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PROCESSING DISTORTION MODELS: A COMPARATIVE1

STUDY2

SÉBASTIEN DESTERCKE, IGNACIO MONTES, AND ENRIQUE MIRANDA3

Abstract. When dealing with sets of probabilities, distortion or neighbour-
hood models are convenient practical tools, as they rely on very little parame-
ters. In this paper, we study their behaviour when such models are combined
and processed through some reasoning tools. More specifically, we study their
behaviour when merging different distortion models quantifying uncertainty
on the same quantity, and when manipulating distortion models defined over
multiple variables.

Keywords: neighbourhood models, independence, information fusion, im-
precise probabilities

1. Introduction4

Among the several imprecise probability models that are representable by means5

of credal sets, distortion models, defined as a ball around an initial probability, are6

quite practical, as their specification requires only a distance and a bound on it.7

This makes them instrumental models for various tasks, such as robustness analysis.8

However, the mathematical properties, as well as the interpretation of such neigh-9

bourhood models, heavily depend on the chosen distance. We recently conducted10

a thorough analysis [30, 31] of the probability sets induced by different distances,11

when those probability sets are convex polytopes1 defined on finite spaces.12

However, we did not explore what happens to those models when they are pro-13

cessed through some reasoning tool. This is what we aim to do in this paper,14

where we look in particular at two aspects often present in different applications of15

imprecise probabilistic models:16

• Merging or fusing together multiple models bearing on the same quantity or17

domain [36]: such a process is typically required when probabilistic assess-18

ments are provided by multiple sources such as expert opinions in system19

modelling [38], or outputs from classifiers in machine learning [15].20

• Combining multiple models defined on multiple quantities with different21

domains: such a process is typically required in risk analysis [3] or in general22

in applications involving multivariate domains.23

Therefore, this paper can also be seen as a companion paper to the aforementioned24

studies [30, 31], filling out the comparative analysis of the models carried out in25

[31, Sec. 5].26

To make this paper self contained, we first provide necessary notions and no-27

tations in Section 2, and then investigate in the following sections the behaviour28

1Excluding therefore distances or divergences such as the Euclidean distance or Kullback-
Leibler divergence, that do not induce polytopes.
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of different models under merging and combination, reminding the basics of each29

distortion model in the corresponding section. More precisely:30

• Section 3 deals with the Pari mutuel model (PMM), that originates from31

betting schemes on horse-racing. It has been studied from the point of view32

of imprecise probabilities in [29, 40, 53], and in [30] as a distortion model.33

• Section 4 deals with the Linear-Vacuous (LV) model, that consists in taking34

a mixture between a precise probability measure and the set of all possible35

distributions. This model has been used for instance in robust statistics [21].36

From the point of view of imprecise probabilities it was studied in [53], and37

as a distortion model in [30, Sec. 5]. Moreover, it corresponds to the well-38

known and basic discounting approach in evidence theory.39

• Section 5 deals with the constant-odds ratio (COR) model, that has the40

advantage of being stable under Bayesian updating. The constant odds41

ratio was given a behavioural interpretation in [53, Sec. 2.9.4]. We refer to42

[4, 5, 41, 50] for some applications of this model, and to [30, Sec. 6] for a43

detailed study of some of its properties as a distortion model.44

• Section 6 deals with the total variation (TV) model, which is the distortion45

model induced by the total variation distance, i.e., the maximum absolute46

difference between two probability measures. We refer to [53, Sec. 3.2.4],47

[40, Sec. 3.2] and [20], [31, Sec. 2] for some studies of this distortion model.48

The total variation distance has also been used in other setting, such as to49

find consensus between various probabilities [43] (a task close in spirit to50

the one of information merging).51

• Section 7 deals with the Kolmogorov (K) model, a distortion model induced52

by the Kolmogorov distance between cumulative distributions. It is con-53

nected to imprecise cumulative distribution functions, also called p-boxes.54

This distortion model was analysed in detail in [31, Sec. 3].55

• Section 8 deals with the L1 model, a distortion model induced by the L156

distance. While this distance has been used in robust statistics [42], it was57

studied as an imprecise model for the first time in [31, Sec. 4].58

Finally, in Section 9 we provide our final comments and remarks.59

2. Preliminary concepts60

This section introduces the chosen notations, as well as the necessary general61

elements on distortion models and their processing. Readers interested in further62

details about those models can refer to [30, 31].63

2.1. Notation and basic notions about probability. We consider in this paper64

finite possibility spaces, that will be denoted by X , Y or their product space X ×Y.65

We denote by P(X ) the power set of a space X , by P(X ) the set of probability66

measures on X , and by P∗(X ) the set of probability measures P satisfying P (A) ∈67

(0, 1) for any A 6= ∅,X .68

Whenever X = {x1, . . . , xn} is equipped with a total order, we will assume that69

x1 < . . . < xn. In that case, we denote by FP the cumulative distribution function70

(cdf, for short) associated with the probability measure P , given by71

FP (xi) = P ({x1, . . . , xi}) for every i = 1, . . . , n.

When we deal with two ordered spaces X and Y = {y1, . . . , ym} (y1 < . . . < ym),72

and we consider the product space X × Y, every P ∈ P(X × Y) has an associated73
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bivariate cdf FP given by74

FP (xi, yj) = P
(
{x1, . . . , xi} × {y1, . . . , yj}

)
∀i = 1, . . . , n, ∀j = 1, . . . ,m.

Given a probability measure P ∈ P(X × Y) or its associated bivariate cdf FP , we
denote by PX , FX and PY , FY its X and Y marginals, respectively, given by:

PX (A) = P (A× Y) ∀A ⊆ X , FX (xi) = FP (xi, ym) ∀i = 1, . . . , n.

PY(B) = P (X ×B) ∀B ⊆ Y, FY(yj) = FP (xn, yj) ∀j = 1, . . . ,m.

Also, every bivariate cdf FP satisfies the Fréchet-Hoeffding inequalities:75

max
{
FX (xi) + FY(yj)− 1, 0

}
≤ FP (xi, yj) ≤ min

{
FX (xi), F

Y(yj)
}

for every i = 1, . . . , n and j = 1, . . . ,m.76

2.2. Imprecise probabilities. Let us introduce the main notions from the theory77

of imprecise probabilities that we shall use in this paper. We refer to [2, 47, 53] for78

a deeper discussion of this theory.79

A lower probability on a possibility space X is a function P : P(X )→ [0, 1] that
is monotone (A ⊆ B implies P (A) ≤ P (B)) and normalised (P (∅) = 0, P (X ) = 1).
To any lower probability, we can associate a credal set, which is a closed and convex
set of probability measures defined as:

M(P ) := {P ∈ P(X ) | P (A) ≥ P (A) ∀A ⊆ X}.
P is called coherent if and only ifM(P ) is non-empty and P (A) = minP∈M(P ) P (A)
for every A ⊆ X . We will assume that all the lower probabilities we consider in this
paper satisfy this consistency requirement. Since the credal setM(P ) is closed and
convex, it is determined by its extreme points, which are those probability measures
P ∈ P(X ) such that

(∀P1, P2 ∈M(P ), α ∈ (0, 1))(P = αP1 + (1− α)P2 ⇒ P1 = P2 = P ).

We can associate with a coherent lower probability P its conjugate coherent80

upper probability, given by P (A) = 1 − P (Ac) for every A ⊆ X . In fact, every81

probability measure P ∈M(P ) also satisfies P (A) ≤ P (A) for every A ⊆ X .82

A more general notion than lower probability is that of lower prevision. A gamble83

on X is a real-valued function f : X → R, and the set of all the gambles on X is84

denoted by L(X ). A lower prevision is a map P : L(X )→ R. Its associated credal85

set is86

M(P ) = {P ∈ P(X ) | P (f) ≥ P (f) ∀f ∈ L(X )},
where, in order to ease the notation, we are using the same symbol to denote a87

probability measure P and its associated expectation operator. A lower prevision88

P is called coherent if and only ifM(P ) is non-empty and P (f) = minP∈M(P ) P (f)89

for every gamble f ∈ L(X ). Given a coherent lower prevision P , its associated90

conjugate coherent upper prevision is given by P (f) = −P (−f) for any f ∈ L(X ).91

When a coherent lower prevision P is restricted to indicators2 of events, i.e., we92

restrict to the set of gambles {IA | A ⊆ X}, the coherent lower prevision becomes93

a coherent lower probability, where we use the notation P (A) for P (IA). However,94

two different coherent lower previsions may have the same restriction to indicators95

of events, and as a consequence may induce the same coherent lower probability.96

2Recall that the indicator IA of an event A is the gamble that takes the value 1 on the elements
of A and 0 elsewhere.
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A subfamily of particular interest within coherent lower probabilities is given by97

those that satisfy 2-monotonicity:98

Definition 1. A lower probability P : P(X )→ [0, 1] is 2-monotone when it satisfies

P (A ∪B) + P (A ∩B) ≥ P (A) + P (B) ∀A,B ⊆ X .

We refer to [14, 51] for a detailed account of these models. In particular, they99

include those associated with probability boxes. Assuming that X is equipped with100

a total order, a (univariate) probability box [19] is a pair of cdfs F , F : X → [0, 1],101

called lower and upper cdfs, satisfying F ≤ F . A p-box (F , F ) defines a credal set102

M(F , F ) by:103

M(F , F ) =
{
P ∈ P(X ) | F ≤ FP ≤ F

}
.

The lower and upper envelopes of M(F , F ), P (F,F ) and P (F,F ), are conjugate104

coherent lower and upper probabilities satisfying105

P (F,F )

(
{x1, . . . , xi}

)
= F (xi) and P (F,F )

(
{x1, . . . , xi}

)
= F (xi) ∀i = 1, . . . , n.

These coherent lower and upper probabilities can be computed following the results106

in [48], where it was proven that P (F,F ) is 2-monotone (in fact, it satisfies the107

stronger property of complete monotonicity). We refer to [17, 27, 48, 49] for detailed108

studies about (univariate) p-boxes.109

2.3. Distortion models. In this paper, our focus is on a family of imprecise prob-110

ability models that are usually referred to as distortion models [6, 9, 21]. They can111

arise by considering a neighbourhood model around some probability measure us-112

ing some distorting function d and some distortion factor δ > 0 (as in [22, 41, 50]),113

or making a transformation of a given (lower) probability (as in [7, 10, 44]). We114

showed in [30, Prop. 2] that this second approach can be embedded in the first,115

and for this reason we consider here distortion models defined in terms of neigh-116

bourhoods. Given a distorting function d : P(X ) × P(X ) → [0,∞), a distortion117

parameter δ > 0 and a fixed probability measure P0 ∈ P(X ), we can define the118

following set of probabilities:119

Bδd(P0) = {P ∈ P(X ) | d(P, P0) ≤ δ}.

Whenever d is convex and continuous, Bδd(P0) is a convex and closed set of proba-120

bilities [30, Prop. 1]. This means that if we consider its lower envelope:121

P d(f) = min
{
P (f) | P ∈ Bδd(P0)

}
∀f ∈ L(X ),

the credal setsM(P d) and Bδd(P0) coincide, and P d is a coherent lower prevision.122

For the sake of simplicity, in [30, 31] we assumed that P0 ∈ P∗(X ), i.e. P0 is123

strictly positive for every non-empty event, and that also δ is small enough so that124

Bδd(P0) ⊆ P∗(X ). In this paper, we also assume that this simplifying hypothesis125

holds.126

2.4. Processing imprecise probabilistic models. One of the criteria that may127

be used in order to choose one uncertainty model over another is that it is closed128

under a number of operations that we may perform. These operations may arise for129

instance from the combination of different sources of information, the extension to130

a different domain, or the updating under the presence of new information. Next,131

we introduce the procedures that shall be analysed in this paper.132
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2.4.1. Merging. The first operation we shall consider in this paper is that of merg-133

ing. By this, we refer to the procedure where we aggregate a number of belief134

models, defined on the same domain X , into a unique one. These models may arise135

as the opinion of different experts or several data sources, for instance. The prob-136

lem of aggregating imprecise beliefs has been analysed from the axiomatic point of137

view by Walley [52]. Other relevant works on this topic are [36, 37].138

In this paper, we shall focus on the three most fundamental merging procedures:139

those of conjunction, disjunction and convex mixture. If we model our beliefs in140

terms of two credal setsM1,M2, they will produce the setsM1 ∩M2,M1 ∪M2141

and εM1 + (1− ε)M2 = {εP1 + (1− ε)P2|Pi ∈Mi} with ε ∈ [0, 1], respectively.142

In terms of the lower probabilities associated with these sets, it should be noted143

that, whileM1∪M2 is not convex in general, its lower envelope, that coincides with144

the lower envelope of its convex hull ch(M1 ∪M2), is given by P := min{P 1, P 2},145

where P 1, P 2 denote the lower envelopes of M1,M2, respectively. Since we fo-146

cus in this paper on lower probabilities and previsions, we can restrict ourselves147

to3 ch(M1 ∪M2). While this disjunction will always determine a coherent lower148

probability by considering its associated lower envelope of events, the latter may149

not belong to the same family as the original models P 1, P 2. In that case, one150

possibility would be to consider an outer approximation; in this respect, our earlier151

work in [24, 33, 34] shall be useful.152

In contrast, while M1 ∩M2 is convex, its lower envelope P will dominate in153

general max{P 1, P 2}. It is not difficult to see that for any linear prevision P it154

holds that P ∈ M1 ∩M2 if and only if P ≥ max{P 1, P 2}. This means that P155

is the natural extension (the smallest dominating coherent lower probability) of156

max{P 1, P 2}. A sufficient condition for the equality between them is precisely the157

convexity ofM1 ∪M2, as shown in [54, Thm. 6]. The equality between the lower158

envelope ofM1 ∩M2 and max{P 1, P 2} was investigated in the case of possibility159

measures in [25], and it will be analysed here for distortion models.160

Finally, εM1 + (1− ε)M2 is always convex, and its lower envelope is such that161

P := εP 1 + (1− ε)P 2.162

2.4.2. Marginal and joint models in multivariate settings. Another relevant scenario163

is the restriction of the model to a smaller domain or its extension to a larger one.164

