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Abstract
We present a finite volume scheme for the anisotropic diffusion equation. The scheme is based on

a reformulation of the diffusion equation as an advection equation. We prove that it is first order
consistent and stable under a parabolic CF L condition. We propose a second order extension with
similar properties. We also propose a third order extension. Numerical tests are provided, confirming
the expected properties of the scheme.
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1 Introduction
In this work, we study a finite volume scheme for the anisotropic diffusion equation (1) in two space dimen-
sions:

∂tE − div (κ∇E) = S. (1)
For simplicity, we assume that periodic boundary conditions are imposed. However, what follows may be
adapted to more general boundary conditions, such as Dirichlet, Neumann, or mixed boundary conditions.
The unknown is denoted by E. The diffusion tensor is κ and we assume that, for any x ∈ Ω (Ω being
the domain of computation), κ(x) is a symmetric positive definite 2 × 2 matrix. The source term S is
non-negative and depends on time and space. We also assume that there exists κ2 ≥ κ1 > 0 such that:

∀x ∈ Ω, Sp(κ(x)) ⊂ [κ1, κ2]. (2)
Under Assumptions (2), Equation (1) is well-posed (see [RB17] for instance). Moreover, if the initial data
and the source term are positive, then we have:

∀t ≥ 0, ∀x ∈ Ω, E(t,x) > 0. (3)
Another important property is that Equation (1) is conservative, that is, any solution satisfies the following
equality:

d

dt

∫
Ω
E(t,x)dx =

∫
Ω
S(x)dx. (4)

In the present work, we propose a finite volume scheme for (1) that is based on a reformulation of Equation
(1) as a transport equation:

∂tE + div (Eκu) = S, u = −∇E
E

. (5)

Owing to (3), Equation (5) is well defined. In [Fra12] and [FBD11], a finite volume scheme was proposed
for equation (1) using the formulation (5). Such a scheme uses nodal fluxes. In [BHL21], this scheme was
generalized to conical meshes (that is, meshes the edges of which are defined by conical curves), using ideas
from [Hoc22]. The use of conical meshes naturally induces additionnal edge fluxes. This has the advantage
of improving stability, while keeping the same convergence rate. This holds even if the conical mesh scheme
is restricted to polygonal meshes. Doing so, we obtain what we call a composite scheme that combines both
nodal and edge fluxes. In the present work, we concentrate on this composite scheme on polygonal meshes.
The question of defining an accurate finite volume scheme for the diffusion equation on deformed meshes is
a long-standing problem. It is well-known that a standard two-point flux is consistent only on rectangular
meshes. To our knowledge, the first attempt to design a consistent scheme is that of D. Kershaw [Ker81]. This
scheme was not proved to be consistent on general meshes, and numerical tests indicate that it is convergent
only when cells are parallelograms. This scheme does not satisfy the maximum principle, and an attempt
to make it positive was proposed in [Per81]. Apart from this scheme, the diamond scheme was analyzed
in [CVV99], and proved to be consistent. In such a strategy, one uses node values as auxiliary unknowns,
allowing to compute consistent fluxes. These auxiliary unknowns are computed using interpolation. It is
also possible to use a mixed finite element approach [RT83] and recast it as a finite volume method (see
[AWY97]). Such a scheme is consistent, but not positive. Another approach, called DDFV (Discrete Duality
Finite Volume) was proposed by F. Hermeline in [Her98, Her00, Her03, Her07]. In this strategy, instead
of computing the auxiliary (nodal) unknowns by interpolation, they are defined as a solution to a diffusion
problem on a dual mesh. Several other methods were proposed, such as the mimetic finite difference method
(see, for instance, [BBL09, LMS14]), or the SUSHI (Scheme Using Stabilization and Harmonic Interfaces)
method, by R. Eymard, T. Gallouët and R. Herbin [Eym10]. Let us also mention the MPFA (Multi Point
Flux Approximation) method proposed in [AEK+07, BM07].
All the above schemes are convergent, but are not positive, in the sense that property (3) is not reproduced at
the discrete level. This may be an important issue in applications, since the unknown may be a temperature
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or a concentration. A truncation strategy is in principle possible. However, the conservation property (4)
is lost in such a process. Note that conservation is also important in applications we have in mind, because
Equation (1) should be seen as an elementary building block of a larger system of hyperbolic nature (think
of fluid dynamics for instance), for which conservation allows to recover correct shock velocities.
To address the problem of positivity, several strategies have been proposed. Most of them consist in using
different consistent estimations of the fluxes and in combining them so that the matrix of the scheme becomes
an M-matrix, thereby recovering positivity. Such a strategy was initially proposed in [BM05] and [LP09].
It makes the scheme nonlinear, even though the considered equation (1) is linear. Following these works,
many similar strategies have been proposed. Let us cite [LMS14, YSGN22, SY16, SYY09, AN21, WPL+22,
NSL22, BL16], among others. Of course, we do not claim this list to be exhaustive.

