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Composite finite volume schemes for the diffusion equation on unstructured meshes

We present a finite volume scheme for the anisotropic diffusion equation. The scheme is based on a reformulation of the diffusion equation as an advection equation. We prove that it is first order consistent and stable under a parabolic CF L condition. We propose a second order extension with similar properties. We also propose a third order extension. Numerical tests are provided, confirming the expected properties of the scheme.

Introduction

In this work, we study a finite volume scheme for the anisotropic diffusion equation (1) in two space dimensions:

∂ t E -div (κ∇E) = S.
(1)

For simplicity, we assume that periodic boundary conditions are imposed. However, what follows may be adapted to more general boundary conditions, such as Dirichlet, Neumann, or mixed boundary conditions. The unknown is denoted by E. The diffusion tensor is κ and we assume that, for any x ∈ Ω (Ω being the domain of computation), κ(x) is a symmetric positive definite 2 × 2 matrix. The source term S is non-negative and depends on time and space. We also assume that there exists κ 2 ≥ κ 1 > 0 such that:

∀x ∈ Ω, Sp(κ(x)) ⊂ [κ 1 , κ 2 ]. (2) 
Under Assumptions (2), Equation (1) is well-posed (see [START_REF] Rodríguez-Bernal | The heat equaton with general periodic boundary conditions[END_REF] for instance). Moreover, if the initial data and the source term are positive, then we have:

∀t ≥ 0, ∀x ∈ Ω, E(t, x) > 0.

(3)

Another important property is that Equation (1) is conservative, that is, any solution satisfies the following equality:

d dt Ω E(t, x)dx = Ω S(x)dx. (4) 
In the present work, we propose a finite volume scheme for (1) that is based on a reformulation of Equation (1) as a transport equation:

∂ t E + div (Eκu) = S, u = - ∇E E . ( 5 
)
Owing to (3), Equation ( 5) is well defined. In [START_REF] Franck | Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés[END_REF] and [START_REF] Franck | Asymptotic preserving finite volumes discretization for non-linear moment model on unstructured meshes[END_REF], a finite volume scheme was proposed for equation (1) using the formulation (5). Such a scheme uses nodal fluxes. In [START_REF] Blanc | An asymptotic preserving scheme for the M1 model on conical meshes[END_REF], this scheme was generalized to conical meshes (that is, meshes the edges of which are defined by conical curves), using ideas from [START_REF] Hoch | Nodal extension of Approximate Riemann Solvers and nonlinear high order reconstruction for finite volume method on unstructured polygonal and conical meshes: the homogeneous case[END_REF]. The use of conical meshes naturally induces additionnal edge fluxes. This has the advantage of improving stability, while keeping the same convergence rate. This holds even if the conical mesh scheme is restricted to polygonal meshes. Doing so, we obtain what we call a composite scheme that combines both nodal and edge fluxes. In the present work, we concentrate on this composite scheme on polygonal meshes.