In this paper, we shall focus on the case where our possibility space is the product165

X ×Y of two finite spaces. In that case, we may move from the joint model to the166

marginals, or viceversa.167

Marginalisation168

In this first case, given a joint model PX ,Y defined on the space X × Y, we169

can consider the marginal models PX and PY , defined on X and Y, respectively.170

Their corresponding credal sets M
(
PX
)
and M

(
PY
)
are formed by the X - and171

Y-projections of the probability measures inM
(
PX ,Y

)
, respectively.172

3It should however be noted that convexity is not desirable in every situation: for instance
Seidenfeld et al. [45] show in a decision-making context that when considering pairs of imprecise
probabilities and utilities, one may have to let go of convexity.
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Independent products173

Conversely, we may start from two marginal models PX and PY defined on X174

and Y, respectively, and build a joint model on X × Y that is compatible with175

them. When the sources are assumed to be independent, this leads us to consider176

an independent product. Out of the several extensions of the notion of independence177

to the imprecise case [11], we consider in this paper the strong product of PX and178

PY , that we shall denote PX � PY . It is the lower envelope of179

M
(
PX
)
�M

(
PY
)
=
{
PX × PY | PX ∈M

(
PX
)
, PY ∈M

(
PY
)}
, (1)

where PX×PY denotes the joint probability defined using the marginals PX and PY
through stochastic independence. The strong product PX � PY and its conjugate
P
X
� P

Y
satisfy the following factorisation properties on events:

PX � PY(A×B) = PX (A) · PY(B) for any A ⊆ X , B ⊆ Y. (2)

P
X
� P

Y
(A×B) = P

X
(A) · PY(B) for any A ⊆ X , B ⊆ Y.

Natural extension of marginal models180

Alternatively, given two marginal models PX and PY on X and Y, respectively,
we may look for the most conservative joint model in X × Y with these given
marginals, imposing no dependence assumption whatsoever. Using Walley’s termi-
nology [53], this corresponds to considering the natural extension E of the coherent
lower probability P that is defined on {A× Y : A ⊆ X} ∪ {X ×B : B ⊆ Y} by

P (A× Y) = PX (A) and P (X ×B) = PY(B).

It can be equivalently obtained as the lower envelope of the credal set given by181

those probabilities whose marginals are compatible with the information provided182

by PX and PY :183

E
(
PX , PY

)
=
{
P ∈ P(X × Y)

∣∣ PX ∈M(PX ), PY ∈M(PY)}. (3)

If we consider the upper envelope E of this set we obtain the conjugate upper
prevision of E, that corresponds to the (upper) natural extension of the coherent
upper probability P given by

P (A× Y) = P
X
(A) and P (X ×B) = P

Y
(B).

Equivalently,184

E(C) = inf
P∈E(PX ,PY)

P (C), E(C) = sup
P∈E(PX ,PY)

P (C) ∀C ⊆ X × Y. (4)

The study of a joint distribution with given marginals has received a long standing185

attention in the literature; see for instance [1, 23, 26, 46]. Its existence is trivial in186

situations like the one considered in this paper: where the marginals are established187

in disjoint sets of variables. In that case, we can use the techniques of natural188

extension to determine the lower and upper envelopes of all such joints. Our next189

proposition gives the expression of E,E on Cartesian products of events:190
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Proposition 1. Let PX and PY be two coherent lower probabilities on X and Y,
respectively, with conjugates P

X
and P

Y
. Then:

E(A×B) = max
{
PX (A) + PY(B)− 1, 0

}
, (5)

E(A×B) = min
{
P
X
(A), P

Y
(B)

}
∀A ⊆ X , B ⊆ Y. (6)

Proof. This is a consequence of the result stated by Walley in [53, Sec. 3.1.1] for191

intersections of events. �192

In the particular case where we start with precise marginals PX0 and PY0 on X ,Y,
we obtain

EPX0 ,PY0
(A×B) = max

{
PX0 (A) + PY0 (B)− 1, 0

}
, (7)

EPX0 ,PY0
(A×B) = min

{
PX0 (A), PY0 (B)

}
∀A ⊆ X , B ⊆ Y. (8)

From Proposition 1 we obtain a simple procedure for computing the natural exten-193

sion in Equation (3) for events of the type A × B, which are simply the Fréchet-194

Hoeffding bounds. One may think that the expressions in Equations (5) and (6)195

also hold when considering any event C ⊆ X × Y, and decomposing it into its X -196

and Y-projections. However, our next example shows that this is not always the197

case.198

Example 1. Let X = {x1, x2, x3} and Y = {y1, y2, y3} and let the coherent conju-199

gate lower and upper probabilities be given by:200

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
PX (A) 0.1 0.2 0.5 0.4 0.7 0.8

P
X
(A) 0.2 0.3 0.6 0.5 0.8 0.9

B {y1} {y2} {y3} {y1, y2} {y1, y3} {y2, y3}
PY(B) 0.1 0.2 0.4 0.4 0.7 0.7

P
Y
(B) 0.3 0.3 0.6 0.6 0.8 0.9

Consider the event C1 = {(x1, y1), (x2, y2), (x3, y3)}, whose projections are CX1 =201

X , CY1 = Y, and the probability mass function P given by202

y3 0 0 0.4
y2 0 0.1 0.2
y1 0.2 0.1 0

P
(
{(xi, yj)}

)
x1 x2 x3

Its marginals dominate PX , PY , respectively. As a consequence, E(C1) ≤ P (C1) =203

0.7, while204

max
{
PX
(
CX1
)
+ PY

(
CY2
)
− 1, 0

}
= 1.�

2.5. Aim of the paper. In [30, 31], we carried out a comparative analysis of six205

distortion models: the pari mutuel, linear vacuous, constant odds ratio, total vari-206

ation, Kolmogorov and L1 distance models. The aim was to give guidelines about207

which model performs better on some respect or which one is more appropriate208

in each particular scenario. Specifically, we analysed the following features: (i)209

the amount of imprecision present in the model once the probability measure P0210

and the distortion factor δ > 0 are fixed; (ii) the properties of the associated lower211



8 SÉBASTIEN DESTERCKE, IGNACIO MONTES, AND ENRIQUE MIRANDA

probability as a non-additive measure; (iii) the complexity of their associated neigh-212

bourhood models, in terms of the number of extreme points; and (iv) the behaviour213

of the model under conditioning.214

Our goal in this paper is to complement the analysis performed in [31, Sec. 5]215

by investigating the behaviour of the different families of distortion models under216

the procedures described in Section 2.4. Specifically, we shall tackle the following217

problems:218

Merging: We first analyse if the distortion models are closed under merging.219

For this aim, we consider two distortion models Bδ1d
(
P 1
0

)
⊆ P∗(X ) and220

Bδ2d
(
P 2
0

)
⊆ P∗(X ) in some specific family. Our aim is to know whether221

their conjunction Bδ1d
(
P 1
0

)
∩Bδ2d

(
P 2
0

)
, their disjunction Bδ1d

(
P 1
0

)
∪Bδ2d

(
P 2
0

)
222

or their mixture εBδ1d
(
P 1
0

)
+ (1 − ε)Bδ2d

(
P 2
0

)
belong to the same family,223

in the sense that it is equal to Bδ
∗

d

(
P ∗0
)
for some appropriate δ∗ and P ∗0 .224

As we shall see, this is almost always the case for the convex mixture4,225

sometimes the case for the conjunction, and never for the disjunction. In226

this last case, we might then consider the convex hull of the disjunction227

ch
(
Bδ1d (P 1

0 ) ∪ B
δ2
d (P 2

0 )
)
and investigate whether it has a unique outer ap-228

proximation in the same family [8, 33, 34]. By an outer approximation of229

a coherent lower probability P in some family C we mean some Q ∈ C such230

that Q ≤ P . We will say that the outer approximation is undominated231

when there is no Q′ ∈ C such that Q � Q′ ≤ P .232

Note that since we are assuming that Bδ1d
(
P 1
0

)
and Bδ2d

(
P 2
0

)
are included233

in P∗(X ), their convex mixture and their intersection will be also included234

in P∗(X ). However, an undominated outer approximation of the disjunction235

need not be included in P∗(X ).236

Marginalisation: Given a distortion model Bδd
(
PX ,Y0

)
⊆ P∗

(
X ×Y

)
with associ-237

ated lower prevision P d, we want to know whether the marginal models PXd238

and PYd correspond to distortion models of the same family on P(X ) and239

P(Y), respectively. In other words, we want to know ifM
(
PXd
)
= Bδd

(
PX0
)

240

andM
(
PYd
)
= Bδd

(
PY0
)
.241

Independent products: Consider two distortion models Bδd
(
PX0
)
⊆ P∗(X ) and242

Bδd
(
PY0
)
⊆ P∗(Y) with the same distortion parameter. We want to build243

a joint model using independence, and we want to know whether the joint244

model belongs to the same family. Two solutions are then possible in the245

setting of this study:246

• Combine PX0 and PY0 into a joint probability PX ,Y0 ∈ P∗(X × Y) and247

apply the distortion to it. In this way, we obtain the distortion model248

Bδd
(
PX ,Y0

)
. We shall denote by PX×Y and P

X×Y
the resulting lower249

and upper probabilities obtained as the lower and upper envelope of250

the credal set Bδd
(
PX ,Y0

)
, respectively.251

• Consider the distortion models Bδd
(
PX0
)
⊆ P∗(X ) and Bδd

(
PY0
)
⊆252

P∗(Y) and combine them using the strong product. By Equation (1),253

this produces the set M
(
PX
)
�M

(
PY
)
⊆ P∗(X × Y), whose lower254

4The constant odds ratio model is an exception.
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and upper envelopes are the lower and upper probabilities PX � PY255

and P
X
� P

Y
.256

We wonder if the lower envelopes of Bδd
(
PX ,Y0

)
and M

(
PX
)
�M

(
PY
)

257

coincide, or in case they do not, whether there is a dominance relationship258

between them, meaning that one of the procedures is more precise than the259

other. In other words, we shall analyse whether there is some dominance260

relation between PX×Y and PX � PY .261

We will also check whether the different models are closed under the262

operation of independent product, that is, whether PX � PY is also a263

distortion model of the same family.264

Natural extension: Consider two marginal distortion models BδXd
(
PX0
)
⊆ P∗(X )265

and BδYd
(
PY0
)
⊆ P∗(Y) with associated lower probabilities PX and PY .266

We want to compute their least committal extension to P(X ×Y), i.e. the267

natural extension given in Equation (3). In this case, the credal set of the268

natural extension is269

E
(
PX , PY

)
=
{
P ∈ P(X × Y) | PX ∈ BδXd

(
PX0
)
, PY ∈ BδYd

(
PY0
)}
.

We already know the expression of E and its conjugate E on events like270

A×B (see Equations (5) and (6)). We wonder whether we can give a simple271

expression of E(PX , PY), E and E and also whether E(PX , PY) is also the272

credal set of a distortion model of the same family.273

Note that, although BδXd
(
PX0
)
and BδYd

(
PY0
)
are included in P∗(X ) and274

P∗(Y), respectively, we cannot guarantee the resulting model E
(
PX , PY

)
275

to be included in P∗(X × Y).276

From now on, we devote one section to each of the six distortion models mentioned277

in the introduction and we analyse their behaviour under the previous operations.278

3. Pari mutuel model279

The first distortion model we analyse in this paper is the pari mutuel model280

(PMM, for short):281

Definition 2. Given a probability measure P0 and a distortion factor δ > 0, the
associated pari mutuel model is determined by the following lower and upper prob-
abilities:

PPMM (A) = max{(1 + δ)P0(A)− δ, 0},
PPMM (A) = min{(1 + δ)P0(A), 1} ∀A ⊆ X .

Since we are assuming that our initial model satisfies P0 ∈ P∗(X ) and that its282

lower probability PPMM takes strictly positive values on non-empty events, the283

previous expressions simplify to:284

PPMM (A) = (1 + δ)P0(A)− δ, PPMM (A) = (1 + δ)P0(A) ∀A 6= ∅,X ,
and taking the trivial values 0 and 1 for ∅ and X , respectively.285

It was shown in [30, Thm. 5] that the credal set M(PPMM ) coincides with286

BδdPMM (P0), where dPMM : P∗(X ) × P∗(X ) → [0,∞) is the distorting function287

given by288

dPMM (P,Q) = max
A⊂X

Q(A)− P (A)
1−Q(A)

.
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Next, we complement the work in [30] by investigating the behaviour of the family289

of pari mutuel models under a number of operations.290

3.1. Merging. Let us first study the behaviour of the PMM under merging oper-291

ators.292

Conjunction293

We start by analysing the conjunction of PMMs. Given two neighbourhood294

models Bδ1dPMM (P 1
0 ) ⊆ P∗(X ) and Bδ2dPMM (P 2

0 ) ⊆ P∗(X ), it was established in [29,295

Prop. 12] that their intersection is non-empty iff296 ∑
x∈X

min
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x}), 1

}
≥ 1. (9)

This intersection is the PMM Bδ∩dPMM (P∩0 ), for

δ∩ =

(∑
x∈X

min
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

})
− 1, and

P∩0 ({x}) =
min

{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}
1 + δ∩

∀x ∈ X .