In the present work, we propose a family of schemes that are naturally consistent, conservative and positive.
In contrast with the above mentioned works, positivity is not enforced by modifying an existing non-positive
scheme. The starting point of our approach are schemes defined in [FBD11, BHL21] for the M1 model [DF99],
which is a hyperbolic nonlinear model that satisfies a positivity principle and a diffusion limit. Since the
scheme proposed in [FBD11, BHL21] is asymptotic preserving, it gives a diffusion scheme in this limit. The
positivity principle passes to the limit, so this diffusion scheme is positive. It is however only first-order
consistent. We therefore propose a second-order extension using gradient reconstruction and second-order
quadrature rules for the fluxes. A third-order extension is also proposed and tested.

The present article is organised as follows. In Section 2 we define the notations and give some important
geometrical properties. We present the finite-volume scheme that we use to discretise Equation (5) in Section
(3). Our scheme uses approximations of E and of u at the nodes and the midpoints of the edges of the
cells. Their computations is described in the subsequent Sections: in Section 4 the first-order scheme, which
is based on an upwind strategy. In Section 5 the second-order extension, and in Section 6 the third-order
extension. Some numerical examples are presented in Section 7.

2 Notations and geometrical assumptions
In order to make the algebra clearer, vectors are denoted in bold in the rest of the paper.

2.1 Composite normal vectors set on unstructured meshes and properties
We present here some notations that will be used in the remainder of the paper. Let Ωj be a cell of the mesh
T paving the domain Ω. Let xr−1, xr and xr+1 be 3 consecutive nodes of Ωj . We define:

• (xr)r the coordinates of the vertices of the cell j;

• the middle of the edge [xr,xr+1]: xr+1/2 = (xr + xr+1)/2,

• the normal to the edge [xr,xr+1]: Cr+1/2
j = (xr+1 − xr)⊥,

• the normal to the node r:

Cr
j = 1

2(xr+1 − xr−1)⊥ = 1
2

(
Cr+1/2
j + Cr−1/2

j

)
, (6)

where, for any vector ξ ∈ R2:

ξ =
(
ξ1
ξ2

)
, ξ⊥ =

(
−ξ2
ξ1

)
.

We define a degree of freedom (dof) as either a node or a middle of an edge. We also define:
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Figure 1: Normals at nodes, at edges : composite set

•
∑
r∈Ωj

grj the sum over all the vertices of the cell j of the quantity g (grj being the evaluation of the
function g on the vertex r in cell j);

•
∑
r+1/2∈Ωj

g
r+1/2
j the sum over all the mid-edge points of the cell j of the quantity g;

• Ndof =
∑
i|dof∈Ωi

1 the number of cells that contains the given degree of freedom dof ;

•
∑
i|dof∈Ωi

gdof
i the sum, for a given degree of freedom, over all the cells that contains this degree of

freedom;

•
∑
j∈T gj the sum over all the cells of the mesh;

•
∑
r∈T g

r the sum over all the nodes of the mesh;

•
∑
r+1/2∈T g

r+1/2 the sum over all the mid-edge points of the mesh;

• h the maximum length of edges of the mesh,

• 〈·, ·〉 the inner product in R2.

