this way, the pre-processing module detailed in the Section 
4.1 is performed on Batch_1 = [Label_1,Label_2,Label_3]. 

Next, the Learn mode builds and trains from scratch the deep classi
fier Model_batch_1 with 3 neurons in the last fully connected layer. After 
convergence, Model_batch_1 is considered as the root of the incremental 
tree and can accordingly be used in the Predict mode (Section 4.2.1.1) 
where for each test image, the Model_batch_1 returns a class label 

belonging to Label_1, Label_2 or Label_3. 

4.2.1.2. Learning next batches. In the next iteration, when the 
Batch_2 = [Label_4,Label_5] is added, as shown in the Fig. 1, the Learn 

Fig. 5. The structure of the incremental tree module. Model batch_n is a fully connected classifier. Label_i is a class name. A branch corresponds to an output neuron 
and the blue arrows refer to old classifiers. 

2



ones correspond to Label_6, Label_7 and Label_8. However, the 2 
remaining neurons refer to the replayed images from the Batch_1 and the 
Batch_2 labelled respectively as Task_1 and Task_2 in the Fig. 5. 

4.2.2. Predict mode 
As mentioned above, the IDT can switch into the Predict mode after 

each Learn mode (section [subsection: Learn mode]). For this purpose, 
the labels of X_test images are predicted using the Model_batch present in 
the root of the tree as presented in the Algorithm 3. 

Referring to the example of Fig. 1, for each test image, the IDT checks 
whether the obtained label is Label_6, Label_7 or Label_8. If not, the IDT 
relies on the Model_batch related to the output Task to predict the 

corresponding class name for test images, namely Model_Batch_1 for 
Task_1 and Model_Batch_2 for Task_2. The blue arrows in Fig. 1 indicate 
that if the Model_Batch_n returns Task_i, then the IDT framework uses the 
Model_Batch_i to predict the corresponding label. 

In contrast with federating learning which aims to combine learned 
knowledge from non-co-located data, the addressed datasets are cen
tralised and the current predictive model is not averaged using learner’s 
updates. In addition, in the proposed framework, the old models are 
static predictive models and their knowledge does not improve when 
new batches of data are available. Therefore, the old models are 
exclusively utilised in the Predict mode, and the framework updates its 
knowledge at the root-level as presented in the Paragraph [par: Learning 
next batches].  

5. Experimental results

5.1. Data

5.1.1. MNIST dataset
The Modified National Institute of Standards and Technology database 

of handwritten digits known as MNIST [45] is a large database 
commonly used for learning techniques and pattern recognition 
methods on real-world data while spending minimal efforts on pre- 
processing and formatting. It is also used for training various image 
processing systems. The MNIST database has a training set of 60,000 
examples and a test set of 10,000 examples. It is a subset of a larger set 

Fig. 6. Samples from the MNIST dataset.  

mode builds the Model_batch_2 which is trained from scratch using the 
Batch_2 preprocessed data (Section 4.1) jointly with the Batch_1 replay- 
data. 

Consequently, the IDT replays m images from each class previously 
learned i,e.: Label_1, Label_2 and Label_3, where m = mean(nbr_ima-
ges_batch_2)/3, (see Eq. 3). Thus, the root of the incremental tree is 
changed to Model_batch_2 and the framework can perform predictions 
(Predict mode). 

When the Batch_3 = [Label_6, Label_7, Label_8] is added as in Fig. 5, 
the Learn mode builds and learns from scratch the Model_batch_3 using 
the Batch_3 preprocessed data, jointly with a replay-data from both 
Batch_1 and Batch_2. 
The incremental tree root is then set to Model_batch_3. In the latter, the 

number of neurons in the output layer is equal to 5, where the 3 first 



available from NIST [46]. Fig. 6 shows samples from the MNIST dataset, 
where digits have been size-normalized in a fixed-size image of 28 × 28 
pixels. 