Disjunction297

Regarding the disjunction, the convex hull of Bδ1dPMM (P 1
0 )∪B

δ2
dPMM

(P 2
0 ) will not298

be in general a PMM, as we show in the following example.299

Example 2. Consider P 1
0 = (0.5, 0.3, 0.2), P 2

0 = (0.3, 0.5, 0.2) and δ1 = δ2 = 0.1.300

The associated PMMs PPMM1
, PPMM2

and their disjunction P∪ are given in the301

following table:302

{x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
PPMM1

0.45 0.23 0.12 0.78 0.67 0.45

PPMM2
0.23 0.45 0.12 0.78 0.45 0.67

P∪ 0.23 0.23 0.12 0.78 0.45 0.45

If it wasM
(
P∪
)
= BδdPMM (P0) for some P0, δ, then we would obtain303 ∑

x∈X
P∪({x}) = 0.58 = 1− 2δ ⇒ δ = 0.21;

on the other hand, the equality304

0.45 = P∪({x2, x3}) = (1 + δ)P0({x2, x3})− δ = P∪({x2}) + P∪({x3}) + δ,

means that it should be δ = 0.1. Thus, P∪ is not a PMM. �305
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Interestingly, this disjunction has a unique undominated outer-approximation
that is a PMM [33, Prop. 7]. It is given by the model Bδ∪dPMM (P∪0 ) such that:

δ∪ =

(∑
x∈X

max
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

})
− 1, and

P∪0 ({x}) =
max

{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}
1 + δ∪

∀x ∈ X .

This is the greatest (in terms of P ), or more informative, PMM whose associated306

neighbourhood includes the disjunction Bδ1dPMM (P 1
0 ) ∪B

δ2
dPMM

(P 2
0 ).307

Convex mixture308

The mixture operation was studied in [33, Sec. 5.1], where it was shown that the
convex mixture of two PMM is again a PMM, given by BδεdPMM (P ε0 ) where

1 + δε = ε(1 + δ1) + (1− ε)(1 + δ2) and

P ε0 ({x}) =
ε(1 + δ1)P

1
0 ({x}) + (1− ε)(1 + δ2)P

2
0 ({x})

1 + δε
∀x ∈ X .

3.2. Multivariate setting. Let us now look at the behaviour of the PMM in a309

multivariate setting.310

Marginalisation311

In [29, Sec. 6.2], it was shown that the marginal lower probability PX obtained312

from a joint PMM BδdPMM
(
PX ,Y0

)
⊆ P∗(X × Y) is again a PMM BδdPMM

(
PX0
)
⊆313

P∗(X ) with PX0 the marginal probability of PX ,Y0 on X and the same distortion314

factor.315

Independent products316

When going from marginal models PX0 and PY0 to a joint one under the as-
sumption of independence, it can be seen that there is no dominance relation-
ship between PX×YPMM (combine through stochastic independence then distort) and
PXPMM �PYPMM (distort then combine through strong independence). To see this,
note that on the one hand for the Cartesian product of events A,B, it holds that:

P
X×Y
PMM (A×B) = (1 + δ)PX0 (A)PY0 (B)

≤ (1 + δ)PX0 (A)(1 + δ)PY0 (B) = P
X
PMM � P

Y
PMM (A×B), (10)

where the inequality is strict whenever we consider non-trivial events A,B, i.e.317

PX0 (A), PY0 (B) ∈ (0, 1). On the other hand, for events E that are not products, the318

relationship between P
X×Y
PMM (E) and P

X
PMM � P

Y
PMM (E) can be the reverse one,319

as we show in our next example:320

Example 3. Consider the spaces X = {x1, x2} and Y = {y1, y2} and the probability321

measures PX0 and PY0 given by:322

PX0 ({x1}) = 0.3, PX0 ({x2}) = 0.7, PY0 ({y1}) = PY0 ({y2}) = 0.5,
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and let δ = 0.1. Given the event E1 = {(x2, y2)}c, it holds that:

P
X×Y
PMM (E1) = 1− PX×YPMM

(
{(x2, y2)}

)
= 0.715

> P
X
PMM � P

Y
PMM (E1) = 1− PXPMM � PYPMM

(
{(x2, y2)}

)
= 1− PXPMM ({x2})PYPMM ({y2}) = 0.6985.

On the other hand, if we consider the events A = {x1} and B = {y1}, we obtain323

P
X×Y
PMM (A × B) = 0.165 and P

X
PMM � P

Y
PMM (A × B) = 0.1815, showing that the324

inequality in Equation (10) may be strict.325

Therefore, there is not a dominance relationship between PX×YPMM and PXPMM �326

PYPMM (or equivalently between P
X×Y
PMM and P

X
PMM � P

Y
PMM ). �327

We may also wonder whether the family of PMM is closed under the strong328

product, or in other words if PXPMM � PYPMM is still a PMM. The next example329

shows that this is not the case.330

Example 4. Consider the setting of Example 3 and the events {(x1, y1)}, {(x1, y2)}
and {x1} × Y. We obtain

P
X
PMM � P

Y
PMM ({(x1, y1)}) = P

X
PMM � P

Y
PMM ({(x1, y2)}) = 0.33 · 0.55 = 0.1815

while
P
X
PMM � P

Y
PMM ({x1} × Y) = P

X
PMM ({x1}) = 0.33.

Since 0.33 6= 2·0.1815 and any PMM satisfies P (A∪B) = P (A)+P (B) if A∪B ⊂ X331

and A ∩B = ∅, we conclude that P
X
PMM � P

Y
PMM is not a PMM. �332

Natural extension of marginal models333

Consider the lower and upper probabilities that are the lower and upper en-
velopes of BδXdPMM

(
PX0
)
⊆ P∗(X ) and BδYdPMM

(
PY0
)
⊆ P∗(Y). Using Equations (5)

and (6), we can give the form of EPMM and EPMM for the events A×B 6= ∅, for
A ⊂ X , B ⊂ Y:

EPMM (A×B) = min
{
P
X
PMM (A), P

Y
PMM (B)

}
= min

{
(1 + δX )P

X
0 (A), (1 + δY)P

Y
0 (B), 1

}
.

EPMM (A×B) = max
{
PXPMM (A) + PYPMM (B)− 1, 0

}
= max

{
(1 + δX )P

X
0 (A)− δX + (1 + δY)P

Y
0 (B)− δY − 1, 0

}
.

Moreover, when the distortion parameters coincide, δX = δY = δ, the previous
equations become:

EPMM (A×B) = min
{
(1 + δ)PX0 (A), (1 + δ)PY0 (B), 1

}
= min

{
1, (1 + δ)min

{
PX0 (A), PY0 (B)

}}
. (11)

EPMM (A×B) = max
{
(1 + δ)

(
PX0 (A) + PY0 (B)

)
− 2δ − 1, 0

}
= max

{
(1 + δ)

(
PX0 (A) + PY0 (B)− 1

)
− δ, 0

}
= (1 + δ)max

{
PX0 (A) + PY0 (B)− 1,

δ

1 + δ

}
− δ. (12)
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We note that the above expressions for EPMM (A × B) and EPMM (A × B) recall334

those of the upper and lower probabilities of a PMM.335

Even if the expressions in Equations (11) and (12) are only valid for the events336

of the type A×B, one may think that the natural extension is somehow related to337

a PMM. Our next result shows that indeed such a connection can be established.338

Theorem 2. Let BδdPMM
(
PX0
)
⊆ P∗(X ) and BδdPMM

(
PY0
)
⊆ P∗(Y) be two PMMs339

with associated lower and upper probabilities PXPMM , P
X
PMM and PYPMM , P

Y
PMM .340

Then, the credal set of the natural extension defined in Equation (3) can be expressed341

as:342

E
(
PXPMM , P

Y
PMM

)
=
{
P ∈ P(X × Y) | P ≤ (1 + δ)EPX0 ,PY0

}
; (13)

equivalently,343

EPMM (C) = min
{
(1 + δ)EPX0 ,PY0

(C), 1
}
∀C ⊆ X × Y, (14)

where EPX0 ,PY0
corresponds to the upper envelope of the credal set in Equation (3)344

applied to the particular case of precise marginals PX0 , P
Y
0 .345

Proof. Consider first of all P satisfying P ≤ (1 + δ)EPX0 ,PY0
, and let us prove that

P ∈ E
(
PXPMM , P

Y
PMM

)
. Since

P (A× Y) ≤ (1 + δ)EPX0 ,PY0
(A× Y)

= (1 + δ)min
{
PX0 (A), PY0 (Y)

}
= (1 + δ)PX0 (A) ∀A ⊂ X ,

P (X ×B) ≤ (1 + δ)EPX0 ,PY0
(X ×B)

= (1 + δ)min
{
PX0 (X ), PY0 (B)

}
= (1 + δ)PY0 (B) ∀B ⊂ Y,

we deduce that the X and Y marginals of P are dominated by the upper proba-346

bility determined by P
X
PMM and P

Y
PMM , and thus that P ∈ E

(
PXPMM , P

Y
PMM

)
.347

Therefore,348

E
(
PXPMM , P

Y
PMM

)
⊇
{
P ∈ P(X × Y) | P ≤ (1 + δ)EPX0 ,PY0

}
,

or equivalently349

EPMM (C) ≥ min
{
(1 + δ)EPX0 ,PY0

(C), 1
}
∀C ⊆ X × Y. (15)

Fix now C ⊆ X ×Y, take P ∈ E
(
PXPMM , P

Y
PMM

)
such that P (C) = EPMM (C),350

and denote by PX and PY its marginals.351

Let us define the probability measures QX , QY by means of the equalities

QX ({x}) = (1 + δ)PX0 ({x})− PX ({x})
δ

, QY({y}) = (1 + δ)PY0 ({y})− PY({y})
δ

.

Note that by construction∑
x∈X

QX ({x}) = 1 + δ − 1

δ
= 1,

and also QX ({x}) ≥ 0 because PX ≤ (1 + δ)PX0 . Therefore, QX is a probability
measure on X . Similar considerations imply that QY is a probability measure on Y.
Let Q := QX ×QY denote their independent product, and consider the probability
measure P ′ given by

P ′ =
1

1 + δ
P +

δ

1 + δ
Q.
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P ′ is a probability measure because it is a convex combination of probability mea-
sures. Moreover, for any x ∈ X :∑

y∈Y
P ′
(
{(x, y)}

)
=
∑
y∈Y

(
1

1 + δ
P
(
{(x, y)}

)
+

δ

1 + δ
Q
(
{(x, y)}

))

=
PX
(
{x}
)

1 + δ
+

δ

1 + δ
QX
(
{x}
)

=
PX
(
{x}
)

1 + δ
+

(1 + δ)PX0
(
{x}
)
− PX

(
{x}
)

1 + δ
= PX0

(
{x}
)
.

Similarly, the Y-marginal of P ′ coincides with PY0 . As a consequence, P ′ ∈
E
(
PX0 , P

Y
0

)
, whence P ′(C) ≤ EPX0 ,PY0

(C). Moreover

P ′(C) =
∑

(x,y)∈C

P ′
(
{(x, y)}

)
≥ 1

1 + δ

∑
(x,y)∈C

P
(
{(x, y)}

)
=

1

1 + δ
P (C) =

1

1 + δ
EPMM (C),

so we deduce that352

EPMM (C) ≤ min
{
(1 + δ)EPX0 ,PY0

(C), 1
}
. (16)

By putting together Equations (15) and (16) we conclude that Equations (13)353

and (14) hold. �354

This result shows that the procedures of natural extension and the distortion355

produced by the PMM commute, in the sense that the natural extension of the356

coherent upper probability determined by the two marginal PMMs can also be357

obtained as a PMM starting from the joint probability the two marginals determine358

on the product events5. This is illustrated in Figure 1.359

PX0 , P
Y
0

EPX0 ,PY0

P
X
PMM , P

Y
PMM EPMM

min
{
1, (1 + δ)EPX0 ,PY0

}
Eq. (8)

Eq. (4)
Thm. 2

Figure 1. Graphical representation of the natural extension of
two PMMs.

5This second approach is reminiscent of that considered by Moral in [35] for the distortion
of credal sets (there with the name discounting): he distorts each of the elements in the initial
credal sets, and then takes the closure of the union of those credal sets obtained. In particular,
he investigated the cases of the total variation distance and the linear vacuous mixtures we shall
consider later on in this paper.
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4. Linear vacuous mixtures360

Our next model is the so-called ε-contamination model, or linear vacuous mixture361

(LV, for short):362

Definition 3. Given a probability measure P0 and a distortion factor δ ∈ (0, 1),363

its associated linear vacuous mixture is given by the following conjugate lower and364

upper probabilities:365

PLV (A) = (1− δ)P0(A), PLV (A) = (1− δ)P0(A) + δ ∀A 6= ∅,X ,

PLV (∅) = PLV (∅) = 0 and PLV (X ) = PLV (X ) = 1.366

The credal setM(PLV ) coincides with BδdLV (P0), where dLV : P∗(X )×P∗(X )→367

[0,∞) is the distorting function given by [30, Thm. 9]:368

dLV (P,Q) = max
A 6=∅

Q(A)− P (A)
Q(A)

.