We have the following quadrature formula.

Theorem 2.1. Let g ∈ C2(R2;R). Then, for all θ ∈ [0, 1]:

1
|Ωj |

∫
∂Ωj

gn = 1
|Ωj |

(1− θ)
∑
r∈Ωj

g(xr)Cr
j + θ

∑
r+1/2∈Ωj

g(xr+1/2)Cr+1/2
j

+O(h). (7)

Moreover, the remainder in (7) vanishes if g is an affine function.

Moreover, if the parameter θ is set to 2/3, we have a better result:
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Theorem 2.2. Let g ∈ C2(R2;R). Then:

1
|Ωj |

∫
∂Ωj

gn = 1
|Ωj |

1
3
∑
r∈Ωj

g(xr)Cr
j + 2

3
∑

r+1/2∈Ωj

g(xr+1/2)Cr+1/2
j

+O(h2). (8)

Moreover, the remainder in (8) vanishes if g is an affine or quadratic function.

The following result is useful in the rest of the paper.

Proposition 2.3. For any inner node r and any inner edge r + 1/2:∑
i|r∈Ωi

Cr
i =

∑
i|r+1/2∈Ωi

Cr+1/2
i = 0.

2.2 Assumptions on the mesh
We present here the assumptions on the regularity of the mesh. We denote by h the maximal length of the
edges of the mesh (h = ∆x for a cartesian mesh). We assume that there exists a constant C1 such that, for
any dof and any cell j:

1
C1
h2 ≤ |Ωj | ≤ C1h

2, ‖Cdof
j ‖ ≤ C1h, Ndof ≤ C1, (9)

∀ξ ∈ R2, 〈βrξ, ξ〉 ≥
1
C1
h2‖ξ‖2, (10)

and thus βr is non-singular and we have:

‖β−1
r ‖ ≤ C1

1
h2 . (11)

Assumption (10) is studied in [Fra12].

3 Finite volume formulation for the diffusion equation
Integrating Equation (5) leads to:

|Ωj |
d

dt
Ej +

∫
∂Ωj

〈κ∇E,n〉 = |Ωj |Sj , (12)

where Ej and Sj are the mean values of E and S on the cell Ωj and n is the unit outward vector to ∂Ωj .
Using Theorem 2.1, the flux in Equation (12) is approximated by;∫

∂Ωj

〈κ∇E,n〉 ≈ (1− θ)
∑
r∈Ωj

〈
κrur,Cr

j

〉
Erj + θ

∑
r+1/2∈Ωj

〈
κr+1/2ur+1/2,C

r+1/2
j

〉
E
r+1/2
j ,

The vector udof is an approximation of −∇E/E at point xdof and Edof
j is an approximation of E at point

xdof in cell j. The latter is computed using an upwind scheme:

Edof
j =


Ēdof
j if 〈κdofudof,Cdof

j 〉 > 0,
1∑

i∈I+
dof
〈κdofudof,Cdof

i 〉
∑
i∈I+

dof

〈κdofudof,Cdof
i 〉Ēdof

i else, (13)

and: I+
dof = {i, 〈κdofudof,Cdof

i 〉 > 0}. The computation of udof and Ēdof
j is described in the next sections.

Eventually, the scheme reads as:

|Ωj |
d

dt
Ej + (1− θ)

∑
r∈Ωj

〈
κrur,Cr

j

〉
Erj + θ

∑
r+1/2∈Ωj

〈
κr+1/2ur+1/2,C

r+1/2
j

〉
E
r+1/2
j = |Ωj |Sj . (14)
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Proposition 3.1 (Conservation property). When the source term vanishes (S = 0), the scheme (14)-(13)
is conservative, that is to say, any solution (Ej)j to (14)-(13) satisfies:

d

dt

∑
j∈T
|Ωj |Ej

 = 0.