The question of defining an accurate finite volume scheme for the diffusion equation on deformed meshes is a long-standing problem. It is well-known that a standard two-point flux is consistent only on rectangular meshes. To our knowledge, the first attempt to design a consistent scheme is that of D. Kershaw [Ker81]. This scheme was not proved to be consistent on general meshes, and numerical tests indicate that it is convergent only when cells are parallelograms. This scheme does not satisfy the maximum principle, and an attempt to make it positive was proposed in [START_REF] Pert | Physical constraints in numerical calculations of diffusion[END_REF]. Apart from this scheme, the diamond scheme was analyzed in [START_REF] Coudière | Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem[END_REF], and proved to be consistent. In such a strategy, one uses node values as auxiliary unknowns, allowing to compute consistent fluxes. These auxiliary unknowns are computed using interpolation. It is also possible to use a mixed finite element approach [START_REF] Raviart | Introduction à l'analyse numérique des équations aux dérivées partielles[END_REF] and recast it as a finite volume method (see [START_REF] Arbogast | Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences[END_REF]). Such a scheme is consistent, but not positive. Another approach, called DDFV (Discrete Duality Finite Volume) was proposed by F. Hermeline in [START_REF] Hermeline | A finite volume method for second-order elliptic equations. (Une méthode de volumes finis pour les équations elliptiques du second ordre[END_REF][START_REF] Hermeline | A finite volume method for the approximation of diffusion operators on distorted meshes[END_REF][START_REF] Hermeline | Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes[END_REF][START_REF] Hermeline | Approximation of 2D and 3D diffusion operators with variable full tensor coefficients on arbitrary meshes[END_REF]. In this strategy, instead of computing the auxiliary (nodal) unknowns by interpolation, they are defined as a solution to a diffusion problem on a dual mesh. Several other methods were proposed, such as the mimetic finite difference method (see, for instance, [START_REF] Brezzi | Mimetic finite differences for elliptic problems[END_REF][START_REF] Lipnikov | Mimetic finite difference method[END_REF]), or the SUSHI (Scheme Using Stabilization and Harmonic Interfaces) method, by R. Eymard, T. Gallouët and R. Herbin [START_REF] Eymard | Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: A scheme using stabilization and hybrid interfaces[END_REF]. Let us also mention the MPFA (Multi Point Flux Approximation) method proposed in [AEK + 07, BM07].

All the above schemes are convergent, but are not positive, in the sense that property (3) is not reproduced at the discrete level. This may be an important issue in applications, since the unknown may be a temperature or a concentration. A truncation strategy is in principle possible. However, the conservation property (4) is lost in such a process. Note that conservation is also important in applications we have in mind, because Equation (1) should be seen as an elementary building block of a larger system of hyperbolic nature (think of fluid dynamics for instance), for which conservation allows to recover correct shock velocities.

To address the problem of positivity, several strategies have been proposed. Most of them consist in using different consistent estimations of the fluxes and in combining them so that the matrix of the scheme becomes an M-matrix, thereby recovering positivity. Such a strategy was initially proposed in [START_REF] Bertolazzi | A second-order maximum principle preserving finite volume method for steady convection-diffusion problems[END_REF] and [START_REF] Le | A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators[END_REF].

It makes the scheme nonlinear, even though the considered equation (1) is linear. Following these works, many similar strategies have been proposed. Let us cite [LMS14, YSGN22, SY16, SYY09, AN21, WPL + 22, NSL22, BL16], among others. Of course, we do not claim this list to be exhaustive.

In the present work, we propose a family of schemes that are naturally consistent, conservative and positive.

In contrast with the above mentioned works, positivity is not enforced by modifying an existing non-positive scheme. The starting point of our approach are schemes defined in [START_REF] Franck | Asymptotic preserving finite volumes discretization for non-linear moment model on unstructured meshes[END_REF][START_REF] Blanc | An asymptotic preserving scheme for the M1 model on conical meshes[END_REF] for the M1 model [START_REF] Dubroca | Étude théorique et numérique d'une hiérarchie de modèles aux moments pour le transfert radiatif[END_REF], which is a hyperbolic nonlinear model that satisfies a positivity principle and a diffusion limit. Since the scheme proposed in [START_REF] Franck | Asymptotic preserving finite volumes discretization for non-linear moment model on unstructured meshes[END_REF][START_REF] Blanc | An asymptotic preserving scheme for the M1 model on conical meshes[END_REF] is asymptotic preserving, it gives a diffusion scheme in this limit. The positivity principle passes to the limit, so this diffusion scheme is positive. It is however only first-order consistent. We therefore propose a second-order extension using gradient reconstruction and second-order quadrature rules for the fluxes. A third-order extension is also proposed and tested.

The present article is organised as follows. In Section 2 we define the notations and give some important geometrical properties. We present the finite-volume scheme that we use to discretise Equation (5) in Section (3). Our scheme uses approximations of E and of u at the nodes and the midpoints of the edges of the cells. Their computations is described in the subsequent Sections: in Section 4 the first-order scheme, which is based on an upwind strategy. In Section 5 the second-order extension, and in Section 6 the third-order extension. Some numerical examples are presented in Section 7.