Let us analyse the behaviour of the LV model under the different operations intro-369

duced in Section 2.4.370

4.1. Merging. Let us first look at the behaviour of LV models under merging.371

Conjunction372

Similarly to the PMM, the intersection of two LV models is again a LV model,373

when this intersection is non-empty.374

Proposition 3. Given the distortion models Bδ1dLV (P
1
0 ) ⊆ P∗(X ) and B

δ2
dLV

(P 2
0 ) ⊆375

P∗(X ), the set Bδ1dLV (P
1
0 ) ∩B

δ2
dLV

(P 2
0 ) is non-empty if and only if376 ∑

x∈X
max

{
(1− δ1)P 1

0 ({x}), (1− δ2)P 2
0 ({x})

}
≤ 1. (17)

In that case, it is induced by the LV model generated by the following probability
measure P∩0 and the distortion parameter δ∩:

δ∩ = 1−
∑
x∈X

max
{
(1− δ1)P 1

0 ({x}), (1− δ2)P 2
0 ({x})

}
, and

P∩0 ({x}) =
max

{
(1− δ1)P 1

0 ({x}), (1− δ2)P 2
0 ({x})

}
1− δ∩

∀x ∈ X .

Proof. It suffices to notice [30, Sec. 5.1] that a linear vacuous model is equivalent to377

specific probability intervals that are only lower bounded, i.e. given P0, δ, the credal378

set BδLV (P0) is the set of those probability measures P satisfying the constraints379

(1− δ)P0({x}) ≤ P ({x}) ∀x ∈ X .

It is then known [13, Sec. 3.2] that the intersection of two such models Bδ1dLV (P
1
0 )∩380

Bδ2dLV (P
2
0 ) corresponds to the probability interval whose lower bounds are the maxi-381

mum of their respective lower bounds. From this, it follows that this conjunction is382

a linear vacuous model when this intersection is non-empty. Equation (17) follows383

then from [13, Eq. (2)]. �384



16 SÉBASTIEN DESTERCKE, IGNACIO MONTES, AND ENRIQUE MIRANDA

Disjunction385

Regarding the disjunction, the convex hull ofBδ1dLV (P
1
0 )∪B

δ2
dLV

(P 2
0 ) will in general386

not be a LV model, not even when δ1 = δ2 as we show in next example.387

Example 5. As in Example 2, take the probability measures P 1
0 = (0.5, 0.3, 0.2)388

and P 2
0 = (0.3, 0.5, 0.2) and the distortion factor δ1 = δ2 = 0.1. The associated LV389

models PLV1
, PLV2

and their disjunction P∪LV are given in the following table:390

{x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
PLV1

0.45 0.27 0.18 0.72 0.63 0.45

PLV2
0.27 0.45 0.18 0.72 0.45 0.63

P∪LV 0.27 0.27 0.18 0.72 0.45 0.45

If there was some probability measure P0 and δ > 0 such thatM
(
PLV

)
= BδdLV (P0),391

then we would obtain392

P∪LV ({x1, x2}) = (1− δ)P0({x1, x2}) = P∪LV ({x1}) + P∪LV ({x2}),

which does not hold. As a consequence, the disjunction of Bδ1dLV (P
1
0 ) ∪ B

δ2
dLV

(P 2
0 )393

does not produce a LV model. �394

This disjunction has a unique undominated outer approximation as a LV model,
since the greatest LV outer approximation (in terms of P ) of any given credal
set is unique [33, Prop. 8]. This undominated outer approximation is the model
Bδ∪dLV (P

∪
0 ) such that

δ∪ = 1−

(∑
x∈X

min
{
(1− δ1)P 1

0 ({x}), (1− δ2)P 2
0 ({x})

})
, and

P∪0 ({x}) =
min

{
(1− δ1)P 1

0 ({x}), (1− δ2)P 2
0 ({x})

}
1− δ∪

∀x ∈ X .

Convex mixture395

The mixture of two LV models, that is, the computation of BδεdLV (P
ε
0 ) for a given396

ε ∈ (0, 1) can be established by a reasoning similar to the one done for the PMM397

in [33, Sec. 5.1]. In particular, using in a straightforward way results established398

for probability intervals [36], BδεdLV (P
ε
0 ) is given by the probability measures P399

satisfying400

ε(1− δ1)P 1
0 ({x}) + (1− ε)(1− δ2)P 2

0 ({x}) ≤ P ({x}) ∀x ∈ X .

From this, we deduce that

1− δε =
∑
x∈X

(
ε(1− δ1)P 1

0 ({x}) + (1− ε)(1− δ2)P 2
0 ({x})

)
= ε(1− δ1)

∑
x∈X

P 1
0 ({x}) + (1− ε)(1− δ2)

∑
x∈X

P 2
0 ({x})

= ε(1− δ1) + (1− ε)(1− δ2),
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and

P ε0 ({x}) =
ε(1− δ1)P 1

0 ({x}) + (1− ε)(1− δ2)P 2
0 ({x})

1− δε
∀x ∈ X .

4.2. Multivariate setting. Let us now look at the behaviour of the LV in a mul-401

tivariate setting.402

Marginalisation403

We first show that the marginal model of a joint LV is again a LV model, with404

the same distortion factor δ applied to the marginal probability.405

Proposition 4. Consider the distortion model BδdLV
(
PX ,Y0

)
⊆ P∗(X × Y) and its406

induced lower probability PLV . Then, the marginal model PXLV induces the credal407

set BδdLV
(
PX0
)
with PX0 the marginal probability of PX ,Y0 on X .408

Proof. Using again that, from [30, Sec. 5.1] BδdLV
(
PX ,Y0

)
is defined by lower bounds

(1−δ)PX ,Y0

(
{(x, y)}

)
on singletons, it is sufficient to notice that the marginal model

on X is described by the constraints

P ({x}) =
∑
y∈Y

P
(
{(x, y)}

)
≥
∑
y∈Y

(1− δ)PX ,Y0

(
{(x, y)}

)
= (1− δ)PX0 ({x}).

As a consequence, it is a LV model. �409

Independent products410

Regarding the problem of going from marginal models PX0 , P
Y
0 to multivariate

ones, we can first notice that on Cartesian products of events, we have

PX×YLV (A×B) = (1− δ)PX0 (A)PY0 (B)

≥ (1− δ)PX0 (A)(1− δ)PY0 (B) = PXLV � PYLV (A×B) (18)

where last equality follows from the factorization property in Equation (2). Note411

that the inequality is strict for any δ > 0. We may then wonder if PX×YLV ≥412

PXLV � PYLV in general. The next example shows that this is not the case, and413

hence that we have no dominance relation between the joint models PX×YLV and414

PXLV � PYLV .415

Example 6. Let us continue with Example 3. Given E1 = {(x2, y2)}c, we obtain

PX×YLV (E1) = 1− PX×YLV

(
{(x2, y2)}

)
= 0.585

< PXLV � PYLV (E1) = 1− PXLV � P
Y
LV

(
{(x2, y2)}

)
= 1− PXLV ({x2})P

Y
LV ({y2}) = 0.5985,

and therefore it cannot be BδdLV
(
PX ,Y0

)
⊆M

(
PXLV

)
�M

(
PYLV

)
.416

On the other hand, taking the events A = {x1} and B = {y1}, we obtain417

PX×YLV (A × B) = 0.135 and PXLV (A) � PYLV (B) = 0.1215, showing that the in-418

equality in Equation (18) may be strict. We therefore conclude that there is no419

dominance relationship between PX×YLV and PXLV � PYLV . �420
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Our next example shows that the family of LV models is not closed under strong421

products.422

Example 7. Consider the same probability measures and distortion factor as in
Example 3, and the events {(x1, y1)}, {(x1, y2)} and {x1} × Y. Then

PXLV � PYLV ({(x1, y1)}) = PXLV � PYLV ({(x1, y2)}) = 0.27 · 0.45 = 0.1215

and
PXLV � PYLV ({x1} × Y) = PXPMM ({x1}) = 0.27.

The fact that 0.27 6= 2 · 0.1215 contradicts the fact that a LV model should satisfy423

P (A∪B) = P (A)+P (B) if A∩B = ∅ and min(P (A), P (B)) > 0; thus, PXLV �PYLV424

is not a LV model. �425

Natural extension of marginal models426

We now consider the lower and upper probabilities that are the lower and upper
envelopes of BδXdLV

(
PX0
)
⊆ P∗(X ) and BδYdLV

(
PY0
)
⊆ P∗(Y). Using Equations (5)

and (6), we can give the form of ELV and ELV for the events A × B, for A ⊂ X ,
B ⊂ Y:

ELV (A×B) = max
{
PXLV (A) + PYLV (B)− 1, 0

}
= max

{
(1− δX )PX0 (A) + (1− δY)PY0 (B)− 1, 0

}
,

ELV (A×B) = min
{
P
X
LV (A), P

Y
LV (B)

}
= min

{
(1− δX )PX0 (A) + δX , (1− δY)PY0 (B) + δY

}
.

When the distortion parameters coincide, δX = δY = δ, the previous expressions
simplify to:

ELV (A×B) = max
{
(1− δ)PX0 (A) + (1− δ)PY0 (B)− 1, 0

}
= max

{
(1− δ)

(
PX0 (A) + PY0 (B)

)
− 1, 0

}
= max

{
(1− δ)

(
PX0 (A) + PY0 (B)− 1

1− δ

)
, 0

}
= (1− δ)max

{
PX0 (A) + PY0 (B)− 1

1− δ
, 0

}
. (19)

ELV (A×B) = min
{
(1− δ)PX0 (A) + δ, (1− δ)PY0 (B) + δ

}
= (1− δ)min

{
PX0 (A), PY0 (B)

}
+ δ. (20)

The expressions in Equations (19) and (20) are somewhat similar to the lower and
upper probabilities of a LV model. However, unlike what happened in the case of
the PMM, the equality

ELV = (1− δ)EPX0 ,PY0

does not hold:427

Example 8. Consider the probability measures from Example 3, and let δ = 0.2.
Then Equation (19) gives

ELV
(
{(x2, y2)}

)
= max{0.8 · 0.7 + 0.8 · 0.5− 1, 0} = 0,
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while from Equation (7) we obtain

EPX0 ,PY0

(
{(x2, y2)}

)
= max{0.7 + 0.5− 1, 0} = 0.2,

meaning that (1− δ)EPX0 ,PY0

(
{(x2, y2)}

)
= 0.16. �428

5. Constant odds ratio429

Our next distortion model is the constant odds ratio model (COR, for short):430

Definition 4. Given a probability measure P0 and a distortion factor δ ∈ (0, 1), the431

associated constant odds ratio model is the coherent lower prevision PCOR that,432

on any gamble f , is defined as the unique solution to the implicit equation:433

(1− δ)P0

(
(f − PCOR(f))+

)
= P0

(
(f − PCOR(f))−

)
, (21)

where g+ = max{g, 0} and g− = max{−g, 0}.434

While Equation (21) does not have a explicit expression, the restriction to (in-435

dicators of) events of the constant odds ratio can be more easily computed as:436

PCOR(A) =
(1− δ)P0(A)

1− δP0(A)
∀A ⊆ X . (22)

When P0 ∈ P∗(X ) and δ is small enough, the credal setM(PCOR) coincides with437

BδdCOR(P0), where dCOR : P∗(X )× P∗(X )→ [0,∞) is the distorting function given438

by [30, Thm. 14]:439

dCOR(P,Q) = max
A,B 6=∅

{
1− P (A) ·Q(B)

P (B) ·Q(A)

}
.

Also, the credal setM(PCOR) can be expressed as [53, Sec. 3.3.5]:440

M(PCOR) = {P ∈ P(X ) | P (A)P0(B) ≥ (1− δ)P0(A)P (B) ∀A,B ⊆ X} . (23)

Also, the COR model is more informative than the PMM and the LV models, in the441

sense that once we fix P0 and δ, it holds that BδdCOR(P0) ⊆ BδdPMM (P0)∩BδdLV (P0)442

(see [53, Sec. 4.6.5] for more comments in this direction).443

5.1. Merging. Let us first look at the behaviour of the family of COR models444

under merging.445

Conjunction446

Unlike the PMM and LV models, the intersection of two constant odds ratio447

models is not a COR model in general, as next example shows.448

Example 9. Consider M1 = Bδ1dCOR(P
1
0 ) ⊆ P∗(X ) with P 1

0 = (0.5, 0.3, 0.2) and449

δ1 = 0.2, andM2 = Bδ2dCOR(P
2
0 ) ⊆ P∗(X ) such that P 2

0 = (0.35, 0.3, 0.35) with δ2 =450

0.5. From Equation (23), the ratio P ({x1})/P ({x3}) is constrained by the inequalities451

3.125 ≥ P ({x1})
P ({x3})

≥ 2, 2 ≥ P ({x1})
P ({x3})

≥ 0.5,

respectively for M1 and M2. From this, we can deduce that any P ∈ M1 ∩M2

must satisfy the constraint P ({x1})
P ({x3}) = 2. As a consequence, the credal setM1 ∩M2

has at most two extreme points:(
2(1− P ({x2}))

3
, P ({x2}),

1− P ({x2})
3

)
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and (
2(1− P ({x2}))

3
, P ({x2}),

1− P ({x2})
3

)
,

where P , P denote the lower and upper probabilities associated withM1∩M2. Since452

it was proven in [30, Prop. 13] that the number of extreme points of the credal set453

of a COR model is equal to 2n − 2, where n is the cardinality of X , this implies454

that the conjunctionM1 ∩M2 does not determine a constant odds-ratio model, as455

it contains less than 2n − 2 = 6 extreme points. �456

For the PMM and LV models, we had easy ways to check whether a conjunction457

was empty (Equations (9) and (17), respectively). This resulted from the fact that458

their conjunctions are specific probability intervals, which are models for which459

checking non-emptiness is easy. This is not the case for the COR model, that is460

not closed under conjunction. A possibility is to use the constraints induced by the461

modelsM1 = Bδ1dCOR(P
1
0 ) andM2 = Bδ2dCOR(P

2
0 ), to check that taken together they462

still have a solution (i.e., that there is at least a probability P withinM1 ∩M2).463

However, as those are defined implicitly by Equation (21), they would have to be464

made explicit, for instance by enumerating the extreme points induced byM1,M2465

(see for example [30, Prop. 12]) and extracting the corresponding constraints.466

Disjunction467

Similarly, the disjunction of two COR models will not produce a COR model in468

general, not even when δ1 = δ2:469

Example 10. Consider P 1
0 = (0.4, 0.3, 0.3), P 2

0 = (0.3, 0.4, 0.3) and δ1 = δ2 =470

0.1. Using Equation (22), the associated COR models PCOR1
, PCOR2

and their471

disjunction P∪ = min{PCOR1
, PCOR2

} are given in the following table:472

{x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
PCOR1

3/8 27/97 27/97 21/31 21/31 27/47

PCOR2
27/97 3/8 27/97 21/31 27/47 21/31

P∪ 27/97 27/97 27/97 21/31 27/47 27/47

If P∪ was a COR model, i.e. if M
(
P∪
)
= BδdCOR(P0) for some P0 and δ, since473

P∪({x1}) = P∪({x2}) = P∪({x3}), it should be474

P0({x1}) = P0({x2}) = P0({x3}) =
1

3
.