Proof. The proof can be found in the Appendix of [BHL21].

4 First order fluxes : upwind scheme
We set:

Ēdof
j = Ej , (15)

and udof is given by:

ur = 1
Er
β−1
r

∑
i|r∈Ωi

EiCr
i , Er = 1

Nr

∑
i|r∈Ωi

Ei, ur+1/2 = ur + ur+1

2 (16)

with:

βr =
∑
i|r∈Ωi

Cr
i ⊗ (xr − xi). (17)

Under the assumptions of Section 2.2, the quantity udof defined in (16) is first order consistent
with −(∇E)dof/Edof. Indeed, using a Taylor expansion, we have:

E(xi) = E(xr) + 〈xi − xr,∇E(xr)〉+O(h2). (18)

Multiplying (18) by Cr
i , summing the result over the cells around any inner node r and using Proposition

2.3 leads to: ∑
i|r∈Ωi

E(xi)Cr
i = E(xr)

∑
i|r∈Ωi

Cr
i︸ ︷︷ ︸

=0

−βr∇E(xr) +O(h3), (19)

where βr is defined by (17). Using (11), we have:

1
E(xr)

β−1
r

 ∑
i|r∈Ωi

E(xi)Cr
i

 = −1
E(xr)

(∇E)(xr) +O(h).

Moreover, xi being the barycenter of the cell i, we have:

E(xi) = 1
|Ωi|

∫
Ωi

E +O(h2). (20)

Using (16) (20), we deduce that ur is first order consistent with −(∇E)r/Er. We easily deduce that ur+1/2
is first order consistent with −(∇E)r+1/2/Er+1/2.

Moreover, the following Lemma is useful in the proof of the positivity of the scheme (Proposition 4.2).

Lemma 4.1. Let r be a given node. Under Assumptions (9) and (10), if all the (Ei)i are positive, then the
nodal quantity ur defined in (16) satisfies:

‖ur‖ ≤ C4.1
1
h
,
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Proof. Using (9) we have: ∥∥∥∥∥∥ 1
Er

∑
i|r∈Ωi

EiCr
i

∥∥∥∥∥∥ =

∥∥∥∥∥∥ Nr∑
i|r∈Ωi

Ei

∑
i|r∈Ωi

EiCr
i

∥∥∥∥∥∥ ≤ C3
1h.

Using (11) gives the result.

Proposition 4.2 (CFL condition). The explicit time discretisation of (14)-(13)-(15)-(16) preserves the
positivity of the solution under the following condition:

∆t ≤ C4.2
h2

κ2
.

Proof. We define:

R+
j = {r ∈ Ωj , 〈κrur,Cr

j〉 > 0}, R−j = {r ∈ Ωj , 〈κrur,Cr
j〉 ≤ 0},

R̃+
j = {r+1/2 ∈ Ωj , 〈κr+1/2ur+1/2,C

r+1/2
j 〉 > 0}, R̃−j = {r+1/2 ∈ Ωj , 〈κr+1/2ur+1/2,C

r+1/2
j 〉 ≤ 0}.

Equation (14) writes:

|Ωj |
d

dt
Ej +

(1− θ)
∑
r∈R+

j

〈
κrur,Cr

j

〉
+ θ

∑
r+1/2∈R̃+

j

〈
κr+1/2ur+1/2,C

r+1/2
j

〉Ej (21)

+(1− θ)
∑
r∈R−

j

〈
κrur,Cr

j

〉
Erj + θ

∑
r+1/2∈R̃−

j

〈
κr+1/2ur+1/2,C

r+1/2
j

〉
E
r+1/2
j = |Ωj |Sj .