5.1.2. BreakHis dataset 
The Breast Cancer Histopathological Image Classification (BreakHis) 

database has been built in collaboration with the P&D Laboratory 
Pathological Anatomy and Cytopathology, Paraná, Brazil. It is composed 
of 9109 microscopic images of breast tumour tissue collected from 82 
patients using different magnifying factors 40×, 100×, 200×, and 400×. 
It contains 2480 benign and 5429 malignant samples (700 × 460 pixels, 
3-channel RGB, 8-bit depth in each channel, PNG format).

The dataset is divided into two main groups: benign tumours and
malignant tumours. Histologically benign cells refer to lesions that does 
not match any criteria of malignancy, while malignant refers to cancer 
cells. The dataset contains four histological distinct types of benign 
breast tumours adenosis (A), fibroadenoma (F), phyllodes tumour (PT), 
and tubular adenoma (TA); and four malignant tumours (breast cancer): 

ductal carcinoma (DC), lobular carcinoma (LC), mucinous carcinoma 
(MC) and papillary carcinoma (PC) as shown in Fig. 7.

5.1.3. Pap smear datasets
Liquid based cytology is one of the cervical screening tests. The re

pository consists of a total of 963 images sub-divided into four sets of 
images representing the four classes of pre-cancerous and cancerous 
lesions of cervical cancer as per standards under The Bethesda System 
[47]. The NILM or normal category contains 613 images, while the 350 
remaining images belong to the abnormal category (see Fig. 8). The Pap 
Smear images were captured in 40× magnification from 460 patients 
then collected and prepared using the liquid-based cytology technique. 

The SIPaKMeD Database consists of 4049 images of isolated cells that 
have been manually cropped from 966 cluster cell images of Pap smear 
slides [48]. These images were acquired through a CCD camera adapted 
to an optical microscope. The cell images are divided into five categories 
containing Superficial-Intermediate cells, Parabasal cells, Koilocytotic 
cells, Dysketarotic cells, and Metaplastic cells, see Fig. 9. 

Fig. 7. Samples from the BreakHis dataset. The magnification factor is 400×. The benign breast tumours include: tubular adenoma (TA), phyllodes tumour (PT), 
fibroadenoma (F), and adenosis (A). The malignant tumours or breast cancer include: ductal carcinoma (DC), lobular carcinoma (LC), mucinous carcinoma (MC) and 
papillary carcinoma (PC). 

Fig. 8. Samples from the LBC Pap smear dataset. Normal category includes the Negative for Intra-Epithelial Malignancy (NILM). Abnormal category includes: Low 
Squamous Intraepithelial Lesion (LSIL), High Squamous Intra-Epithelial Lesion (HSIL) and Squamous Cell Carcinoma (SCC). 

Fig. 9. Samples from the SIPaKMeD dataset.  



5.2. Compared methods and metrics 

Experiments of our proposed method have been carried out at the 
High Performance Computing Constantine using a 32 IBM X3550 M4 
nodes, with 02 Intel Xeon 08 cores processors and 24 GB RAM for each 
one of them. 

First, our framework is compared against the iCaRL, LwF, the fine- 
tuning and the all data configuration on the MNIST database. The all data 
configuration refers to a training from scratch using all the classes of new 
and old batches as a single dataset. The number of neurons in the output 
layer of the model is equal to the number of classes in the entire dataset, 
which allows the training of a simple fully connected classifier. Such a 
configuration is used as an upper-bound experimentation. In contrast, 
the fine-tuning refers to a lower bound experimentation in which old 

models are re-trained using the current batch of data exclusively. 
For the BreakHis dataset the proposed framework is compared to 

iCaRL, SupportNet and the all data configuration. To the best of our 
knowledge, the incremental learning of deep models has not been 
addressed in the field of cervix cancer. For this reason, the Pap Smear 
and the SIPaKMeD datasets are compared against the all data 
configuration. 

After each experimentation session (round), we focus on the accu
racy of the learned classes. The figures (Fig. 15, Fig. 16, Fig. 20 and 
Fig. 21) are thus obtained. The total number of classes and the achieved 
accuracies are represented on the X and Y axes respectively. The average 
accuracy for each experimentation is reported between brackets and the 
Cumulative model refers to the all data configuration. 