But in that case, regardless of the value of δ, P∪ must take the same value for all475

the events of cardinality two, a contradiction.476

This example also allows us to show that P∪ does not have a unique undominated477

outer approximation in terms of COR models. Consider PA = (31/80, 31/80, 18/80),478

PB = (35/124, 35/124, 27/62), δA = 121/310, δB = 1
2 and the COR models BδAdCOR(PA)479

and BδBdCOR(PB) they induce. These produce the following coherent lower probabili-480

ties:481

{x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
PCORA

27/97 27/97 1701/11311 21/31 9261/18871 9261/18871

PCORB
35/213 35/213 27/97 35/89 89/159 89/159
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Both PCORA and PCORB are outer approximations of P∪. Moreover, if there was482

a unique undominated outer approximation Q
COR

of P∪ in terms of COR models,483

then it should be PCORA , PCORB ≤ QCOR, that implies484

Q
COR

({xi}) = P∪({xi}) =
27

97
for i = 1, 2, 3,

meaning that Q
COR

is defined through P0 = (1/3, 1/3, 1/3) and δ = 8/35. However,485

on the event {x1, x3} this distortion model satisfies486

Q
COR

(
{x1, x3}

)
=

(1− δ)P0({x1, x3})
1− δP0({x1, x3})

=
54

89
>

27

47
= P∪

(
{x1, x3}

)
,

so Q
COR

is not an outer approximation of P∪. �487

We therefore conclude that the COR model is neither preserved by conjunction488

nor by disjunction, and also that its disjunction has not a unique undominated489

outer approximation.490

Convex mixture491

As for the previous models, given the fact that two COR models Bδ1dCOR(P
1
0 ) ⊆492

P∗(X ) and Bδ2dCOR(P
2
0 ) ⊆ P∗(X ) are described by the same set of constraints over493

P (A)/P (B), their convex mixture is a credal set described by the constraints494

P (A)

P (B)
≥ ε(1− δ1)

P1(A)

P1(B)
+ (1− ε)(1− δ2)

P2(A)

P2(B)
.

However, next example shows that such constraints will not lead, in general, to a495

COR model.496

Example 11. Consider P 1
0 = (1/4, 1/4, 1/2), P 2

0 = (1/2, 1/4, 1/4) and δ1 = δ2 = 0.5.497

Using Equation (22), the associated COR models PCOR1
, PCOR2

and their average498

P 0.5 obtained for ε = 0.5 are given in the following table:499

{x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
PCOR1

1/7 1/7 1/3 1/3 3/5 3/5

PCOR2
1/3 1/7 1/7 3/5 3/5 1/3

P 0.5 5/21 1/7 5/21 7/15 3/5 7/15

Should P ε be the lower probability of a COR model BδεdCOR(P
ε
0 ), we should have500

P ε0 ({x1}) = P ε0 ({x3}) = p, hence P ε0 ({x2}) = 1 − 2p. Using this observation501

and Equation (22) on events {x1} and {x1, x3}, we should have δε = 13/28 and502

p = 7/19, and applying again Equation (22) with these values on {x2} would give503

P ({x2}) = 75/467 for COR model, which is close but not equal to the 1/7 reported504

in the table. �505

The COR model is therefore also not preserved under convex mixture, making506

it a not very convenient model when having to merge distortion models.507

5.2. Multivariate setting.508
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Marginalisation509

As for the PMM and LV models, we can show that the marginal distribution of510

a joint constant odds ratio model is also a constant odds ratio model.511

Proposition 5. Consider the distortion model BδdCOR
(
PX ,Y0

)
⊆ P∗(X ×Y) and its512

induced lower prevision PCOR. Then, the marginal model PXCOR induces the credal513

set BδdCOR
(
PX0
)
⊆ P∗(X ) with PX0 the marginal probability of PX ,Y0 on X .514

Proof. By definition, PCOR(f) is determined as the unique solution of the equation:

(1− δ)P0

((
f − PCOR(f)

)+)
= P0

((
f − PCOR(f)

)−)
.

Consider a gamble f that only depends on the values in X , in the sense that515

f(x, y) = f(x, y′) for every y 6= y′ ∈ Y and every x ∈ X , and let us define the516

gamble fX : X → R by fX (x) = f(x, y). Then PXCOR(fX ) = PCOR(f). Moreover,517

(1− δ)P0

((
fX − PXCOR(fX )

)+)
= (1− δ)PX0

((
fX − PXCOR(fX )

)+)
,

and also:518

P0

((
fX − PXCOR(fX )

)−)
= PX0

((
fX − PXCOR(fX )

)−)
,

because
(
fX − PXCOR(fX )

)+
only depends on the values of x ∈ X . This means

that PXCOR(fX ) is the unique solution of the equation:

(1− δ)PX0
((
fX − PXCOR(fX )

)+)
= PX0

((
fX − PXCOR(fX )

)−)
,

meaning that PXCOR is a constant odds ratio with respect to the parameter δ and519

probability PX0 (the restriction of P0 to the first component). �520

Independent products521

Consider now the marginal models BδdCOR
(
PX0
)
⊆ P∗(X ) and BδdCOR

(
PY0
)
⊆

P∗(Y). Regarding the problem of going from marginal models PX0 , P
Y
0 to joint

ones, we can first notice that on Cartesian products of events, we have

PX×YCOR(A×B) =
(1− δ)PX0 (A)PY0 (B)

1− δPX0 (A)PY0 (B)

≥ (1− δ)PX0 (A)(1− δ)PY0 (B)

(1− δPX0 (A))(1− δPY0 (B))
= PXCOR � PYCOR(A×B) (24)

where the last equality follows from the factorisation property in Equation (2).522

We can then wonder if PX×YCOR(C) ≥ PXCOR � PYCOR(C) for any event C ⊆ X ×523

Y. The next example shows that this is not the case, and that the inequality in524

Equation (24) may be strict; therefore it shows that there is no dominance relation525

between PX×YCOR and PXCOR � PYCOR.526

Example 12. Consider our running Example 3. Given E2 = {(x1, y1), (x2, y2)},
we obtain

PX×YCOR(E2) = 0.4737 < PXCOR � PYCOR(E2) = 0.4883;
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to see the last equality, note that

PXCOR � PYCOR(E2)

= min
PX∈M(PXCOR),PY∈M(PYCOR)

(
PX ({x1})PY({y1}) + PX ({x2})PY({y2})

)
,

thatM(PXCOR) consists of the probabilities PX for which PX({x1}) ∈ [ 2797 ,
10
31 ] and,527

similarly, that M(PYCOR) consists of the probabilities PY for which PY ({y1}) ∈528

[ 9
19 ,

10
19 ]; the minimum in the equation above is obtained for PX({x1}) = 27

97 and529

PY ({y1}) = 10
19 , yielding530

27

97
· 10
19

+
70

97
· 9
19

=
900

1843
= 0.4883.

Therefore, PX×YCOR does not dominate PXCOR � PYCOR on all events.531

Finally, taking the events A = {x1} and B = {y1}, it holds that PX×YCOR(A ×532

B) ≈ 0.137, while PXCOR � PYCOR(A × B) ≈ 0.132, showing that the inequality in533

Equation (24) may be strict. �534

On the other hand, the family of COR models is not closed under strong prod-535

ucts.536

Example 13. Consider again the running Example 3. Let E2 = {(x1, y1), (x2, y2)}537

and E3 = {x1} × Y. Then538

PXCOR � PYCOR(E2) = 0.4883 and PXCOR � PYCOR(E3) = PXCOR({x1}) =
27

97
,

where the first equality follows from Example 12. On the other hand,

PXCOR � PYCOR(E2 ∪ E3) = 1− PXCOR � P
Y
COR

(
{(x2, y1)}

)
= 1− 70

97
· 10
19

= 0.6202

PXCOR � PYCOR(E2 ∩ E3) = PXCOR � PYCOR
(
{(x1, y1}

)
=

27

97
· 9
19

= 0.1319,

whence

PXCOR � PYCOR(E2 ∪ E3) + PXCOR � PYCOR(E2 ∩ E3) = 0.7520

< PXCOR � PYCOR(E2) + PXCOR � PYCOR(E3) = 0.7667

contradicting the fact that PXCOR�PYCOR should be 2-monotone on events if it was539

a COR model. �540

Natural extension of marginal models541

We have already mentioned that there is not an explicit equation for the lower542

prevision of the COR model in gambles (see Equation (21)), and it can only be543

given for events (see Equation (22)). This hinders a bit the computation of the544

natural extension of this model. In addition, even if we consider only the values in545

events, this model is more difficult to handle than the PMM or the LV.546
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First of all, using Equations (5) and (6), we give the explicit form of the lower
and upper natural extension on the Cartesian products A×B, for A ⊆ X , B ⊆ Y:

ECOR(A×B) = min

{
(1− δX )PX0 (A)

1− δXPX0 (A)
,
(1− δY)PY0 (B)

1− δYPY0 (B)

}
.

ECOR(A×B) = max

{
(1− δX )PX0 (A)

1− δXPX0 (A)
+

(1− δY)PY0 (B)

1− δYPY0 (B)
− 1, 0

}
.

When the distortion parameters coincide, δX = δY = δ, these two equations be-
come:

ECOR(A×B) = min

{
(1− δ)PX0 (A)

1− δPX0 (A)
,
(1− δ)PY0 (B)

1− δPY0 (B)

}
= (1− δ)min

{
PX0 (A)

1− δPX0 (A)
,

PY0 (B)

1− δPY0 (B)

}
.

ECOR(A×B) = max

{
(1− δ)PX0 (A)

1− δPX0 (A)
+

(1− δ)PY0 (B)

1− δPY0 (B)
− 1, 0

}
Although these expressions do not seem to resemble a COR model, we may won-547

der if, similarly to what happened with the PMM (see Theorem 2), the equality548

E
(
PXCOR, P

Y
COR

)
= BdCOR

(
EPX0 ,PY0

)
holds. As we see next, this is not the case.549

Example 14. Consider our running Example 3. Given E4 = {(x2, y2)}, we obtain

ECOR(E4) = max{0.6774 + 0.4737− 1, 0} = 0.1511.

On the other hand, from Equation (7) we have that EPX0 ,PY0
(E4) = 0.2, whence550

(1− δ)EPX0 ,PY0
(E4)

1− δEPX0 ,PY0
(E4)

= 0.1837.

Thus, the two values do not coincide. �551

6. Total variation model552

The last three distortion models we shall analyse in this paper are defined directly
from some distance between probability measures. The first of them is the total
variation model (TV, for short): given two probability measures P,Q, their total
variation distance is

dTV (P,Q) = max
A⊆X

|P (A)−Q(A)|.

By taking the lower and upper envelopes of the neighbourhood model it produces,553

we obtain the following:554

Definition 5. Given a probability measure P0 and a distortion factor δ > 0, the555

total variation model is given by the following lower and upper probabilities:556

PTV (A) = max{P0(A)− δ, 0}, PTV (A) = min{P0(A) + δ, 1} ∀A ⊆ X . (25)

Since we are assuming that P0 ∈ P∗(X ) and that δ is small enough so that557

BδdTV (P0) ⊆ P∗(X ), Equation (25) simplifies to:558

PTV (A) = P0(A)− δ, PTV (A) = P0(A) + δ ∀A 6= ∅,X . (26)

6.1. Merging. Let us now consider the problem of merging two TV models.559
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Conjunction and disjunction560

Our next example shows that neither the conjunction nor the disjunction of two561

such models will produce in general a total variation model.562

Example 15. From Equation (26), we know that a TV model satisfies, for any563

event A such that PTV (A), PTV (A) ∈ (0, 1), the following equality:564

PTV (A)− PTV (A) = (P0(A) + δ)− (P0(A)− δ) = 2δ.