The explicit time discretisation of (21) reads as:

(Ej)n+1 = Ej

1− ∆t
|Ωj |

(1− θ)
∑
r∈R+

j

〈
κrur,Cr

j

〉
+ θ

∑
r+1/2∈R̃+

j

〈
κr+1/2ur+1/2,C

r+1/2
j

〉
 (22)

− ∆t
|Ωj |

(1− θ)
∑
r∈R−

j

〈
κrur,Cr

j

〉
Erj + θ

∑
r+1/2∈R̃−

j

〈
κr+1/2ur+1/2,C

r+1/2
j

〉
E
r+1/2
j

+ ∆tSj ,

where we removed every upper script n in order to clarify the algebra. We have:

− ∆t
|Ωj |

(1− θ)
∑
r∈R−

j

〈
κrur,Cr

j

〉
Erj + θ

∑
r+1/2∈R̃−

j

〈
κr+1/2ur+1/2,C

r+1/2
j

〉
E
r+1/2
j

 ≥ 0. (23)

Therefore, recalling that S ≥ 0, a natural stability condition writes:

∆t
|Ωj |

(1− θ)
∑
r∈R+

j

〈
κrur,Cr

j

〉
+ θ

∑
r+1/2∈R̃+

j

〈
κr+1/2ur+1/2,C

r+1/2
j

〉 ≤ 1.

Using Lemma 4.1, and Assumption (9), one has:

∆t
|Ωj |

∣∣∣∣∣∣∣(1− θ)
∑
r∈R+

j

〈
κrur,Cr

j

〉
+ θ

∑
r+1/2∈R̃+

j

〈
κr+1/2ur+1/2,C

r+1/2
j

〉∣∣∣∣∣∣∣ ≤ C4.1C
3
1︸ ︷︷ ︸

:=C4.2

κ2
∆t
h2 . (24)
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Thus, if ∆t < h2/(C4.2κ2) then (Ej)n+1 > 0, which gives the result.

Remark 1 (L1 stability). The positivity of the numerical solution (Proposition 4.2) together with Proposition
3.1 imply that the explicit version of the scheme (14)-(13)-(15)-(16) is L1 stable.

5 Second order fluxes
Following some ideas of [BHL21], we propose a reconstruction procedure so as to make our scheme second
order accurate in space. We only modify the computation of Ēdof

j :

Ēdof
j =

{
Ej − 〈vdof,xj − xdof〉 if |〈vdof,xj − xdof〉| < Ej ,

Ej else.
(25)

The vector vdof is an approximation of ∇E(xdof) that is computed as follows:

vr = −Erur, vr+1/2 = vr + vr+1

2 ,

where ur is given by (16). Note that if Ej is positive then Ēdof
j is also positive. As it is shown in Section

7.2, it is not necessary to modify the computations of ur and ur+1/2 in order to make the scheme second
order consistent. Moreover, we can prove that this second order scheme is also positive under a parabolic
CFL condition:

Proposition 5.1. The explicit time discretisation of (14)-(13)-(16)-(25) preserves the positivity of the so-
lution under the following condition:

∆t ≤ 1
2C4.3

h2

κ2
. (26)

Proof. Using (25), we easily have:

Ēdof
j ≤ 2Ej . (27)

Therefore:

En+1
j ≥ Ej

1− 2 ∆t
|Ωj |

(1− θ)
∑
r∈R+

j

〈
κrur,Cr

j

〉
+ θ

∑
r+1/2∈R̃+

j

〈
κr+1/2ur+1/2,C

r+1/2
j

〉
 .

Using Equation (24), we deduce that if ∆t < h2/(2C4.2κ2) then (Ej)n+1 > 0, which gives the result.

6 Third order fluxes
In view of Theorem 2.2 we choose here θ = 2/3 and we approximate the flux of Equation (12) by:∫

∂Ωj

〈κ∇E,n〉 ≈ 1
3
∑
r∈Ωj

〈
κrur,Cr

j

〉
Erj + 2

3
∑

r+1/2∈Ωj

〈
κr+1/2ur+1/2,C

r+1/2
j

〉
E
r+1/2
j ,

We first compute a cell-wise polynomial approximation of E denoted by Pj :

Pj(x) = Ej + αj,E

[
〈(∇E)j ,x− xj〉+ 1

2 〈(∇
2E)j · (x− xj),x− xj〉

]
+Kj ,

where αj,E is a scalar limiter that ensures the positivity of Pj at any degree of freedom of the cell Ωj . The
gradient and the Hessian matrix are computed using a least-square procedure [BCHS20]. The constant Kj

is chosen such that:
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1
|Ωj |

∫
Ωj

Pj = Ej .