Notations and geometrical assumptions

In order to make the algebra clearer, vectors are denoted in bold in the rest of the paper.

Composite normal vectors set on unstructured meshes and properties

We present here some notations that will be used in the remainder of the paper. Let Ω j be a cell of the mesh T paving the domain Ω. Let x r-1 , x r and x r+1 be 3 consecutive nodes of Ω j . We define:

• (x r ) r the coordinates of the vertices of the cell j;

• the middle of the edge [x r , x r+1 ]:

x r+1/2 = (x r + x r+1 )/2, • the normal to the edge [x r , x r+1 ]: C r+1/2 j = (x r+1 -x r ) ⊥ ,
• the normal to the node r:

C r j = 1 2 (x r+1 -x r-1 ) ⊥ = 1 2 C r+1/2 j + C r-1/2 j , ( 6 
)
where, for any vector ξ ∈ R 2 :

ξ = ξ 1 ξ 2 , ξ ⊥ = -ξ 2 ξ 1 .
We define a degree of freedom (dof ) as either a node or a middle of an edge. We also define: • r∈Ωj g r j the sum over all the vertices of the cell j of the quantity g (g r j being the evaluation of the function g on the vertex r in cell j);

x r+1 x r+1/2 x r x r-1/2 x r-1 C r+1/2 j C r-1/2 j C r j Ω j
• r+1/2∈Ωj g r+1/2 j
the sum over all the mid-edge points of the cell j of the quantity g;

• N dof = i|dof∈Ωi 1 the number of cells that contains the given degree of freedom dof ;

• i|dof∈Ωi g dof i the sum, for a given degree of freedom, over all the cells that contains this degree of freedom;

• j∈T g j the sum over all the cells of the mesh; • r∈T g r the sum over all the nodes of the mesh;

• r+1/2∈T g r+1/2 the sum over all the mid-edge points of the mesh; • h the maximum length of edges of the mesh,

• •, • the inner product in R 2 .
We have the following quadrature formula.

Theorem 2.1. Let g ∈ C 2 (R 2 ; R). Then, for all θ ∈ [0, 1]: 1 |Ω j | ∂Ωj gn = 1 |Ω j |   (1 -θ) r∈Ωj g(x r )C r j + θ r+1/2∈Ωj g(x r+1/2 )C r+1/2 j   + O(h). ( 7 
)
Moreover, the remainder in (7) vanishes if g is an affine function.

Moreover, if the parameter θ is set to 2/3, we have a better result:

Theorem 2.2. Let g ∈ C 2 (R 2 ; R). Then:

1 |Ω j | ∂Ωj gn = 1 |Ω j |   1 3 r∈Ωj g(x r )C r j + 2 3 r+1/2∈Ωj g(x r+1/2 )C r+1/2 j   + O(h 2 ). (8)
Moreover, the remainder in (8) vanishes if g is an affine or quadratic function.

The following result is useful in the rest of the paper.

Proposition 2.3. For any inner node r and any inner edge r + 1/2:

i|r∈Ωi C r i = i|r+1/2∈Ωi C r+1/2 i = 0.

Assumptions on the mesh

We present here the assumptions on the regularity of the mesh. We denote by h the maximal length of the edges of the mesh (h = ∆x for a cartesian mesh). We assume that there exists a constant C 1 such that, for any dof and any cell j:

1 C 1 h 2 ≤ |Ω j | ≤ C 1 h 2 , C dof j ≤ C 1 h, N dof ≤ C 1 , (9) ∀ξ ∈ R 2 , β r ξ, ξ ≥ 1 C 1 h 2 ξ 2 , ( 10 
)
and thus β r is non-singular and we have:

β -1 r ≤ C 1 1 h 2 . ( 11 
)
Assumption (10) is studied in [START_REF] Franck | Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés[END_REF].