In particular, since we are assuming that BδdTV (P0) ⊆ P∗(P0), this equality holds565

for any A 6= ∅,X . Let us use this to derive that the family of TV models is not566

closed under conjunction or disjunction.567

Let Bδ1dTV
(
P 1
0

)
be induced by P 1

0 = (0.41, 0.37, 0.22) and δ1 = 0.12, and Bδ2dTV
(
P 2
0

)
568

be determined by P 2
0 = (0.37, 0.41, 0.22) and δ2 = 0.12. The lower probabilities PTV1

569

and PTV2
, their conjunction P∩ and disjunction P∪, are given by:570

{x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
PTV1

0.29 0.25 0.1 0.66 0.51 0.47

PTV2
0.25 0.29 0.1 0.66 0.47 0.51

P∩ 0.29 0.29 0.1 0.66 0.51 0.51

P∪ 0.25 0.25 0.1 0.66 0.47 0.47

For the third line, use that P∩ is the natural extension of max{PTV1
, PTV2

}, i.e.,571

the smallest coherent lower probability that dominates max{PTV1
, PTV2

}; but the572

latter is coherent since it is the lower envelope of573

(0.29, 0.37, 0.34), (0.37, 0.29, 0.34), (0.41, 0.49, 0.1), (0.49, 0.41, 0.1),

and therefore it coincides with P∩. We observe that

P
∩
({x1})− P∩({x1}) = 0.2 6= 0.24 = P

∩
({x3})− P∩({x3}),

P
∪
({x1})− P∪({x1}) = 0.28 6= 0.24 = P

∪
({x3})− P∪({x3}),

concluding that neither P∩ nor P∪ are TV models. �574

As we know that a TV model is described by a 2-monotone lower probability [31,575

Prop. 4], a simple way to check whether the intersection of two TV models is non-576

empty is simply to take the constraints (26) induced by both models Bδ1dTV
(
P 1
0

)
and577

Bδ2dTV
(
P 2
0

)
, and to check whether they have a solution. This can be achieved through578

standard linear programming, with the caveat that the number of constraints will579

increase exponentially with n.580

The same example allows us to show that the disjunction does not have a unique581

undominated outer approximation:582

Example 16. Consider the model P∪ from the previous example, and let us con-
sider the TV models BδAdTV (P

A
0 ) and BδBdTV (P

B
0 ), where PA = (0.31, 0.31, 0.38), PB =

(0.41, 0.41, 0.18), δA = 0.28 and δB = 0.16. The lower probabilities PTVA , PTVB
are given by:

{x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
PTVA 0.03 0.03 0.1 0.34 0.41 0.41

PTVB 0.25 0.25 0.02 0.66 0.43 0.43
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Both PTVA , PTVB are outer approximations of P∪TV in the TV family. If there583

was a unique undominated outer approximation of P∪, denoted by BδdTV (P0) and584

with associated lower probability Q
TV

, then PTVA , PTVB ≤ Q
TV
≤ P∪, whence585

Q
TV

({x1}) = P∪({x1}) = 0.25, Q
TV

({x2}) = P∪({x2}) = 0.25, Q
TV

({x3}) =586

P∪({x3}) = 0.1. Therefore,587

Q
TV

({x1}) +Q
TV

({x2}) +Q
TV

({x3}) = 1− 3δ = 0.6,

whence δ = 0.4/3 and P0 = (0.25 + δ, 0.25 + δ, 0.1 + δ). However, this means that:588

Q
TV

(
{x1, x3}

)
= P0

(
{x1, x3}

)
− δ = 0.35 + δ > 0.47 = P∪

(
{x1, x3}

)
,

a contradiction. �589

Convex mixture590

It is rather direct to check that the convex mixture of two TV models Bδ1dTV
(
P 1
0

)
and Bδ2dTV

(
P 2
0

)
is again a TV model as we have

εP 1
TV (A) + (1− ε)P 2

TV (A) = εP 1
0 (A) + (1− ε)P 2

0 (A)− εδ1 − (1− ε)δ2
which are lower probabilities induced by the TV model BδεdTV

(
P ε0
)
with

δε = εδ1 + (1− ε)δ2 and P ε0 ({x}) = εP 1
0 ({x}) + (1− ε)P 2

0 ({x}) ∀x ∈ X .

6.2. Multivariate setting.591

Marginalisation592

Let us now look at the behaviour of the TV model in a multivariate setting. We593

can first show that the marginal model of a joint TV model is again a TV model,594

with the same distortion factor δ applied to the marginal probability.595

Proposition 6. Consider the distortion model BδdTV
(
PX ,Y0

)
⊆ P∗(X × Y) and its596

associated lower probability PTV . Then, the marginal model PXTV induces the credal597

set BδdTV
(
PX0
)
⊆ P∗(X ) with PX0 the marginal probability of PX ,Y0 on X .598

Proof. From Equation (25), we obtain that for every non-empty B ⊂ X599

PX ,Y(B × Y) = PX ,Y0 (B × Y)− δ = PX0 (B)− δ,

the last term being the lower probability induced by BδdTV (P
X
0 ). �600

Independent products601

Consider now two marginal models BδdTV (P
X
0 ) ⊆ P∗(X ) and BδdTV (P

Y
0 ) ⊆ P∗(Y).

Regarding the problem of going from marginal models PX0 , P
Y
0 to joint ones, we

can first notice that on Cartesian products of events, we have

PX×YTV (A×B) = PX0 (A)PY0 (B)− δ, while

PXTV � PYTV (A×B) =
(
PX0 (A)− δ

)(
PY0 (B)− δ

)
where the last equality follows from the factorization property in Equation (2).602

Clearly, the equality PX×YTV (A × B) = PXTV � PYTV (A × B) does not generally603
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hold. We show in our next example that the inequality can go both ways (either604

PX×YTV (A×B) < PXTV � PYTV (A×B) or the reverse).605

Example 17. Take the distortion models BδdTV
(
PX0
)
⊆ P∗(X ) and BδdTV

(
PY0
)
⊆606

P∗(Y) induced by the probability measures PX0 and PY0 and the distortion factor607

δ = 0.1. On the one hand, assume that there are some events A ⊆ X and B ⊆ Y608

such that PX0 (A) = PY0 (B) = 0.5. We obtain that:609

PX×YTV (A×B) = 0.15 < 0.16 = PXTV � PYTV (A×B).

On the other hand, assume that there are A ⊆ X and B ⊆ Y satisfying PX0 (A) =610

PY0 (B) = 0.6. We obtain that:611

PX×YTV (A×B) = 0.26 > 0.25 = PXTV � PYTV (A×B).

Therefore, there is no dominance relationship between the lower probabilities ob-612

tained with the two approaches. �613

Let us now show through an example that the TV model is not closed under614

strong products.615

Example 18. Consider again the setting of our running Example 3. Given the
events {(x1, y1)} and {x1} × Y,

PXTV � PYTV
(
{(x1, y1)}

)
= 0.2 · 0.4 = 0.08,

P
X
TV � P

Y
TV

(
{(x1, y1)}

)
= 0.4 · 0.6 = 0.24,

PXTV � PYTV
(
{x1} × Y

)
= PXTV ({x1}) = 0.2,

P
X
TV � P

Y
TV

(
{x1} × Y

)
= P

X
TV ({x1}) = 0.4.

Since the differences between the upper and lower probabilities of the two events do616

not coincide (0.16 and 0.2, respectively) and they are all strictly positive, we deduce617

that PXTV � PYTV is not a TV model. �618

Natural extension of marginal models619

Consider now two TV models BδXdTV
(
PX0
)
⊆ P∗(X ) and BδYdTV

(
PY0
)
⊆ P∗(Y).

Using Equations (5) and (6), we can give the form of the natural extension in the
events A×B for A ⊂ X and B ⊂ Y:
ETV (A×B) = max

{
PXTV (A) + PYTV (B)− 1, 0

}
= max

{
PX0 (A) + PY0 (B)− 1− (δX + δY), 0

}
.

ETV (A×B) = min
{
P
X
TV (A), P

Y
TV (B)

}
= min

{
PX0 (A) + δX , P

Y
0 (B) + δY

}
.

When the distortion parameters coincide, δX = δY = δ, these expressions simplify
to:

ETV (A×B) = max
{
PX0 (A) + PY0 (B)− 1− 2δ, 0

}
.

= max
{
PX0 (A) + PY0 (B)− 1, 2δ

}
− 2δ, (27)

ETV (A×B) = min
{
PX0 (A) + δ, PY0 (B) + δ

}
= min

{
PX0 (A), PY0 (B)

}
+ δ. (28)

The lower and upper natural extension have a similar form as a TV model. How-620

ever, the lower bound of the natural extension in Equation (27) has a distortion621
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parameter of 2δ, while the upper bound of the natural extension in Equation (28)622

has a distortion parameter of δ. This fact suggests that, as happened with the623

COR model, the natural extension of the TV model can neither be expressed as624

E
(
PXTV , P

Y
TV

)
= BδdTV

(
EPX0 ,PY0

)
nor as E

(
PXTV , P

Y
TV

)
= B2δ

dTV

(
EPX0 ,PY0

)
. This is625

illustrated in our next example.626

Example 19. Consider the spaces X and Y and the probabilities PX0 and PY0
from Example 3. Given the event E4 = {(x2, y2)}, we deduce from Equations (27)
and (7) that

ETV
(
{(x2, y2)}

)
= max

{
PX0 ({x2}) + PY0 ({y2})− 1− 2δ, 0

}
= 0.2− 2δ = EPX0 ,PY0

(
{(x2, y2)}

)
− 2δ

for every δ ∈ (0, 0.1). On the other hand, if we consider the event E1 = {(x2, y2)}c,
we deduce from Equations (28) and (8) that

ETV
(
{(x2, y2)}c

)
= 1− ETV

(
{(x2, y2)}

)
= 0.5− δ while

EPX0 ,PY0

(
{(x2, y2)}c

)
= 1− EPX0 ,PY0

(
{(x2, y2)}

)
= 0.5

meaning that we should distort EPX0 ,PY0
by δ. We conclude from this that ETV is627

not a TV model starting from EPX0 ,PY0
.628

To see that it is not a TV model starting from any probability measure on X ×Y,
recall that, if that was the case, it should be ETV (C) − ETV (C) = 2δ whenever
0 < ETV (C) < ETV (C) < 1. But in this case we have

ETV ({(x2, y2)})− ETV ({(x2, y2)}) = 0.5 + δ − (0.2− 2δ) = 0.3 + 3δ

ETV (X × {y2})− ETV (X × {y2}) = 0.5 + δ − (0.5− 2δ) = 3δ,

a contradiction. �629

7. Kolmogorov model630

Our next distortion model is very much related to the total variation, because it631

can be regarded as the case when instead of comparing the probability measures we632

compare their associated distribution functions. It is referred to as Kolmogorov’s633

distortion model (K model, for short).634

Assuming that X is an ordered space, the Kolmogorov distance between two635

probability measures is defined by636

dK(P,Q) = max
x∈X
|FP (x)− FQ(x)|.

Following our initial assumption that P0 ∈ P∗(X ) and that δ is small enough so637

that BδdK (P0) ⊆ P∗(X ), the credal set BδdK (P0) can be expressed as:638

BδdK (P0) =
{
P ∈ P(X ) | FK(x) ≤ FP (x) ≤ FK(x) ∀x ∈ X

}
,

where FK and FK are given by:

FK(xi) = max{0, FP0
(xi)− δ} = FP0

(xi)− δ
FK(xi) = min{1, FP0(xi) + δ} = FP0(xi) + δ ∀i = 1, . . . , n− 1

since BδdK (P0) ⊆ P∗(P0), and FK(xn) = FK(xn) = 1. This means that BδdK (P0) =639

M
(
FK , FK

)
, so it coincides with the credal set of a p-box. We will denote as PK640
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and PK the lower and upper probabilities associated with BδdK (P0). We refer to641

[31, Sec. 3] for a study of the Kolmogorov model.642

7.1. Merging.643

Conjunction644

We start studying the behaviour of the Kolmogorov model under conjunction.645

Next example demonstrates that the conjunction of two K models, while being a646

p-box, does not necessarily correspond to a p-box induced by a K model.647

Example 20. For the model induced by the Kolmogorov distance and for those648

events A of the type {x1, x2, . . . , xk} such that 0 < PK(A) ≤ PK(A) < 1, we have649

that PK(A) − PK(A) = 2δ. Let us now show that this is not necessarily the case650

for their conjunction.651

Consider a three-element space X = {x1, x2, x3}, P 1
0 = (0.25, 0.25, 0.5), δ1 =

0.05 and consider the associated K model Bδ1dK (P
1
0 ) ⊆ P∗(X ). On the other hand,

let Bδ2dK (P
2
0 ) ⊆ P∗(X ) be the K model induced by the probability measure P 2

0 =

(0.15, 0.35, 0.5) and δ2 = 0.05. Since the conjunction of two p-boxes (F 1, F 1) and
(F 2, F 2) is the p-box

(
max

{
F 1, F 2

}
,min

{
F 1, F 2

})
, we have that

min
{
FK1

(x1), FK2
(x1)

}
−max

{
FK1

(x1), FK2
(x1)

}
= 0.2− 0.2 = 0, and

min
{
FK1

(x2), FK2
(x2)

}
−max

{
FK1

(x2), FK2
(x2)

}
= 0.55− 0.45 = 0.1,

meaning that this conjunction is not a distortion model induced by the Kolmogorov652

distance. �653

However, despite the fact that the K model is not closed under conjunction,
this conjunction still remains a p-box [16]. Among other things, this means that
we have a straightforward way to check whether the conjunction of two models
M1 = Bδ1dK (P

1
0 ) andM2 = Bδ2dK (P

2
0 ) is non-empty. We have thatM1 ∩M2 6= ∅ if

and only if

min
{
FK1

(xi), FK2
(xi)

}
−max

{
FK1

(xi), FK2
(xi)

}
≥ 0 ∀xi ∈ X ,

which is very easy to check.654

Disjunction655

The family of Kolmogorov models is not closed under disjunction:656

Example 21. Consider X = {x1, x2, x3} and the probability measures P 1
0 =657

(0.5, 0.3, 0.2), P 2
0 = (0.3, 0.5, 0.2) and δ1 = δ2 = 0.05. The lower probabilities658

PK1
, PK2

associated with the K models Bδ1dK (P
1
0 ) ⊆ P∗(X ) and Bδ2dK (P

2
0 ) ⊆ P∗(X )659

and their disjunction P∪, are given in the following table:660

{x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
PK1

0.45 0.2 0.15 0.75 0.6 0.45

PK2
0.25 0.4 0.15 0.75 0.4 0.65

P∪ 0.25 0.2 0.15 0.75 0.4 0.45
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If P∪ was the K model associated with a distribution function F0 and a distortion
factor δ, its associated p-box (F , F ) would be determined by the constraints[
F (x1), F (x1)

]
= [F0(x1)− δ, F0(x1) + δ] = [0.25, 0.55]⇒ F0(x1) = 0.4, δ = 0.15,[

F (x2), F (x2)
]
= [F0(x2)− δ, F0(x2) + δ] = [0.75, 0.85]⇒ F0(x2) = 0.8, δ = 0.05.