Then we set Ēdof
j = Pj(xdof). Moreover, noticing that ∇ ln |E| = (∇E)/E and recalling that udof has to be

consistent with (−∇(lnE))dof, we compute it as:

ur = −1
Nr

∑
i|r∈Ωi

[
(∇ ln(|E|))i + (∇2 ln(|E|))i · (xr − xi)

]
, ur+1/2 = ur + ur+1

2 . (28)

The gradient (∇ ln(|E|))i and Hessian matrix (∇2 ln(|E|))i are computed with the same least-square method
as in [BCHS20]. As it is shown in Section 7.3, it is sufficient to compute a second order approximation of
∇ ln |E| in order to make the scheme third order consistent.

The quantity udof computed with (28) is second order consistent with −∇ ln |E|(xdof). Indeed,
using a Taylor expansion, we have:

∇ ln |E|(xdof) = ∇ ln |E|(xi) + (∇2 ln(|E|))(xi) · (xr − xi) +O(h2).

Therefore ur computed with (28) is second order consistent with −∇ ln |E|(xr). Moreover, xr+1/2 being the
midpoint of the edge [xr,xr+1], the quantity ur+1/2 is second order consistent with −∇ ln |E|(xr+1/2).

7 Numerical results
In this section, we provide some numerical examples that illustrate the good properties of our scheme. In
Section 7.1 we present the test cases. The results with the second order scheme are presented in Section 7.2
and the results with the third order scheme are shown in Section 7.3.

7.1 Presentation of the test cases
We use an explicit time discretisation. The time step is given by ∆t = CCFLh

2 where the constant CCFL
depends on the test case. For the test cases of Sections 7.1.2 and 7.1.3, we define the analytical solution E
and compute the source term S such that E satisfies Equation (1). We use cartesian meshes, random meshes
(see Figure 2), Kershaw type meshes (see Figure 3). We denote by Nx the number of cells in the x direction
and Ny the number of cells in the y direction.
Moreover, it is well known that the purely nodal scheme (θ = 0 in (14)) may exhibit some cross-stencil
propagation on cartesian meshes. This issue is corrected using the composite scheme (θ > 0 in (14)). We do
not give here any illustration of this property, examples can be found in [BHL21].
The space step is h = ∆x = 1/Nx = ∆y = 1/Ny. The final time is denoted by tf . Periodic boundary
conditions are imposed.

Figure 2: Random mesh of size 20× 20.
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Figure 3: Kershaw type mesh of size 20× 20

7.1.1 Fundamental solution of the diffusion equation

This test case is borrowed from [BHL21]. We set κ = I2/3 and S = 0, thus (1) reads as:

∂tE −
1
3∆E = 0. (29)

The exact solution of (29) satisfying E(t = 0) = δx0 for a given x0 is:

E(t,x) = 3
4πt exp

(
−3‖x− x0‖2

4t

)
. (30)

The initial data is E(t = t0) and the exact solution is E(t = t0 + tf ) with t0 = 0.01 and where tf is the final
time. We choose x0 = (0.5, 0.5). The computational domain is Ω = [0, 1]2. The boundary conditions do not
affect the result since the solution is almost 0 on the boundary.

7.1.2 1D test case

For x = (x, y), the diffusion coefficient is given by:

κ(x) = 1
π2 exp (sin(2πx)− 1), E(x, t) = exp (t− sin(2πx)). (31)

Thus (1) becomes:

∂tE −
1
π2 ∂x [exp (sin(2πx)− 1)∂xE] = S,

with:

S(t,x) = S(t, x) = et
[
exp (− sin(2πx))− e−1 sin(2πx)

]
.