The next metric of interest is the class precision achieved by the IDT, 

Fig. 10. The CNN architecture for MNIST dataset.  

Fig. 11. The CNN architecture for biological datasets.  



where the figures (Fig. 14, Fig. 18 and Fig. 19) show the class names and 
the corresponding precisions on the X and the Y axes respectively. In the 
above figures, the blue cumulative model bars refer to the all data 
configuration experimentations. Furthermore, the confusion matrices of 
the IDT predictions are presented in figures (Fig. 12, Fig. 13, Fig. 22 and 
Fig. 23). 

As mentioned in the Section 4.2, since the IDT framework does not 
rely on a specific architecture of CNNs, a fixed base model is used while 
experimenting with a database. 

For the biological databases, the sequential model proposed in [43] 
is used to build a Multi-Layer Perceptron (MLP). The grid search study, 
performed in the above work, fixes the hyper-parameters as presented in 
Fig. 11 which includes three fully connected layers. The input layer 
contains 1024 neurons with input_size = 2048, followed by 512 neurons 
with a ReLU activation and 0.5 Dropout for each one of them. Finally, the 
model outputs N neurons with softmax activation, where N refers to the 
number of classes that the model attempts to learn. 

For the MNIST database, authors used a simple convnet that ach
ieved almost %99 test accuracy as proposed in [49] (See Fig. 10). Thus, 
when a new classifier is built, the IDT sets the number of neurons in the 
last fully connected layer as presented in the Algorithm2. 

All models in the tree are separately trained for 100 epochs with 32 
images per batch using the Adam optimiser and the categorical cross- 
entropy loss function. In addition, the early stopping function is used to 
abort the training process if the validation accuracy stops improving 
with a patience fixed to 10. 

5.3. Obtained results and discussion 

5.3.1. MNIST dataset 
Unlike biological databases, the MNIST dataset images are normal

ized and centred. In fact, if the IDT framework augmentations were 
applied to such images, the obtained features would not contain relevant 
information. For this reason, the proposed pre-processing module is 
ignored. For the MNIST dataset, the 10 classes are fed in 5 batches and 
each one of them contains 2 classes. The experiments show that neither 
the class order nor the batch order affects the final precision. Moreover, 
in contrast with the incremental learning methods for which the pre
diction precision decreases after each learning session (round), the 
precision achieved by the IDT prediction increases after learning new 
classes. 

Fig. 14 shows a performance comparison on the MNIST dataset and 
the following points were observed. The precision achieved by the 
Model_Batch4 on the class “0” reaches 95 %, while the Model_Batch3 
performed almost 85 % for the same class. 

The same findings are drawn for other classes such as: “1”, “3” and 
“7”, where the precisions achieved by the Model_Batch3, Model_Batch4 

Fig. 12. The IDT confusion matrix on the MNIST dataset.  

Fig. 13. The IDT confusion matrix on the BreakHis dataset.  

Fig. 14. Performance comparison on the MNIST dataset. 
The model Model_Batch_1 (red) learns the classes”5′′

and”9′′. The model Model_Batch_2 (yellow) learns the 
classes”7′′ and”8′′. The model Model_Batch3 (green) learns 
the classes”0′′ and”1′′. Last the models Model_Batch4 (or
ange) and Model_Batch5 (cyan) learn the classes”3′′,”4′′

and”2′′,”6′′ respectively. Whereas, the Cumulative Model 
(blue) learns the classes in the same order relying on the 
entire dataset. The precision of the class”4′′ achieved by 
the Model_Batch4 increases using the Model Batch 5 from 
69 % to 92 %.   



and Model_Batch2 increase, using the Model_Batch5, from 88 %, 62 % and 
81 % to 96 %, 83 % and 91 % respectively. 