Thus, P∪K is not a K model. To see that moreover it does not have a unique661

undominated outer approximation in the family of K models, consider the K models662

BδAdK (PA) and B
δB
dK

(PB) induced by PA = (0.4, 0.33, 0.27), PB = (0.4, 0.36, 0.24) and663

δA = δB = 0.16. These produce the following lower probabilities:664

{x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
PKA 0.24 0.01 0.11 0.57 0.35 0.44

PKB 0.24 0.04 0.08 0.6 0.32 0.44

Thus, PKA , PKB are outer approximations of P∪K . If there was a unique undomi-665

nated outer approximation, then there should be another probability measure P ′ and666

δ′ > 0 such that either PKA � P ′ ≤ P∪K and PKB � P ′ ≤ P∪K , where P
′ denotes667

the lower envelope of Bδ
′

dK
(P ′). However, this means that:668

• P ′({x1}) − P ′({x1}) ≥ P
∪
({x1}) − P∪({x1}) = 0.55 − 0.25 = 0.3, which669

implies that δ′ = 1
2

(
P
′
({x1})− P ′({x1})

)
≥ 0.15.670

• The same reasoning with the event {x1, x2} leads to:

P
′
({x1, x2})− P ′({x1, x2})
≤ min{PKA({x1, x2}), PKB ({x1, x2})} −max{PKA({x1, x2}), PKB ({x1, x2})}
≤ 0.89− 0.6 = 0.29,

which implies that δ′ = 1
2

(
P
′
({x1, x2})− P ′({x1, x2})

)
≤ 0.145.671

This is a contradiction, from which we deduce that there is not a unique undomi-672

nated outer approximation. �673

In fact, it is worth noting that the disjunction of two Kolmogorov models is not674

always a p-box, as we show in this example:675

Example 22. Let X = {x1, x2, x3}, and consider the distortion models Bδ1dK (P
1
0 ) ⊆676

P∗(X ) and Bδ2dK (P
2
0 ) ⊆ P∗(X ) given by the probability measures P 1

0 = (0.3, 0.3, 0.4),677

P 2
0 = (0.6, 0.3, 0.1) and the distortion factors δ1 = δ2 = 0.05. They induce the K678

models whose associated p-boxes (F 1, F 1) and (F 2, F 2) are:679

x1 x2 x3

F 1 0.25 0.55 1

F 1 0.35 0.65 1

x1 x2 x3

F 2 0.55 0.85 1

F 2 0.65 0.95 1

Then the disjunction Bδ1dK (P
1
0 ) ∪B

δ2
dK

(P 2
0 ) determines the lower and upper cdfs:680

x1 x2 x3

F∪ 0.25 0.55 1

F
∪

0.65 0.95 1
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Thus, the cdf associated with P = (0.25, 0.7, 0.05) would belong to M(F∪, F
∪
) but681

not to Bδ1dK (P
1
0 ) ∪B

δ2
dK

(P 2
0 ). �682

We conclude that the behaviour of the Kolmogorov model is quite inadequate683

when taking its intersection or union, because it is not preserved by conjunction or684

disjunction, but also the disjunction is not even a p-box.685

Convex mixture686

As for the total variation model, it is rather direct to check that the convex
mixture of two K models Bδ1dK

(
P 1
0

)
and Bδ2dK

(
P 2
0

)
is again a K model. Indeed, since

the convex combination of two p-boxes is simply the convex combination of the
lower and upper cdfs, we have

εFK1
(x) + (1− ε)FK2

(x) = εFP 1
0
(x) + (1− ε)FP 2

0
(x)− εδ1 − (1− ε)δ2

εFK1
(x) + (1− ε)FK2

(x) = εFP 1
0
(x) + (1− ε)FP 2

0
(x) + εδ1 + (1− ε)δ2

which are the cdfs induced by the K model BδεdK
(
P ε0
)
with δε = εδ1 + (1− ε)δ2 and687

FP ε0 (x) = εFP 1
0
(x) + (1− ε)FP 2

0
(x) ∀x ∈ X .

7.2. Multivariate setting.688

Marginalisation689

In order to study the Kolmogorov model in a multivariate setting, we first need690

to provide its definition in this context. For this aim, we are now dealing with two691

ordered spaces X = {x1, . . . , xn} and Y = {y1, . . . , ym}. A bivariate p-box [39] is a692

pair of component-wise increasing functions FX ,Y , FX ,Y : X ×Y → [0, 1] satisfying693

FX ,Y ≤ FX ,Y and FX ,Y(xn, ym) = FX ,Y(xn, ym) = 1. A bivariate p-box defines a694

credal set by:695

M
(
FX ,Y , FX ,Y

)
=
{
P ∈ P(X × Y) | F ≤ FP ≤ F

}
.

In contrast with the univariate case, the credal setM
(
FX ,Y , FX ,Y

)
may be empty.696

When it is non-empty, we can define a coherent lower and upper probability by697

taking lower and upper envelopes.698

A bivariate p-box (FX ,Y , FX ,Y) defines marginal (univariate) p-boxes (FX , FX )
and (FY , FY), respectively in X and Y, by:

FX (xi) = FX ,Y(xi, ym), FX (xi) = FX ,Y(xi, ym), ∀i = 1, . . . , n.

FY(yj) = FX ,Y(xn, yj), FY(yj) = FX ,Y(xn, yj), ∀j = 1, . . . ,m.

In that case, the credal sets M
(
FX , FX

)
and M

(
FY , FY

)
coincide with the X699

and Y projections, respectively, of the probability measures in M
(
FX ,Y , FX ,Y

)
.700

We refer to [28, 39] for some studies about bivariate p-boxes, and to [32] for some701

comments on the connection between uni- and bivariate p-boxes.702

Given the ordered spaces X and Y, we define the K model for a bivariate cdf703

FP0(x, y) as the credal set induced by the bivariate p-box [39]704

F (x, y) = max{FP0
(x, y)− δ, 0}, F (x, y) = min{FP0

(x, y) + δ, 1} (29)
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for every (x, y) ∈ X × Y. We then get the following result regarding the marginals705

of a bivariate K model:706

Proposition 7. Consider the model BδdK
(
PX ,Y0

)
⊆ P∗(X × Y) and its associated707

lower prevision PK . Then, the marginal model PXK induces the credal set BδdK (P
X
0 )708

with PX0 the marginal probability of PX ,Y0 on X .709

Proof. Let us first notice that the bivariate p-box defined by Equation (29) induces
a coherent lower probability, as it corresponds to the projection over events of
the kind {x1, . . . , xi} × {y1, . . . , yj} of the coherent lower probability induced by
BδdTV (P

X ,Y
0 ). We can then easily check that the marginal p-box

(
FX , FX

)
satisfies:

FX (xi) = F (xi, ym) = FPX ,Y0
(xi, ym)− δ = FPX0 (xi)− δ ∀i = 1, . . . , n− 1

that is the lower cdf induced by BδdK (P
X
0 ). Similarly,

FX (xi) = F (xi, ym) = FPX ,Y0
(xi, ym) + δ = FPX0 (xi) + δ ∀i = 1, . . . , n− 1.

Therefore the marginal model also belongs to the Kolmogorov family. �710

Independent products711

Consider now two marginal K models BδdK
(
PX0
)
⊆ P∗(X ) and BδdK

(
PY0
)
⊆

P∗(Y). Regarding the problem of going from marginal models PX0 , P
Y
0 to joint ones,

we can first notice that on the Cartesian product of the events Ai = {x1, . . . , xi}
and Bj = {y1, . . . , yj} (with i < n and j < m), we have

PX×YK (Ai ×Bj) = FX×Y(xi, yj) = FP0(xi, yj)− δ, while

PXK � PYK(Ai ×Bj) =
(
FXP0

(xi)− δ
)(
FYP0

(yj)− δ
)

= FP0(xi, yj)− δ
(
FXP0

(xi) + FYP0
(yj)− δ

)
where last equation follows from the factorization property in Equation (2). Hence,712

the equality PX×YK (Ai×Bj) = PXK�PYK(Ai×Bj) may not hold. The inequality can713

go both ways (either PX×YK (A×B) < PXK �PYK(A×B) or the reverse) depending714

on the value of δ, as we show next.715

Example 23. Consider the ordered spaces X = {x1, x2, x3} and Y = {y1, y2}, and716

the probability measures PX0 and PY0 given by:717

PX0 ({x1}) = 0.3, PX0 ({x2}) = 0.5, PX0 ({x3}) = 0.2, PY0 ({y1}) = PY0 ({y2}) = 0.5.

Consider δ = 0.1, the K models BδdK
(
PX0
)
⊆ P∗(X ) and BδdK

(
PY0
)
⊆ P∗(Y) and

their associated lower probabilities PXK and PYK . Then we obtain on the one hand

PX×YK

(
{x1} × {y1}

)
= 0.15− δ = 0.05 < 0.08 = (0.3− δ)(0.5− δ)

= PXK({x1})PYK({y1}) = PXK � PYK
(
{x1} × {y1}

)
,

while on the other hand:

PX×YK

(
{x1, x2} × {y1}

)
= 0.4− δ = 0.3 > 0.28 = (0.8− δ)(0.5− δ)

= PXK({x1, x2})PYK({y1}) = PXK � PYK
(
{x1, x2} × {y1}

)
.

We conclude that there is no dominance relationship between the coherent lower718

probabilities obtained by the two approaches. �719
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Let us now show that, as with the other models, K models are not closed under720

strong products.721

Example 24. Consider the same setting of Example 23. The K models are the722

p-boxes (FX , FX ), (FY , FY):723

X x1 x2 x3
FX 0.2 0.7 1
FX 0.4 0.9 1

Y y1 y2
FY 0.4 1
FY 0.6 1

Using the factorisation property of the strong product, these generate the following724

joint bounds for the events {x1, . . . , xi} × {y1, . . . , yj}:725

{x1} × {y1} {x1} × Y {x1, x2} × {y1} {x1, x2} × Y X × {y1}
PXK � PYK 0.08 0.2 0.28 0.7 0.4

P
X
K � P

Y
K 0.24 0.4 0.54 0.9 0.6

If this was a K model, than the differences between the upper and lower probabilities726

for these events should be constant, which is not the case here. �727

Natural extension of marginal models728

Consider now two K models BδXdK (P
X
0 ) and BδYdK (P

Y
0 ), and let us focus on the729

problem of applying to them the natural extension. We already know that these K730

models are equivalent to the univariate p-boxes (FX , FX ) and (FY , FY). Thus, we731

can use the results from [32, Sec. 3.2], where we studied the natural extension of two732

p-boxes. In particular, in [32, Prop. 5] we proved that E
(
(FX , FX ), (FY , FY)

)
=733

M
(
F , F

)
, where

(
F , F

)
is the bivariate p-box given, for any (x, y) ∈ X × Y, by:734

F (x, y) = max
{
FX (x) + FY(y)− 1, 0

}
, F (x, y) = min

{
FX (x), FY(y)

}
. (30)

Then, the natural extension of two K models is again a p-box. However, our next735

example shows that this natural extension is not a K model.736

Example 25. Consider the spaces X and Y and the probabilities PX0 and PY0737

from Example 23 and the associated p-boxes detailed in Example 24. Applying738

Equation (30), their natural extension is the p-box
(
F , F

)
:739

y2 [0.2, 0.4] [0.7, 0.9] [1, 1]
y1 [0, 0.4] [0.1, 0.6] [0.4, 0.6]

[F (xi, yj), F (xi, yj)] x1 x2 x3

We can see that:740

F (x1, y2)− F (x1, y2) = 0.2, F (x2, y1)− F (x2, y1) = 0.5.

Since the differences between F and F are not constant, we conclude that
(
F , F

)
741

does not correspond to a K model. �742

We conclude that, even if there is a simple formula for computing the natural743

extension (Equation (30)), the latter is not a Kolmogorov model.744
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8. L1 distortion model745

We conclude our investigation by considering the distortion model associated
with the L1 distance. Given two probability measures P,Q, their L1 distance is

dL1
(P,Q) =

∑
A⊆X

|P (A)−Q(A)|.

In order to alleviate the notation, we shall also denote it by d1. This distance has746

been used in robust statistics in [42]. When P0 ∈ P∗(X ) and δ is small enough, it747

induces the credal set Bδd1(P0) ⊆ P∗(X ) whose associated lower and upper proba-748

bilities are [31, Thm. 11]:749

PL1
(A) = P0(A)−

δ

ϕ(|X |, |A|)
∀A 6= ∅,X , (31)

where750

ϕ(n, k) =

k∑
l=0

(
k

l

) n−k∑
j=0

(
n− k
j

) ∣∣∣∣ lk − j

n− k

∣∣∣∣ ∀k = 1, . . . , n.