Periodic boundary conditions are imposed. The computational domain is Ω = [0, 1]2. The initial condition
is given by E(t = 0) in (31).

7.1.3 Anisotropic 2D test case

This test case is inspired from [LP20] and [CCP13]. The computational domain is Ω = [0, 2]2. The solution
reads as:

E(t,x) = [2 + sin(πx) sin(πy)] eλt, λ = 11. (32)
The diffusion coefficient is given by:

κ(x, y) = 1
x2 + y2

(
y2 + αx2 −(1− α)xy
−(1− α)xy x2 + αy2

)
, α = 10−6. (33)

Its eigenvalues are 1 and α.
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7.2 Results with the second order scheme
In this section, we present some convergence analysis for the test cases of Section 7.1 using the scheme of
Section 5. The final time is tf = 0.003. The initial condition and the error are computed as:

E0
j = Eexact(0,xj), e =

∑
j∈T
|Ωj |

∣∣Eexact(tf ,xj)− Ej
∣∣ ,

Figure 4 shows the errors for the test case of Section 7.1.1 on different meshes. Figure 5 shows the errors for
the test case of Section 7.1.2 on different meshes. Figure 6 shows the errors for the test case of Section 7.1.3
on different meshes. The constant CCFL is smaller on the very deformed meshes (Kershaw and non-convex
type meshes) due to stability reasons. We see that the scheme is second order convergent on every type of
meshes.

Figure 4: Errors at t = 0.003 and θ = 2/3 and initial condition given in (30) on cartesian and CCFL = 0.5(up
left), on random meshes (see Figure 2) and CCFL = 0.5 (up right), and on Kershaw type mesh (see Figure
3) and CCFL = 0.01 (down).
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Figure 5: Errors at t = 0.003 and θ = 2/3 and initial condition given in (31) on cartesian meshes CCFL = 0.5
(up left), on random meshes and CCFL = 0.5 (up right) and on Kershaw type meshes and CCFL = 0.1 (down).
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Figure 6: Errors at t = 0.003 and θ = 2/3 and initial condition given in (32) on cartesian meshes and
CCFL = 0.5 (up left), on random meshes and CCFL = 0.1 (up right), on Kershaw type meshes and CCFL =
0.005 (down).

7.3 Results with the third order scheme
In this section, we present some convergence analysis for the test cases of Section 7.1 using the scheme of
Section 5. We use a third order Runge-Kutta scheme to discretise the time derivative. The final time is
tf = 0.001. The initial data is given by:

E0
j = 1
|Ωj |

∫
Ωj

Eexact(0,x)dx,

and the error is computed as follows:

e =
∑
j∈T

∫
Ωj

∣∣Eexact(tf ,x)− Pj(x)
∣∣ dx,

Figure 7 shows the errors for the test case of Section 7.1.1 on different meshes. Figure 8 shows the errors
for the test case of Section 7.1.2 on different meshes. Figure 9 shows the errors for the test case of Section
7.1.3 on different meshes. We see that the scheme is third order convergent on every type of meshes.
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Figure 7: L1 error at t = 0.001 and initial condition given in (30) on cartesian meshes (up left), on random
meshes (up right), on Kershaw type meshes (down) and CCFL = 0.4.
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Figure 8: L1 error at t = 0.001 and initial condition given in (31) on cartesian meshes (up left), on random
meshes (up right), on Kershaw type meshes (down) and CCFL = 0.4.
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Figure 9: L1 error at t = 0.001 and initial condition given in (32) on cartesian meshes and CCFL = 0.02 (up
left), on random meshes and CCFL = 0.02 (up right), on Kershaw type meshes and CCFL = 0.005 (down).

8 Appendix
8.1 Periodic boundary conditions
The boundary conditions are imposed using the method described in [BHL21]. In the case of periodic
boundary conditions, we add some ghost cells on the outside of the mesh so as to make it periodic. We then
define the unknown E on these new cells so as to make it periodic and we use this new geometric data to
compute the matrix βr on the boundary of the domain.