Finite volume formulation for the diffusion equation

Integrating Equation (5) leads to:

|Ω j | d dt E j + ∂Ωj κ∇E, n = |Ω j |S j , ( 12 
)
where E j and S j are the mean values of E and S on the cell Ω j and n is the unit outward vector to ∂Ω j . Using Theorem 2.1, the flux in Equation ( 12) is approximated by;

∂Ωj κ∇E, n ≈ (1 -θ) r∈Ωj κ r u r , C r j E r j + θ r+1/2∈Ωj κ r+1/2 u r+1/2 , C r+1/2 j E r+1/2 j ,
The vector u dof is an approximation of -∇E/E at point x dof and E dof j is an approximation of E at point x dof in cell j. The latter is computed using an upwind scheme:

E dof j =        Ēdof j if κ dof u dof , C dof j > 0, 1 i∈I + dof κ dof u dof , C dof i i∈I + dof κ dof u dof , C dof i Ēdof i else, (13) 
and:

I + dof = {i, κ dof u dof , C dof i > 0}.
The computation of u dof and Ēdof j is described in the next sections. Eventually, the scheme reads as:

|Ω j | d dt E j + (1 -θ) r∈Ωj κ r u r , C r j E r j + θ r+1/2∈Ωj κ r+1/2 u r+1/2 , C r+1/2 j E r+1/2 j = |Ω j |S j . ( 14 
)
Proposition 3.1 (Conservation property). When the source term vanishes (S = 0), the scheme ( 14)-( 13) is conservative, that is to say, any solution (E j ) j to ( 14)-( 13) satisfies:

d dt   j∈T |Ω j |E j   = 0.
Proof. The proof can be found in the Appendix of [START_REF] Blanc | An asymptotic preserving scheme for the M1 model on conical meshes[END_REF].

4 First order fluxes : upwind scheme

We set:

Ēdof j = E j , ( 15 
)
and u dof is given by:

u r = 1 E r β -1 r i|r∈Ωi E i C r i , E r = 1 N r i|r∈Ωi E i , u r+1/2 = u r + u r+1 2 (16) 
with:

β r = i|r∈Ωi C r i ⊗ (x r -x i ). ( 17 
)
Under the assumptions of Section 2.2, the quantity u dof defined in ( 16) is first order consistent with -(∇E) dof /E dof . Indeed, using a Taylor expansion, we have:

E(x i ) = E(x r ) + x i -x r , ∇E(x r ) + O(h 2 ). ( 18 
)
Multiplying (18) by C r i , summing the result over the cells around any inner node r and using Proposition 2.3 leads to:

i|r∈Ωi E(x i )C r i = E(x r ) i|r∈Ωi C r i =0 -β r ∇E(x r ) + O(h 3 ), ( 19 
)
where β r is defined by (17). Using (11), we have:

1 E(x r ) β -1 r   i|r∈Ωi E(x i )C r i   = -1 E(x r ) (∇E)(x r ) + O(h).
Moreover, x i being the barycenter of the cell i, we have:

E(x i ) = 1 |Ω i | Ωi E + O(h 2 ). ( 20 
)
Using (16) (20), we deduce that u r is first order consistent with -(∇E) r /E r . We easily deduce that u r+1/2 is first order consistent with -(∇E) r+1/2 /E r+1/2 .

Moreover, the following Lemma is useful in the proof of the positivity of the scheme (Proposition 4.2).

Lemma 4.1. Let r be a given node. Under Assumptions ( 9) and ( 10), if all the (E i ) i are positive, then the nodal quantity u r defined in (16) satisfies:

u r ≤ C 4.1 1 h ,
Proof. Using (9) we have:

1 E r i|r∈Ωi E i C r i = N r i|r∈Ωi E i i|r∈Ωi E i C r i ≤ C 3 1 h.
Using (11) gives the result.

Proposition 4.2 (CF L condition). The explicit time discretisation of ( 14)-( 13)-( 15)-( 16) preserves the positivity of the solution under the following condition:

∆t ≤ C 4.2 h 2 κ 2 .
Proof. We define:

R + j = {r ∈ Ω j , κ r u r , C r j > 0}, R - j = {r ∈ Ω j , κ r u r , C r j ≤ 0}, R+ j = {r+1/2 ∈ Ω j , κ r+1/2 u r+1/2 , C r+1/2 j > 0}, R- j = {r+1/2 ∈ Ω j , κ r+1/2 u r+1/2 , C r+1/2 j ≤ 0}.
Equation ( 14) writes:

|Ω j | d dt E j +   (1 -θ) r∈R + j κ r u r , C r j + θ r+1/2∈ R+ j κ r+1/2 u r+1/2 , C r+1/2 j    E j (21) +(1 -θ) r∈R - j κ r u r , C r j E r j + θ r+1/2∈ R- j κ r+1/2 u r+1/2 , C r+1/2 j E r+1/2 j = |Ω j |S j .
The explicit time discretisation of (21) reads as:

(E j ) n+1 = E j   1 - ∆t |Ω j |   (1 -θ) r∈R + j κ r u r , C r j + θ r+1/2∈ R+ j κ r+1/2 u r+1/2 , C r+1/2 j       (22) - ∆t |Ω j |   (1 -θ) r∈R - j κ r u r , C r j E r j + θ r+1/2∈ R- j κ r+1/2 u r+1/2 , C r+1/2 j E r+1/2 j    + ∆tS j ,
where we removed every upper script n in order to clarify the algebra. We have:

- ∆t |Ω j |   (1 -θ) r∈R - j κ r u r , C r j E r j + θ r+1/2∈ R- j κ r+1/2 u r+1/2 , C r+1/2 j E r+1/2 j    ≥ 0. ( 23 
)
Therefore, recalling that S ≥ 0, a natural stability condition writes:

∆t |Ω j |   (1 -θ) r∈R + j κ r u r , C r j + θ r+1/2∈ R+ j κ r+1/2 u r+1/2 , C r+1/2 j    ≤ 1.
Using Lemma 4.1, and Assumption (9), one has:

∆t |Ω j | (1 -θ) r∈R + j κ r u r , C r j + θ r+1/2∈ R+ j κ r+1/2 u r+1/2 , C r+1/2 j ≤ C 4.1 C 3 1 :=C4.2 κ 2 ∆t h 2 . ( 24 
)
Thus, if ∆t < h 2 /(C 4.2 κ 2 ) then (E j ) n+1 > 0, which gives the result.

Remark 1 (L 1 stability). The positivity of the numerical solution (Proposition 4.2) together with Proposition 3.1 imply that the explicit version of the scheme ( 14)-( 13)-( 15)-( 16) is L 1 stable.

Second order fluxes

Following some ideas of [START_REF] Blanc | An asymptotic preserving scheme for the M1 model on conical meshes[END_REF], we propose a reconstruction procedure so as to make our scheme second order accurate in space. We only modify the computation of Ēdof j :

Ēdof j = E j -v dof , x j -x dof if | v dof , x j -x dof | < E j , E j else. ( 25 
)
The vector v dof is an approximation of ∇E(x dof ) that is computed as follows:

v r = -E r u r , v r+1/2 = v r + v r+1 2 ,
where u r is given by ( 16). Note that if E j is positive then Ēdof j is also positive. As it is shown in Section 7.2, it is not necessary to modify the computations of u r and u r+1/2 in order to make the scheme second order consistent. Moreover, we can prove that this second order scheme is also positive under a parabolic CF L condition:

Proposition 5.1. The explicit time discretisation of ( 14)-( 13)-( 16)-( 25) preserves the positivity of the solution under the following condition:

∆t ≤ 1 2 C 4.3 h 2 κ 2 . ( 26 
)
Proof. Using (25), we easily have:

Ēdof j ≤ 2E j . ( 27 
)
Therefore:

E n+1 j ≥ E j   1 -2 ∆t |Ω j |   (1 -θ) r∈R + j κ r u r , C r j + θ r+1/2∈ R+ j κ r+1/2 u r+1/2 , C r+1/2 j       .
Using Equation (24), we deduce that if ∆t < h 2 /(2C 4.2 κ 2 ) then (E j ) n+1 > 0, which gives the result.