8.1. Merging. Let us analyse the behaviour of the L1 model under conjunction,751

disjunction and convex mixture.752

Conjunction and disjunction753

In general, the conjunction of two L1 models will not lead to a new L1 model.754

In fact, observe that in the case of ternary spaces, we can establish a relationship755

between the total variation and L1 models. In that case, ϕ(3, 1) = ϕ(3, 2) = 4,756

whence from Equation (31) PL1
is given by:757

PL1
(A) = P0(A)−

δ

4
∀A 6= ∅,X .

Also, from Equation (25), the total variation model generated by the probability758

measure P0 and the distortion parameter δ
4 is given by:759

PTV (A) = P0(A)−
δ

4
∀A 6= ∅,X .

Since we are assuming that δ is small enough such that P d1(A) > 0 for every A 6= ∅,
we conclude that in cardinality three Bδd1(P0) = B

δ/4
dTV

(P0). Thus, if we consider
X = {x1, x2, x3}, P 1

0 = (0.41, 0.37, 0.22), P 2
0 = (0.37, 0.41, 0.22) and δ1 = δ2 = 0.48,

we obtain that

B0.48
d1 (P 1

0 ) = B0.12
dTV (P

1
0 ) and B

0.48
d1 (P 2

0 ) = B0.12
dTV (P

2
0 ).

Using Example 15, we conclude that the family of L1 models is not closed under760

conjunction nor disjunction.761

Moreover, taking into account this same connection between the TV and the L1762

models on ternary spaces as well as Example 16, we conclude that the disjunction763

of two L1 models does not possess a unique undominated outer approximation in764

the L1 family.765

Several facts indicate that checking in which cases the conjunction of two L1766

models is a L1 model is a difficult task, for a number of reasons: (i) a L1 model is767

not determined in general by the lower probability it defines on events, in the sense768

that a probability measure P may dominate the lower envelope of Bδd1(P0) on any769
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event but still do not belong to Bδd1(P0); (ii) it is not described by an explicit lower770

prevision; and (iii) even enumerating the extreme points of Bd1(P0) is to this point771

an open issue [31].772

Convex mixture773

Again, it is rather direct to check that, if we consider their restriction on events,
the convex mixture of two lower probabilities associated to L1 models Bδ1d1

(
P 1
0

)
and

Bδ2d1
(
P 2
0

)
is again a lower probability associated to an L1 model, as we have

εP δ1L1
(A)+(1−ε)P δ2L1

(A) = εP 1
0 (A)+(1−ε)P 2

0 (A)−ε
δ1

ϕ(|X |, |A|)
−(1−ε) δ2

ϕ(|X |, |A|)
which are lower probabilities induced by the L1 model Bδεd1

(
P ε0
)
with δε = εδ1 +

(1− ε)δ2 and

P ε0 ({x}) = εP 1
0 ({x}) + (1− ε)P 2

0 ({x}) ∀x ∈ X .
Since L1 models can be described by their lower probabilities whenever n ≤ 11, this774

is sufficient to show that in those cases the model is closed under convex mixture.775

The case n > 11, for which we have no simple and explicit description of the lower776

envelope of the L1 model, remains an open problem.777

8.2. Multivariate setting.778

Marginalisation779

For the multivariate case, let us first look at the marginals of a joint L1 model780

Bδd1
(
PX ,Y0

)
⊆ P∗(X×Y). Somewhat surprisingly, the marginal model of a L1 model781

is not a L1 model, as our next example shows.782

Example 26. Let X = {x1, x2, x3, x4}, Y = {y1, y2}, PX ,Y0 the uniform distribu-
tion on X × Y and consider the distortion parameter δ = 0.1. Then:

PXL1
({xi}) = PL1

({xi} × Y) = P0({xi} × Y)−
0.1

ϕ(8, 2)
=

1

4
− 0.1

84

= PX0 ({xi})−
δX

ϕ(4, 1)
=

1

4
− δX

8
⇒ δX =

0.1

10.5
.

PXL1
({xi, xj}) = PL1

({xi, xj} × Y) = P0({xi, xj} × Y)−
0.1

ϕ(8, 4)
=

1

2
− 0.1

70

= PX0 ({xi, xj})−
δX

ϕ(4, 2)
=

1

2
− δX

6
⇒ δX =

0.3

35
.

Since 0.1
10.5 6=

0.3
35 , we conclude that the marginal model does not belong to the L1783

family. �784

Independent products785

We now investigate what happens when building a joint from marginal L1 models786

Bδd1
(
PX0
)
⊆ P∗(X ) and Bδd1

(
PY0
)
⊆ P∗(Y). Again, on Cartesian products of events,787

we have788

PX×YL1
(A×B) = PX×Y0 (A×B)− δ

ϕ(|X × Y|, |A×B|)
,
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while789

PXL1
� PYL1

(A×B) =

(
PX0 (A)− δ

ϕ(|X |, |A|)

)(
PY0 (B)− δ

ϕ(|Y|, |B|)

)
.

In that case, it may happen that PX×YL1
(A×B) ≥ PXL1

�PYL1
(A×B) or PX×YL1

(A×790

B) ≤ PXL1
� PYL1

(A×B), even with strict inequality, as we show in next example.791

Example 27. Consider X and Y such that |X | = |Y| = 2, P0 the uniform distribu-792

tion on X ×Y and A,B two singletons. The connection between PX×YL1
(A×B) and793

PXL1
�PYL1

(A×B) depends on whether δ > 3
2 or δ < 3

2 . The reason is that if A ⊆ X794

and B ⊆ Y are singletons, ϕ(|X |, |A|) = ϕ(|Y|, |B|) = 2, ϕ(|X × Y|, |A × B|) =795

ϕ(4, 1) = 8, P0(A×B) = 1
4 and PX0 (A) = PY0 (B) = 1

2 . Hence:796

PX×YL1
(A×B) =

1

4
− δ

8
, PXL1

� PYL1
(A×B) =

(
1

2
− δ

2

)
·
(
1

2
− δ

2

)
.

Operating, we obtain that PX×YL1
(A×B) > PXL1

� PYL1
(A×B) if and only if δ < 3

2797

and PX×YL1
(A×B) < PXL1

�PYL1
(A×B) if and only if δ > 3

2 . Therefore, in general798

there is no dominance relation between the two approaches. �799

Let us now show through an example that the L1 model is also not closed under800

strong products.801

Example 28. Let us consider the case where X = {x1, x2} and Y = {y1, y2} with
PX0 and PY0 uniform with some δ. Let us now assume that PXL1

�PYL1
is a L1 model

with some δ∗. Due to the factorization property, we have

PXL1
� PYL1

(
{(xi, yj)}

)
=

(
0.5− δ

2

)(
0.5− δ

2

)
for i, j ∈ {1, 2}

and since by assumption this should also be a L1 model with a uniform distribution,802

we should also have803

PXL1
� PYL1

(
{(xi, yj)}

)
=

1

4
− δ∗

ϕ(4, 1)
=

1

4
− δ∗

8
.

Fixing δ = 0.1, the two equalities lead to804

PXL1
� PYL1

(
{(xi, yj)}

)
= 0.452 =

1

4
− δ∗

8
,

which gives us δ∗ = 0.38 for the joint model PXL1
� PYL1

. However, on the event805

{x1} × Y this gives PXL1
� PYL1

({x1} × Y) = 0.45, which is different from 1/2 −806

δ∗/ϕ(4,2) = 0.437. �807

Natural extension of marginal models808

Consider now two L1 models BδXd1
(
PX0
)
⊆ P∗(X ) and BδYd1

(
PY0
)
⊆ P∗(Y) in X

and Y, respectively. Using Equations (5) and (6), we can give the form of the lower
and upper bounds of their natural extension in the events A×B:

EL1
(A×B) = max

{
PX0 (A)− δX

ϕ(|X |, |A|)
+ PY0 (B)− δY

ϕ(|Y|, |B|)
− 1, 0

}
.

EL1
(A×B) = min

{
PX0 (A) +

δX
ϕ(|X |, |A|)

, PY0 (B) +
δY

ϕ(|Y|, |B|)

}
.
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When the distortion parameters coincide, these expressions simplify to:

EL1
(A×B) = max

{
PX0 (A) + PY0 (B)− 1− δ

(
1

ϕ(|X |, |A|)
+

1

ϕ(|Y|, |B|)

)
, 0

}
.

EL1
(A×B) = min

{
PX0 (A) +

δ

ϕ(|X |, |A|)
, PY0 (B) +

δ

ϕ(|Y|, |B|)

}
.

Note that none of the equations can be simplified, because even if the distortion pa-809

rameters coincide, the expressions depend on the values ϕ(|X |, |A|) and ϕ(|Y|, |B|).810

Taking this into account, we deduce that in general E
(
PXL1

, PYL1

)
cannot be ex-811

pressed as Bδd1
(
EPX0 ,PY0

)
: it suffices to note that, since X ,Y are binary spaces,812

Bδd1(P0) = B
δ/2
dTV

(P0) (see for instance [31, p.646]), so we can use the same Ex-813

ample 19 for the TV model to deduce that we do not have the equality between814

E
(
PXL1

, PYL1

)
and Bδd1

(
EPX0 ,PY0

)
.815

9. Conclusions816

The variety of distortion models present in the literature makes it interesting817

to develop tools to compare their behaviour in a number of situations, so as to818

be able to choose the most appropriate model in each scenario. In this paper, we819

have complemented our earlier work in [30, 31] and compared six different distor-820

tion models by determining (i) if they are closed under conjunction, disjunction or821

convex mixture; (ii) whether there is a unique procedure to build an independent822

product; (iii) if they are closed under marginalisation; and (iv) whether the proce-823

dures of distortion and natural extension commute. Tables 1 and 2 summarise our824

results. From these tables, it is clear that the PMM and LV models are the most825

stable, and that the least stables are the COR and L1 models, respectively from826

the merging and multi-variate point of view.827

Conjunction Disjunction Mixture Unique OA?
PMM YES [29, Prop.12] NO (Ex.2) YES YES [29, Prop.12]
LV YES (Prop.3) NO (Ex.5) YES YES [33, Prop.8]
COR NO (Ex.9) NO (Ex.10) NO (Ex.11) NO (Ex.10)
TV NO (Ex.15) NO (Ex.15) YES NO (Ex.16)
K NO (Ex.20) NO (Ex.21) YES NO (Ex.21)
L1 NO (Ex.15) NO (Ex.15) YES NO (Ex.16)

Table 1. Behaviour of the neighbourhood models under conjunc-
tion, disjunction and convex mixture.

In the case of the natural extension, we should remark that, strictly speaking,828

the natural extension of two marginal pari mutuel models is only a PMM if we829

regard it as a PMM-distortion like of a lower probability, but not in the sense of830

Definition 2; see Theorem 2 for more details.831

Beyond these comparisons, there are a few global remarks that we find interest-832

ing:833

• Regarding merging, the union of two convex setsM1 andM2 will not be834

convex in general [54, Thm. 6], and it is common to consider the convex835

hull ch(M1 ∪M2) of the union. None of the distortion models considered836
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Marginalising Strong Product Natural Extension
PMM YES [29, Sec.6.2] NO (Ex.4) YES (Thm.2)
LV YES (Prop.4) NO (Ex.7) NO (Ex.8)
COR YES (Prop.5) NO (Ex.13) NO (Ex.14)
TV YES (Prop.6) NO (Ex.18) NO (Ex.19)
K YES (Prop.7) NO (Ex.24) NO (Ex.25)
L1 NO (Ex.26) NO (Ex.28) NO (Ex.19)

Table 2. Behaviour of the neighbourhood models under different
operations.

in this study is closed under disjunction; we may then consider the problem837

of outer approximating this disjunction within that family. However, this838

outer approximation is not unique [33]. The PMM and LV models, being839

special instances of probability intervals, are remarkable exceptions, as for840

any setM, its greatest outer-approximation in terms of the pari mutuel or841

the linear vacuous is unique [33].842

• The results regarding the problem of constructing a joint model, and the843

relation between the two approaches considered here (combine then dis-844

tort vs. distort then combine), are valid for other independence notions845

from imprecise probability [11]. Indeed, most of them (including epistemic846

independence and random set independence, for instance) also satisfy Equa-847

tion (2), hence the inequality concerning events of the kind A×B remains848

true for them. As this factorisation property is also true for lower proba-849

bilities, the various examples and discussion given for the different models850

also apply to them. This may be an important issue when having to choose851

whether one should first combine then discount, or discount then combine.852

We can nevertheless observe that there is essentially one way to apply the853

first option (using stochastic independence), and many to apply the second854

(as one has to choose an adequate notion of independence).855

Taking these results into account, it may be interesting to look at the problem856

from a different angle: to characterise those distortion models that are closed under857

merging operations in terms of the properties of the distorting function d. While858

this is left as future research, we can give a number of preliminary comments. On859

the one hand, it may be useful to consider some of the properties from [30, 31], where860

we characterised those distorting functions d determining probability intervals, for861

which it may be easier to analyse their conjunction and disjunction, using results862

from de Campos et al. [13]. Note nevertheless that whether those probability863

intervals will remain distortion models is not guaranteed in general. With respect864

to the natural extension, we think that Proposition 1 should be useful in this regard;865

and concerning independent products, we conjecture that the equality between the866

two approaches considered in the paper will only hold in very particular cases.867

Our work in this paper may be extended in a number of ways: on the one hand,868

we may consider other distortion models, such as those based on divergences such as869

Kullback-Leibler [12, 35] or the recently introduced nearly-linear models [10]; on the870

other hand, we may consider other models of merging [52] or of independence [11];871

and we may take the approach one step further and consider distorted credal sets,872

considering the ideas put forward by Moral in [35].873
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