8.2 Proof of Theorem 2.1
Let j ∈ T , we show the following equality: for any ξ ∈ R2 and any θ ∈ [0, 1],∫

∂Ωj

〈ξ,x〉ndx = (1− θ)
∑
r∈Ωj

〈ξ,xr〉Cr
j + θ

∑
r+1/2∈Ωj

〈ξ,xr+1/2〉C
r+1/2
j . (34)

On the one hand, we have ∫
∂Ωj

〈ξ,x〉ndx =
∑

r+1/2∈Ωj

(∫ xr+1

xr

〈ξ,x〉ndx
)
.

On each edge, the outward unit normal vector n is constant and it is given by nr+1/2
j = Cr+1/2

j /‖Cr+1/2
j ‖.

Therefore we have:

∑
r+1/2∈Ωj

(∫ xr+1

xr

〈ξ,x〉ndx
)

=
∑

r+1/2∈Ωj

〈
ξ,

∫ xr+1

xr

xdx︸ ︷︷ ︸
=‖xr+1−xr‖xr+1/2

〉
nr+1/2
j =

∑
r+1/2∈Ωj

〈
ξ,xr+1/2

〉
Cr+1/2
j .
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Moreover, we have: ∑
r+1/2∈Ωj

〈
ξ,xr+1/2

〉
Cr+1/2
j =

∑
r∈Ωj

〈ξ,xr〉Cr
j . (35)

Indeed, using (6) leads to:∑
r∈Ωj

〈ξ,xr〉Cr
j = 1

2
∑
r∈Ωj

〈ξ,xr〉Cr−1/2
j + 1

2
∑
r∈Ωj

〈ξ,xr〉Cr+1/2
j

= 1
2

∑
r+1/2∈Ωj

〈ξ,xr+1〉Cr+1/2
j + 1

2
∑

r+1/2∈Ωj

〈ξ,xr〉Cr+1/2
j ,

which gives (35). This proves (34) and gives the result (7).

8.3 Proof of Theorem 2.2
We prove the following equality, for any matrix A ∈ R2×2:∫

∂Ωj

〈x, Ax〉ndx = 1
3
∑
r∈Ωj

〈xr, Axr〉Cr
j + 2

3
∑

r+1/2∈Ωj

〈xr+1/2, Axr+1/2〉C
r+1/2
j . (36)

Using (6), one has: ∑
r∈Ωj

〈xr, Axr〉Cr
j = 1

2
∑

r+1/2∈Ωj

(〈xr, Axr〉+ 〈xr+1, Axr+1〉)Cr+1/2
j .

This implies:

1
3
∑
r∈Ωj

〈xr, Axr〉Cr
j + 2

3
∑

r+1/2∈Ωj

〈xr+1/2, Axr+1/2〉C
r+1/2
j

=
∑

r+1/2∈Ωj

[
2
3 〈xr+1/2, Axr+1/2〉+ 1

6 (〈xr, Axr〉+ 〈xr+1, Axr+1〉)
]

Cr+1/2
j .

Moreover we have:

2
3 〈xr+1/2, Axr+1/2〉+ 1

6 (〈xr, Axr〉+ 〈xr+1, Axr+1〉) (37)

= 1
6 [〈xr, Axr+1〉+ 〈xr+1, Axr〉+ 2〈xr, Axr〉+ 2〈xr+1, Axr+1〉] . (38)

Eventually, we note that:∫
∂Ωj

〈x, Ax〉ndx =
∑

r+1/2∈Ωj

(∫ 1

0
〈λxr + (1− λ)xr+1, A(λxr + (1− λ)xr+1)〉dλ

)
Cr+1/2
j , (39)

and: ∫ 1

0
〈λxr + (1− λ)xr+1, A(λxr + (1− λ)xr+1)〉 (40)

= 1
6 [〈xr, Axr+1〉+ 〈xr+1, Axr〉+ 2〈xr, Axr〉+ 2〈xr+1, Axr+1〉] . (41)

Collecting (37), (39) and (40), we find (36) and the desired result.
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