Third order fluxes

In view of Theorem 2.2 we choose here θ = 2/3 and we approximate the flux of Equation ( 12) by:

∂Ωj κ∇E, n ≈ 1 3 r∈Ωj κ r u r , C r j E r j + 2 3 r+1/2∈Ωj κ r+1/2 u r+1/2 , C r+1/2 j E r+1/2 j ,
We first compute a cell-wise polynomial approximation of E denoted by P j :

P j (x) = E j + α j,E (∇E) j , x -x j + 1 2 (∇ 2 E) j • (x -x j ), x -x j + K j ,
where α j,E is a scalar limiter that ensures the positivity of P j at any degree of freedom of the cell Ω j . The gradient and the Hessian matrix are computed using a least-square procedure [START_REF] Bernard-Champmartin | Stabilité locale et montée en ordre pour la reconstruction de quantités volumes finis sur maillages coniques non-structurés en dimension 2[END_REF]. The constant K j is chosen such that:

1 |Ω j | Ωj P j = E j .
Then we set Ēdof j = P j (x dof ). Moreover, noticing that ∇ ln |E| = (∇E)/E and recalling that u dof has to be consistent with (-∇(ln E)) dof , we compute it as:

u r = -1 N r i|r∈Ωi (∇ ln(|E|)) i + (∇ 2 ln(|E|)) i • (x r -x i ) , u r+1/2 = u r + u r+1 2 . ( 28 
)
The gradient (∇ ln(|E|)) i and Hessian matrix (∇ 2 ln(|E|)) i are computed with the same least-square method as in [START_REF] Bernard-Champmartin | Stabilité locale et montée en ordre pour la reconstruction de quantités volumes finis sur maillages coniques non-structurés en dimension 2[END_REF]. As it is shown in Section 7.3, it is sufficient to compute a second order approximation of ∇ ln |E| in order to make the scheme third order consistent.

The quantity u dof computed with (28) is second order consistent with -∇ ln |E|(x dof ). Indeed, using a Taylor expansion, we have:

∇ ln |E|(x dof ) = ∇ ln |E|(x i ) + (∇ 2 ln(|E|))(x i ) • (x r -x i ) + O(h 2 ).
Therefore u r computed with (28) is second order consistent with -∇ ln |E|(x r ). Moreover, x r+1/2 being the midpoint of the edge [x r , x r+1 ], the quantity u r+1/2 is second order consistent with -∇ ln |E|(x r+1/2 ).

Numerical results

In this section, we provide some numerical examples that illustrate the good properties of our scheme. In Section 7.1 we present the test cases. The results with the second order scheme are presented in Section 7.2 and the results with the third order scheme are shown in Section 7.3.

Presentation of the test cases

We use an explicit time discretisation. The time step is given by ∆t = C CF L h 2 where the constant C CF L depends on the test case. For the test cases of Sections 7.1.2 and 7.1.3, we define the analytical solution E and compute the source term S such that E satisfies Equation (1). We use cartesian meshes, random meshes (see Figure 2), Kershaw type meshes (see Figure 3). We denote by N x the number of cells in the x direction and N y the number of cells in the y direction. Moreover, it is well known that the purely nodal scheme (θ = 0 in ( 14)) may exhibit some cross-stencil propagation on cartesian meshes. This issue is corrected using the composite scheme (θ > 0 in ( 14)). We do not give here any illustration of this property, examples can be found in [START_REF] Blanc | An asymptotic preserving scheme for the M1 model on conical meshes[END_REF]. The space step is h = ∆x = 1/N x = ∆y = 1/N y . The final time is denoted by t f . Periodic boundary conditions are imposed. 