Thus, updating the IDT knowledge allows it to improve its skills on 
old classes. The Cumulative_Model refers to an upper bound experimen
tation which learns the classes when new batches of data are available 
relying on the entire dataset (old and new). 

Further, the blue curve in Fig. 15 reports the accuracy achieved by 
the IDT which reaches about 88 % in the last incremental session. The 
average accuracy, reported between brackets, reaches 87,0 % exceeding 
both the iCaRL (58,5 %) in yellow and the LwF (52,6 %) in green. This is 
due to the fact that the LwF does not use a rehearsal memory for old 
tasks, while the iCaRL relies mainly on the representation quality of the 
replayed data. 

The above findings are affirmed by the diagonally dense confusion 
matrix, presented in Fig. 12, which reports the IDT class predictions 
performed after learning the last batch of data (Batch_5). 

5.3.2. BreakHis dataset 
As mentioned in the Section 5.1, the BreakHis dataset images are 3- 

channel RGB with 50 pixels. For each one of them, 50 random colour 
augmentations are performed, and the magnitude of every pixel is 
multiplied by two random uniform variables from the range [0.7, 1.3] as 
suggested in [3]. 

After that, from each original image, 20 random crops of 400 × 400 
pixels are extracted and then encoded into 50 descriptors which are 
combined and pooled into a single descriptor of the image using p = 3 

Fig. 15. Performance comparison on MNIST dataset. After learning the 10 classes, the IDT (blue) achieved 83,2 % against only 56,1 % and 36,0 % for iCaRL and LwF 
respectively. For each model, the average accuracy is reported between brackets. The Cumulative model is trained on the entire dataset as an upper bound 
experimentation. 

Fig. 16. Performance comparison on the BreakHis data
set. After learning 4 classes, the SupportNet (yellow) 
achieved +5 % than the IDT (blue). However, our model 
performed better with +5 % and + 3 % after learning the 
remaining classes. For each model, the average accuracy 
is reported between brackets. The Cumulative model is 
trained on the entire dataset as an upper bound experi
mentation. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web 
version of this article.)   

Fig. 17. Image augmentation and feature extraction. The original RGB image 700 × 460 pixels is presented in (a). From the normalized staining (b), random crops of 
400 × 400 pixels are extracted (c) and encoded into descriptors (d) then pooled into a single descriptor (e). 



(see Section 4.1.1). Accordingly, 50 augmentations are obtained for each 
original image as shown in Fig. 17. 

Further, the dataset is divided into three subsets. 20 % of the original 
data is kept for tests, whereas 10 % of the training set is used for the 
validation. The experimentations are conducted using 4 batches with 2 
different classes in each one of them. 

The obtained results show that the IDT exceeds all the compared 
methods (LwF, iCaRL, SupportNet and fine-tuning), excepting the case of 
the second batch, where the recorded accuracy is 93 % against 98 % 
achieved by the SupportNet (see Fig. 16). However, after learning the 
3rd and the 4th batches, our method achieved 90 % and 85 % exceeding 
the SupportNet (yellow) by 5 % and 3 % respectively. 

The all data configuration (red) refers to an upper boundary experi
mentation for learning without forgetting. In contrast, the fine-tuning 
experimentation (orange), shows the impact of catastrophic forgetting 
with the increase of the number of classes. 

For the average accuracies, our method achieves 92,0 % against 
91 %, 87 % and 51 % for SupportNet, iCaRL and fine-tuning respectively. 
This is explained by the fact that fine-tuning deep models give rise to a 
high plasticity leading to catastrophic forgetting. Moreover, the iCaRL 
degrades drastically on bioinformatics datasets as demonstrated in [18]. 
Thus, the proposed method is able to achieve acceptable predictions as 
shown in the confusion matrix (see Fig. 13). 

Fig. 18. Performance comparison on the LBC dataset. The Cumulative Model (blue) is trained on the entire dataset as an upper bound model. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 19. Performance comparison on the SIPaKMeD dataset. The Cumulative Model (blue) is trained on the entire dataset as an upper bound model. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 20. Performance comparison on the LBC dataset.  Fig. 21. Performance comparison on the SIPaKMeD dataset.  
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5.3.3. Pap smear datasets 
Referring to the algorithm presented in the Section [par: Learning the 

first batch], the first batch of data must contain at least two classes. As 
the LBC and the SIPaKMeD datasets contain 4 and 5 classes respectively, 
the framework learns two classes in the first batch of data, then a new 
class is added per batch in the next learning sessions (rounds). 

At the end of the incremental learning on the LBC dataset, the ob
tained results show that the “HSIL” class precision slightly decreases 
after learning the “NIM” and the “SCC” classes. However, the IDT and 
the all data configuration achieved the same precision 92 % as shown in 
Fig. 18. In contrast, the class precisions for “LSIL” and “NIM” are greater 
than or equal to the obtained values with the all data configuration (blue 
bars for the cumulative model). 

The same findings are drawn for the “Dyskeratotic” and the “Meta
plastic” classes from the SIPaKMeD dataset as shown in the Fig. 19, in 
which the cumulative bars in blue refer to the all data configuration as an 
upper bound experimentation. 

In addition, after learning 5 classes from the SIPaKMeD dataset, the 

IDT achieved 6 % less accuracy than the all data configuration (90 %). 
However, the average accuracy reached 93 % against 96 % in the upper 
bound experimentation which represents only 3 % of difference. 

For the LBC dataset, the obtained curves are superimposed which 
proves that the IDT is as efficient as the all data configuration with 97 % 
accuracy after learning all the classes. The average accuracy in Fig. 20 is 
98 % for the LBC dataset. This could be explained by the fact that the 
cytological images contain single cells, in contrast with the SIPaKMeD 
images which contain tissues of cells. 

Finally, the performance of the IDT classification is summarised in 
Fig. 22 and Fig. 23, where the obtained results are promising since the 
confusion matrices are diagonally dense. 

Unlike the BreakHis dataset which has been incrementally experi
mented using the SupportNet framework, our paper is, to the best of our 
knowledge, the first work that addresses the incremental learning in 
cervical cancer. So, comparative studies with the Tree-CNN and the 
ACLSeg were not carried out. This is due to the fact that, on one hand the 
target metrics in ACLSeg are the dice coefficient and the knowledge 
retention. On the other hand, when the Tree-CNN updates its knowledge, 
it relies on the new batches of data jointly with old ones, which is out of 
the scope of this paper. 

6. Conclusion

In this work we present a new Incremental Deep Tree framework
entitled the IDT, which allows a deep convolutional neural network to 
maintain previous skills while acquiring new knowledge. The proposed 
model performs prediction of new classes while achieving acceptable 
accuracies on the old ones. Actually, it relies on two principles: replay a 
part of old data when learning new classes and for each previous task, a 
target output is included in the new model. The former is devoted to 
support the features from old classes, while the latter aims to mitigate 
the forgetting of these features. Unlike most of the continual learning 
algorithms, the proposed method combines the three strategies of 
continual learning namely the replay, the regularization and the param
eter-isolation based methods. 

The IDT was experimented on the MNIST and three biological 
datasets. The results on the BreakHis, the LBC, the SIPaKMeD and the 
MNIST datasets are promising as they exceed the studied methods of the 
state-of-the-art. As biological datasets are difficult to access and they are 
regularly growing, the proposed framework helps specialists in the field 
of continual learning for Computer-Aided-Diagnosis. 

This work opens up avenues for research on the architecture of the 
base model. As the proposed method acts exclusively on the output layer 
of the classifier and does not focus on its inner architecture, investi
gating in new deep models with a hyper-parameter optimisation would 
improve the obtained results. Further, the achieved precisions could be 
increased by enhancing the quality of the replayed images using ma
chine learning techniques like support vector machines or generative 
adversarial networks to produce synthetic images. Such a flexibility 
consequently enables the application of the IDT framework on other 
types of images and in other fields. 
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