Fundamental solution of the diffusion equation

This test case is borrowed from [START_REF] Blanc | An asymptotic preserving scheme for the M1 model on conical meshes[END_REF]. We set κ = I 2 /3 and S = 0, thus (1) reads as:

∂ t E - 1 3 ∆E = 0. ( 29 
)
The exact solution of (29) satisfying E(t = 0) = δ x0 for a given x 0 is:

E(t, x) = 3 4πt exp -3 x -x 0 2 4t . ( 30 
)
The initial data is E(t = t 0 ) and the exact solution is E(t = t 0 + t f ) with t 0 = 0.01 and where t f is the final time. We choose x 0 = (0.5, 0.5). The computational domain is Ω = [0, 1] 2 . The boundary conditions do not affect the result since the solution is almost 0 on the boundary.

1D test case

For x = (x, y), the diffusion coefficient is given by:

κ(x) = 1 π 2 exp (sin(2πx) -1), E(x, t) = exp (t -sin(2πx)). (31) 
Thus (1) becomes:

∂ t E - 1 π 2 ∂ x [exp (sin(2πx) -1)∂ x E] = S, with: S(t, x) = S(t, x) = e t exp (-sin(2πx)) -e -1 sin(2πx) .
Periodic boundary conditions are imposed. The computational domain is Ω = [0, 1] 2 . The initial condition is given by E(t = 0) in (31).

Anisotropic 2D test case

This test case is inspired from [START_REF] Le | A second order in space combination of methods verifying a maximum principle for the discretization of diffusion operators[END_REF] and [START_REF] Cancès | Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations[END_REF]. The computational domain is Ω = [0, 2] 2 . The solution reads as:

E(t, x) = [2 + sin(πx) sin(πy)] e λt , λ = 11. ( 32 
)
The diffusion coefficient is given by:

κ(x, y) = 1 x 2 + y 2 y 2 + αx 2 -(1 -α)xy -(1 -α)xy x 2 + αy 2 , α = 10 -6 . ( 33 
)
Its eigenvalues are 1 and α.

Results with the second order scheme

In this section, we present some convergence analysis for the test cases of Section 7.1 using the scheme of Section 5. The final time is t f = 0.003. The initial condition and the error are computed as:

E 0 j = E exact (0, x j ), e = j∈T |Ω j | E exact (t f , x j ) -E j ,
Figure 4 shows the errors for the test case of Section 7.1.1 on different meshes. Figure 5 shows the errors for the test case of Section 7.1.2 on different meshes. Figure 6 shows the errors for the test case of Section 7.1.3 on different meshes. The constant C CF L is smaller on the very deformed meshes (Kershaw and non-convex type meshes) due to stability reasons. We see that the scheme is second order convergent on every type of meshes. 

Results with the third order scheme

In this section, we present some convergence analysis for the test cases of Section 7.1 using the scheme of Section 5. We use a third order Runge-Kutta scheme to discretise the time derivative. The final time is t f = 0.001. The initial data is given by:

E 0 j = 1 |Ω j | Ωj E exact (0, x)dx,
and the error is computed as follows:

e = j∈T Ωj E exact (t f , x) -P j (x) dx,
Figure 7 shows the errors for the test case of Section 7.1.1 on different meshes. Figure 8 shows the errors for the test case of Section 7.1.2 on different meshes. Figure 9 shows the errors for the test case of Section 7.1.3 on different meshes. We see that the scheme is third order convergent on every type of meshes. 

Appendix

Periodic boundary conditions

The boundary conditions are imposed using the method described in [START_REF] Blanc | An asymptotic preserving scheme for the M1 model on conical meshes[END_REF]. In the case of periodic boundary conditions, we add some ghost cells on the outside of the mesh so as to make it periodic. We then define the unknown E on these new cells so as to make it periodic and we use this new geometric data to compute the matrix β r on the boundary of the domain.

Proof of Theorem 2.1

Let j ∈ T , we show the following equality: for any ξ ∈ R 2 and any θ ∈ [0, 1], 

Figure 1 :

 1 Figure 1: Normals at nodes, at edges : composite set

Figure 2 :

 2 Figure 2: Random mesh of size 20 × 20.

Figure 3 :

 3 Figure 3: Kershaw type mesh of size 20 × 20

Figure 4 :

 4 Figure 4: Errors at t = 0.003 and θ = 2/3 and initial condition given in (30) on cartesian and C CF L = 0.5(up left), on random meshes (see Figure 2) and C CF L = 0.5 (up right), and on Kershaw type mesh (see Figure 3) and C CF L = 0.01 (down).

Figure 5 :

 5 Figure 5: Errors at t = 0.003 and θ = 2/3 and initial condition given in (31) on cartesian meshes C CF L = 0.5 (up left), on random meshes and C CF L = 0.5 (up right) and on Kershaw type meshes and C CF L = 0.1 (down).

Figure 6 :

 6 Figure 6: Errors at t = 0.003 and θ = 2/3 and initial condition given in (32) on cartesian meshes and C CF L = 0.5 (up left), on random meshes and C CF L = 0.1 (up right), on Kershaw type meshes and C CF L = 0.005 (down).

Figure 7 :

 7 Figure 7: L 1 error at t = 0.001 and initial condition given in (30) on cartesian meshes (up left), on random meshes (up right), on Kershaw type meshes (down) and C CF L = 0.4.

Figure 8 :

 8 Figure 8: L 1 error at t = 0.001 and initial condition given in (31) on cartesian meshes (up left), on random meshes (up right), on Kershaw type meshes (down) and C CF L = 0.4.

Figure 9 :

 9 Figure 9: L 1 error at t = 0.001 and initial condition given in (32) on cartesian meshes and C CF L = 0.02 (up left), on random meshes and C CF L = 0.02 (up right), on Kershaw type meshes and C CF L = 0.005 (down).

  On each edge, the outward unit normal vector n is constant and it is given by n

  We prove the following equality, for any matrixA ∈ R 2×2 : , Ax r+1 + x r+1 , Ax r + 2 x r , Ax r + 2 x r+1 , Ax r+1 ] .

										ξ, x r+1 C	r+1/2 j	+	1 2	r+1/2∈Ωj	ξ, x r C	r+1/2 j	,
	which gives (35). This proves (34) and gives the result (7).
	8.3 Proof of Theorem 2.2		
	∂Ωj	x, Ax ndx =	1 3	r∈Ωj	x r , Ax r C r j +	2 3	r+1/2∈Ωj	x r+1/2 , Ax r+1/2 C	r+1/2 j	.	(36)
	Using (6), one has:										
			r∈Ωj	x r , Ax r C r j =	1 2	r+1/2∈Ωj	r+1/2 j	.
	This implies:										
				1 3	r∈Ωj	x r , Ax r C r j +	2 3	r+1/2∈Ωj	x r+1/2 , Ax r+1/2 C	r+1/2 j
	=	r+1/2∈Ωj	2 3	x r+1/2 , Ax r+1/2 +	1 6	( x r+1/2 j	.
	Moreover we have:										
						2 3	x r+1/2 , Ax r+1/2 +	1 6	( x r , Ax r + x r+1 , Ax r+1 )	(37)
			=	1 6	[ x r (38)
	Eventually, we note that:							
											1	λx r+1/2 j	,	(39)
						r+1/2∈Ωj	0
	and:										
								1			
									λx r + (1 -λ)x r+1 , A(λx r + (1 -λ)x r+1 )	(40)
								0			
			=	1 6	[ x					

( x r , Ax r + x r+1 , Ax r+1 )C r , Ax r + x r+1 , Ax r+1 ) C ∂Ωj x, Ax ndx = r + (1 -λ)x r+1 , A(λx r + (1 -λ)x r+1 ) dλ C r , Ax r+1 + x r+1 , Ax r + 2 x r , Ax r + 2 x r+1 , Ax r+1 ] .

(41)

Collecting (37), (

39

) and (40), we find (36) and the desired result.